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Institute of Mathematics of the Academy of Sciences
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Abstract

We investigate properties of the formula p→ ✷p in the basic modal logic K. We show

that K satisfies an infinitary weaker variant of the rule of margins ϕ→ ✷ϕ / ϕ,¬ϕ, and

as a consequence, we obtain various negative results about admissibility and unification

in K. We describe a complete set of unifiers (i.e., substitutions making the formula

provable) of p → ✷p, and use it to establish that K has the worst possible unification

type: nullary. In well-behaved transitive modal logics, admissibility and unification can be

analyzed in terms of projective formulas, introduced by Ghilardi; in particular, projective

formulas coincide for these logics with formulas that are admissibly saturated (i.e., derive

all their multiple-conclusion admissible consequences) or exact (i.e., axiomatize a theory

of a substitution). In contrast, we show that in K, the formula p → ✷p is admissibly

saturated, but neither projective nor exact. All our results for K also apply to the basic

description logic ALC.

Key words: modal logic, description logic, unification type, admissible rules, rule of

margins.

1 Introduction

Equational unification studies the problem of making terms equivalent modulo an equational

theory by means of a substitution. It has been thoroughly investigated for basic algebraic

theories, such as the theory of commutative semigroups, see Baader and Snyder [5] for an

overview. If L is a propositional logic algebraizable with respect to a class of algebras V ,

unification modulo the equational theory of V can be stated purely in terms of propositional

logic: an L-unifier of a set of formulas Γ is a substitution which turns all formulas from Γ

into L-tautologies.

In the realm of modal logics, the seminal results of Ghilardi [11] show that unification is

at most finitary, decidable, and generally well-behaved for a representative class of transitive

modal logics, including e.g. K4, S4, GL, Grz. Unification was also studied for fragments

of description logics, which have applications in ontology generation and maintenance; see
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Baader and Ghilardi [1]. In particular, the description logics treated in [4, 3] can be thought

of as the {∧,✷} and {∧,✸} fragments of multimodal K.

Unification in propositional logics is closely connected to admissibility of inference rules: a

multiple-conclusion rule Γ / ∆ is L-admissible if every L-unifier of Γ also unifies some formula

from ∆. Rybakov [17] proved that admissibility is decidable for a class of transitive modal

logics (similar to the one mentioned above) and provided characterizations of their admissible

rules. Some of these results can be alternatively obtained using Ghilardi’s approach (cf.

also [13]). It is also possible to treat intuitionistic and intermediate logics in parallel with the

transitive modal case [17, 10, 12].

In contrast to these results, not much is known about unification and admissibility in

nontransitive modal logics with a complete set of Boolean connectives. In particular, one of

the main open problems in the area is decidability of unification or admissibility in the basic

modal logic K. (Wolter and Zakharyaschev [21] have shown that unifiability is undecidable

in the bimodal extension of K with the universal modality and in some description logics,

but it is wide open whether one can extend these results to K itself.)

In this note we present some negative properties of unification and admissibility in K.

The main result is that unification in K is nullary (i.e., of the worst possible type). In terms

of description logic, unification in ALC is nullary, even if we consider formulas with only one

role and one concept name. We also show that there exists a formula (namely, p → ✷p)

which is admissibly saturated in the sense of [14], but it is not projective (or even exact). In

contrast, the results of Ghilardi [11] imply that in well-behaved transitive modal logics such

as K4, projective, exact, and admissibly saturated formulas coincide, and indeed this is an

important precondition which makes possible the characterization of admissibility in terms

of projective approximations. Thus, admissible rules of K cannot be directly analyzed in a

similar way.

Our results are based on a classification of unifiers of the formula p → ✷p. The main

ingredient is establishing that K admits a weaker version of the so-called rule of margins

ϕ→ ✷ϕ / ϕ,¬ϕ

(meaning that whenever a formula of the form ϕ → ✷ϕ is valid, one of the formulas ϕ, ¬ϕ

is also valid). The rule of margins was investigated by Williamson [18, 19, 20] in the context

of epistemic logic. (The rule is supposed to express the ubiquity of vagueness. We read ✷ as

“clearly”. Since all our learning processes have a certain margin of error, the only way we can

know for sure that ϕ is clearly true whenever it is true is that we know in fact whether ϕ is

true or false.) The rule of margins is admissible e.g. in the logics KD, KT, KDB, and KTB,

but not in K. However, we will show that K satisfies a variant of the rule whose conclusion is

that either ϕ holds, or it is almost contradictory in the sense of implying ✷
n⊥ for some n ∈ ω.

We remark that the rule of margins was also used in connection with unification by Dzik [9].

2 Preliminaries

We refer the reader to [8, 6, 5] for background on modal logic and unification. We review

below the needed definitions to fix the notation, and some relevant basic facts.
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We work with formulas in the propositional modal language using propositional vari-

ables pn for n < ω (we will often write just p for p0), Boolean connectives (including

the nullary connectives ⊥,⊤), and the unary modal connective ✷. We will use lower-case

Greek letters ϕ,ψ, . . . to denote formulas, and upper-case Greek letters Γ,∆, . . . for finite

sets of formulas. We define ✸ϕ, ✷nϕ, ✷<nϕ, and ✸
nϕ as shorthands for ¬✷¬ϕ, ✷ · · ·✷

︸ ︷︷ ︸

n boxes

ϕ,

∧n−1
i=0 ✷

iϕ, and ¬✷n¬ϕ, respectively. (As a special case, ✷
0ϕ = ϕ and ✷

<0ϕ = ⊤.) The

modal degree md(ϕ) of a formula ϕ is defined so that md(pi) = 0, md(◦(ϕ0, . . . , ϕk−1)) =

maxi<k md(ϕi) for a k-ary Boolean connective ◦, and md(✷ϕ) = 1 + md(ϕ).

We use ⊢ to denote the global consequence relation of K. That is, Γ ⊢ ϕ iff there exists a

sequence of formulas ϕ0, . . . , ϕn such that ϕn = ϕ, and each ϕi is an element of Γ, a classical

propositional tautology, an instance of the axiom

✷(α→ β) → (✷α→ ✷β),

or it is derived from some of the formulas ϕj with j < i by an instance of necessitation α / ✷α

or modus ponens α, (α → β) / β.

A Kripke model is a triple 〈F,R,�〉, where the accessibility relation R is a binary relation

on a set F , and the valuation � is a relation between elements of F and formulas, written as

F, x � ϕ, which commutes with propositional connectives and satisfies

F, x � ✷ϕ iff ∀y ∈ F (x R y ⇒ F, y � ϕ).

If there is no danger of confusion, we will denote the model 〈F,R,�〉 by just F . We write

F � ϕ if F, x � ϕ for every x ∈ F , and F � Γ if F � ϕ for every ϕ ∈ Γ. The strong

completeness theorem for K [8, Thms. 3.55, 10.5] states

Fact 2.1 Γ ⊢ ϕ iff F � Γ implies F � ϕ for every model 〈F,R,�〉.

We write R(x) = {y : x R y}. Let

Rn = {〈x0, xn〉 ∈ F 2 : ∃x1, . . . , xn−1 ∈ F ∀i < nxi R xi+1}

be the n-fold composition of R (where the case n = 0 is understood to mean R0 = {〈x, x〉 :

x ∈ F}), and R≤n =
⋃

i≤nR
i. We say that x is a root of F if F =

⋃

n∈ω R
n(x).

Fact 2.2 ([8, Cor. 3.29], cf. [6, Thm. 2.34]) If 0 ϕ, then there exists a model 〈F,R,�〉

based on a finite irreflexive intransitive tree with root x such that F, x 2 ϕ.

(That is, R is the edge relation of a directed tree with edges oriented away from x and no

self-loops.)

A model 〈F ′, R′,�′〉 is the restriction of 〈F,R,�〉 to F ′, denoted as 〈F,R,�〉↾F ′, if F ′ ⊆ F ,

R′ = R ∩ F ′2, and F, x � pi iff F ′, x � pi for every x ∈ F ′ and pi.

Fact 2.3 ([8, Prop. 3.2], [6, L. 2.33]) If n ≥ md(ϕ), x ∈ F ∩G, and 〈F,R,�〉 ↾R≤n(x) =

〈G,S,�〉 ↾ S≤n(x), then F, x � ϕ iff G,x � ϕ.
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A p-morphism between models 〈F,R,�〉 and 〈G,S,�〉 is a function f : F → G such that

(i) x R y implies f(x) S f(y),

(ii) if f(x) S z, there exists y ∈ F such that x R y and f(y) = z,

(iii) F, x � pi iff G, f(x) � pi for every variable pi.

Fact 2.4 ([8, Thm. 3.15], [6, Prop. 2.14]) If f : F → G is a p-morphism, then F, x � ϕ

iff G, f(x) � ϕ for every formula ϕ.

A substitution is a mapping from formulas to formulas which commutes with all connec-

tives. A unifier of a finite set of formulas Γ is a substitution σ such that ⊢ σ(ϕ) for all ϕ ∈ Γ.

In logics with a well-behaved conjunction connective such as K, unifiers of Γ are the same as

unifiers of the single formula
∧

Γ, hence we will mostly restrict the discussion below to plain

formulas instead of sets in order to simplify the notation.

Let U(ϕ) be the set of all unifiers of ϕ. The composition of substitutions σ, τ is the

substitution σ ◦ τ such that (σ ◦ τ)(ϕ) = σ(τ(ϕ)). Let σ ≡ τ if ⊢ σ(pi) ↔ τ(pi) for every i.

A substitution τ is more general than σ, written as σ � τ , if there exists a substitution υ

such that σ ≡ υ ◦ τ . We warn the reader that � is often written in the opposite direction

in literature on unification theory. We write σ ≈ τ if σ � τ and τ � σ, and σ ≺ τ if σ � τ

but τ � σ. Note that � is a preorder, and ≈ is the induced equivalence relation. A complete

set of unifiers of ϕ is a cofinal subset C of 〈U(ϕ),�〉 (i.e., a set of unifiers of ϕ such that

every unifier of ϕ is less general than some element of C). If {σ} is a complete set of unifiers

of ϕ, then σ is a most general unifier (mgu) of ϕ.

If 〈P,≤〉 is a nonempty poset, let M be the set of its maximal elements (i.e., x ∈ P such

that x < y for no y ∈ P ). If every element of P is below an element of M , we say that 〈P,≤〉

is of

• type 1 (unitary), if |M | = 1,

• type ω (finitary), if M is finite and |M | > 1,

• type ∞ (infinitary), if M is infinite.

Otherwise, it is of type 0 (nullary).

The unification type of ϕ is the type of the quotient poset 〈U(ϕ),�〉/≈. Note that ϕ is of

unitary type iff it has an mgu, and it is of at most finitary type (i.e., 1 or ω) iff it has a finite

complete set of unifiers. The unification type of a logic (that is, for us, of K) is the maximal

type of a unifiable formula ϕ, where we order the unification types as 1 < ω <∞ < 0.

In unification theory, it is more customary to define the equivalence of unifiers σ, τ ∈ U(ϕ)

(and derived notions such as � and unification types) so that σ ≡ τ iff ⊢ σ(pi) ↔ τ(pi) for

variables pi that occur in ϕ, whereas we demanded this for all variables. Our results hold

equally well under the restricted definition, and in fact, the proofs could be slightly simplified

in this case (we could replace conditions (ii), (iii) in Lemma 3.5 with just σ ≡ σ⊤). The

latter is one reason for our choice of the definition: in order to make the results most general,
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we carry out the proofs for the most complicated case. We also find it convenient to have

an absolute notion of equivalence of substitutions, independent of which formula they are

considered to be unifiers of. Our results are robust under further variations of the definition,

for example we could consider substitutions with domain consisting of formulas using only

variables occurring in ϕ, and target consisting of formulas using variables from a fixed finite

set (which could be the same as the domain).

A multiple-conclusion rule is an expression Γ / ∆, where Γ,∆ are finite sets of formulas.

A rule Γ / ∆ is derivable if Γ ⊢ ψ for some ψ ∈ ∆. A rule Γ / ∆ is admissible, written

as Γ ∼ ∆, if every unifier of Γ also unifies some ψ ∈ ∆. Note that all derivable rules are

admissible, but not vice versa. A formula ϕ is admissibly saturated [14], if every admissible

rule of the form ϕ / ∆ is derivable. ϕ is exact [15] if there exists a substitution σ such that

ϕ ⊢ ψ iff ⊢ σ(ψ)

for every formula ψ. ϕ is projective [10] if it has a unifier σ (called a projective unifier) such

that

ϕ ⊢ pi ↔ σ(pi)

for every pi. This implies that ϕ ⊢ ψ ↔ σ(ψ) for every ψ, and that σ is an mgu of ϕ: if

τ ∈ U(ϕ), we have τ ≡ τ ◦ σ.

Fact 2.5 Let ϕ be a formula.

(i) If ϕ is projective, it is exact.

(ii) If ϕ is exact, it is admissibly saturated.

Proof: (i): On the one hand, σ is a unifier of ϕ. On the other hand, if ⊢ σ(ψ), then

ϕ ⊢ ψ ↔ σ(ψ) implies ϕ ⊢ ψ.

(ii): If ϕ ∼ ∆, then ⊢ σ(ψ) for some ψ ∈ ∆ as σ is a unifier of ϕ, hence ϕ ⊢ ψ by exactness.

✷

A projective approximation of ϕ [10] is a finite set Π of projective formulas such that ϕ ∼ Π,

and π ⊢ ϕ for every π ∈ Π. More generally, an admissibly saturated approximation [14] is

a set with properties as above, except that its elements are only required to be admissibly

saturated instead of projective. If Π is an admissibly saturated approximation of
∧

Γ, it is

easy to see ([14, Obs. 3.7]) that

(1) Γ ∼ ∆ iff ∀π ∈ Π∃ψ ∈ ∆π ⊢ ψ.

If Π is a projective approximation of ϕ, then the set of projective unifiers of elements of Π is a

finite complete set of unifiers of ϕ. This does not hold for admissibly saturated approximations

in general.

The definition immediately implies that if Π is any admissibly saturated approximation

of an admissibly saturated formula ϕ, then there is a formula π ∈ Π interderivable with ϕ

(i.e., ϕ ⊢ π and π ⊢ ϕ). In particular, if an admissibly saturated formula has a projective

approximation, it must be projective itself, hence we have:
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Fact 2.6 The following are equivalent.

(i) Every ϕ has a projective approximation.

(ii) Every ϕ has an admissibly saturated approximation, and every admissibly saturated

formula is projective.

Projective formulas and approximations are the backbone of Ghilardi’s analysis [11] of uni-

fication and admissibility in transitive modal logics such as K4, S4, or GL. He shows that

in these logics, every formula has a projective approximation, which implies that unifica-

tion is at most finitary, and gives a description of admissibility by means of (1). By Facts

2.5 and 2.6, the same property also implies that admissibly saturated, exact, and projective

formulas coincide.

For an example exhibiting different behaviour, in  Lukasiewicz logic every formula has an

admissibly saturated approximation, and exact formulas coincide with admissibly saturated

formulas, but the logic has nullary unification type, and some exact formulas are not projective

[14, 16, 7].

3 Results

As all of our results concern properties of the formula p → ✷p, our first task is to describe

a complete set of unifiers of this formula. Without further ado, this set will consist of the

following substitutions.

Definition 3.1 For any n ∈ ω, we introduce the substitutions

σn(p) = ✷
<np ∧ ✷

n⊥,

σ⊤(p) = ⊤,

where σα(q) = q for every variable q 6= p and α ∈ ω+ := ω ∪ {⊤}.

Lemma 3.2 σα is a unifier of p→ ✷p for every α ∈ ω+.

Proof: Using the principle ϕ→ ψ ⊢ ✷
nϕ→ ✷

nψ, and distributivity of ✷ over ∧, we have

⊢ ✷
<np ∧ ✷

n⊥ → ✷
≤np→ ✷✷

<np,

⊢ ✷
n⊥ → ✷

n+1⊥,

whence

⊢ ✷
<np ∧ ✷

n⊥ → ✷✷
<np ∧✷✷

n⊥ → ✷(✷<np ∧ ✷
n⊥).

Clearly, ⊢ ⊤ → ✷⊤. ✷

We start with simple criteria for recognizing that a given unifier of p→ ✷p is below σα.

Lemma 3.3 If σ is a unifier of p→ ✷p, and n ∈ ω, the following are equivalent:

(i) σ � σn,
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(ii) σ ≡ σ ◦ σn,

(iii) ⊢ σ(p) → ✷
n⊥.

Proof: (ii) → (i) follows from the definition of �.

(i) → (iii): If σ ≡ τ ◦ σn, then ⊢ σn(p) → ✷
n⊥ implies ⊢ τ(σn(p)) → τ(✷n⊥), i.e.,

⊢ σ(p) → ✷
n⊥.

(iii) → (ii): Put ϕ = σ(p). Since σ is a unifier of p → ✷p, we have ⊢ ϕ → ✷ϕ, hence ⊢

ϕ→ ✷
<nϕ by induction on n. Since we also assume ⊢ ϕ→ ✷

n⊥, we have ⊢ σ(p) → σ(σn(p)).

The other implication is trivial as ⊢ σn(p) → p. ✷

Definition 3.4 For any substitution σ, let σ ↾ p be the substitution τ such that τ(p) = σ(p),

and τ(q) = q for every variable q 6= p.

Lemma 3.5 If σ is a substitution, the following are equivalent:

(i) σ � σ⊤,

(ii) σ ≡ σ ◦ σ⊤,

(iii) σ ↾ p ≡ σ⊤,

(iv) ⊢ σ(p).

Proof: (ii) ↔ (iii) ↔ (iv): If q 6= p is a variable, we have σ⊤(q) = (σ ↾ p)(q) = q and

(σ ◦ σ⊤)(q) = σ(q), hence the corresponding equivalences in (ii) and (iii) are trivially valid.

For p itself, we have σ⊤(p) = (σ◦σ⊤)(p) = ⊤, hence (ii) and (iii) both amount to ⊢ σ(p) ↔ ⊤,

which is the same as ⊢ σ(p).

(ii) → (i) follows from the definition of �. Conversely, if σ ≡ τ ◦σ⊤, we have τ(σ⊤(p)) = ⊤,

thus ⊢ σ(p). ✷

The crucial element in the description of U(p→ ✷p) is to show that one of the conditions in

Lemma 3.3 or 3.5 applies to every unifier. This amounts to a variant of the rule of margins,

as alluded to in the introduction. The basic idea is similar to Williamson’s proof [18] of the

rule of margins for KD: in order to invalidate ϕ → ✷ϕ, we take two models satisfying ϕ

and ¬ϕ, respectively, and join them by a path, while making sure this does not mess up the

valuation of ϕ in the end-points. Then ϕ has to switch to ¬ϕ somewhere along the path, at

which point the formula ϕ→ ✷ϕ will not hold.

Theorem 3.6 If ⊢ ϕ→ ✷ϕ, then ⊢ ϕ or ⊢ ϕ→ ✷
n⊥, where n = md(ϕ).

Proof: Assume 0 ϕ and 0 ϕ→ ✷
n⊥. By Fact 2.2, the latter implies that there exists a finite

irreflexive intransitive tree 〈F,R,�〉 with root x0 such that F, x0 � ϕ ∧ ✸
n⊤. This means

that there exists a sequence x0 R x1 R · · · R xn of elements of F , and as R is an intransitive

tree, xn /∈ R<n(x0). Since 0 ϕ, there exists a model 〈G,S,�〉 and a point xn+1 ∈ G such

that G,xn+1 2 ϕ. Let 〈H,T,�〉 be the disjoint union of F and G, where we additionally

put xn T xn+1. Since F ↾ R≤n(x0) = H ↾ T≤n(x0), we have H,x0 � ϕ by Fact 2.3. On the

other hand, H,xn+1 2 ϕ, hence there exists i ≤ n such that H,xi � ϕ and H,xi+1 2 ϕ. Then

H,xi 2 ϕ→ ✷ϕ. ✷
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Figure 1: Unifiers of p→ ✷p.

Ignoring the explicit dependence of n on ϕ, we can rephrase Theorem 3.6 by saying that the

infinitary multiple-conclusion rule

(2) p→ ✷p / {p→ ✷
n⊥ : n ∈ ω} ∪ {p}

is admissible in K. Let us mention that a similar proof also shows that K satisfies the following

variant of Williamson’s alternative rule of disjunction: if n0 ≥ md(ϕ0), n1, . . . , nk > md(ϕ0),

and ⊢ ϕ0 ∨ ✷
n1ϕ1 ∨ · · · ∨ ✷

nkϕk, then ⊢ ϕ0 ∨ ✷
n0⊥ or ⊢ ϕi for some i = 1, . . . , k. We leave

the details to the interested reader as we have no further use for this property.

Corollary 3.7 The substitutions {σα : α ∈ ω+} form a complete set of unifiers of the formula

p→ ✷p.

Proof: By Lemmas 3.2, 3.3, and 3.5, and Theorem 3.6. ✷

Theorem 3.8 Unification in K is nullary.

Proof: Since ⊢ σn(p) → ✷
n+1⊥ and 0 σn+1(p) → ✷

n⊥, Lemma 3.3 shows that σn ≺ σn+1.

Similarly, 0 σn(p) and 0 ⊤ → ✷
n⊥, hence σn and σ⊤ are incomparable by Lemmas 3.3

and 3.5. By Corollary 3.7, every maximal element of U(p → ✷p) is equivalent to some σα,

and in view of σn ≺ σn+1, we must have α = ⊤. Thus, none of the unifiers σn is majorized

by a maximal element in U(p→ ✷p). ✷

The preorder of unifiers of p→ ✷p is depicted in Figure 1. (We consider substitutions defined

only for the p variable in the diagram, which is why there are no unifiers strictly below σ⊤
or σ0.)

The basic description logic ALC [2, 1] is a notational variant of multimodal K, with con-

cept names corresponding to propositional variables, and universal and existential restrictions

corresponding to boxes and diamonds, one pair for each role name. We obtain immediately

the following.
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Corollary 3.9 Unification in ALC is nullary, even for formulas with only one role name

and one concept name1. ✷

Now we turn to the (non)equivalence of exact and admissibly saturated formulas. That

p→ ✷p is inexact follows easily from Theorem 3.6:

Proposition 3.10 The formula p→ ✷p is not exact, and a fortiori not projective.

Proof: Assume for contradiction that σ is a substitution such that

p→ ✷p ⊢ ψ iff ⊢ σ(ψ)

for every ψ. In particular, σ is a unifier of p→ ✷p, hence ⊢ σ(p) or ⊢ σ(p) → ✷
n⊥ for some n

by Theorem 3.6. However, p→ ✷p 0 p and p→ ✷p 0 p→ ✷
n⊥, a contradiction. ✷

We remark that σn and σ⊤ are projective unifiers of the formulas p → ✷p ∧ ✷
n⊥ and p,

respectively.

We complement Proposition 3.10 by showing that p → ✷p is admissibly saturated. We

mention another pathological property of p→ ✷p which will arise from the proof. Intuitively,

it is not so surprising that a formula ϕ with an infinite cofinal chain of unifiers like σn (or

more generally, a formula whose preorder of unifiers is directed, even if it has no maximal

element) can be admissibly saturated, as the unifiers high enough in the chain eventually

become “indistinguishable” when applied to any particular formula ψ. However, if a formula

has two incomparable maximal unifiers, say σ, σ′, we would expect it not to be admissibly

saturated: presumably, we can find formulas ψ,ψ′ unified by σ and σ′, respectively, but not

vice versa. Then ϕ ∼ ψ,ψ′, but not ϕ ∼ ψ or ϕ ∼ ψ′. By the same intuition, we would expect

that a formula like p→ ✷p, whose set of unifiers consists of two incomparable parts (a chain

and a maximal unifier, in our case), is not admissibly saturated either.

What happens here is that when we apply the unifiers σn to a particular formula, they not

only become “indistinguishable” from each other for n large enough, but they also “cover”

the unifier σ⊤, despite that it is not comparable to any element of the chain. Returning to

our weak rule of margins, one can imagine that the margins of error about the approximate

falsities ✷
n⊥ gradually blend into the margin about the truth ⊤ as n goes to infinity.

Proposition 3.11 The formula p→ ✷p is admissibly saturated.

Proof: Assume p → ✷p ∼ ∆, and pick n > max{md(ψ) : ψ ∈ ∆}. Since σn unifies p → ✷p,

there exists ψ ∈ ∆ such that ⊢ σn(ψ). We claim

p→ ✷p ⊢ ψ.

If not, there exists a Kripke model 〈F,R,�〉 such that F � p → ✷p and F, x0 2 ψ for

some x0 ∈ F . First, we unravel F to a tree (cf. [6, Prop. 2.15], [8, Thm. 3.18]): let 〈G,S,�〉

be the model where G consists of sequences 〈x0, . . . , xm〉 such that m ∈ ω, xi ∈ F , xi R xi+1;

1That is, one concept variable and no concept constants. We employ no unification problems with constants

in this paper.
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we put 〈x0, . . . , xm〉 S 〈x0, . . . , xm, xm+1〉; and G, 〈x0, . . . , xm〉 � pj iff F, xm � pj for each

variable pj. The mapping f : G → F given by f(〈x0, . . . , xm〉) = xm is a p-morphism, hence

it preserves the valuation of formulas by Fact 2.4. In particular, G � p→ ✷p and G, 〈x0〉 2 ψ.

Let H be the submodel of G consisting of sequences 〈x0, . . . , xm〉 where m < n. We still

have H � p → ✷p: if ~x = 〈x0, . . . , xm〉 with m < n − 1, then G ↾ S≤1(~x) = H ↾ S≤1(~x),

hence H,~x � p → ✷p by Fact 2.3; on the other hand, if m = n − 1, then H,~x � ✷⊥, and

a fortiori H,~x � p → ✷p. It follows that H � p → ✷
<np, and moreover H � ✷

n⊥, hence

H � p↔ σn(p). However, G ⊇ H ⊇ G ↾ S≤md(ψ)(〈x0〉), hence H, 〈x0〉 2 ψ by Fact 2.3. These

properties together imply H, 〈x0〉 2 σn(ψ), contradicting ⊢ σn(ψ). ✷

We remark that unlike Theorem 3.6, we could not directly take a finite irreflexive intransitive

tree for F in the proof above, because K is not finitely strongly complete with respect to such

frames. (Every finite irreflexive tree is converse well-founded, and therefore validates Löb’s

rule ✷p→ p / p, which is admissible but not derivable in K.)

Corollary 3.12 The formula p→ ✷p has no projective approximation.

Proof: In view of Propositions 3.10 and 3.11, this follows from the discussion leading to

Fact 2.6. ✷

4 Conclusion

We have provided examples confirming that unification and admissibility in the basic modal

logic K involves peculiar phenomena not encountered in the familiar case of transitive modal

logics with frame extension properties: the fact that K has the worst possible unification

type, even for very simple formulas in one variable like p → ✷p, is a problem by itself; as

we have seen, this formula is also a counterexample to other structural properties vital for

the kind of analysis of admissibility and unification that has been applied in the transitive

case, namely it is neither projective nor exact despite being admissibly saturated, it has no

projective approximation, and it is admissibly saturated even though its preorder of unifiers

is not directed (it consists of two disjoint connected components).

The major remaining problem in this area is whether admissibility or unifiability in K

is decidable. Our results might be seen as hinting towards the possibility that these tasks

are undecidable. (The results of Wolter and Zakharyaschev [21] also point in this direction.)

For example, (2) means that a rule of the form Γ, p → ✷p / ψ is admissible iff Γ, p / ψ and

Γ, p → ✷
n⊥ / ψ are admissible for every n ∈ ω. Note that p → ✷

n⊥ holds in a model iff the

submodel generated by points satisfying p is well-founded of finite depth at most n; one can

imagine that the discrete nature of such models could be used to encode finite computation

or some kind of finite combinatorial structures. Since n can be arbitrarily large irrespective

of the size of Γ or ψ, this might lead to an undecidable problem.

On the other hand, should admissibility in K be decidable after all, our results show that

proving this will require methods more powerful and more delicate than what we are used to

from the transitive case, as current techniques are not ready to cope with obstacles exhibited

by the behaviour of p→ ✷p.
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