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Abstract

Hereditarily finite sets (sets which are finite and have only hereditarily finite sets as
members) are basic mathematical and computational objects, and also stand at the basis
of some programming languages. We solve an open problem proposed by Kirby in 2008
concerning a recurrence relation for the cardinality an of the n-th level of the adjunctive
hierarchy of hereditarily finite sets; in this hierarchy, new sets are formed by the addition
of a new single element drawn from the already existing sets to an already existing set. We
also show that our results can be generalized to sets with atoms, or can be refined by rank,
cardinality, or by the maximum level from where the new adjoined element is drawn.

We also show that an satisfies the asymptotic formula an = C2
n

+ O(C2
n−1

), for a
constant C ≈ 1.3399, which is a too fast asymptotic growth for practical purposes. We thus
propose a very natural variant of the adjunctive hierarchy, whose asymptotic behavior we
prove to be Θ(2n).

Keywords: Finite set theory, adjunction, hierarchy, counting problem, combinatorial prob-
lem, recurrence relation, asymptotic analysis
1998 ACM Subject Classification: F.4.1 Mathematical Logic; G.2.1 Combinatorics

1 Introduction

Sets are basic mathematical and computational objects; usually one considers sets of two kinds:
pure sets, that is, sets which, unless empty, contain only other pure sets as elements; or sets with
atoms, that is, sets which can also have as elements objects from a given collection of atoms, or
urelements. In this paper we focus mainly on sets which are pure and hereditarily finite, in the
sense that they are finite, and all of their members are hereditarily finite sets.

This paper is motivated by an effort to cross-fertilize set theory and computer science,
started by Jacob T. Schwartz in the 1970s. This field, called computable set theory in [1], has
led, on the one hand, to set-based programming languages such as SETL [2], or the more recent
{log} [3] and CLP(SET ) [4]. On the other hand, it has uncovered decidable fragments of set
theory [5, 6]. One emblematic example is the Multi-Level-Syllogistic with Singleton fragment
and its enaction into the automatic proof-checker Referee/ÆtnaNova [7, 8].

These combined efforts have raised the need for efficient computer representations of hered-
itarily finite sets. One such representation can simply be a bijection between hereditarily finite
sets and natural numbers; in this case one is also interested in so-called ranking/unranking
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Table 1: The first 10 values of an.

n an
0 1
1 2
2 4
3 12
4 112
5 11680
6 135717904
7 18418552718041816
8 339243082977367810522963263986432
9 115085869347989258409868700405844845152126435897832396556555233936

algorithms. By an efficient representation we mean that less ‘complex’ sets have smaller encod-
ings; or, otherwise stated, that sets having ‘complexity’ n be encoded with a number of bits
polynomial in n.

Any such representation depends on the measure of ‘complexity’ of the sets. Since the
family of hereditarily finite sets, denoted as Vω, is usually defined by an iterative bottom-up
construction starting from the empty set, the ‘complexity’ of a set is the stage of this iterative
process at which it is constructed. Consider the usual von Neumann’s cumulative hierarchy [9]
obtained by repeatedly taking the family of subsets of the sets constructed so far. Formally,

V0 := ∅, Vn+1 := P(Vn), Vω :=
⋃

n∈ω

Vn,

where P denotes the power-set operator. The first levels of this hierarchy are:

• V1 = {∅},

• V2 = {∅, {∅}},

• V3 =
{

∅, {∅}, {{∅}} , {∅, {∅}}
}

.

In the case of the cumulative hierarchy, the ‘complexity’ of a set x is that level n such that
x ∈ Vn \ Vn−1; number n− 1 is also called the rank of the set x [9]. An encoding of hereditarily
finite sets w.r.t. the cumulative hierarchy must place the sets in Vn \ Vn−1 after all the sets in
Vn−1, for all n ≥ 1. One such encoding is the classical Ackermann’s encoding [10], recursively
defined as Ack(∅) = 0 and Ack(x) =

∑

y∈x 2
Ack(y). However, since |Vn| = 2|Vn−1| holds for all

n ≥ 1, any encoding of hereditarily finite sets w.r.t. the cumulative hierarchy is not feasible
in practice—as also noted in [11, 12]—, since one needs a super-exponential number of bits to
represent a set in Vn \ Vn−1.

An alternative approach is a combinatorial one. In order to avoid further complications, let
us restrict our exposition to transitive sets (a set x is transitive if all elements of x are also
subsets of x), and denote by Tn the family of transitive hereditarily finite sets with at most n
elements. In the case of the hierarchy Tn, the ‘complexity’ of a transitive hereditarily finite set
x is just its cardinality. For this hierarchy, an efficient representation exists, since |Tn \ Tn−1| is
O(2n

2

), and any set in Tn \Tn−1 can be ranked/unranked using O(n5) bit operations [13]. This
result uses a recurrence relation for |Tn \ Tn−1|; the enumeration problem was initially solved
in [14] (see also [15, p. 123]), and also by a different method in [16]. Moreover, the asymptotic
behavior of this recurrence was recently determined in [17, 18].

Even though satisfactory from a combinatorial point of view, this approach lacks set theoretic
motivation, as the ‘complexity’ of a set does not reflect a natural set theoretic operation leading
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to its production (as the cumulative hierarchy does). A possible solution was proposed by Kirby
in [12]. Kirby used the well-known fact that hereditarily finite sets can also be obtained from
the empty set by repeated use of the adjunction (or adduction) operator [19]:

〈x, y〉 7→ x ∪ {y}.

In view of this fact, Kirby proposed the following natural hierarchy of hereditarily finite sets,
which he called the adjunctive hierarchy :

A0 := {∅}, An+1 := {∅} ∪
{

x ∪ {y} | x, y ∈ An

}

,

so that An ⊆ An+1 for all n ∈ ω, and
⋃

n∈ω An = Vω.
1 Here, the ‘complexity’ of a set x is

analogously taken to be that level n such that either x ∈ A0 and n = 0, or x ∈ An \ An−1.
Observe that

• A0 = V1, A1 = V2, A2 = V3, but

• |A3| = 12 < 22
2

= |V4|, |A4| = 112 < 22
2
2

= |V5|.

Thus, the adjunctive hierarchy grows more slowly than the cumulative hierarchy. However,
in order to ascertain the feasibility of an encoding of hereditarily finite sets w.r.t. the adjunctive
hierarchy, it is crucial to exactly determine an := |An|, for every n ∈ ω; this problem was left
open in [12], where the values of an for n ≤ 6 were obtained.

To begin with, in Sec. 2 we give a compact recurrence relation for an, for any n ∈ ω. This
recurrence relation can be implemented by a simple dynamic programming algorithm, which
runs in polynomial time in the arithmetic model, thus allowing a fast computation of the values
an (the values for n < 10 are given in Table 1). Moreover, our method allows us to impose
restrictions on the sets making up a level of the adjunctive hierarchy, for example on rank, or on
cardinality; this is presented in Sec. 4.1 and 4.2. In Sec. 4.3 we argue that all of our recurrence
relations can be generalized to an analogous adjunctive hierarchy of hereditarily finite sets with
atoms, in which A0 also includes an arbitrary finite set of atoms, and A0 is added to every layer
of the adjunctive hierarchy.

As we will show in Sec. 3, the adjunctive hierarchy is not able to meet the goal of a hierarchy
allowing an efficient encoding of hereditarily finite sets, since an is seen to have a number of
bits exponential in n. More precisely, we prove that an ∼ C2n for a constant C ≈ 1.3399.
Nevertheless, in Sec. 5, we show that the growth of the adjunctive hierarchy can be controlled by
any unbounded sublinear function f limiting the maximum level of the hierarchy from where the
new adjoined element can be drawn. Our recurrence relation easily generalizes to this context,
and in the Appendix we give numerical values for different choices of f . This restriction turns
out to be a natural lever for slowing down the asymptotic growth of the hierarchy An.

More importantly, we identify a natural hierarchy Ān, which we call the minimally bounded
adjunctive hierarchy, whose asymptotic behavior we prove to be Θ(2n). In this hierarchy, in
order to make up the (n+1)th level, the adjunction of a set y ∈ Ām+1 to a set x ∈ Ān is allowed
only if all the sets in P(Ām) are already present in Ān; that is, when the adjunction of any set
in Ām to sets in Ān does not produce any new set. To the best of our knowledge, this hierarchy
is the first to have a slow growth and a natural definition, as it can be seen as a combination of
the adjunctive and cumulative hierarchies.

1To be precise, in [12], the (n+1)th level of the hierarchy was defined as A′

n+1 := A′

n ∪ {x ∪ {y} | x, y ∈ A′

n},
where A′

0 = {∅}; this is equivalent to our definition.
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2 The adjunctive hierarchy

2.1 Adjunctive rank and basic properties

We start by presenting some remarks and basic properties that will be used to prove the main
result.

Remark 2.1 ([12]). If x ∈ An, then |x| ≤ n, x ⊆ An−1 and for any y ⊆ x, y ∈ An holds.

Remark 2.2. If x ∈ An\An−1, then x ⊆ An−1 and there exists a y ∈ x such that x\{y} ∈ An−1.

The rank of a hereditarily finite set x is a well-known measure of its complexity [9], and can
be defined as

rk(x) := min{n : x ∈ Vn} − 1.

Equivalently stated, the rank of x is either 0, if x = ∅, or otherwise it can be recursively
expressed as

rk(x) := max{rk(y) : y ∈ x}+ 1.

In analogy with the usual cumulative hierarchy, we introduce the following definition.

Definition 2.3. For every hereditarily finite set x, the adjunctive rank of x is defined as

ark(x) := min{n : x ∈ An}.

Equivalently, ark(x) is either 0, if x = ∅, or it is the number n such that x ∈ An \ An−1.

As in the cumulative case, we are interested in finding an equivalent recursive definition of
ark(x) using the set {ark(y) : y ∈ x}. This is possible, even if slightly trickier than in the
classical case.

Remark 2.4. For all hereditarily finite sets x, y, the following holds:

max{ark(x), ark(y)} ≤ ark(x ∪ {y}) ≤ max{ark(x), ark(y)}+ 1.

Remark 2.5. If ark(x) ≤ ark(y), then ark(x ∪ {y}) = max{ark(x), ark(y)}+ 1 = ark(y) + 1.

Unfortunately, it is not true that when ark(x) ≥ ark(y) the adjunctive rank of x ∪ {y} is
ark(x) + 1 (e.g. when x = {{∅}}, y = ∅). However, for any hereditarily finite set z, this can be
avoided for a specific choice of sets x, y such that x ∪ {y} = z, and this will allow us to state
the following recursive definition of ark(x) from {ark(y) : y ∈ x}.

Lemma 2.6. If y = {x1, . . . , xn} such that ark(xi) ≤ ark(xi+1) for all i ∈ {1, . . . , n − 1}, then
ark(y) = max{ark(xj) + n− j : 1 ≤ j ≤ n}+ 1.

Proof. We prove the statement by induction on n. If n = 1, the thesis follows from Remark 2.5
for ∅ ∪ {x1}.

Now suppose that n > 1. From the inductive hypothesis, we have

ark(y \ {xn}) = max{ark(xj) + n− 1− j : 1 ≤ j ≤ n− 1}+ 1

= max{ark(xj) + n− j : 1 ≤ j ≤ n− 1}.

If ark(y \ {xn}) ≤ ark(xn), from Remark 2.5 we have

ark(y) = max {ark(y \ {xn}), ark(xn)}+ 1

= max
{

max{ark(xj) + n− j : 1 ≤ j ≤ n− 1},
ark(xn) + n− n

}

+ 1

= max {ark(xj) + n− j : 1 ≤ j ≤ n}+ 1,
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which is the thesis.
Otherwise, ark(y \ {xn}) > ark(xn). From Remark 2.2, we know that there exists an i such

that ark(y \ {xi}) < ark(y). Applying Remark 2.4 together with max{ark(y \ {xi}), ark(xi)} <
ark(y), it follows that

ark(y) = max{ark(y \ {xi}), ark(xi)}+ 1.

By the inductive hypothesis on y \ {xi}, we have that

ark(y \ {xi}) = max
{

{ark(xj) + n− j : 1 ≤ j ≤ i− 1} ∪
{ark(xj+1) + n− j : i ≤ j ≤ n− 1}

}

.

Since for all j ∈ {i, . . . , n−1}, ark(xj+1)+n− j ≥ ark(xj)+n− j holds from the assumption
that the xi’s form a non-decreasing sequence, this implies that ark(y \ {xi}) ≥ ark(y \ {xn}).
Thus, by the hypothesis on ark(xn), it holds that

ark(y \ {xi}) ≥ ark(y \ {xn}) > ark(xn) ≥ ark(xi).

Combining the last inequalities with our assumption on i,

ark(y) = max{ark(y \ {xi}), ark(xi)}+ 1
= ark(y \ {xi}) + 1
≥ ark(y \ {xn}) + 1
= max{ark(y \ {xn}), ark(xn)}+ 1
= max{ark(xj) + n− j : 1 ≤ j ≤ n}+ 1

which, by Remark 2.4, proves the thesis.

In the next sections, Lemma 2.6 will be used mainly in the form of the following corollary.

Corollary 2.7. If x ⊆ Aark(y), then ark(x ∪ {y}) = max{ark(x), ark(y)}+ 1.

2.2 The recurrence relation for an

To develop a recurrence relation for the sequence an we first need to define a finer sequence, as
in the following definition.

Definition 2.8. For every n > m ≥ 0, let Bn,m be the set {x ∈ An \ An−1 : x ⊆ Am}, and let
bn,m := |Bn,m|.

Notice that Bn,n−1 = An \An−1 and Bn,0 = ∅ for all n > 1; we shall extend for convenience
the definitions of Bn,m and, accordingly, of bn,m, to all integers n,m, by assuming An = ∅ if
n < 0. Therefore, we can write

an =

n
∑

k=0

bk,k−1.

For the sequence bn,m a compact recurrence relation can be provided.

Theorem 2.9. For all natural numbers n > m ≥ 0, the following recurrence relation holds

bn,m = bn,m−1 +

n−m−1
∑

k=1

(

bn−k,m−1

(

bm,m−1

k

))

+

(

bm,m−1

n−m

) m
∑

k=0

bk,k−1, (1)

where b0,−1 = 1, and bn,−1 = 0, for all n ≥ 1 (we assume that
(

a
b

)

= 0 if a < b).
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Proof. The recurrence relation above follows from partitioning the set Bn,m into sets Bn,m,k,
for k ∈ {0, . . . , n−m}:

Bn,m,k := {x ∈ Bn,m : |x ∩ (Am \ Am−1)| = k} .

This is indeed a partition of Bn,m, since for any x ∈ Bn,m, |x∩ (Am \Am−1)| ≤ n−m holds.
Otherwise, denote |x∩ (Am \Am−1)| by l, and suppose that l ≥ n−m+1. Therefore, x ⊆ Am

is obtained by adjoining l elements in Am \Am−1 to a set in some Ad; by Corollary 2.7 (applied
l times), we have that d ≤ n− l ≤ m−1. However, by the first adjunction of such an element in
Am \Am−1, we obtain, by Remark 2.5, a set in Am+1 \Am. By the adjunction of the remaining
l − 1 ≥ n −m elements to it, we obtain, by Corollary 2.7, that the set x is in Al+m \ Al+m−1.
Since l +m ≥ n+ 1, this contradicts the assumption that x ∈ Bn,m.

By definition, Bn,m,0 = Bn,m−1, which gives the first term in the recurrence relation.
For k ∈ {1, . . . , n−m−1}, every set x ∈ Bn,m,k is obtained by adjoining k sets in Am\Am−1,

that can be chosen in
(

bm,m−1

k

)

ways, to a set y ∈ An−k such that y ⊆ Am−1. Observe that
y /∈ An−k−1, since adjoining k elements in Am, where m ≤ n− k − 1, to a set in An−k−1 would
result in a set in An−1, by the definition of the hierarchy. Therefore, such sets y are precisely
those in Bn−k,m−1, hence |Bn,m,k| = bn−k,m−1

(

bm,m−1

k

)

, giving the next term in the recurrence
relation.

Similarly, if k = n−m, every set x ∈ Bn,m,n−m is obtained adjoining n−m sets in Am\Am−1,

that can be chosen in
(

bm,m−1

n−m

)

ways, to a set y ∈ Am. In this case, however, any set in Am can
be used as y, since adjoining n−m sets in Am \Am−1 to a set in Am will always produce a set
in An \ An−1, by Corollary 2.7. This gives the last term in the recurrence relation.

This result can be implemented in an algorithm, to obtain the numeric values shown in
Table 1.

3 Asymptotic behavior

In this section, we are interested in the asymptotic behavior of the sum

an =

n
∑

k=0

bk,k−1.

To this end, we first study the asymptotics of cn := bn,n−1. First we note that

bn,−1 ≤ bn,0 ≤ · · · ≤ bn,n−1 (2)

by definition (since Bn,m−1 ⊆ Bn,m), which can also be seen from the fact that all the terms
in (1) are nonnegative. Moreover, for m = n− 1, one of the terms on the right hand side of (1)
is b2n−1,n−2 (corresponding to k = m = n− 1 in the second sum), so that

cn = bn,n−1 ≥ b2n−1,n−2 = c2n−1.

It turns out that this is in fact the dominant term (combinatorially speaking, this means that
“most” of the elements of An \ An−1 are obtained by adjoining an element of An−1 \ An−2 to
another set in An−1 \ An−2), as the following lemma shows:

Lemma 3.1. The sequence cn = bn,n−1 satisfies

cn = c2n−1 (1 +O(1/cn−2)) .

Specifically,

c2n−1 ≤ cn ≤ c2n−1

(

1 +
4

cn−2

)

for n ≥ 2.
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Proof. The inequality c2n−1 ≤ cn has already been mentioned. It also follows from this inequality

that c2
k

n−k ≤ cn for 0 ≤ k ≤ n, and since c2 = 2, we have cn ≥ 22
n−2

for all n ≥ 2 by a simple
induction, which means that cn grows quite rapidly. Finally, we have cn ≥ c2n−1 ≥ 2cn−1 for
n ≥ 3 (and also c2 = 2 ≥ 2 = 2c1), hence 2kcn−k ≤ cn for n ≥ 2 and k ≤ n− 1.

It remains to prove the second inequality. The special case m = n− 1 in (1) yields

cn = bn,n−1 = bn−1,n−2

n−1
∑

k=0

bk,k−1 + bn,n−2

and thus also (replacing n by n− 1)

cn−1 = bn−1,n−2

= bn−2,n−3

n−2
∑

k=0

bk,k−1 + bn−1,n−3

≥ bn−2,n−3

n−2
∑

k=0

bk,k−1, (3)

from which we obtain

cn ≤ bn−1,n−2

(

bn−1,n−2 +
bn−1,n−2

bn−2,n−3

)

+ bn,n−2

= c2n−1

(

1 +
1

cn−2

)

+ bn,n−2.

Moreover, (3) implies
n−2
∑

k=0

ck =

n−2
∑

k=0

bk,k−1 ≤
cn−1

cn−2
, (4)

which we will use later. To complete the proof, we have to show that

bn,n−2 ≤
3c2n−1

cn−2
.

To this end, we iterate our recursion (1) to obtain

bn,n−2 = bn,n−3 +

1
∑

k=1

(

bn−k,n−3

(

bn−2,n−3

k

))

+

(

bn−2,n−3

2

) n−2
∑

k=0

bk,k−1

= bn,n−4 + · · ·

=
n−2
∑

r=0

n−r−1
∑

k=1

(

bn−k,r−1

(

br,r−1

k

))

+
n−2
∑

r=0

(

br,r−1

n− r

) r
∑

k=0

bk,k−1.

We split this into three parts: k = 1 in the first sum gives us

S1 =
n−2
∑

r=0

bn−1,r−1br,r−1 ≤ bn−1,n−2

n−2
∑

r=0

br,r−1 ≤
c2n−1

cn−2

by (2) and (4). The other terms of the first sum taken together can be estimated as follows
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(note that
(

br,r−1

k

)

= 0 for r = 0 or r = 1 now, since b0,−1 = b1,0 = 1):

S2 =

n−2
∑

r=0

n−r−1
∑

k=2

(

bn−k,r−1

(

br,r−1

k

))

=
n−3
∑

k=2

n−k−1
∑

r=2

(

bn−k,r−1

(

br,r−1

k

))

≤
n−3
∑

k=2

n−k−1
∑

r=2

cn−k

ckr
k!
,

since bn−k,r−1 ≤ bn−k,n−k−1 = cn−k by (2) and br,r−1 = cr. Making use of the inequalities

c2
k

n−k ≤ cn and 2kcn−k ≤ cn mentioned at the beginning of the proof, it follows that

S2 ≤
n−3
∑

k=2

cn−k

k!

n−k−1
∑

r=2

(

cn−k−12
r+k−n+1

)k

≤
n−3
∑

k=2

cn−k

k!
ckn−k−1

∞
∑

ℓ=0

2−ℓk

≤
n−3
∑

k=2

cn−2

k!
c2

k−1

n−k−1 ·
1

1− 2−k

≤ cn−2cn−2

∞
∑

k=2

1

k!(1− 2−k)

< c2n−2 ≤
c2n−1

cn−2
.

Finally, we have

S3 =

n−2
∑

r=0

(

br,r−1

n− r

) r
∑

k=0

bk,k−1

=

n−2
∑

k=0

n−2
∑

r=k

(

cr
n− r

)

ck ≤
n−2
∑

k=0

n−2
∑

r=0

cn−r
r

(n− r)!
ck

≤
n−2
∑

k=0

ck

n−2
∑

r=0

c2
n−r−1

r

(n− r)!
≤

n−2
∑

k=0

ck

n−2
∑

r=0

cn−1

(n− r)!

≤ cn−1

n−2
∑

k=0

ck

∞
∑

ℓ=2

1

ℓ!
< cn−1

n−2
∑

k=0

ck ≤ c2n−1

cn−2
,

again by (3) and the inequalities c2
k

n−k ≤ cn and 2kcn−k ≤ cn. The desired inequality follows by
adding the three parts S1, S2 and S3.

Now we are ready to prove the main asymptotic formula:

Theorem 3.2. We have
cn = C2n +O

(

C2n−1
)

for a constant C ≈ 1.339899757746.
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Proof. Set un = log cn. By Lemma 3.1, we have

un = 2un−1 + rn,

with 0 ≤ rn ≤ log (1 + 4/cn−2) for n ≥ 2. Iterating yields

un = 2n−1u1 +
n
∑

k=2

2n−krk = 2n
n
∑

k=2

2−krk

= 2n
∞
∑

k=2

2−krk −
∞
∑

k=n+1

2n−krk

= 2n
∞
∑

k=2

2−krk −
∞
∑

ℓ=1

2−ℓrn+ℓ.

Set

C = exp

(

∞
∑

k=2

2−krk

)

≈ 1.339899757746.

Since 0 ≤ rn+ℓ ≤ log(1 + 4/cn+ℓ−2) ≤ log(1 + 4/cn−1) for ℓ ≥ 1, we have

0 ≤
∞
∑

ℓ=1

2−ℓrn+ℓ ≤
∞
∑

ℓ=1

2−ℓ log(1 + 4/cn−1) = log(1 + 4/cn−1),

thus
2n logC ≥ un ≥ 2n logC − log(1 + 4/cn−1)

and consequently

C2n ≥ cn = eun ≥ C2n
(

1 +
4

cn−1

)−1

.

So cn ∼ C2n , and more precisely

cn = C2n
(

1 +O
(

C−2n−1
))

= C2n +O
(

C2n−1
)

,

completing our proof.

The following corollary is now immediate:

Corollary 3.3. The sequence an =
∑n

k=0 bk,k−1 =
∑n

k=0 ck is asymptotically given by

an = C2n +O
(

C2n−1
)

.

Proof. We have

an = cn +
n−1
∑

k=0

ck = cn +O
(

n−1
∑

k=0

C2k

)

= cn +O
(

C2n−1

n−1
∑

k=0

C2k−2n−1

)

= cn +O
(

C2n−1

∞
∑

ℓ=0

C−ℓ

)

= C2n +O
(

C2n−1
)

.

Remark 3.4. The series representation

C = exp

(

∞
∑

k=2

2−krk

)

for the constant C converges quite rapidly, so it can be computed with high accuracy.
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Table 2: Small values of rtn.

n r0
n

r1
n

r2
n

r3
n

r4
n

r5
n

r6
n

r7
n

0 1
1 1 1
2 1 1 2
3 1 1 2 8
4 1 1 2 12 96
5 1 1 2 12 912 10752
6 1 1 2 12 3840 10130688 125583360
7 1 1 2 12 10696 34070972672 1374608250580992 17043910396477440

4 Refinements and generalizations

4.1 Refining by rank

The value bn,n−1 = |An \ An−1| computed in the previous section is the number of hereditarily
finite sets in An having adjunctive rank n. Therefore, it is interesting to analogously determine
how many elements in An have a certain rank in the classical sense.

Observe first that for any x ∈ An, rk(x) ≤ n holds. With this purpose we introduce the
following definition.

Definition 4.1. For every n > m ≥ 0, and every 0 ≤ t ≤ m + 1, let Rt
n,m := {x ∈ An \

An−1 : x ⊆ Am ∧ rk(x) ≤ t}, and let rtn,m := |Rt
n,m|.

Let rtn := |{x ∈ An : rk(x) = t}|, and observe that rtn =
∑n

m=0(r
t
m,m−1 − rt−1

m,m−1). The
values rtn,m satisfy a relation completely analogous to the one in Theorem 2.9; numerical values
of rtn for small values of n and t are shown in Table 2.

Theorem 4.2. For all natural numbers n > m ≥ 0, and 0 ≤ t ≤ m+1, the following recurrence
relation holds

rtn,m = rtn,m−1 +

n−m−1
∑

k=1

(

rtn−k,m−1

(

rt−1
m,m−1

k

)

)

+

(

rt−1
m,m−1

n−m

) m
∑

k=0

rtk,k−1,

where rt0,−1 = 1, and rtn,−1 = 0, for all n ≥ 1 and t ≥ 0.

Proof. The proof follows step by step the one of Theorem 2.9. Since Rt
n,m ⊆ Bn,m, we can

partition the set Rt
n,m into sets Rt

n,m,k, for k ∈ {0, . . . , n−m}:

Rt
n,m,k :=

{

x ∈ Rt
n,m : |x ∩ (Am \ Am−1)| = k

}

.

Again, the first term of the recurrence comes from the fact that Rt
n,m,0 = Rt

n,m−1.
For k ∈ {1, . . . , n−m−1}, every set x ∈ Rt

n,m,k is obtained by adjoining k sets in Am\Am−1

with rank at most t − 1 (hence in Rt−1
m,m−1), to a set y ∈ An−k such that y ⊆ Am−1 with rank

at most t. As before, y /∈ An−k−1 hence such sets y are precisely those in Rt
n−k,m−1. This gives

the next term in the recurrence relation.
Similarly, if k = n − m every set x ∈ Rt

n,m,n−m is obtained by adjoining n − m sets in

Am \Am−1 with rank at most t− 1 (hence in Rt−1
m,m−1), to any set y ∈ Am with rank at most t

(by Corollary 2.7). This gives the last term in the recurrence relation.
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Table 3: Small values of dtn.

n d0n d1n d2n d3n d4n d5n d6n
0 1
1 1 1
2 1 2 1
3 1 4 5 2
4 1 12 38 44 17
5 1 112 1266 3964 4573 1764
6 1 11680 1301832 14711308 46060477 53135964 20496642

4.2 Refining by cardinality

In this section we extend Theorem 2.9 by imposing a restriction on the cardinality of the sets
in some An. Observe that for any x ∈ An, |x| ≤ n holds.

Definition 4.3. For every n > m ≥ 0, and every 0 ≤ t ≤ n, let Dt
n,m := {x ∈ An \An−1 : x ⊆

Am ∧ |x| ≤ t}, and let dtn,m := |Dt
n,m|.

As in the previous section, we observe that dtn := |{x ∈ An : |x| = t}| equals∑n
m=0(d

t
m,m−1−

dt−1
m,m−1), and the values dtn,m satisfy a recurrence relation similar to the one in Theorem 2.9.

Numerical values of dtn are shown in Table 3.

Theorem 4.4. For all natural numbers n > m ≥ 0, and 0 ≤ t ≤ n, the following recurrence
relation holds

dtn,m = dtn,m−1 +

n−m−1
∑

k=1

(

dt−k
n−k,m−1

(

bm,m−1

k

))

+

(

bm,m−1

n−m

) m
∑

k=0

dt−n+m
k,k−1 ,

where dt0,−1 = 1, and dtn,−1 = 0, for all n ≥ 1 and t ≥ 0.

Proof. The proof follows step by step the one of Theorem 2.9. Since Dt
n,m ⊆ Bn,m, we can

partition the set Dt
n,m into sets Dt

n,m,k, for k ∈ {0, . . . , n−m}:

Dt
n,m,k :=

{

x ∈ Dt
n,m : |x ∩ (Am \ Am−1)| = k

}

.

Again, the first term of the recurrence comes from the fact that Dt
n,m,0 = Dt

n,m−1.
For k ∈ {1, . . . , n − m − 1}, every set x ∈ Dt

n,m,k is obtained by adjoining any k sets in
Am \Am−1 (hence in Bm,m−1), to a set y ∈ An−k such that y ⊆ Am−1 with cardinality at most
t− k. As before, y /∈ An−k−1 hence such sets y are precisely those in Dt−k

n−k,m−1. This gives the
next term in the recurrence relation.

Similarly, if k = n −m every set x ∈ Dt
n,m,n−m is obtained by adjoining any n −m sets in

Am \ Am−1 (hence in Bm,m−1), to any set y ∈ Am with cardinality at most t − (n − m) (by
Corollary 2.7). This gives the last term in the recurrence relation.

4.3 Hereditarily finite sets with atoms

Pure hereditarily finite sets can be generalized in a straightforward manner by allowing the
presence of a set U of urelements, or atoms, pairwise different and also different from sets (and
in particular from ∅). The cumulative hierarchy of hereditarily finite sets with atoms U is
defined as (see also [16, 11]):

V U
0 := U , V U

n+1 := U ∪ P(V U
n ), V U

ω :=
⋃

n∈ω

V U
n .

11



Table 4: Small values of |AU
n | for small cardinalities of U .

n |U| = 1 |U| = 2 |U| = 3 |U| = 4 |U| = 5
0 2 3 4 5 6
1 4 6 8 10 12
2 11 21 34 50 69
3 86 328 898 2010 3932
4 6707 102751 785834 3974665 15288832
5 44661920 10540006012 617171670159 15793892739676 233717946472981

The adjunctive hierarchy of hereditarily finite sets with urelements U can be analogously
defined as:

AU
0 := {∅} ∪ U ,

AU
n+1 := {∅} ∪ U ∪

{

x ∪ {y} | x ∈ AU
n \ U , y ∈ AU

n

}

,

so that V U
ω =

⋃

n∈ω A
U
n .

It is easy to see that, for a finite U , all recurrences proposed in this paper generalize to AU
n ,

the only differences being in the initialization of the recurrences. For example, to obtain an
analog of Theorem 2.9, denote by BU

n,m the set
{

x ∈ AU
n \ AU

n−1 : x ⊆ AU
m

}

, and by bun,m the

cardinality |BU
n,m|, where u = |U|, so that

|AU
n | =

n
∑

k=0

buk,k−1.

Theorem 4.5. For all natural numbers n > m ≥ 1, the following recurrence relation holds

bun,m = bun,m−1 +

n−m−1
∑

k=1

(

bun−k,m−1

(

bum,m−1

k

))

+

(

bum,m−1

n−m

)

(

1 +

m
∑

k=1

buk,k−1

)

,

where bu0,−1 = u+ 1, and bun,0 =
(

u+1
n

)

for all n ≥ 1.

Proof. The proof follows closely the one of Theorem 2.9. The only difference is in the fact
that the only set in A0 allowed as first term in an adjunction is the empty set, thus giving
1 +

∑m
k=1 b

u
k,k−1 instead of

∑m
k=0 b

u
k,k−1.

Numeric values of |AU
n | are shown in Table 4.

5 Bounded adjunctive hierarchies

As Theorem 3.2 shows, the growth of an, albeit slower than in the von Neumann’s case, is still
very fast, the an’s having an exponential number (to be more precise, Θ(2n)) of bits.

This observation motivates us to introduce bounded analogues of the adjunctive hierarchy in
order to obtain slower asymptotic growth, ideally one in which the cardinalities of the different
layers have a linear number of bits.

Definition 5.1. Given an unbounded sublinear function f : N → N (that is, for all n, f(n) ≤ n,
and there exists an m such that f(m) > n), the adjunctive hierarchy bounded by f is

Af
0 := {∅}, Af

n+1 := {∅} ∪
{

x ∪ {y} | x ∈ An, y ∈ Af(n)

}

.

We let afn = |Af
n|.
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Kirby’s adjunctive hierarchy is obtained for f the identity function. As in that case, it also
holds that for any unbounded sublinear function f , Af

n ⊆ Af
n+1 for all n ∈ ω, and

⋃

n∈ω Af
n = Vω;

that is, Af
n is a hierarchy of hereditarily finite sets. By changing the asymptotic growth of f(n),

it is possible to fine-tune the asymptotic behavior of afn. In order to obtain numeric values for
the afn, it is possible to prove an analogue of the relation in Theorem 2.9.

Definition 5.2. For every n > m ≥ 0, let Bf
n,m be the set

{

x ∈ Af
n \ Af

n−1 : x ⊆ Af
m

}

, bfn,m :=

|Bf
n,m| and g : N → N be such that g(n) = min{t : f(t) ≥ n}. We call this last function the

inverse of f .

Theorem 5.3. For all natural numbers n > m ≥ 0, the following recurrence relation holds

bfn,m = bfn,m−1 +

n−g(m)−1
∑

k=1

(

bfn−k,m−1

(

bfm,m−1

k

)

)

+

(

bfm,m−1

n− g(m)

) g(m)
∑

k=0

bfk,k−1,

where bf0,−1 = 1, and bfn,−1 = 0, for all n > 1.

The proof follows step by step the one of Theorem 2.9, using the fact that adjoining k
elements not in Af

m−1 to any set gives a set that is not in Af

g(m)+k−1, and is left to the reader.

In Tables 5 and 6 in the Appendix we present numeric values of afn for some specific choices
of f . When f is not the identity function it can happen that Af

n+1 = Af
n, in this case we

feel free to skip the corresponding entries in the tables. These empirical results suggest that
for f(n) = ⌊log2(n + 1)⌋ and possibly also for f(n) = ⌊√n⌋, the number of digits needed to

represent afn is less than n.
As suggested from Table 6, for functions f growing sufficiently slowly and smoothly in some

sense, the corresponding sequence Af
n is essentially the same (ignoring repetitions). In such

cases we obtain a hierarchy equivalent to the following.

Definition 5.4. The minimally bounded adjunctive hierarchy is

Ā0 := {∅},
Ān+1 := {∅} ∪

{

x ∪ {y} | x ∈ Ān ∧ ∃m
(

P(Ām) ⊆ Ān ∧ y ∈ Ām+1

)}

.

We let ān := |Ān|.

In this sequence, the adjunction of a set y ∈ Ām+1 is allowed only if all the sets obtainable
à la von Neumann from Ām are already in the hierarchy, that is, P(Ām) ⊆ Ān, so that the
adjunction of any set in Ām to sets in Ān would not produce any new set.

Observe that also Ān−1 ⊆ Ān holds for all n ∈ ω.

Lemma 5.5. For all n, Āān = P(Ān).

Proof. We prove the thesis by induction on n. For n = 0, since Ā0 = {∅} then ā0 = 1, and
Ā1 = P(Ā0) = {∅, {∅}} is easily checked to be true.

Now suppose that Āān−1
= P(Ān−1). We prove by another induction that for all m such

that ān−1 ≤ m ≤ ān, the following holds:

Ām =
{

x ⊆ Ān :
∣

∣x \ Ān−1

∣

∣ ≤ (m− ān−1)
}

.

We will obtain the claim for m = ān, since plainly

P(Ān) =
{

x ⊆ Ān :
∣

∣x \ Ān−1

∣

∣ ≤ (ān − ān−1)
}

.
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For m = ān−1 it is true by the initial inductive hypothesis, since

Āān−1
= P(Ān−1)

=
{

x ⊆ Ān : x ⊆ Ān−1

}

=
{

x ⊆ Ān :
∣

∣x \ Ān−1

∣

∣ ≤ 0
}

.

Let m > ān−1 and assume that the hypothesis holds for Ām−1. Since m ≤ ān, this implies
that Ām−1 ( P(Ān). Therefore, by the definition and the fact that Āān−1

= P(Ān−1) holds, we
have that

Ām := {∅} ∪
{

x ∪ {y} | x ∈ Ām−1 ∧ y ∈ Ān−1

}

.

This proves the claim, since the inductive hypothesis holds for Ām−1.

The last result shows that for infinitely many n (i.e. if there exists m such that ām = n),
ān = 2n hence the asymptotic growth of ān is Θ(2n). It also follows that Ā|Vn| = Vn+1, thus the
sequence ān contains the usual von Neumann’s hierarchy as a subsequence.

Corollary 5.6. The sequence Ān is obtained as Af̄
n where the function f̄ is defined as

f̄(n) = min {m : ām > n} .

Thus, the corresponding inverse ḡ is such that ḡ(n) = ān−1, ḡ(0) = 0.

As previously mentioned, any other surjective function f with inverse g (as defined in Defini-
tion 5.2) such that g(n+1)−g(n) ≥ ḡ(n+1)−ḡ(n) holds for all n will produce the same sequence,
possibly with repetitions. Moreover, it is possible to combine Theorem 5.3 and Corollary 5.6 to

produce a recursive relation for b̄n,m = bf̄n,m:

b̄n,m = b̄n,m−1 +

n−ām−1−1
∑

k=1

(

b̄n−k,m−1

(

b̄m,m−1

k

))

+ āām−1

(

b̄m,m−1

n− ām−1

)

,

where ām is definable from the values b̄n,m as
∑m

k=0 b̄m,m−1. This recursive relation can be im-
plemented in a dynamic programming algorithm analogous to the one for bn,m; small numerical
values of it are shown in Table 7 in the Appendix.

6 Conclusions and future work

In this paper we solved a counting problem proposed by Kirby in 2008, and showed that our
method can be extended by imposing restrictions on the rank or on the cardinality of the
hereditarily finite sets making up a certain level of the adjunctive hierarchy. We also showed
that it can be easily extended to hereditarily finite sets with atoms.

An asymptotic analysis of the recurrences revealed that the adjunctive hierarchy, even
though much slower than the usual cumulative hierarchy, is still growing too fast to allow
for an efficient encoding of hereditarily finite sets by numbers.

For this reason, we proposed the minimally bounded adjunctive hierarchy, in which an
(n+1)th level is obtained by the adjunction of a set y ∈ Ām+1 to a set x ∈ Ān if all the sets in
P(Ām) are already present in Ān. This is a natural combination of the adjunctive hierarchy and
the cumulative hierarchy; more importantly, we proved that its asymptotic growth is Θ(2n). To
the best of our knowledge, this is the first result of this kind.

The next step to take is to devise efficient ranking/unranking algorithms for our minimally
bounded adjunctive hierarchy, as Ackermann’s encoding [10] is for the cumulative hierarchy,
and as the algorithms in [13] are for the hierarchy of transitive sets with a given number of
elements.
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A different open problem can be formulated as follows. Note that all transitive sets with
n elements belong to Vn, and recall that the number of transitive sets with n elements has
already been obtained in [14]; it would thus be interesting to find an analog of this result for
the adjunctive hierarchy, namely, to find the number of transitive sets in An with n elements.
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A bounded growth of the adjunctive hierarchy

Table 5: First values of afn for f(n) = ⌈n/2⌉.

af0 1

af1 2

af2 4

af4 12

af5 16

af8 144

af9 592

af10 3856

af11 12112

af12 25232

af13 40160

af14 52832

af15 60752

af16 7840528

af17 502084400

af18 246203916272

af19 60472296567808

af20 207302387302931456

af21 355632667741263729920

af22 3343198667129228884545792

af23 15829569100117020469497511168

af24 258028007928627813480157366817024

af25 2143825383084631588989060293305465472

af26 44114691903811742239796481826048657798272

af27 472009200002288950265751813320485308731259904

af28 9485240116915376700878425362559719242896317641728

af29 102586446112048504015292656228608097259346546351742208
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Table 6: First values of af1n and af2n for f1 = ⌊√n⌋ and f2 = ⌊log2(n+ 1)⌋.

af10 1 af20
af11 2 af21
af12 4 af22
af15 12 af24
af16 16 af25
af126 144 af216
af127 592 af217
af128 1488 af218
af129 2608 af219
af130 3504 af220
af131 3952 af221
af132 4080 af222
af133 4096 af223
af137 20480 af232
af138 45056 af233
af139 61440 af234
af140 65536 af235
af1677 8454144 af265536
af1678 541130752 af265537
af1679 22913548288 af265538
af1680 722051596288 af265539
af1681 18060675186688 af265540
af1682 373502458789888 af265541
af1683 6568344973017088 af265542
af1684 100265338000703488 af265543
af1685 1349558578369855488 af265544
af1686 16216148138762764288 af265545
af1687 175694108877523058688 af265546
af1688 1730604226080435929088 af265547
af1689 15605186810352581541888 af265548
af1690 129574972324016634789888 af265549
af1691 995745342227863439474688 af265550
af1692 7113073579673781497561088 af265551
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Table 7: First values of ān.

ā0 1
ā1 2
ā2 4
ā3 12
ā4 16
ā5 144
ā6 592
ā7 1488
ā8 2608
ā9 3504
ā10 3952
ā11 4080
ā12 4096
ā13 20480
ā14 45056
ā15 61440
ā16 65536
ā17 8454144
ā18 541130752
ā19 22913548288
ā20 722051596288
ā21 18060675186688
ā22 373502458789888
ā23 6568344973017088
ā24 100265338000703488
ā25 1349558578369855488
ā26 16216148138762764288
ā27 175694108877523058688
ā28 1730604226080435929088
ā29 15605186810352581541888
ā30 129574972324016634789888
ā31 995745342227863439474688
ā32 7113073579673781497561088
ā33 47415471379317476939071488
ā34 295946924477120265495052288
ā35 1734813231885452199240204288
ā36 9576634607260861238151282688
ā37 49906001680620107723979685888
ā38 246053377901049170177781465088
ā39 1150036937873461371051824447488
ā40 5104965012752764749875762495488
ā41 21557465804250666805783344775168
ā42 86734680478261586488801843806208
ā43 332959713691191727513538395701248
ā44 1221128583494975450495623815036928
ā45 4283779858680436564226952847228928
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