
 1

Published in the Journal of Logic and Computation, Vol. 25, N0 3 613-138, 2015
doi: 10.1093/logcom/exu020

Differential and Integral Calculus for Logical Operations
A Matrix-Vector Approach

Eduardo Mizraji

Group of Cognitive Systems Modeling, Biophysics Section,
Facultad de Ciencias, Universidad de la República

Montevideo, Uruguay

Address:
Dr. Eduardo Mizraji
Sección Biofísica, Facultad de Ciencias, UdelaR
Iguá 4225, Montevideo 11400, Uruguay
e-mails: 1) emizraji@gmail.com, 2) mizraj@fcien.edu.uy
Phone-Fax: +598 25258629

 2

 ABSTRACT

A variety of problems emerged investigating electronic circuits, computer devices and
cellular automata motivated a number of attempts to create a differential and integral
calculus for Boolean functions. In the present article, we extend this kind of calculus in
order to include the semantic of classical logical operations. We show that this extension
to logics is strongly helped if we submerge the elementary logical calculus in a matrix-
vector formalism that naturally includes a kind of fuzzy-logic. In this way, guided by the
laws of matrix algebra, we can construct compact representations for the derivatives and
the integrals of logical functions. Inside this semantic-algebraic calculus, we obtain
expressions for the derivatives of some of the basic logical operations and show the
general way to obtain the derivatives of any well-formed formula of propositional
calculus. We show that some of the basic tautologies (Excluded middle, Modus ponens,
Hypothetical syllogism) are members of a kind of hierarchical system linked by the
differentiation algorithm. In addition using the logical derivatives we show that relatively
complex formulas can collapse in simple expressions that reveal clearly their hidden
logical meaning. The search for the antiderivatives produces naturally an integral
calculus. Within this logical formalism an indefinite integral can always be found for any
logical expression. Moreover, particular integrals can be constructed based on
detachment properties that lead to logical expressions of growing complexity. We show
that these particular integrals have some similarities with the “generalizing deduction”
procedures investigated by Łukasiewicz.

Keywords: Boolean derivative, Logical antiderivative, Matrix-vector logics, Many-valued
logic

 3

1. INTRODUCTION.
In the time of Leibniz and Newton, the development of the infinitesimal calculus was
strongly stimulated by mathematical and physical problems that belonged, mainly, to the
field of continuous mathematics. A great amount of our present scientific knowledge is a
consequence of this development. Yet, in our times many problems of theoretical and
technical importance belong to the territory of discrete mathematics. We mention as
examples the optimization of logical circuits or the design of cellular automata. In these
situations, the direct transposition of the methods of infinitesimal calculus is not possible.
For this kind of problems an operation called Boolean derivative has been defined [8, 9,
12, 18, 24, 42, 43]. The Boolean derivative of a formula with respect to a variable gives the
condition under which the formula changes its value whenever the variable does. This
derivative produces a new Boolean function that only depends on the remaining variables
[42, 43]. After the proposal by Shannon in his MSc thesis [38], the theory and analysis of
electrical circuits has been largely improved using the formalism of binary variables and
the use of what is usually called “Boolean logic” (even if some of the main operations of
this binary logic contradict the definitions of Boole [3, 14]).

Let us mention that the debates about the nature of Boolean operations were extremely
fertile and produced important theoretical and practical ramifications. Symmetric
difference was partially implicit in the work of Boole (see, for instance, [3], pp. 32-33,
Dover Edition); in fact, this operation was adopted by a number of mathematicians in
their formalizations of Boolean logical theory. For instance, inspired by Boole’s theory, M.
H. Stone published in 1935 [40] a Boolean algebra based on two fundamental operations:
the multiplication and the symmetric difference. Inclusive addition is defined from these
two basic operations. These operations allow him to show that his Boolean algebra was a
particular class of ring. The use of the symmetric difference (exclusive-or) in Boolean
representations was central for the construction of a Boolean differential calculus.

The powerful instrument of binary representations of electrical circuits and the problems
of predicting the effects of relays and switches, naturally leaded to the definition of a
discrete derivative. This “Boolean derivative” allows detection of the effect of variable
switching on the behaviour of the circuit [8, 9, 12, 24, 42]. A complementary creation is
the Boolean integral, also used in relation with problems concerning electrical circuit
theory [9, 42]. Some of the approaches looking for Boolean differential and integral
calculus have used the formalism of matrix algebra (see, in particular, the recent work by
Cheng [9]). Cheng adopts the matrix algebra to represent a consistent logical formalism,
assuming that the variables participating in it are vectors and matrix built up using binary
numbers.

An important domain of application of the Boolean derivatives is the theory of cellular
automata as developed by Vichniac [43]. Even for the simplest situations, the prediction of

 4

the dynamic behavior of these mathematical devices is a hard problem. In particular, the
Boolean derivative has been used to analyze the structure of the space of 256 logical
functions that defines the two-states, two-neighbour 1-dimensional cellular automata
(Wolfram automata of the class k = 2, r = 1) [33, 43]. Conversely, very complex problems of
continuous mathematics (the solutions of Navier-Stokes equations) can be extremely well
approximated using cellular automata governed by discontinuous laws [45]. This fact
suggests the existence of links, not yet well understood, between continuous and discrete
representations. Hence, the development of a differential and integral calculus defined on
logical variables finds a first motivation in the practical problems of discrete mathematics,
and in their connection with non-linear continuous models.

Another reason to explore the properties of a differential and integral calculus of discrete
mathematical structures is related to the fact that in classical analysis differentiation and
integration show natural links with the losing or gaining of information. In the case of real
functions, the differentiation represents an irreversible process: it is executed by a well
defined algorithm, and produces a loss of information in the sense that differentiation is a
many-to-one application. Consequently, the integration, the reverse operation, is not
single-valued, and we do not have general algorithms to obtain antiderivatives for real-
valued functions [16, 17]. In the simplest cases, the construction of indefinite integrals uses
a basic set of elementary antiderivatives, plus theorems that govern their transformations.
Moreover, in some cases the antiderivatives exist, but they are not expressible in terms of

finite representations as is well illustrated by Gaussian exponential function 2exp(x)− .

The fact that a consistent definition for the Boolean derivatives and antiderivatives has
been proposed by many authors, opens the possibility to explore these topics in the
discrete domain.

In the theories previously referred, Boolean derivatives and integrals are applied to
canonical Boolean expressions based on additions, multiplications and
complementarities. Clearly, these Boolean expressions are always behind any well-formed
formula (wff) of propositional calculus, including the basic logical operators. In a sense we
can say that canonical Boolean expressions are a syntax that supports the constructions of
the logical “semantics” implied in any wff of propositional calculus.

Our purpose here is to adapt the Boolean differential and integral calculus to the semantic
expressions of propositional logic. For example, if we have a standard formulation of the

classical tautology modus ponens , ()p p q q ∧ → → , we can obtain a derivative able to be

expressed as follows:

(){ } ()p p q q q q
p

∂
 ∧ → → ≡ ¬ ∨ ¬ ∂

.

 5

To emphasize the interest of conserving the semantics of logical operations, we observe
that this derivative of the modus ponens provides the negation of other basic tautology:
the excluded middle.

In the case of integration, we show later in this article that for any wff we can define a set
of general integrals and particular integrals, all them reciprocal operation of the Boolean
differentiation. For instance, given the logical formula p q→ ¬ , we can show that a

general integral for this expression is given by

() ()p q r p q r → ¬ ∂ ≡ → ¬ → ∫ ,

and a particular integral for the same expression is given by

() () ()
P

p q r p r q r → ¬ ∂ ≡ ∨ → ¬ ∨ ∫ .

The classical methods of binary logical can always be used to obtain and verify these
expressions, Nevertheless, the processing of differentiation and integration over logical
expressions can be carried out with a different methodology if we submerge the logical
formalism into the realm of linear algebra. The procedure employed here is an example of
the “bypasses” analyzed by Z.A. Melzak [27]: the problem to differentiate or integrate any
wff logical formula is mapped into the domain of matrix algebra; in this domain the
definitions are established and their consequences are investigated; finally, as the third
step of Melzak’s bypass, the results can be re-translated into the classical format of
propositional logic. It has been previously shown that the matrix-vector representation of
propositional logic (formalism named “vector logic” [30]), allows to perform the logical
calculus as operations of linear algebra. In this formalism the basic logical functions (as
negation, disjunction, implication, etc.) are represented by matrices and the truth-values
are represented by vectors. Within this vector logic, the equivalences of propositional
calculus become equalities between algebraic equations, and the logical symbols become
matrix operators. One of the remarkable facts of this vector logic is that some basic logical
equivalences (eg, the De Morgan’s laws) become identities between matrix operators, not
dependent on the vector truth-values [30, 32, 35]. The matrix-vector formalism of this
vector logic has very close relations with some matrix models of neural associative
memories, and in this sense they establish a promising point of departure to investigate
the neural bases of human reasoning [29, 36].

The matrix-vector approach has another particularity: in this algebraic calculus,
uncertainties in the truth-values can be expressed as linear combinations of the basic
truth-values affected by probabilistic weights. The matrix operators are composed by real

 6

numbers, are defined over two basic truth-value vectors (each vector corresponding to
each one of the binary truth-values) and programmed to produce a binary vector logic.
However, these “binary” matrices based on two vectors but composed by real numbers,
are capable of processing the probabilistic truth-values and, in this way, to produce a
particular class of many-valued logic [30, 35]. This fact allows extending the range of the
logic differential and integral calculus out of the binary domain, and gives a further
insight to interpret the interaction of differentiation and integration with the losing or
gaining of information.

The structure of the paper is the following. In the first parts we review the basic
operations of elementary propositional calculus, with a special emphasis in their relation
with the Boolean polynomials. Then we show how vector logic is a matrix-vector
translation of this formalism created by Boole, into the language and operations of matrix
algebra. We also illustrate how this vector logic produces a probabilistic scalar many-
valued logic in the presence of probabilistic inputs. We adapt to this formalism the
definitions of Boolean derivatives and apply it to the basic logical operators. Cross
derivatives and successive derivatives are also described. We show how successive
differentiation of classical tautologies discovers the existence of an interesting semantic
hierarchy between them, and how differentiation can be an useful mean to simplify
arguments. Finally, looking for antiderivatives, we construct firstly a general integral only
dependent on the basic function considered, and secondly a particular integral that also
depends on arbitrary logical expressions.

2. LOGICAL FUNCTIONS
2.1 The classical logical functions and the Boolean Polynomials
Classical binary logic is based on a reduced number of mathematical functions depending

on one (monadic) or two (dyadic) variables. In a binary base set { }1, 0 , the value 1

corresponds to “true” and the value 0 to “false”. The monadic functions are of the form

y M(x)= , and the dyadic functions are of the form z B(x, y)= with { }x, y, z 1, 0∈ . Table

1 shows two monadic functions, and Table 2 displays the most important dyadic functions.

Table 1: Monadic functions

x ID NOT (¬)

1 1 0

0 0 1

 7

Table 2 : Dyadic functions

x y AND

∧

OR

∨

IMPL
→

NAND NOR XOR

EQUI

≡

1 1 1 1 1 0 0 0 1

1 0 0 1 0 1 0 1 0

0 1 0 1 1 1 0 1 0

0 0 0 0 1 1 1 0 1

In the framework of the classical logic, the tautologies are logical expressions that produce
the truth-value 1 (or "true") for all the possible values of their logical variables. Some of

the basic tautologies are the following ({ }p,q, r 0,1∈):

Excluded middle: p p∨ ¬

Modus ponens: ()p p q q ∧ → →

Hypothetical syllogism: () () ()p r r q p q → ∧ → → →

It is remarkable that when George Boole established the development of logical
operations as polynomials, he established a firm bridge between classical logics and
algebra [3]. For the case of monadic operators, the Boolean polynomial looks as follows:

f (x) f (1) x f (0) (1 x)= + −

The 4 different monadic operations result from the different binary values for the
coefficients. For instance the ID operation requires f(1) = 1 and f(0) = 0, and NOT happens
if f(1) = 0 and f(0) = 1. For the case of dyadic operators, the Boolean polynomials are of the
general form

f (x, y) f (1,1)xy f (1,0)x(1 y) f (0,1)(1 x)y f (0,0)(1 x)(1 y)= + − + − + − − ,

and the different combinations of binary coefficients generate the 16 dyadic logical
functions. The operations illustrated in the Table 2 can be translated to this polynomial
format when the coefficients take the values indicated in the table. For instance: NAND
requires that f(1,1) = 0 and f(1,0) = f(0,1) = f(0,0) = 1. These Boolean polynomials can be

immediately extended to any number of variables, 1 i pf (x , , x , , x)… … , producing a large

potential variety of logical operators [35].

The complex relations between mathematics and logics, and the way many concepts
change of status in different epochs, have been reviewed in [20]. This review shows the

 8

critical role of invention for producing innovative advances and sustained challenges in
mathematics and logic. In the first paragraph of an influential book originally published in
1905 by Louis Couturat, we have a clear statement of a mathematician about the calculus
of the logic developed by Boole: “Les lois fondamentales de ce calcul on été inventées pour
exprimer les principes du raisonnement, les ‘lois de la pensée’; mais on peut considerer ce
calcul au point de vu purement formel, qui est celui des Mathématiques, comme une
Algèbre reposant sur certaines principes arbitrairement poses” [11] (see footnote 1). The
logical polynomials created by Boole became a subject of interest for many
mathematicians and logicians. In Section 24 of his book Couturat analyze Boolean
polynomials and adapt the original formalism to his pure algebraic approach. He explicitly
uses the dual interpretation of the polynomial variables as categories or propositions, in
both cases bounded by 0 and 1. The formalization of Boolean algebra was expanded in
many directions and a large number of refinements were proposed in the next decades.
After his short paper of 1935 [40] Stone published a comprehensive and highly influential
theory of Boolean rings [41]. This theory is a remarkable proof of the argument given in
[20.] showing how some initially “heterodox” inventions, as the idempotency of Boolean
variables, become basic for a solid and fertile theory. Recent developments expand the
theory of Boolean polynomials creating a polynomial ring calculus that embraces many
aspects of the theory of logics (eg. representation of syllogism and many valued logics) [5].
Using this kind of polynomial rings has been possible to develop a novel semantic
procedure to investigate logical modalities [2].

2.2. The Operators of Vector Logic.
Vector logic [30] is an algebraic model of elementary logic based on matrix algebra. It is
assumed that the truth-values map on Q-dimensional vectors and that the monadic and
dyadic operations are executed by matrix operators. It is a remarkable property of the
vector logic formalism that when the matrices operate over vectors representing truth-
values, the generated formulas show the same order of operations and logical variables
produced by Polish notation in the case of non-vectorial variables [32, 35]. This fact
illustrates the implicit operator approach inside Łukasiewicz conception of logical
formalism [25]. In addition, our representation generates an operator theory where the
logical operators are themselves subject to the laws of matrix algebra (this point has been
investigated with detail in [32]). It is well known that George Boole was an expert in the

1 “The fundamental laws of this calculus were devised to express the principles of reasoning, the

‘laws of thought’. But this calculus may be considered from the purely formal point of view, which is

that of mathematics, as an algebra based upon certain principles arbitrarily laid down”. Translated to

English by Lydia Gillingham Robinson and published online by The Project Gutenberg: EBook of The

Algebra of Logic, by Louis Couturat, Release Date: January 26, 2004 [EBook #10836].

 9

application of operators in the domain of differential and difference equations [14, 4].
Since the algebraic properties of matrices were communicated by Cayley in 1858 [7],
unfortunately Boole had no occasion (as far as we know) to connect the newborn matrix
theory with his algebraic formalism for the logic. It is a peculiar historical fact that Boole
and Cayley maintained a brief and, in a sense, slightly divergent correspondence about the
algebra of logic between 1847 and 1855 (reproduced in [4]). The potentialities of matrix
algebra for the theory of the logic was rapidly anticipated by Charles Peirce around 1870
and explored by Irving Copi in 1948 (references in [10]). The matrix formalism has
revealed the interesting possibility of representing the deep ideas of Łukasiewicz about
many-valued logics and modalities as a full operator theory [31, 35].

A general approach to this vector logic has been described in [35]. Here, we will be mainly
concerned with monadic and dyadic operators. We want to mention that different
formalisms for the logic based on matrices and vectors have been investigated in relation
to the basic theory of Boolean functions [8, 9]. quantum physics [13, 28] and new physical
computing procedures [44]. In addition, a recent article [21] describes and enlarges the
pioneering contributions of G.N Ramachandran showing the accuracy of the matrix-
vector formalism to capture some aspects of Indian Logic.

A propositional calculus can be considered as a classification system that assigns a truth-
value to each proposition. In the traditional binary logic, the truth-values are: true t (or
“yes”) aand false f (or “not”), and the basic set for the definition of mathematical logic

functions is { }f,t2 =τ . This binary logic possesses 4 monadic operations and 16 dyadic

operations. The construction of a two-dimensional vector logic begins establishing of a
correspondence between the truth-values t and f, and two Q-dimensional normalized

column vectors: st֏ and nf ֏ , Q 1s,n ×∈ℝ , with 2Q ≥ (the vector notation using “s”

and “n” is based in the Spanish “yes”, SI, and “not”, NO.). This correspondence produces a
set of vector truth-values:

{ }n,sV2 = .

The logical operations defined over this set of vectors lead to matrix operators. It is

especially interesting the fact that the set of truth-values { }n,sV2 = and the associated

matrix logical gates, allow to compute linear combinations of vectors s and n, that become
a first natural representation for uncertain truth-value assignments.

To simplify the notation and the results, we are going to assume here that s and n are
orthonormal column vectors, but this assumption is not necessary in general, and in [32]
we show how to derive the logical operators from linear independent vectors using the
Moore-Penrose pseudoinverse of a matrix. We want to mention that for the following

 10

results we only need to consider vectors of dimension 2. Nevertheless, we want to retain
the general presentation based on Q-dimensional vectors because this approach keeps
open the possibility to extend, in future works, many aspects of this formalism to a larger
number of vector truth-values. Assuming more than two vector truth-values, allows us to
explore some interesting aspects of many-valued logics: on the one hand, we can add new
vector logic values, orthogonal to the two basic vector truth-values s and n; on the other
hand, this enlarged set of vectors can admit inputs to the matrix operators weighted with
scalar probabilistic coefficient. We begun this kind of exploration in a paper published in
2008 [35].

2.2.1. Basic operations

The scalar product between Q-dimensional column vectors, v,uvuT ==== , is the operation

responsible of the properties displayed by vector logic. The orthonormality between

vectors s and n implies that 1v,u ==== if u = v, and 0v,u ==== if vu ≠ , 2Vv,u ∈∈∈∈ .

a) Monadic Operators
The basic monadic operators for this two-dimensional vector logic are generated by the
mapping

2 2Mon : V V→ .

This mapping produces four square matrices Q QI, K, M, N ×∈ ℝ . The matrices I and N

are respectively the identity and the negation matrices, and K and M are two operators
that produce a constant output [32].

a1) Identity. A logical identity ID(p) produces a matrix behaving as follows:

2I u u , u V= ∈ , and the structure of this matrix is

T TI ss nn= + .

Hence, due to the orthogonality of s respect to n, we have Is s s,s n n ,s s= + = and

I n n= .

a2) Negation. The classical negation p¬¬¬¬ is represented by the matrix operation

2N u , u V∈ , with

T TN ns sn= + .

 11

Consequently, Ns n= and N n s= . Note that the involutory behavior of the logical

negation, (p) p¬ ¬ ≡ , corresponds with the fact that 2(N) I= (the vector logic identity

matrix is not generally an identity matrix in the sense of matrix algebra, except in
particular cases).

a3) Constant operators. The following matrices give monotonic outputs:

T TK ss sn= +
T TM ns nn= + .

Consequenttly, Ks = Kn = s and Ms = Mn = n ,

b) Dyadic operators
The 16 two-valued dyadic operators correspond to the following mapping:

2 2 2Dyad : V V V⊗ → .

This mapping generates the rectangular matrices
2Q QT ×∈ℝ .

The different matrices T that execute these dyadic operations are based on the properties
of the Kronecker product. As we described previously (see [30] and [32]), the Kronecker
product allows representing logical variables without the need of modular arithmetic.
Some of the recent approaches to logic formalism that use matrices and Kronecker
products adapt the modular arithmetic for the algebraic operations between matrices and
vectors (see, for instance, [8, 9]). In the simplest version of the formalism used in the
present paper, real vectors play the role of Boolean variables due to orthogonality; in the
case of non-orthogonal linearly independent vectors, matrix pseudoinverses generate
similar results [32]. A remarkable aspect of this algebraic representation is the natural
emergence of a matrix version of Boolean polynomials; in these polynomials, the matrix-
vector operations and the Kronecker products replace modular addition and
multiplication [32, 35].

We summarize in what follows the definition and some basic properties of this product

[19]. Given two matrices nmij]a[A ×= and qpij]b[B ×= , the Kronecker product BA ⊗ is

given by

)nq()mp(ij]Ba[BA ×=⊗ .

 12

Two properties of this product are essential for the formalism of vector logic:

(P1) TTT BA)BA(⊗=⊗

(P2))'BB()'AA()'B'A)(BA(⊗=⊗⊗ .

Property (P2) needs conformable matrices (or vectors). For two r-dimensional column
vectors a and c, and two r’-dimensional vectors b and d, (P2) implies

T T T(a b) (c d) (a c)(b d) a ,c b,d⊗ ⊗ = = .

The matrix versions of the basic dyadic operators are described in the next paragraphs.

b1) Conjunction. The conjunction between two propositions qp ∧∧∧∧ is represented by a

matrix that acts on two vector truth-values: 2C(u v) , u, v V⊗ ∈ . This matrix C

reproduces the features of the classical conjunction truth-table:

T T T TC s(s s) n (s n) n (n s) n (n n)= ⊗ + ⊗ + ⊗ + ⊗

and operates as follows: C(s s) s⊗ = ; C(s n) C(n s) C(n n) n⊗ = ⊗ = ⊗ = .

b2) Disjunction. The classical disjunction qp ∨∨∨∨ is executed by the matrix

T T T TD s(s s) s (s n) s (n s) n (n n)= ⊗ + ⊗ + ⊗ + ⊗ ,

being D(s s) D(s n) D(n s) s⊗ = ⊗ = ⊗ = and D(n n) n⊗ = .

In the two-valued logic, the conjunction and the disjunction operations satisfy the De
Morgan Law: p q (p q)∧ ≡ ¬ ¬ ∨ ¬ (and also the dual: p q (p q)∨ ≡ ¬ ¬ ∧ ¬). For two-

dimensional vector logic this Law is also verified

C(u v) N D(N u N v)⊗ = ⊗ .

The Kronecker product allows the following factorization:

C(u v) N D(N N)(u v)⊗ = ⊗ ⊗ .

A remarkable fact is the following. We can prove directly, from the previous matrix
definitions, that in the two–dimensional vector logic the De Morgan Law is a law
involving operators, and not only a law concerning operations:

 C N D(N N)= ⊗ .

For a detailed study of this matrix-vector logic as a logic that implies algebraic operations

 13

between operators themselves, we refer to [32] and [35].

The matrix expressions for conjunction and disjunction immediately permit to define the
matrices S NC= and P N D= , corresponding to the Sheffer (or NAND) and the Peirce (or

NOR) gates, respectively.

b3) Implication. The “material” implication corresponds in classical logic to the
expression p q p q→ ≡ ¬ ∨ . The vector logic version of this equivalence leads to a matrix

L that represents vector logic “material” implication:

L D(N I)= ⊗ .

As can be directly proved, the explicit expression for this implication is

T T T TL s(s s) n(s n) s (n s) s (n n)= ⊗ + ⊗ + ⊗ + ⊗ ,

and the properties of classical implication are immediately verified:
L(s s) L (n s) L(n n) s⊗ = ⊗ = ⊗ = and L(s n) n⊗ = .

b4) The symmetric operators Equivalence and Exclusive-Or.
In this vector logic the equivalence qp ≡≡≡≡ corresponds to the following matrix:

T T T TE s(s s) n(s n) n (n s) s (n n)= ⊗ + ⊗ + ⊗ + ⊗ .

with, E (s s) E (n n) s⊗ = ⊗ = and E (s n) E (n s) n⊗ = ⊗ = .

The Exclusive-Or is the negation of the equivalence,)qp(≡≡≡≡¬¬¬¬ ; consequently it

corresponds with the matrix X N E= given by

T T T TX n(s s) s(s n) s(n s) n (n n)= ⊗ + ⊗ + ⊗ + ⊗ ;

hence X (s s) X (n n) n⊗ = ⊗ = and X (s n) X (n s) s⊗ = ⊗ = .

A simple numerical illustration of the form of these matrices for the case of []Ts 1 0=

and []Tn 0 1= is included in the Appendix of reference [35]. This Appendix also

illustrates the shape of logical matrices for 3-dimensional unit vectors that include a third
vectorial truth-value.

 14

2.2.2 Many-valued two-dimensional logic
In the case of two-valued vector logic, uncertainties in the truth-values can be introduced

using vectors f s n= ε + δ , with [], 0,1 , 1ε δ∈ ε + δ = . An interesting point is that these

vectors can be directly processed by matrix operators that initially result from a “Boolean”,
non many-valued, logic. In this case, the many-valued character of the emerged logic has
not been introduced a priori in the operators; instead, it is an a posteriori consequence of
the uncertainties introduced in the inputs. The vectors of this many-valued logic map on
scalar functions and generate a class probabilistic logic [30]. For vectors nsu β+α= and

n's'v β+α= the scalar many-valued (or “fuzzy”) logic obtained from any two-valued

matrix G is given by its projection over vector s :

)vectors(Gs)scalars(Val T= ,

with Val representing the scalar logical function associated with matrix G.

These projections produce the following results:

TNOT() s N u 1α = = − α
TOR(, ') s D(u v) ' 'α α = ⊗ = α + α −αα

TAND(, ') s C(u v) 'α α = ⊗ = αα
TIMPL(, ') s L(u v) 1 (1 ')α α = ⊗ = − α − α

TXOR(, ') s X (u v) ' 2 'α α = ⊗ = α + α − αα

Using these equations we can define the corresponding negations:

)',(OR1)',(NOR αα−=αα

)',(AND1)',(NAND αα−=αα

)',(XOR1)',(EQUI αα−=αα

Let us define a set of probabilistic vectors

() []{ }s 1 n: 0,1∏ = γ + − γ γ∈ .

An interesting point is that when the monadic or dyadic operators act over vectors
belonging to this set, the output is also an element of this set. For monadic vectors, this
result is obvious. Let us state the results for dyadic vectors in the following way:

 15

Lemma 2.1.
If G is a dyadic logical matrix, and u , v∈∏ , then G (u v)⊗ ∈∏

Proof.
Let u s (1)n , v s (1)n , u, v=α + −α =β + −β ∈∏ . Now

()u v s s (1)(s n) (1) (n s) (1)(1)(n n)⊗ = αβ ⊗ + α −β ⊗ + − α β ⊗ + − α −β ⊗

and 1 2G(u v) s n⊗ =φ + φ . But, necessarily, it must be

1 2 (1) (1) (1)(1)φ + φ = αβ + α −β + − α β + − α −β =

() ()1 1 1 = α + − α β + −β = . Hence, []1 1 1G(u v) s (1)n , 0,1⊗ = φ + − φ φ ∈ ■

The fact that this set ∏ is closed for any basic monadic or dyadic logical operation implies

that it is also closed for any legal combination of matrix logical operations acting on
probabilistic vectors and this produces a consistent many-valued logic. We are going to
describe in the next Sections how this property allows extending the Boolean differential
calculus to logic functions that go beyond the restrictions imposed by binary variables.

A wff of logical calculus can be always translated to the vector logic formalism provided
that the logical variables (eg. 1,0 or True, False) are mapped on vectors s,n [30, 32]. We
remark that s and n are vectors defined on ℝ (or even over ℂ [15]), and this fact
determines the structure of the logical matrices. As was mentioned previously, once
defined the matrix operators described in this Section some of the classical logical
equivalences (equalities in the matrix-vector formalism) become intrinsic properties of
the operators and do not depend on the structure of the input vectors [32]. Are examples
of this fact the De Morgan Laws between conjunction and disjunction (with their duals
between equivalence and exclusive-or) and the relation between implication and
disjunction. Finally, let us comment that some basic tautologies (eg. excluded middle) are
strictly valid only for vectors s and n. However, if the inputs of these tautologies are
probabilistic vectors belonging to Π , the probabilistic weigh for s in the output is
confined into the interval [(3/4), 1]. Let us denominate the outputs inside this interval
quasi-s and its negation quasi-n.

3. BOOLEAN DERIVATIVES.
In what follows we will use a standard definition for the Boolean derivative [9, 18, 43].
Given a function

1 i py f (x , , x , , x)= … …

with p Boolean variables { }jx 0,1∈ , with j 1, , p= … , we can define a partial derivative of y

respect to ix by means of the following equation:

 16

1 p 1 p
i

y
XOR f (x , ,1, , x) , f (x , ,0, , x)

x

∂
 = ∂

… … … … .

This partial derivative is a propositional function. This fact allows to iterate the operation
and, in this way, to obtain second and higher partial derivatives,

2 3

i j i j k

y y
, , etc.

x x x x x

∂ ∂
∂ ∂ ∂ ∂ ∂

Exclusive-or is used here as a discrete version of a differential operator. In the Boolean
domain this operator indicates, in terms of truth-values, if there is any difference between
the values of its arguments. Remark that this operator is symmetric, and it is not capable
of attributing a sign to the variation.

4. THE DERIVATIVE OF MATRIX-VECTOR LOGICAL OPERATORS
In what follows, we represent a matrix logical operation of any complexity using the
symbolical expression Op(u) and a vectorial variable u∈∏ . Hence, Op(u) describes

expressions as diverse as Mu ,L(u v)⊗ and ()L C u v w ⊗ ⊗ .

Definition 4.1. Boolean derivative of operator Op(u).

[]Op(u)
X Op(s) Op(n)

u

∂ = ⊗
∂

This is, by definition, a partial derivative. If the logical expression involves other variables,
they retain their own values. The operator X is the exclusive-or matrix previously
described.

Remark that the Boolean derivative respect to variable u generates a logical function in
which this variable disappears. Hence, the successive derivatives provoke an increasing
reduction of complexity in the operations ("complexity" means, in this context, the
number of logical variables)..

4.1. First Derivatives: A Case Study
The exclusive-or operator X defines a symmetrical function for all u, v∈∏ . The following

properties are important in the evaluation of the Boolean derivatives:

()
()

X u s N u ,

X u n u .

⊗ =

⊗ =

 17

(a) Derivatives of monadic operations.
Note that u = Iu. Hence,

()Iu u
X s n s .

u u

∂ ∂= = ⊗ =
∂ ∂

On the other hand, we have

()Nu
X n s s .

u

∂ = ⊗ =
∂

We now evaluate the derivatives of "constant" operations:

()Ku
X s s n ,

u

∂ = ⊗ =
∂

()Mu
X n n n .

u

∂ = ⊗ =
∂

Hence, there are some analogies with the classical derivatives of real analysis:

Iu u Nu u u u s∂ ∂ = ∂ ∂ = ∂ ∂ = is analogous to dx/dx = 1 and Ku u Mu u n∂ ∂ = ∂ ∂ = is

equivalent to the classical result d(Constant)/dx = 0. The first situation illustrates the
absence of signs in the logical derivatives.

(b) Derivatives of dyadic operations.
The above mentioned properties of operator X allows an immediate evaluation of the
properties of the first derivatives of basic dyadic operations. In the following Table 3 we
show these derivatives.

Table 3 : First derivatives for matrix logical operators

Op Op(u, v)

u

∂
∂

Op(u, v)

v

∂
∂

C v u

D Nv Nu

L Nv u

S v u

P Nv Nu

E ()X v Nv⊗ ()X u Nu⊗

X ()X v Nv⊗ ()X u Nu⊗

We now state some remarks. The derivatives of these dyadic functions depend on the rest

of the variables. For instance, in the case C u v∂ ∂ = , if v = s the transition of u from s to n

 18

provokes a modification of the logical value of conjunction C; instead, if v = n, the
evaluation executed by C is unsensitive to the transition of u between s and n. The fact
that the variables belong to the set ∏ implies that these Boolean derivatives became

capable of generating a fuzzy evaluation (even if the variable concerned in the
differentiation transits a discrete step from s to n). Also note the asymmetry of the
derivatives of the implication L. Finally, note that the derivatives of operators E and X
generate quasi-tautologies. This can be easily seen by evaluating the scalar projections of
one of these derivatives:

() ()T T T 2 2E
s s X v Nv s E v v (1) f ()

u

∂ = ⊗ = ⊗ =β + −β ≡ β
∂

 ;

f(1) = f(0) = 1 and min f(β) = ½ for β = ½ . This implies that for ()0,1β∈ the equivalence

and the inequivalence are symmetrically sensitive to the modifications of their arguments,
with the scalar projections of the outputs remaining into the upper half of the interval

()0,1 .

(c) Negation Lemmas.
Given the operation Op(u), we state the following Lemma:

Lemma 4.1

Op(u) NOp(u)
, u

u u

∂ ∂= ∈∏
∂ ∂

Proof

The equality is an immediate consequence of the identity X = X(N⊗N). �

This Lemma explains the coincidence of the derivatives of the pairs C and S, D and P, and

E and X . It also explains why u u Nu u s∂ ∂ =∂ ∂ = . The second negation Lemma is a

consequence of the symmetry of the operator X(u,v):

Lemma 4.2

Op(u) Op(Nu)
, u

u u

∂ ∂= ∈∏
∂ ∂

Proof
It is immediate. �

 19

A third negation Lemma can be stated as follows.

Lemma 4.3

Op(u) Op(u)
, u

Nu u

∂ ∂= ∈∏
∂ ∂

Proof

Op(u) Nu Op(Nu ') u '∂ ∂ = ∂ ∂ with u ' Nu= . But

[] []Op(Nu ') u ' X Op(Ns) Op(Nn) X Op(n) Op(s)

Op(u) u

∂ ∂ = ⊗ = ⊗ =
= ∂ ∂

due to the symmetry of X. �

It is interesting to note that Lemma 4.1 implies that

NOp(u) Op(u)
N

u u

∂ ∂≠
∂ ∂

.

Let us denominate "logical linearity" a situation in which an operation
u

∂
∂

 satisfies:

(a) [] { }C t Op(u) C t Op(u) , t s,n
u u

 ∂ ∂⊗ = ⊗ ∈ ∂ ∂

(b) []X Op(u) Op '(u) X Op(u) Op '(u)
u u u

 ∂ ∂ ∂⊗ = ⊗ ∂ ∂ ∂
.

In this logical framework this pair of expressions is a version of the scalar linearity defined
by F(kx) = kF(x) and F(x + y) = F(x) + F(y). It can be proved that the Boolean derivative
satisfies property (a) and (b). The proof of property (a) holds immediately from the
definition of the Boolean derivative. The proof of (b) requires proving the following matrix
version of Abel bisymmetry equation:

() () () ()X X a b X c d X X a c X b d ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗

for ()Op s a= , ()Op ' s b= , ()Op n c= , and ()Op ' n d= . A detailed proof is provided in

Section 5, Lemma 5.2 in the context of cross derivatives.

 20

The following rule for the logical product for variables u, v, w,z∈Π (that can be directly

proved from the properties of C and X) is similar to the rule of ordinary product
differentiation in functions of real variables:

() ()C C u v w C u w
v

∂
 ⊗ ⊗ = ⊗ ∂

(){ } ()C C C u v w z C C u v z
w

∂
 ⊗ ⊗ ⊗ = ⊗ ⊗ ∂

 .

Chain rule is not fully satisfied in the case of Vichniac formalism, except along a path that
is generated during the time-evolution of the Boolean elementary cellular automata and
that he denominates “light cone” [43]. The conditions of validity of the chain rule inside
our matrix-vector formalism require further investigation. Here we can comment that
there are expressions that verify the chain rule under different conditions of generality.
We illustrate this point with two examples:

Example 1. () ()F E L u v X w w = ⊗ ⊗ ⊗

The derivative respect to v is

() (){ }F
X X w w E Nu X w w

v

∂
 = ⊗ ⊗ ⊗ ⊗ ∂

 .

Applying the chain rule, we obtain

() (){ }

F L
C

L v

C E X w w X w w u .

 ∂ ∂⊗ = ∂ ∂

 ⊗ ⊗ ⊗ ⊗

These expressions are not equivalent in general, but if { }w s,n∈ they satisfy the equality

F F L
C u

v L v

 ∂ ∂ ∂= ⊗ = ∂ ∂ ∂

Example 2. () ()F L C u v D w w = ⊗ ⊗ ⊗

Now the derivative respect to v is

() () ()F
NL u D w w NL I D u w w

v

∂
 = ⊗ ⊗ = ⊗ ⊗ ⊗ ∂

 .

Applying the chain rule, we obtain

() ()()F L
C C u ND w w C I ND u w w

L v

 ∂ ∂
 ⊗ = ⊗ ⊗ = ⊗ ⊗ ⊗ ∂ ∂

We used the Kronecker product factorizations in both expressions. It can be easily proved

 21

that () ()NL I D C I ND⊗ = ⊗ and, consequently, in this Example 2 the chain rule is valid

for probabilistic vectors u, v, w∈Π .

Finally, we pay attention to the Leibniz rule. In his formalism for pure Boolean functions,
Vichniac showed that Leibniz rule exhibit an additional correction term. In the case of our
vector logic formalism, an elementary Leibniz rule with its classic structure, ie,
d[f(x).g(x)]/dx = [df(x)/dx].g(x) + f(x).[dg(x)/dx] , cannot exists because the logical
variable vanishes during differentiation. Potential modifications of the differentiation
procedures in order to re-obtain the Leibniz rule deserve further explorations

5. CROSS DERIVATIVES
It is a remarkable fact that, even though it is not a complete linear operation, the Boolean
derivative retains a certain parallelism with the partial derivatives of classical differential
calculus. In particular, as we show in what follows, the equality between cross derivatives
holds. To prove this equality we need previously to prove two Lemmas:

Lemma 5.1
Given the logical operation G(u,v), with u, v∈∏ and G being a legal (but otherwise

arbitrary) logical expression built up using the operators of vector logic, to prove the
equality

G(u, v) G(u, v)

v u u v

 ∂ ∂ ∂ ∂= ∂ ∂ ∂ ∂

requires to prove the equality

() () () ()X X a b X c d X X a c X b d ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗

with a = G(s,s), b = G(n,s), c = G(s,n) and d = G(n,n).

Note that a, b, c, or d can be probabilistic outputs if G(u,v) represents a function involving

other probabilistic variables, eg. ()G(u, v) H(u, v, w) L NC u v w = = ⊗ ⊗ .

Proof
It is immediate, taking into account that

[]G(u, v)
X G(s, v) G(n, v)

v u v

 ∂ ∂ ∂= ⊗ = ∂ ∂ ∂

 22

[] []{ }X X G(s,s) G(n,s) X G(s,n) G(n,n)= ⊗ ⊗ ⊗

and

[]G(u, v)
X G(u,s) G(u,n)

u v u

 ∂ ∂ ∂= ⊗ = ∂ ∂ ∂

[] []{ }X X G(s,s) G(s,n) X G(n,s) G(n,n)= ⊗ ⊗ ⊗ . �

We now establish the following Lemma:

Lemma 5.2
If a,b,c,d∈∏ then

() () () ()X X a b X c d X X a c X b d ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗

Proof
The outputs of the last applications of the operator X have the form s (1)nϕ + − ϕ , with

[]0,1ϕ∈ , because its inputs also have this form, as is assured by Lemma 2.1. Hence, if we

have

a s (1)n , b s (1)n ,

c s (1)n , d s (1)n ,

= α + − α = β + −β
= γ + − γ = δ + − δ

the coefficient ϕ satisfies the following functional equation:

[] [](,), (,) (,), (,) .ϕ ϕ α β ϕ γ δ = ϕ ϕ α γ ϕ β δ

This functional equation is a particular case of the "bisymmetry equation" [1]. For the case
of exclusive-or operator X, the function ϕ has the form (x, y) x y 2xyϕ = + − . Using this

expression, and developing both members of the precedent bisymmetry equation, the
identity can be directly proved. �

We can now establish the equality between cross derivatives:

Theorem 5.1
Given a logical function G(u,v) with u, v∈∏ , then

 23

() ()G u, v G u, v

v u u v

 ∂ ∂∂ ∂= ∂ ∂ ∂ ∂

Proof
From Lemma 2.1 we know that G(u, v)∈∏ . In addition, we are under the conditions of

the hypothesis of Lemma 5.1; hence, following Lemma 5.2 the equality holds. �

We will use for these equivalent derivatives the notation 2 G(u, v) [u, v]∂ ∂ . In the

following table we show the cross derivatives of the basic operators.

Table 4 : Cross derivatives for matrix logical operators

Op 2 Op(u, v) [u, v]∂ ∂

C s

D s

L s

S s

P s

E n

X n

6. SUCCESSIVE DERIVATIVES
After the first derivative, the concerned variable disappears. Due to this fact, one can
assume that the successive derivatives respect to this variable are irrelevant. We mention
that, in fact, this is the case when the Boolean derivatives act over binary variables (for a
recent reference see Cheng, proposition 3.2 [9]), Nevertheless, we are going to explore in
this section a heuristic definition of the successive Boolean derivatives that shows that the
logical functions in the vectorial domain can display some unexpected properties.

Given a logical operator that depends on three vectors 1Op (u, v, w), with

u s (1)n= α + − α , v s (1)n= β + −β , w s (1)n= γ + − γ we have:

[]1
2

Op (u, v, w)
Op (v, w) f (,)s 1 f (,) n

u

∂ = = β γ + − β γ
∂

 .

Here ()1Op u, v, w represents a logical function of three variables defined using the basic

 24

dyadic or monadic operators (eg. ()L X u v w ⊗ ⊗ or () ()E C u v D v Nw ⊗ ⊗ ⊗). We

only analyze the three-variable situation, since the generalization is immediate.

We define the second derivative as follows:

2
1 1

2

Op (u, v, w) Op (u, v, w)

u u u

∂ ∂∂ = =
∂ ∂ ∂

[] []2 2X Op (v, w) Op (v, w) f '(,)s 1 f '(,) n⊗ = β γ + − β γ ,

with

[]f '(,) 2f (,) 1 f (,)β γ = β γ − β γ .

This last expression is based on the following Lemma:

Lemma 6.1
For z,u∈∏ , with z being independent of u, the derivative of z respect to u exists, and is

given by

()z
X z z

u

∂ = ⊗
∂

Proof
Note that for all z,u∈∏ we have

a) Ku s=

b) ()C s z z⊗ = .

Consequently, any expression that is not a function of u , can be converted into a "silent"

function of u of the form ()z C Ku z= ⊗ that allows to apply the algorithm of

differentiation with respect to u; in our case

()C Ku zz

u u

∂ ⊗∂ = =
∂ ∂

() () ()X C Ks z C Kn z X z z ⊗ ⊗ ⊗ = ⊗ �

In the Boolean domain, being z equal to s or n, the second derivative gives n, the expected
result for the derivative of a Boolean constant function. This fact supports the agreement
of the result of Lemma 6.1 with our expectations for the binary domain. But if the other

 25

variables of the logical functions are out of the Boolean domain, the fuzziness imposes an
increase of uncertainty. Here is the argument: If a first derivative with respect to u has the

structure []2Op (v, w) f (,)s 1 f (,) n= β γ + − β γ then, after a second differentiation with

respect to u, for any f (,)β γ we obtain the following mapping:

[]f '(,) 2f (,) 1 f (,)β γ = β γ − β γ .

A mapping of this type, with the general form ' 2 (1)ε = ε − ε , has two fixed points, 0ε =

and 1 2ε = . The successive applications of this mapping define a dynamical system in

which the point 0ε = is unstable, and 1 2ε = is a global attractor. Hence, if the function

 f (,)β γ exhibits some degree of fuzziness (f (,) 0,1β γ ≠) after the first derivative, the

successive higher derivatives "push" the system towards (n)f (,) 1 2→∞ β γ = , the value of

maximum uncertainty.

7. TWO APPLICATIONS OF THE LOGICAL DERIVATIVES
In what follows we describe two situations that allow to illustrate how the Boolean
derivative, applied over matrix logical functions, can produce some interesting results.

7.1. Simplification of Logical Chains
We denominate "logical chain" any well-formed logical formula involving more than one
logical operator. In the following example we analyze the way in which the Boolean
derivative provides us with explicit vectorial expressions. These expressions are useful to
analyze the sensitivity of the logical chain to its different variables.

Example: () ()p q q p∨ → ¬ ∧

Representing the truth-values of propositions p and q by the probabilistic vectors u and v,
respectively, we have the following vectorial representation:

() ()h L D u v C Nv u = ⊗ ⊗ ⊗ .

The derivatives are

()h
X v v

u

∂ = ⊗
∂

,

()h
L u u

v

∂ = ⊗
∂

.

 26

Notice that in the Boolean domain the derivative with respect to u, ()X u u⊗ , gives the

negation vector n, and in the probabilistic domain it provides vector biased towards n,

with Ts h u 0.5∂ ∂ ≤ . The meaning of this result is that the "argument" represented by the

logical chain has low sensitivity to the truth-value of the variable u. On the contrary, it is
sensitive to v: in the case in which v = s, the value of h is n; when v = n, the value of h is

()L u u⊗ (this is a version of the excluded middle that gives s for u Boolean and a quasi-s

for a probabilistic u). Consequently, the chain represented by h practically collapses in the
following approximate expression:

h Nv≈

(for the Boolean values u = s and u = n, the expression becomes a true equality).
In words: "if he is a good person or he is smart, then, he is not smart and he is a good
person" is an obscure argument approximately equivalent to the proposition "he is not
smart". This proposition can be true or false in the case the truth-value of the variable v is
Boolean, with a weighted uncertainty if v is probabilistic.

7.2. The Derivatives of Basic Tautologies
In the framework of the classical logic, the tautologies are logical expressions that produce
the truth-value "true" for all the possible values of their logical variables. Some of the most
basic tautologies are the following:
Excluded middle: p p∨ ¬

Modus ponens: ()p p q q ∧ → →

Hypothetical syllogism: () () ()p q q r p r → ∧ → → →

In the formalism of vector logic, these tautologies can be respectively expressed as matrix-
vector operations in the following way:

()EM(u) D u Nu= ⊗

(){ }MP(u, v) L C u L u v v = ⊗ ⊗ ⊗

() () (){ }HS(u, v, w) L C L u v L v w L u w = ⊗ ⊗ ⊗ ⊗ ⊗

When u,v,w are probabilistic vectors, the scalar projection of these expressions remains
bounded to the interval [(3/4),1].

The application of the logical derivative to these matrix expressions generates an
interesting result: derivatives of hypothetical syllogism produce the negation of modus
ponens, and derivatives of modus ponens produce the negation of the excluded middle. In

 27

what follows we calculate the derivatives of the excluded middle and the modus ponens,
and we show the results for the case of hypothetical syllogism.

Case 1. Excluded middle
The vectorial version of the excluded middle implies the following equality:

() () ()EM(u) D u Nu D Nu u L u u= ⊗ = ⊗ = ⊗ .

The derivative is given by

() ()EM(u)
X L s s L n n n Ns

u

∂
 = ⊗ ⊗ ⊗ = = ∂

.

Case 2. Modus ponens
In this case we have

(){ } (){ }{ }MP(u, v)
X L C s L s v v L C n L n v v

u

∂
 = ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ = ∂

() () () ()X L v v L n v X L v v s NL v v ⊗ ⊗ ⊗ = ⊗ ⊗ = ⊗ .

Hence,

() []MP(u, v)
ND Nv v N EM(v)

u

∂ = ⊗ =
∂

 .

We also have

() []MP(u, v)
ND u Nu N EM(u)

v

∂ = ⊗ =
∂

 .

The cross derivatives are

2 MP(u, v)
n

[u, v]

∂ =
∂

.

Case 3. Hypothetical syllogism
For the hypothetical syllogism, it can be proved that

 28

[]HS(u, v, w)
N MP(v, w)

u

∂ =
∂

 ,

[]HS(u, v, w)
N MP(Nu, Nv)

w

∂ =
∂

.

The derivative respect to the "pivot" vector v produces a complex expression:

() (){ }HS(u, v, w)
X L w L u w L Nu L Nw Nu

v

∂
 = ⊗ ⊗ ⊗ ⊗ ⊗ ∂

.

Considering that X = NE, the expression

() (){ }E L w L u w L Nu L Nw Nu ⊗ ⊗ ⊗ ⊗ ⊗

defines a tautology in the binary domain, as can be easily proved evaluating this

expression for { }u, v s,n∈ . From the identity () ()L I L L C I⊗ = ⊗ (see [32]), it follows that

 ()L a L a b ⊗ ⊗ = ()L C a b a = ⊗ ⊗ , with a,b∈∏ . This is the version, in the vector logic

representation, of other of the classical tautologies: ()p q p∧ → that corresponds to the

matrix expression ()L C a b a ⊗ ⊗ . Likewise, it is clear that within the dyadic calculus if

A and B are tautologies then A B≡ is also a tautology. Consequently the derivative of the
hypothetical syllogism with respect to w generates the negation of a new tautology TD.
This new tautology TD results from the equivalence of two “subtautologies” of the form

()p q p∧ → .

An interesting point is that the derivatives of the subtautology

()ST(u, w) L C w u w = ⊗ ⊗

are:

()ST(u, w)
NL w w

u

∂ = ⊗
∂

ST(u, w)
n

w

∂ =
∂

Finally, we conclude that the pivot derivative of the hypothetical syllogism can be

 29

represented by

HS(u, v, w)
F(u, w)

v

∂ =
∂

with

() []F(s, w) NL w w N EM(w)= ⊗ = ,

F(u,s) n Ns= = ,

F(n, w) n Ns= = ,

[]F(u,n) N EM(u)= .

In conclusion, the results presented in this section show us that the derivatives of some
basic tautologies generate tautologies of inferior order (dimension) pre-multiplied by the
negation matrix. We can represent this decreasing hierarchy in the following transition
diagram:

N u N v N w
HS(u, v, w) MP(v, w) EM(w) s

∂ ∂ ∂ ∂ ∂ ∂→ → →

The lowest order tautology is vector s. The results obtained in this Section illustrate
clearly how when the Boolean derivatives are applied to semantically meaningful logical
operators they can generate packed expressions susceptible of the same kind of semantic
logical interpretation. Obviously, each one of the expressions shown in this section about
tautologies can be developed according with the syntax of typical Boolean derivatives,
losing their packed organization.

8. AN INTEGRAL CALCULUS FOR LOGICAL OPERATORS
In this Section we are going to describe a class of logical function that presents a formal
analogy with the indefinite integral of real analysis.

Definition 8.1. Boolean Integral.
Given a logical vectorial function Op, we define its Boolean integral as another logical

function ϒ such that

Op
∂ ϒ =
∂ τ

,

where τ is a new vectorial variable not included in Op. We use the following notation:

 30

Opϒ = ∂ τ∫

(we define ∂ τ as a Boolean differential).

This Boolean integral extends the dimensionality of the domain of the operation Op (the
contrary of Boolean derivation, that eliminates the variable with respect to which
derivation is made). As we show in the next Theorem, it is always possible to associate a
family of Boolean integrals to any arbitrary logical function Op.

Theorem 8.1. General Integral.
An arbitrary logical operation Op admits a general Boolean integral of the form

() { }Op HL Op H ' , H,H ' I, N∂ τ = ⊗ τ ∈∫ ,

τ being a logic vector.

Proof

It is immediate using the Definition 8.1 and considering that ()L Op s s⊗ = ,

()L Op n NOp⊗ = and () ()X NOp s X s NOp NNOp Op⊗ = ⊗ = = . If H = N we are under

Lemma 4.1. �

This general integral admits for different values of H and H ' the following versions:

1) ()Op L Op∂ τ = ⊗ τ∫

2) ()Op NL Op∂ τ = ⊗ τ∫

3) () ()Op NL Op N C Op∂ τ = ⊗ τ = ⊗ τ∫

4) () ()Op L Op N NC Op∂ τ = ⊗ τ = ⊗ τ∫

Corollary 8.1.

() ()NOp L NOp N L Op∂ τ = ⊗ τ = τ ⊗∫

Contraposition of implication L is valid for probabilistic vectors, as can be directly proved

 31

given the identity ()L D N I= ⊗ and the commutativity of disjunction D:

() ()() () ()
() ()() ()

L u v D N I u v D Nu v D v Nu

D NNv Nu D N I Nv Nu L Nv Nu , u, v .

⊗ = ⊗ ⊗ = ⊗ = ⊗ =

⊗ = ⊗ ⊗ = ⊗ ∈Π

This Corollary can be used to show a kind of non-linearity of this integral respect to N
because pre-multiplying by N each one of the previous equalities 1) to 4) we can verify
that

NOp(u) N Op(u)∂ τ ≠ ∂ τ∫ ∫ .

The general integral is independent of the particular form of the function Op.

Apart from this integral, it is possible to define particular integrals directly dependent on
the form of Op. In what follows, to organize the argument, we label the position of a
variable into a given logical expression with a number. Using these labels, we can define

the substitutions that create the particular integrals. Let ()Op u[1],u[2], ,u[n]… be a logical

function where the variable u[i] fills the position i in the structure of the logical
expression Op. We remark that u[i] and u[j], i j≠ , can be the same variable (eg, for

()C L v w Nv ⊗ ⊗ we have u[1] = v , u[2] = w , u[3] = v). A heuristic procedure to obtain a

particular integral consists in the substitution

()iu[i] B u[i],→ τ ,

where ()iB u[i], τ is a logical operator. The idea is to look for transformations of variables

able to force a detachment during differentiation. We base this procedure in the following
theorem:

Theorem 8.2.
The substitutions u B(u,)→ τ and v B'(v,)→ τ inside a logical function F(u,v) generate a

particular integral of such function in the following cases:

(c1) []B(u,s) u ; B'(v,s) v ; F B(u,n),B'(v,n) n= = = ,

(c2) []B(u,n) u ; B'(v,n) v ; F B(u,s),B'(v,s) n= = = .

 32

Proof
The evaluation of the Boolean derivative with the substituted variables show that both (c1)
and (c2) produce the detachment condition

[] []X F(u, v) n X n F(u, v) F(u, v)⊗ = ⊗ = ,

that assures that the enlarged function is a particular integral. �

For instance, the substitutions u B(u,)→ τ and v B'(v,)→ τ such that B(u,s) u= ,

B(u,n) n= and B'(v,s) v= , B'(v,n) n= , generate particular integrals in the case where

()Op L u v= ⊗ (see the following Example 3).

In the following we give three examples to illustrate the procedure. In each example we
describe for the same operation the general and the particular integrals, indicating the
particular integrals by the subscript P.

Example 1 ()Op D u Nu= ⊗

a) General Integral:

() ()D u Nu L D u Nu ϒ = ⊗ ∂ τ = ⊗ ⊗ τ ∫

b) Particular integral:

() ()u C u , Nu C Nu→ τ ⊗ → τ ⊗

() () ()P P
D u Nu D C u C Nu ϒ = ⊗ ∂ τ = τ ⊗ ⊗ τ ⊗ ∫

The proof is immediate, because the derivative of this last expression is

()P D u Nu
∂ ϒ = ⊗
∂ τ

Example 2 ()Op L u Nv= ⊗

a) General Integral:

()L L u Nv ϒ = ⊗ ⊗ τ

 33

b) Particular integral:

() ()u D u , v D v→ ⊗ τ → ⊗ τ

Hence,

() ()P L D u ND v ϒ = ⊗ τ ⊗ ⊗ τ .

Example 3 ()Op L u v= ⊗

a) General Integral:

()L L u v ϒ = ⊗ ⊗ τ

b) Particular integral:

() ()u L u , v C v→ τ ⊗ → τ ⊗

Hence,

() ()P L L u C v ϒ = τ ⊗ ⊗ τ ⊗ .

It is important to emphasize that different substitutions can lead to different particular
integrals. In the case of Example 3, if we perform the substitution

() ()u E C u , v C E v → τ ⊗ τ ⊗ → τ ⊗ τ ⊗

the following expression is also a particular integral for the function ()L u v⊗ :

() (){ }'
P L E C u C E v ϒ = τ ⊗ τ ⊗ ⊗ τ ⊗ τ ⊗ .

9. PERSPECTIVES
The Theorem 8.2 described in the previous Section illustrates an interesting case of
"conditioned heuristics", where the invention of the functions B(u,)τ and B'(v,)τ is

modulated by rigid impositions. In fact, this kind of invention constrained by rigid
conditions is also present in the classical deduction systems, that operate using
substitution and detachment. In that sense, let us mention the important observations by
Łukasiewicz in his 1931 article on "generalizing deduction" [26]. There, he describes how
deduction can be concomitant with an increase in the generality (or the complexity) of
the expressions. In [26, p.191] he wrote : "[...] we have demonstrated that in certain cases
we can pass, in a deductive manner, from the particular to the general [...]". The suggestive
discover of Łukasiewicz and this comment induces to think that integration and

 34

deduction can be related, a point that deserves further investigation.

As we saw in Section 2, the vectorial truth-values can be combined to produce a
representation of uncertainties by mean of probabilistic weights. The informational aspect
of this calculus becomes clear. On the one hand, the loss of information during
differentiation is evident due to the reduction of the variables. In the limit of the
successive differentiation of a logical vector, as was shown in Lemma 6.1, this calculus
produces an effect interpretable as an increase of the uncertainties of the remaining
logical variables provided that these variables are probabilistic vectors. On the other hand,
the integral calculus shows an increase in the number of variables and in the case of
particular integrals, a potential complexification of the logical functions.

We can ask if this calculus of logical operators could have some practical importance aside
their potential theoretical interest. In this sense, it is interesting to note that the first and
the second derivatives described in Tables 3 and 4, separates clearly the exclusive-or and
the equivalence from the other basic dyadic functions. This fact is remarkable because in
the case of elementary cellular automata this two operations are the main responsible of
the generation of dynamic complexity [33, 34]. Hence this calculus can be a way to
penetrate the hard problems of the generation of complexity in formal systems and in
dynamic models based in logical operations. In addition, in a similar way as happens in
switching exploration of circuits’ behaviour, this calculus can be useful to explore the
sensitivity of a complex logical reasoning to the different arguments involved, and in this
way evaluate the relevance or the irrelevance of parts of the argument, as in our miniature
example of Section 7.1.

Aknowledgments
The author acknowledges the partial financial support by PEDECIBA and CSIC-UdelaR.
He wishes to thank both reviewers for helpful comments and useful insights.

 35

REFERENCES

[1] J. Aczél. Lectures on Functional Equations and their Applications, Academic Press, New
York 1966.

[2] J. C. Agudelo and W. A. Carnielli. Polynomial Ring Calculus for Modal
Logics: a new semantics and proof method for modalities, The Review of
Symbolic Logic. 4, 150-170, 2011

[3] G. Boole, An Investigation of the Laws of Thought, on which are Founded the Theories
of Logic and Probabilities. London: Macmillan, 1854; New York: Dover Edition, 1958.

[4] G. Boole, Selected Manuscripts an Logic and its Philosophy. I. Grattan-Guinness and G.
Bornet (Editors), Birkhäuser: Basel, 1997

[5] W. A. Carnielli. Polynomial ring calculus for many-valued logics,
Proceedings of the 35th International Symposium on Multiple-Valued Logic.
IEEE Computer Society: Calgary, Canada, 20-25, 2005

[6] W. A. Carnielli. Polynomizing: Logic Inference in Polynomial Format
and the Legacy of Boole. Model-Based Reasoning in Science, Technology, and
Medicine, Magnani, L. and Li, P (Editors) Springer. 64 349-364, 2007

[7] A. Cayley, A Memoir on the Theory of Matrices. Philosophical Transactions of the
Royal Society of London, 148, 17–37, 1858

[8] H. Chen and J. Sun. A new calculation of Boolean derivatives using Cheng product,
Journal of Applied Mathematics. Hindawi Pub.Corp. ID 748343, 12 pages, 2012

[9] D. Cheng, Y. Zhao, X. Xu. Matrix approach to Boolean calculus. 50th IEEE Conference
on Decision and Control and European Control Conference (CDC-ECC),Pages 6950 – 6955,
2011

[10] I. M. Copilowish, "Matrix development of the calculus of relations," The Jour-
nal of Symbolic Logic, 13. 193-203, 1948

[11] L. Couturat. L’Algèbre de la Logique (Collection Scientia, Phys-metématique No 24)
Second Edition, Gauthier-Villar:, Paris, 1914 [Reedition; Albert Blanchard, Paris, 1980]

[12] M. Davio, J.P. Deschamps, A. Thayse. Discrete and Switching Functions, McGraw Hill,
New York, 1978

 36

[13] D. Deutsch, A. Ekert, and R. Lupacchini. Machines, logic and quantum physics.
Bulletin of Symbolic Logic, 3, 265–283, 2000.

[14] S.B. Diagne. Boole. Editions Belin, Paris, 1989

[15] S. Dick. Towards complex fuzzy logic. IEEE Transactions on Fuzzy Systems, 15, 405–
414, 2005.

[16] R. Dougherty and A.S. Kechris. The complexity of antidifferentiation. Advances in
Mathematics, 88, 145-169, 1991.

[17] C. Freiling, How to compute antiderivatives. The Bulletin of Symbolic Logic, 3, 279-
316, 1995.

[18] V.A. Gorvátov, Fundamentos de la Matemática Discreta, Mir, Moscú 1988.

[19] A. Graham. Kronecker Products and Matrix Calculus with Applications. Ellis
Horwood: Chichester, 1981

[20] I. Grattan-Guinness, Omnipresence, multi presence and ubiquity: kinds of generality
in and around mathematics and logic, Logica Universalis, 5, 21-73, 2011

[21] M.K. Jain. Logic of evidence-based inference propositions. Current Science, 100, 1663-
1672, 2011

[22] J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice-Hall, New Jersey, 1995.

[23] T. Kohonen. Associative Memory: A System-Theoretical Approach. Springer-Verlag:
New York, 1977.

[24] P. Liang. Theory of Boolean integrals. International Journal of Computer
Mathematics, 35, 83-91, 1990.

[25] J. Łukasiewicz, Selected Works, L. Borkowski, ed., pp. 153–178. North-Holland,
Amsterdam, 1970.

[26] J. Łukasiewicz, Comments on Nicod’s axiom and on "generalizing deduction" (1931).
Reprinted in: Łukasiewicz, J., Selected Works (L. Borkowski, ed.), North Holland,
Amsterdam 1970.

 37

[27] Z A. Melzak. Bypasses: A Simple Approach to Complexity. Wiley, New York, 1983.

[28] P. Mittelstaedt, Philosophische Probleme der Modernen Physik, Bibliographisches
Institut, Mannheim, 1968.

[29] E. Mizraji. Context-dependent associations in linear distributed memories. Bulletin
of Mathematical Biology, 50, 195–205, 1989

[30] E. Mizraji. Vector logics: the matrix-vector representation of logical calculus. Fuzzy
Sets and Systems, 50, 179-185. 1992

[31] E. Mizraji. Modalities in vector logic. Notre Dame Journal of Formal Logic, 35, 272–
283, 1994

[32] E. Mizraji. The operators of vector logic. Mathematical Logic Quarterly. 42, 27-40,
1996.

[33] E. Mizraji. The emergence of dynamical complexity: an exploration using
elementary cellular automata, Complexity, 9 (6): 33-42, 2004.

[34] E. Mizraji. The parts and the whole: inquiring how the interaction of simple
subsystems generates complexity. International Journal of General Systems,35, 395–415,
2006.

[35] E. Mizraji, Vector logic: a natural algebraic representation of the fundamental logical
gates. Journal of Logic and Computation, 18, 97–121, 2008.

[36] E. Mizraji and J. Lin. Logic in a dynamic brain. Bulletin of Mathematical Biology, 73,
373-397, 2011.

[37] N. Rescher. Many-Valued Logic. McGraw-Hill, New York, 1969.

[38] C. E. Shannon, A Symbolic Analysis of Relay and Switching Circuits, MSc Thesis, MIT,
1940.

[39] B. Steinbach and Ch. Posthoff, Boolean differential calculus-theory , applications.
Journal of Computational and Theoretical Nanoscience, 7, 933-981, 2010

[40] M.H. Stone, Subsumption of the theory of Boolean algebras under the theory of rings.
Proc. National Acad. Sci, 21, 103-105, 1935

 38

[41] M.H. Stone, The theory of representations for boolean algebras. Trans. of
the Amer.Math. Soc., 40, 37–111,1936

[42] J. H. Tucker, M. A. Tapia, A. W. Bennett, Boolean integral calculus, Applied
Mathematics and Computation, 26, Issue 3, Pages 201–236, 1988.

[43] G.Y. Vichniac, Boolean derivatives on cellular automata. Physica D, 45. 63-74, 1990.

[44] J. Westphal and J. Hardy. Logic as a vector system. Journal of Logic and Computation,
15, 751–765, 2005.

[45] S. Wolfram, Cellular automaton fluids: basic theory, Journal of Statistical Physics, 45,
471-526, 1986.

