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Abstract. Understanding the boundaries of trust is a key aspect of accurately modelling the structure and
behaviour of multi-agent systems with heterogeneous motivating factors. Reasoning about these boundaries in
highly interconnected, information-rich ecosystems is complex, and dependent upon modelling at the correct
level of abstraction. Building on an established mathematical systems modelling framework that captures the
classical view of distributed systems, we develop a modelling framework that incorporates both logical and
cost-based descriptions of systems, which allows us to establish a definition of an agent’s trust domain based
on the satisfaction of logical properties at acceptable utility (handled here simply as cost) to the agent, of
verification. In addition to the technical properties of the modelling framework itself, we establish a theory of
logical combinators, including substitution, for composing trust domains to form relatively complex models of
trust. We illustrate the ideas with examples throughout.

1. Introduction

Complex systems of interacting agents, be they artificial or natural, are ubiquitous. For example, com-
plex networks of devices and services underpin most of the systems upon which modern societies depend.
Such systems are difficult to conceptualize and reason about effectively.

When agents within complex systems must interact with one another and collaborate in order to achieve
their goals, the concept of trust — between agents — is important. An agent, situated within a system that
contains also other agents, may establish a part of the system, or a collection of other agents within the
system, that it trusts. Similarly, a system’s designer or manager might establish a collection of parts of the
system such that, within any given part, the agents trust one another. We shall refer to such a part of the
system, or such a collection of agents, as a ‘trust domain’ [42].

We illustrate these motivating questions with an example: Which contractors will a company trust with
its data when contracting out some internal process? What data sources are trustworthy when making a
benefit-cost analysis? Where are there opportunities for colluding parties to trust each other and commit
fraud? Establishing the boundaries of what an agent, or group of agents, trusts, is extremely useful when
attempting to understand the interconnected, information-rich ecosystems upon which the world is more-
or-less wholly dependent. The trust domain of an entity (an agent or collection of agents) consists of an
ecosystem of other agents with which the entity willing to interact [1, 2]. This interaction may consist of
work sharing, resource sharing, location sharing, and so on. An entity will be concerned with what the
trusted agents can do (or not do).

In this paper, we propose a characterization of trust domains that has two components. First, a logical
assertion that expresses the properties that the entity requires to be possessed by the trusted ecosystem.
Second, a bound on the cost, to the entity, of establishing that the required properties hold. This latter
requirement captures the extent to which establishing a required property for trust will affect the overall
utility of the entity’s actions.

This set-up is illustrated informally in Figure 1, in which we intend an implicit notion of logical or
physical location.

Here the agent A may be given one of two different choices of cost function. If KA = K, then B is not
within A’s trust domain at either the k1 or k2 levels. If, however, KA = l, then B is within A’s trust domain
at the l2, but not at the l1 level. Agent B’s cost function, m, includes agent C at the m2 level, but not at the
m1 level (m1 ≤ m2). B′ is in no-one’s domain at any of the given levels of cost.
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Figure 1. Trust Domains: Properties and Cost Bounds

Our use of cost and cost functions here is inspired by utility theory as used, in particular, in the theory
of multi-agent systems [39, 28]. However, in this paper, we do not seek to establish, for example, the
axiomatic structure of von Neumann–Morgenstern utility.

Informally, located agents manipulate their resource environments, but, in our formulation, they do so in
contexts which characterize the extent to which they do so whilst maintaining a required logical property
(intuitively, the ‘trust’ property) within a specified bound on cost. This approach stands in contrast to
approaches in which constraints are expressed purely in terms of preferences, where impossible choices,
that can be expressed logically in our setting, must represented by ‘infinitely negative’ utility. For brevity,
we do not employ location explicitly, instead trusting that the intuitions suggested in Figure 1 will make a
sufficiently strong indication.

The mathematical formulation of this set-up is established within a calculus of resources and processes,
and its associated modal logic, introduced in [2]. This modelling framework builds directly on the ideas
presented in [14, 12, 11, 13], in which a mathematical account of the classical view of distributed sys-
tems — as described, for example, in [15] — is given. The key structural components of this modelling
framework are the following:

• Location: Locations are the places, with directed links between them, within and outwith the
system where resources reside; locations can be logical or physical. Conceptually, locations consist
of a collection of places, connected by links (which have direction). Places have arities, which
express the numbers of in and out links associated with them. More generally, we can think of
a location as a collection of places, with their associated links, so that more location may be
substituted for another. This situation is depicted in Figure 2;
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Figure 2. Substitution of Locations
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• Resource: Resources are the building blocks of the system’s services, such as system components,
computer memory, people, or money; they can, for example, be consumed, created, and moved be-
tween locations by the system’s processes. Conceptually, the axioms of resources are that resource
elements can be combined and compared;

• Process: Processes deliver services within and outwith the system, manipulating the resources that
are distributed around the system’s logical and physical locations; they provide the dynamics of a
model, and interact with the system’s environment.

The remaining component of the modelling framework is the representation of the context within which
models exist, described as follows:

• Environment: The system’s environment is the part of the system whose structure is modelled in
detail. The interaction between the model of interest and its environment is captured mathemati-
cally using stochastic processes to provide occurrences of events.

The mathematical modelling of these components is described in Section 3.1.
Along with this modelling framework we have a logic, formulated in the style of Hennessy–Milner logic

[20, 19, 33], as developed for bunched systems in [11, 13, 14]. This logic provides an appropriate language
for expressing the properties required, as discussed above, to characterize trust domains.

Our characterization of trust domains in this context relies on the addition of the following key concepts:
• Evolution in context: Processes that represent agents evolve with respect to an inner context and

and outer context. The outer context describes the environment in which the process is considered
to evolve. The inner context, which should be thought of as substituting for part of the process,
describes that part of the environment that contributes to the definition of the process itself. The
formal set-up is explained in Section 3.3;

• Cost-mediated choice: Our formalization of processes, explained below in Section 3.3, employs
not simply non-deterministic choice between possible evolutions, but rather a choice operator in
which subsequent evolutions selected according to contextually determined costs;

• Cost modalities: In the modal logic that, in the style of Hennessy–Milner logic [20, 19, 33, 11,
13, 14], is associated with with our contextual process algebra, we employ cost modalities that
characterize, via possibility and necessity, cost-constrained evolutions.

The development of a process algebra that integrates, in the form that is required for this paper, these
concepts into the modelling framework described in Section 3.1 is described in Section 3.3, and a corre-
sponding cost-sensitve Hennessy–Milner- style modal logic is developed in Section 3.4.

The information systems we consider are surprisingly resistant to traditional formal specification and
verification approaches, where the level of abstraction is essentially fixed at the (typically, rather low) level
of the specification of the components.To model problems in these settings, it is essential to work at an
appropriate level of abstraction, which often involves working at a higher level. Considering problems in
these settings involves controlling the complexity, and hence the tractability, of the model. Accordingly,
straightforward and intuitive techniques for constructing and combining models are essential, in order to
divide and conquer the complexity.

We introduce combinators that can be used to construct new trust domains from existing ones. In
particular, we lift combinators from the logic to be defined over trust domains. We make use of additive,
or model preserving, combinators, as in classical propositional logic, namely ¬,∨,∧, and →. We also
make use of multiplicative, or model separating, combinators, as in BI and separation logics [34, 37],
namely ∗ and �−−∗ (a contextual version of the usual bunched −−∗). These combinators describe how models
can be decomposed, and how the logical properties of separate models relate to the logical properties of
composed models. All of these combinators, when raised to the level of trust domains, can be interpreted
using set-theoretic techniques, simplifying the reasoning required of the modeller.

Additive conjunction can be used to strengthen the logical properties that an agent expects of its trusted
ecosystem. The trust domain of the logical conjunct is the set intersection of the sets of trusted ecosystems
for each of the sub-properties. Additive disjunction can be used to weaken the logical properties that an
agent expects of its trusted ecosystem. The trust domain of the logical conjunct is the set union of the sets
of trusted ecosystems for each of the sub-properties.

A trust domain defines the ecosystems where an agent has a logical property, and is able to achieve
this property within a given cost-bound; this makes use of the ‘possibility’ modal operator. The negation
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of a trust domains defines ecosystems where all possible choices an agent have within a given cost-bound
achieve a certain property. This makes use of the ‘necessity’ modal operator, and can be used to define
properties such as that a given individual is never trusted, or that an agent always avoids data leaks.

Additive implication is treated normally, and can be used, for example, to ensure that either a given
individual is excluded from a trust domain, or that a higher level of security is in place. The trust domain
of a logical implication is the set union between the negation of the trust domain of the premiss, and the
trust domain of the conclusion.

Multiplicative conjunction is used to describe how two separate agents can determine the extent of their
combined trust, with respect to their individual extents of trust. In order to find some new bound, we often
increase one agent’s cost-bound, and decrease the other agent’s, providing a trade-off between the possible
cost-bounds. This approach enables us to explore notions of transitivity within trust domains.

In addition, we consider the notion of substitution for trust domains. We discuss how to perform substi-
tution for each of the constituent parts of a trust domain, namely the agent, the logical properties, and the
cost-bounds. These techniques can then be used to extend the work on combinators.

Our existing formal characterization of trust domains is built on a mathematical systems modelling
framework [14, 1, 2]. The key components of our approach are the following: first, a resource-sensitive
process algebra, with a decision-theoretic notion of utility-centric choice, and a corresponding, resource-
sensitive modal logic of processes; second, a conceptual notion of trust domain, characterized using our
algebraic, logical, and utility-theoretic tools; and third, a meta-theory of how trust domains can be con-
structed, which provides a topological interpretation of how different agents’ trust interacts. The literature
on models of trust is very large and cannot be surveyed comprehensively in this short article, but a good
survey with a relevant perspective for us is [36].

In Section 3, we provide a gentle introduction to our modelling approach. This followed by a summary
of the mathematical formulation, consisting of a process algebra that describes the costs of different deci-
sions, and a modal, substructural logic, including cost modalities. We also formally define trust domains,
in terms of the process algebra and cost logic. In Section 5, with the use of a running example about con-
tract choices, we describe the meta-theory of trust domains in terms of the combinators introduced above.
In Section 6, with the use of a running example about hospital costs, we describe the meta-theory of trust
domains in terms of substitution. In Section 7, we conclude and discuss some directions for future research.

2. RelatedWork

We include a brief discussion of work that is related to the three key concepts mentioned above. Whilst
there is quite little work that is immediately related to our approach, the broader relevant literature is very
large. Accordingly, our discussion of related work is intended to be illustrative rather than comprehensive.
Work related to our general programme has been discussed above.

The notion of weighted choice in a process calculus setting is explored elegantly in [43]. An abstract
notion of weight is introduced, with a two-sorted transition system. The weights can be used to represent
notions of priority, as in our approach to cost, infinite weighted priority, and frequency (in the sense of
probability theory).

In our work, the notion of utility is based on contextual information that reaches beyond the agent
making the decision. While we do not explicitly consider how the structure of that context is reflected in
the utility functions, it would be valuable to do so, and certainly possible within the formulation.

There are various concepts that could be explored for such structure, such as contextual information
through situation theory [4, 5], the distinction between risk and uncertainty [29], and the notion of the
trade-off between the cost of establishing facts about the context verses the utility available through possible
choices [27]. Contextual notions of trust for agent based software engineering, which encompasses high-
level dependence, described through a modal logic, occurs in [40].

The use of process calculi for decision support is a well established technique. The Performance Evalu-
ation Process Algebra (PEPA) [21, 22, 23] establishes a compositional theory of Markov Processes, sepa-
rable product-form distributions for efficient storage, congruence results, and model checking tool support
[10, 30, 23]. This technology can be used to model performance for different designs, enabling decisions to
be made at a meta level between such designs. Resource–process reasoning can be used to establish costs
for different design decisions, such as for different security policies [6, 9, 12].
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Markov Chains are studied in [26]: they support reasoning about complex notions such as average utility
with a given time discount, but do not provide compositionality results over model structures. Process
calculi for Markov decision processes, which include both stochastic and cost-based decision-making,
provide such compositionality results for the class of systems that do not permit negative utility, and then
only for a notion of simulation [17]. It may be possible to extend work on probabilistic synchronous calculi
[3] to provide a process calculus with more general notions of cost, and with full bisimulation.

Different types of decisions can interact in unexpected and non-trivial ways. Non-deterministic choice
and probabilistic choices do not distribute over each other straightforwardly [41, 16]. Early attempts to de-
sign probabilistic calculi replaced non-deterministic choice with probabilistic choice, as we have replaced
non-deterministic choice with cost based choice. The interaction between non-deterministic, probabilistic,
and cost-based choice would be an interesting direction for future research.

In defining trust domains, we make use of cost modalities of possibility and necessity. The possibility
modalities 〈≤ n〉φ and 〈> n〉φ denote that there exists an evolution whose cost m is less than or equal to, or
greater than, n, respectively, where the resulting state satisfies φ. The necessity modalities [≤ n] and [> n]
denote that in all evolutions whose cost m is less than or equal to, or greater than, n, respectively, where the
resulting state satisfies φ.

These modalities are related to the preference modalities described by various authors, with various
motivations and formulations too numerous to discuss here. See, for example, von Wright [44, 45], van
Bentham, Otterloo, and Roy [8], Girard [18], van Bentham, Girard, and Roy [7], Osherson and Weinstein
[35], and other work cited in these papers.

3. SystemsModelling and Decision-making

This section has three parts. First, in Section 3.1, we explain our previous work in system modelling
based on concepts of location, resource, process, and environment [11, 13, 12, 14]. Second, in Section 3.2,
we explain our approach, building on [1, 2], to integrating cost as a basis for determining choices made
during process execution. Third, in Section 3.3, we describe formally a process algebra with contextual
costs, supporting the approach sketched in the previous section, and establish its essential meta-theory.
This is a substantial technical section. Finally, in Section 3.4, we set up, in the style of Hennessy–Milner
logic [20, 19, 11, 13, 14], a modal logic that includes, in the style of the bunched logic BI, both additive
and multiplicative propositional connectives, additive action modalities, and, importantly in this setting,
cost modalities.

3.1. Systems Modelling Background. In Section 1, we have explained that, following the the classical
model of distributed systems, such as described in [15], the core components of the structural aspect of
our modelling framework, which builds on [14, 1, 2], are location, resource, and process, together with the
stochastically modelled environment. In order to introduce the specific approach to systems modelling that
we employ in this paper, we explain below how these concepts are modelled mathematically. The detailed
theoretical development is provided in [11, 13, 12, 14].

• Location. Mathematically, locations can convenient modelling using a range of graph-theoretic
and topological structures [13, 14]. For the purposes of this paper, in which we do not develop a
mathematical account of location, it is sufficient to think of locations as being given by directed
graphs (e.g., as in Figure 2).

• Resource. Mathematically, resources are assumed to form a preordered partial commutative re-
source monoid,

R = (R,v, ◦, e),

in which resource elements R1,R2 ∈ R can be combined, using the monoid operation to form
R1 ◦ R2 (with unit e) or compared, R1 v R2, say, using the preorder. The partiality ensures that not
all combinations need be considered (for example, such as those beyond a certain size in a resource
monoid based on the natural numbers). The structure of the monoid is subject to some coherence
conditions [34, 14]. A key example of a monoid of resources is given by the natural numbers (with
0), with addition as the monoid operation and less-than-or-equals as the order: (N,≤,+, 0).
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• Process. Mathematically, our treatment of process is based on Milner’s synchronous calculus of
communicating systems (SCCS) [32], as developed as a basis for systems modelling in [14]. Note
that asynchronous calculi can be encoded within such synchronous calculi [32].

For simplicity of presentation, and with little loss of generality for our present purposes, we suppress
locations in the remainder of this presentation, though make informal use of them in our examples, in
Section 5. The reader might think of them either as implicitly present, or consider them to be rolled up into
the definition of resources (see [14] for relevant technical support).

The key idea is that resources and processes co-evolve, according one of the following judgements: first,
R, E

a
−→ R′, E′, which is read as ‘ the process E, using resources R, performs action a and so becomes the

process E′ that is able to evolve using resources R′ ’; or second, R, E
n

==⇒ R′, E′, which is read as ‘ the
process E, using resources R, makes some choice(s) that incur cost n and so becomes the process E′ that is
able to evolve using resources R′ ’.

Actions are required to form a commutative monoid (a and b combine to form ab). the relationship
between actions and resources must be specified using a modification function that specifies the effect of
performing an action a on a resource element R: that is, µ : (a,R) 7→ R′. Modification functions must satisfy
some (mild) coherence conditions relating the monoid structure of actions and the monoidal structure of
resources (details may be found in [14]). This treatment of resource just as in bunched logic [34] and in
various versions of separation logic [37] and, for brevity, we refrain from further rehearsing its justification
here.

These judgements are defined using a structural operational semantics, such as in the definition of SCCS
[32, 14]. In its basic form, the operational semantics admits rules such as

(1)

R, a : E →a µ(a,R), E
(Prefix)

R, Ei →
a R′, E′

R, E1 + E2 →
a R′, E′

i = 1, 2 (Sum)

R, E →a R′, E′ S , F →b S ′, F′

R ◦ S , E × F →ab R′ ◦ S ′, E′ × F′
(Prod)

giving a process evolution via its head action where its resources are modified accordingly, non-deterministic
choice, and concurrent product, respectively. Other familiar process combinators can be handled similarly
[11, 14].

In the presence of explicitly modelled locations, we work with a basic judgement of the form

L,R, E →a L′,R′, E′

describing the co-evolution of locations, resources, and processes.
A given system that is modelled exists in the context of its interaction with other systems that may

not be modelled. Such unmodelled systems constitute the environment within which the modelled system
interacts. Events originating in the environment may be incident upon the the system of interest, and the
system of interest may cause events to be incident upon the environment.

• Environment. The natural way to model the interaction of the system of interest with its envi-
ronment is to use stochastic methods [38, 25, 21, 22, 12, 14]. Events that are incident upon the
system are determined by sampling specified probability distributions. For example, the arrival of
entities at a system portal — such as people joining a queue or ships entering a harbour — might
be captured using a negative exponential distribution. Essentially, sampling a distribution ‘creates’
an action [12, 14].

3.2. Integrating Evolution and Cost. Processes model the dynamics of a system — for example, the
steps of employing a contractor to perform a specialized task — but they say nothing about the costs
involved in carrying out those tasks. Cost, as previously discussed, is an essential aspect of determining
trust boundaries. For example, sharing confidential data to an off-site analyst comes at a high risk of
leakage, while employing an analyst to work with the data on-site does not. This can be represented by
assigning the cost 0.7 to the process R, off site : E that models working off-site, and 0.2 to the process
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R, on site : F that models working on-site. Cost is used, as in utility theory, to encompass uplift for
revenue (or another measure of value). Cost functions map resource–process pairs (called process contexts,
the set of which is denoted Cont) to real numbers. It is important to note that costs are often contextually
dependent. For example, when the contractor has a robust IT security strategy, the cost associated with
sharing the data off-site may be lower: 0.4 = u(R ◦ S , (off site : E) × IT ), where S are the resources
allocated to the IT process. We assume, for each formal cost u (in a given set U of such symbols, used
below in the formal definition of processes), an associated, real-valued cost function u : Cont −→ R (see
[28]) that fixes an interpretation for each formal symbol u ∈ U. The identically zero function is associated
with 0U . Henceforth, we do not distinguish between formal costs and their costs functions.

When a process makes a choice, we annotate the cost n of the chosen summand on the evolution (e.g.,
R, off site : E +u on site : F ==⇒0.7 R, off site : E). As the cost depends on the context, a choice point needs
to take account of the context in which it appears, when it determines the costs of the possible summands.
We henceforth annotate the context in which a process is evolved on the underside of the evolution arrow
(e.g., R, off site : E +u on site : F ======⇒

S ,IT×[ ]
0.7 R, off site : E), where [ ] denotes the hole into which

off site : E +u on site : F may be substituted to regain the complete system (off site : E +u on site : F)× IT .
In addition, any choices in [ ] × IT will make use of the process that is substituted into the hole [ ]. We
therefore annotate the process that is substituted, into the process being evolved, on top of the evolution

arrow; for example, S , [ ] × IT
R,off site:E+uon site:F

================⇒
n

S ′, [ ] × IT ′.
Essentially, the judgement for evolution for processes with cost of the form

(2) C
C2

==⇒
C1

n
C′

denotes how a context C, that exists in a system that can be decomposed as C1(C(C2)), evolves in terms of
its choices. We refer to C as the (primary) context, C1 as the outer context, and C2 as the substituted, or
inner context. Intuitively, this set-up describes the evolution of one part, C, of an entire system, C1(C(C2)).
In order to reason compositionally, we wish to be able to describe the evolution of C independently and
structurally. As choices take account of context, this is not possible. The semantics of choice, however,
makes use of just the definition of the inner and outer context, disregarding their structure. So we do not
need to make use of the structure of C1 and C2, as we do with C, but need only record their definitions, for
reference at choice points. They are therefore annotated on the evolution arrow, but are not evolved in that
relation.

3.3. A Process Algebra with Contextual Costs. We now have introduced all of the concepts required to
describe the theoretical set-up, introduced, without proofs, in [2]. We now describe the theoretical set-up
in detail.

Assume the set U of symbols, called formal costs, with a distinguished element 0U , called the neutral
cost. Processes are generated by the grammar

(3) E ::= 1 | [ ] | a : E |
∑
i∈I

u Ei | E × E,

as discussed below. These are really process contexts: the term [ ] is a hole into which other processes may
be substituted. For this work, it turns out to be convenient to develop contexts as first-class citizens rather
than merely meta-theoretic tools. The choice

∑
i∈I

u Ei is the key construct: it describes situations in which an

agent has a choice between alternatives Ei, where i ∈ I for a finite indexing set I, and its cost (in a larger
context) is codified by the cost u ∈ U. The infix operator E +u F may be used for binary sums, and the
subscript u may be dropped when u = 0U . The zero process 0 is defined to be the sum indexed by the empty
set and the neutral cost. The zero process, unit process 1, and synchronous products E × F are well-known
in process calculus, as are prefixes a : E, where a ∈ Act. We conjecture that other process combinators,
such as those considered in [11, 14], can be included in the framework presented here.

A process E is well-formed if it contains at most one hole and that hole is not guarded by action prefixes.
From now on we assume all processes are well-formed. The process E is closed if it has no holes and open
otherwise. Let PCont be the set of all well-formed processes, PCCont be the set of all closed well formed
processes, and POCont be the set of all open well-formed processes. Let R be a resource monoid and µ
be a fixed modification function, as previously defined. Define the products of sets Cont = R × PCont,
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R, 1
C2
−−→
C1

1
R, 1

(Tick)

R, a : E
C2
−−→
C1

a
µ(a,R), E

(Prefix)

C2
(e,1)
−−−→

C1

a
C′2

e, [ ]
C2
−−→
C1

1
e, [ ]

(Hole)

(S×)
R, E

C2
−−→
C3

a
R′, E′ S , F

C2
−−→
C4

b
S ′, F′

R ◦ S , E × F
C2
−−→
C1

ab
R′ ◦ S ′, E′ × F′

(Prod)

Figure 3. Action Operational Semantics

R, 1
C2

==⇒
C1

0
R, 1

(TickW)

R, a : E
C2

==⇒
C1

0
R, a : E

(PrefixW)

C2
(e,1)

===⇒
C1

n

C′2

e, [ ]
C2

==⇒
C1

0
e, [ ]

(HoleW)
n = u(C1(R, Ei(C2)))

R,
∑
I

u Ei
C2

==⇒
C1

n
R, Ei

(SumW)

(S×)
R, E

C2
==⇒
C3

n
R, E′ S , F

C2
==⇒
C4

m
S , F′

R ◦ S , E × F
C2

==⇒
C1

n+m
R ◦ S , E′ × F′

(ProdW)

Figure 4. Operational Semantics of Cost

CCont = R × PCCont and OCont = R × POCont. The letter C is reserved for contexts. Define C∅ = e, [ ].
Brackets will be freely used to disambiguate both processes and contexts. For C = R, E, the notational
abuses C × F = R, (E × F) and C +u F = R, (E +u F) will sometimes be used. Substitution in processes,
E(F), replaces all occurrences of [ ] in E with F; for example, (([ ] +u E) × G)(F) = (F +u E) × G.
Substitution of contexts C1(C2), where C1 = R, E and C2 = S , F, is defined as follows: if E is open, then
C1(C2) = R ◦ S , E(F), where E(F) is process substitution; if E is closed, then C1(C2) = C1.

In developing the formulation sketched above, we separate the operational semantics into two dimen-
sions: the evolution system for performing actions (Figure 3) and the evolution system for determining the
cost of possible choices (Figure 4), as in [43], and building on [1]. Overall, the evolution sequences for the
calculus are interleavings of the two dimensions.

The operational semantics for performing actions is defined in Figure 3.
Although the evolution relation for actions does not evolve choices, we also annotate the inner and

outer contexts on the evolution relation for consistency of presentation. The unit process always ticks,
effecting no change. The prefix process evolves via its head action. The hole rule is a technical one used
to terminate evolution derivations of open contexts. An important feature of this system is that contextual
information about conclusions is propagated up to premisses. In the product case, information about each
premiss is propagated up from the conclusion to the other premiss, so that derivations of transitions occur
in context. This is effected by the side-condition (S×) is which states that C3 = C1((S , F(C2)) × [ ]) and
C4 = C1((R, E(C2)) × [ ]), which passes the details of one sub-process to the reduction of the other.

The operational semantics for determining the cost of possible choices is defined in Figure 4.
A neutral cost is given to tick, prefix, and hole processes, as they contain no choices. The sum process∑

I
u Ei represents a preference-based choice by the agent: it evolves to one of its summands, annotating the

value of that summand in the wider context on the evolution arrow, according to its cost function u. A
special case of the sum is for the zero process 0, which never evolves. The product evolves two processes
synchronously in parallel, according to the decomposition of the associated resources, and annotates the
sum of the sub-processes’ costs on the evolution arrow. This approach to combining costs, and the value
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given to tick or prefix processes, is one possible design decision, and will be considered more fully in

future work. We make use of the abbreviation C
n

==⇒ C′ and C
a
−→ C′ to denote C

e,1
===⇒
e,[ ]

n
C′ and C

e,1
−−→
e,[ ]

a
C′,

respectively.

Lemma 1. If R, E
C2
−−→
C1

a
S , F, then S = µ(a,R).

Proof. Straightforward, by induction over the derivation of R, E
C2
−−→
C1

a
S , F. �

We show how the substitute is irrelevant for the purposes of reduction when the primary context is
closed. This is used to show reduction under any substitute, given an existing reduction under a specific
substitute.

Lemma 2. If C is closed, then for all C1,C2,C3,C′ ∈ Cont:

(1) C
C2
−−→
C1

a
C′ ⇔ C

C3
−−→
C1

a
C′

(2) C
C2

==⇒
C1

n
C′ ⇔ C

C3
==⇒
C1

n
C′.

Proof.
(1) Property 1:

⇒ Straightforward, by induction over the derivation of C
C2
−−→
C1

a
C′.

⇐ Straightforward, by induction over the derivation of C
C4
−−→
C3

a
C′.

(2) Property 2:

⇒ Straightforward, by induction over the derivation of C
C2

==⇒
C1

n
C′. The key case is for SumW.

As C is closed then by the definition of substitution For all C3, C1(R, Ei(C2)) = C1(R, Ei(C3)) and
hence, for all C3, u(C1(R, Ei(C2))) = u(C1(R, Ei(C3))) = n. By the induction hypothesis, we know

that if Ci
C3

==⇒
C4

m
C′i , where C4 is as in the side-condition, then C′i is closed. Hence, by the SumW

rule we have that R,
∑
I

u Ei
C3

==⇒
C1

n
R, E′i , as required.

⇐ Straightforward, by induction over the derivation of C
C4

==⇒
C3

n
C′.

�

We now give the technical results that are required for our arguments. A fundamental aspect of process
calculus is the ability to reason equationally about behavioural equivalence of processes [32]. We define
bisimilarity to suit the calculus in this paper, which incorporates ideas from [14].

The bisimulation relation ∼ ⊆ PCont× PCont is the largest binary relation such that, if E ∼ F, then for
all a ∈ Act, for all R,R′, S ,T ∈ R, and for all G,H, I, J ∈ PCont with G ∼ I and H ∼ J, then

(1) for all E′ ∈ PCont, if R, E
T,H
−−−→
S ,G

a
R′, E′, then there is F′ such that R, F

T,J
−−→
S ,I

a
R′, F′ and E′ ∼ F′,

and if R, E
T,H

===⇒
S ,G

n
R, E, then there is F′ such that R, F

T,J
==⇒

S ,I

n
R, F′ and E′ ∼ F′, and

(2) for all F′ ∈ PCont, if R, F
T,J
−−→
S ,I

a
R′, F′, then there is E′ such that R, E

T,H
−−−→
S ,G

a
R′, E′ and E′ ∼ F′,

and if R, F
T,J

==⇒
S ,I

n
R, F′, then there is E′ such that R, E

T,H
===⇒

S ,G

n
R, E′ and E′ ∼ F′.

The union of any set of relations that satisfy these two conditions also satisfies these conditions, so the
largest such relation is well-defined. Define ∼ ⊆ Cont × Cont by: if E ∼ F then R, E ∼ R, F for all R ∈ R
and E, F ∈ Cont.

Definition 3. A cost function, u, respects bisimilarity if, for all C1,C2 ∈ Cont, C1 ∼ C2 implies u(C1) =

u(C2).
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That is, behaviourally equivalent (bisimilar) states are required to be indistinguishable by u. The set
U of utilities respects bisimilarity if every u ∈ U respects bisimilarity. Any real-valued function defined
on the quotient Cont/∼ defines a cost that respects bisimilarity. Henceforth cost functions are assumed to
respect bisimilarity.

We can show that if bisimilar contexts are substituted into each other, then the result is bisimilar.

Proposition 4 (Bisimulation Closure Under Substitution). If E ∼ G and F ∼ H, then E(F) ∼ G(H).

Proof. The bisimulation relation ∼ is the largest bisimulation relation, and contains all other bisimulation
relations. In order to show that E(F) ∼ G(H) it is sufficient, therefore, to define a relation R, where
E(F)RG(H), for which the required substitution property holds, and show that the relation R is a bisimu-
lation.

Let R = {(E(F),G(H)) | E ∼ G and F ∼ H} ∪ ∼. The relation is a bisimulation if and only if the

following holds: for all T , T ′, I′, C1 ∼ C3, and C2 ∼ C4, if T, E(F)
C2
−−→
C1

c
T ′, I′ (respectively T, E(F)

C2
==⇒
C1

n

T, I′), then there exists some J′ such that T,G(H)
C4
−−→
C3

c
T ′, J′ (respectively T,G(H)

C4
==⇒
C3

n
T, J′), where

(I′, J′) ∈ R; and, for all T , T ′, J′, C1 ∼ C3, and C2 ∼ C4, if T,G(H)
C4
−−→
C3

c
T ′, J′ (respectively T,G(H)

C4
==⇒
C3

n

T, J′), then there exists some I′ such that T, E(F)
C2
−−→
C1

c
T ′, I′ (respectively T, E(F)

C2
==⇒
C1

n
T, I′), where

(I′, J′) ∈ R .
All processes are defined by a finite number of applications of the operators of the language. We proceed

by induction on the derivation of this structure according to the rules of the operational semantics.

Consider the case in which T, E(F)
C2

==⇒
C1

n
T, I′. We prove that there exists some J′ such that T,G(H)

C4
==⇒
C3

n

T, J′ by induction on the structures of E, G, F, and H, and over the (process) structures of C1, C3, C2, and
C4, in that order. Here the induction is on the number of operators in a process term.

Consider the case of this nested induction in which E = 1, G = G1 × G2, F = 1, and H = 1, where
C1 = e, [ ], C3 = e, [ ], C2 = e, 1, and C4 = e, 1.

In SCCS, if 1 ∼ G1 × G2, then G1 and G2 would necessarily be bisimilar to 1, but here that is not the
case. Consider the process G1 = 1 +u 1, where

u(C) =

{
0 if there exists C′ ∈ OCont,R where C = C′(R,G2)
n otherwise,

for some n > 0.
We then have that (1 +u 1) ×G2 ∼ 1; a sketch of the proof follows below.
Consider some contexts C5 ∼ C7 and C6 ∼ C8, and resources R = R1 ◦R2. We then have that u(C5(R, 1×

G2)) = 0, for all C5, and hence by the (SumW) rule that R1, 1 +u 1
C2

==========⇒
C5(R1,[ ]×G2)

0
R1, 1. Note, however, that

1+u 1 is not bisimilar to 1; for the empty outer context e, [ ] the former can perform a n-cost transition while
the latter cannot.

As a result, bisimulation does not work component-by-component (solely because of cost-moderated
choice). Note, however, that following a cost transition by 1 +u 1, the resulting process 1 is bisimilar to 1.
As the reduction of cost-moderated choices applies to strictly simpler terms, we can apply the induction
hypothesis and show that substituted processes are bisimilar, and hence the choices that are formed from
them are also bisimilar.

This argument extends to more complex cases, where the sub-components of a product are not merely
tick processes. There, cost moderated choices as sub-components will also eventually reduce to a product
subcomponent to which the induction hypothesis can be applied.

The proof sketched above makes use of an eight-fold nested induction, which has a very large number
of cases. Unfortunately, the complexity of this nested induction precludes an exhaustive presentation.
However, it is easy to see that the difficult cases in the induction arise solely from use of cost-moderated
choices and, since these always reduce to simpler processes to which the induction hypothesis can be
applied, the key cases are all similar to the one described above.

The remaining cases are routine. �
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Note that the argument presented above would not be applicable in the presence of general (guarded)
fixed points; our contextual calculus must be a finite modelling framework.

With this result, we can obtain a key property for reasoning compositionally, that bisimulation is a
congruence.

Theorem 5 (Bisimulation Congruence). The relation ∼ is a congruence. It is reflexive, symmetric, and
transitive, and, for all a, E, F,G, with E ∼ F and all families (Ei)i∈I , (Fi∈I)I with Ei ∼ Fi for all i ∈ I,
a : E ∼ a : F, E ×G ∼ F ×G, and

∑
i∈I

u Ei ∼
∑
i∈I

u Fi.

Proof. By induction on the structure of bisimulations. We give illustrative cases.

(1) Reflexive. Let R = {(E, E)}. As the evolution of each of the process E is decorated with different
outer and inner contexts (C1 and C2, and C3 and C4, respectively) we do not immediately have

reflexivity. We prove this property by induction on the derivation of R, E
C2

==⇒
C1

n
R, E′.

The relation R is a bisimulation if and only if, for all E and F such that E R F, the following

holds: for all R, R′, E′, a, n, C1 ∼ C3, and C2 ∼ C4, if R, E
C2
−−→
C1

a
R′, E′ (respectively R, E

C2
==⇒
C1

n

R, E′), then there exists some F′ such that R, F
C4
−−→
C3

a
R′, F′ (respectively R, F

C4
==⇒
C3

n
R, F′), where

E′ R F′; and, for all R, R′, F′, a, n, C1 ∼ C3, and C2 ∼ C4, if R, F
C4
−−→
C3

a
R′, F′ (respectively

R, F
C4

==⇒
C3

n
R, F′), then there exists some E′ such that R, E

C2
−−→
C1

a
R′, E′ (respectively R, E

C2
==⇒
C1

n

R, E′), where E′ R F′.

• Consider some E R F, R, R′, E′, a, C1 ∼ C3, and C2 ∼ C4 such that R, E
C2
−−→
C1

a
R′, E′. By

the definition of R, we know that F = E. We then prove that there exists some E′′, such that

R, E
C4
−−→
C3

a
R′, E′′ and E′ ∼ E′′, by induction over the derivation of R, E

C2
−−→
C1

a
R′, E′.

• Consider some E R F, R, R′, E′, n, C1 ∼ C3, and C2 ∼ C4 such that R, E
C2

==⇒
C1

a
R, E′. By

the definition of R, we know that F = E. We then prove that there exists some E′′, such that

R, E
C4

==⇒
C3

a
R, E′′ and E′ ∼ E′′ by induction over the derivation of R, E

C2
==⇒
C1

a
R, E′.

• Consider some E R F, R, R′, F′, a, C1 ∼ C3, and C2 ∼ C4 such that R, F
C4
−−→
C3

a
R′, F′. By the

definition of R, we know that F = E and F′ = E′′. We then prove that there exists some E′,

such that R, E
C2
−−→
C1

a
R′, E′ and E′ ∼ E′′, by induction over the derivation of R, E

C4
−−→
C3

a
R′, E′′.

• Consider some E R F, R, R′, F′, n, C1 ∼ C3, and C2 ∼ C4 such that R, F
C2

==⇒
C1

a
R, F′. By the

definition of R, we know that F = E and F′ = E′′. We then prove that there exists some E′,

such that R, E
C2

==⇒
C1

a
R, E′ and E′ ∼ E′′, by induction over the derivation of R, E

C4
==⇒
C3

a
R, E′′.

Hence R is closed and a bisimulation.
(2) Symmetric. Let R = {(F, E) | E ∼ F} ∪ ∼. If R, F

C2
−−→
C1

a
S , F′, C1 ∼ C3, and C2 ∼ C4, then we

need to show that R, E
C4
−−→
C3

a
S , E′, where F′ R E′. As E ∼ F, by the definition of bisimulation,

we have that if C5 ∼ C7,C6 ∼ C8, and R, F
C6
−−→
C5

a
S , F′, then R, E

C8
−−→
C7

a
S , E′, where E′ ∼ F′. Let

C1 = C5,C2 = C6,C3 = C7, and C4 = C8. We then have that R, E
C4
−−→
C3

a
S , E′. As E′ ∼ F′, we have

that F′ R E′. The other cases are similar. Hence R is closed and a bisimulation.
(3) Transitive. Let R = {(E,G) | E ∼ F and F ∼ G}. If R, E

C2
−−→
C1

a
S , E′, C1 ∼ C3, and C2 ∼ C4,

then we need to show that R,G
C4
−−→
C3

a
S ,G′, where E′ RG′. By the definition of bisimulation, as



12 GABRIELLE ANDERSON AND DAVID PYM

R, E
C2
−−→
C1

a
S , E′, we have that R, F

C2
−−→
C1

a
S , F′, where E′ ∼ F′, and, similarly, as R, F

C2
−−→
C1

a
S , F′, we

have that R,G
C4
−−→
C3

a
S ,G′, where F′ ∼ G′. We then have that E′ RG′. The other cases are similar.

Hence R is closed and a bisimulation.
(4) Let R = {(a : E, a : F) | E ∼ F} ∪ ∼. If R, a : E

C2
−−→
C1

a
S , E, C1 ∼ C3 and C2 ∼ C4, then we need

to prove that R, a : F
C2
−−→
C1

a
S , F, where E R F. The only applicable reduction rule for a : E is the

(Prefix). By this rule, which disregards C3 and C4, we can show that R, a : F
C2
−−→
C1

a
S , F. As E ∼ F,

we have that E R F. The other cases are similar. Hence R is closed and a bisimulation.
(5) Let R = {(E +u G, F +u G) | E ∼ F} ∪ ∼. If R, E +u G

C2
==⇒
C1

n
R, E′, C1 ∼ C3 and C2 ∼ C4,

then we need to prove that R, F +u G
C4

==⇒
C3

n
R, F′ and E′ R F′. By (SumW), we know the that n =

u(C1(R, E(C2))) and E′ = E. As E ∼ F and C5 ∼ C6 (by Proposition 4), by Definition 1, we have

that u(C3(R, F(C4))) = u(C1(R, E(C2))). Then, by (SumW), we can show that R, F +u G
C4
−−→
C3

n
S , F.

As E ∼ F, we have that E R F. The other cases are similar. Hence R is closed and a bisimulation.

(6) Let R = {(E ×G, F ×G) | E ∼ F}. If R ◦ S , E ×G
C2
−−→
C1

ab
R′ ◦ S ′, E′ ×G′, C1 ∼ C3 and C2 ∼ C4,

then we need to prove that R ◦ S , F ×G
C4
−−→
C3

ab
R′ ◦ S ′, F′ ×G′′, where E′ ×G′ R F′ ×G′′. By the

(Prod) rule we have that R, E
C2
−−→
C5

a
R′, E′ and S ,G

C2
−−→
C6

b
S ′,G′, where C5 = C1((S , F(C2)) × [ ]) and

C6 = C1((R, E(C2)) × [ ]). By Proposition 4 and R, we have that C5 ∼ C7 = (C3(S ,G(C4)) × [ ]

and C6 ∼ C8 = (C3(R, F(C4))× [ ]. By the definition of bisimulation, we have that R, F
C4
−−→
C7

a
R′, F′

and S ,G
C4
−−→
C8

b
S ′,G′′, where E′ ∼ F′ and G′ ∼ G′′. We can then use the (Prod) rule to show that

R ◦ S , F ×G
C2
−−→
C1

ab
R′ ◦ S ′, F′ ×G′′, where E′ ×G′ R F′ ×G′′. The other cases are similar. Hence

R is closed and a bisimulation.
�

In order to reason equationally about processes, it is also useful to establish various algebraic properties
concerning parallel composition and choice. We derive these properties for our calculus below. We use
the binary version of sum here in order to aid comprehension, but finite choices between sets of processes
work straightforwardly.

Proposition 6 (Algebraic Properties). For all u, E, F,G, we have the following: (1) E +u F ∼ F +u E; (2)
E × 0 ∼ 0; (3) E × 1 ∼ E; (4) E × F ∼ F × E; and (5) E × (F ×G) ∼ (E × F) ×G.

Proof. (1) Let R = {(E +u F, F +u E) | E, F : PCont}∪ ∼. The relation R is a bisimulation if and
only if, for all E and F such that E R F, the following holds: for all R, R′, E′, a, n, C1 ∼ C3, and

C2 ∼ C4, if R, E
C2
−−→
C1

a
R′, E′ (respectively R, E

C2
==⇒
C1

n
R, E′), then there exists some F′ such that

R, F
C4
−−→
C3

a
R′, F′ (respectively R, F

C4
==⇒
C3

n
R, F′), where E′ R F′; and, for all R, R′, F′, a, n, C1 ∼ C3,

and C2 ∼ C4, if R, F
C4
−−→
C3

a
R′, F′ (respectively R, F

C4
==⇒
C3

n
R, F′), then there exists some E′ such that

R, E
C2
−−→
C1

a
R′, E′ (respectively R, E

C2
==⇒
C1

n
R, E′), where E′ R F′.

• Consider some E1 R E2, R, R′, E′1, a, C1 ∼ C3, and C2 ∼ C4 such that R, E1
C2
−−→
C1

a
R′, E′1.

Consider the case in which E1 ∼ E2. Then, by the definition of bisimulation, we have that

there exists some E′2 such that R, E2
C4
−−→
C3

a
R′, E′2, where E′1 ∼ E′2, and hence E′1 R E′2. Consider
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the case in which E1 = E +u F and E2 = F +u E. There is no action reduction rule for the

sum operator, and therefore there are no such transitions R, E1
C2
−−→
C1

a
R′, E′1. As such, this case

is vacuously true.

• Consider some E1 R E2, R, R′, E′1, n, C1 ∼ C3, and C2 ∼ C4 such that R, E1
C2

==⇒
C1

n
R′, E′1.

Consider the case in which E1 ∼ E2. Then, by the definition of bisimulation, we have that

there exists some E′2 such that R, E2
C4

==⇒
C3

n
R′, E′2, where E′1 ∼ E′2, and hence E′1 R E′2. Consider

the case in which E1 = E +u F and E2 = F +u E. By the (SumW) rule we have that either
n = u(C1(R, E(C2))) and E′1 = E, or n = u(C1(R, F(C2))) and E′1 = F. Consider the former
case (the other is symmetric). By Proposition 4, we have that C1(R, E(C2)) ∼ C3(R, E(C4))
and, by Definition 1, we have that n = u(C3(R, E(C4))). Then, by the (SumW) rule, we can

derive R, F +u E
C4

==⇒
C3

n
R, E.

• Consider some E1 R E2, R, R′, E′2, a, C1 ∼ C3, and C2 ∼ C4 such that R, E2
C4
−−→
C3

a
R′, E′2.

Consider the case where E1 ∼ E2. Then, by the definition of bisimulation, we have that there

exists some E′1 such that R, E1
C2
−−→
C1

a
R′, E′1, where E′1 ∼ E′2, and hence E′1 R E′2. Consider the

case in which E1 = E +u F and E2 = F +u E. There is no action reduction rule for the sum

operator, and therefore there are no such transitions R, E2
C4
−−→
C3

a
R′, E′2. As such, this case is

vacuously true.

• Consider some E1 R E2, R, R′, E′2, n, C1 ∼ C3, and C2 ∼ C4 such that R, Ew
C4

==⇒
C3

n
R′, E′2.

Consider the case in which E1 ∼ E2. Then, by the definition of bisimulation, we have that

there exists some E′1 such that R, E1
C2

==⇒
C1

n
R′, E′1, where E′1 ∼ E′2, and hence E′1 R E′2. Consider

the case in which E1 = E +u F and E2 = F +u E. By the (SumW) rule, we have that either
n = u(C3(R, F(C4))) and E′2 = F, or n = u(C3(R, E(C4))) and E′2 = E. Consider the former
case (the other is symmetric). By Proposition 4, we have that C1(R, F(C2)) ∼ C3(R, F(C4)),
and by Definition 1 we have that n = u(C1(R, F(C2))). Then, by the (SumW) rule, we can derive

R, F +u E
C2

==⇒
C1

n
R, E.

Hence R is closed and a bisimulation.
(2) Let R = {(E × 0, 0) | E ∈ PCont}. By the operational semantics we have that 0 can make neither

action nor weighted transitions. The only applicable rules to E×0 are (Prod) and (ProdW). These both
require, as sub-derivations, that 0 make a transition, which is impossible. Hence E × 0 can also
make no transitions, and is bisimilar to 0.

(3) Let R = {(E × 1, F) | E ∼ F}. If R, E × 1
C2
−−→
C1

a
S , E′, C1 ∼ C3 and C2 ∼ C4, then we need to

show that R, F
C4
−−→
C3

a
S , F′, where E′ R F′. Let C5 = C1((e, 1(C2)) × [ ]). By the (Prod) rule, we

have that R, E
C2
−−→
C5

a
S , E′. By R, we have that [ ] × 1 ∼ [ ] and, by Proposition 4, we then have

that C3 ∼ C5 ∼ C1. We can then show that R, E
C4
−−→
C3

a
S , F′, where E′ ∼ F′. We then have that

E′ × 1R F′. The other cases are similar. Hence R is closed and a bisimulation.

(4) Let R = {(E × F, F × E) | E, F : PCont}. If R ◦ S , E × F
C2
−−→
C1

ab
R′ ◦ S ′, E′ × F′, C1 ∼ C3 and

C2 ∼ C4, then we need to show that R ◦ S , F × E
C4
−−→
C3

ba
R′ ◦ S ′, F′′ × E′′, where E′ × F′ R F′′ × E′′.

Let C5 = C1((S , F(C2)) × [ ]) and C6 = C1((R, E(C2)) × [ ]). By the (Prod) rule, we have that

R, E
C2
−−→
C5

a
R′, E′ and S , F

C2
−−→
C6

b
S ′, F′. Let C7 = C3((S , F(C4)) × [ ]) and C8 = C3((R, E(C4)) × [ ]).

By R and Proposition 4, we have that C5 ∼ C7 and C6 ∼ C8. By the definition of bisimulation, we
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have that R, E
C4
−−→
C7

a
R′, E′′ and S , F

C4
−−→
C8

b
S ′, F′′, where E′ ∼ E′′ and F′ ∼ F′′. Then, by the (Prod)

rule, we have that R ◦ S , F × E
C4
−−→
C3

ba
R′ ◦ S ′, F′ × E′, where (E′ × F′, F′ × E′) ∈ R. As E′ ∼ E′′

and F′ ∼ F′′, we have that E′ × F′ R F′′ × E′′. The other cases are similar. Hence R is closed and
a bisimulation.

(5) Let R = {(E × (F × G), (E × F) × G) | E, F,G : PCont}. If R ◦ S ◦ T, E × (F × G)
C2
−−→
C1

abc

R′ ◦ S ′ ◦ T ′, E′ × (F′ × G′), C1 ∼ C3, and C2 ∼ C4, then we need to show that R ◦ S ◦ T, (E ×

F) × G
C4
−−→
C3

abc
R′ ◦ S ′ ◦ T ′, (E′′ × F′′) × G′′, where E′ × (F′ × G′)R (E′′ × F′′) × G′′. Let

C5 = C1((S ◦ T, F × G(C2)) × [ ]) and C6 = C1((R, E(C2)) × [ ]). By the (Prod) rule, we have that

R, E
C2
−−→
C5

a
R′, E′ and that S ◦ T, F × G

C2
−−→
C6

bc
S ′ ◦ T ′, F′ × G′. Let C7 = C6((T,G(C2)) × [ ]) and

C8 = C6((S , F(C2)) × [ ]). By the (Prod) rule, we have that S , F
C2
−−→
C7

b
S ′, F′ and that T,G

C2
−−→
C8

c

T ′,G′. Let C9 = C3(T,G(C4) × [ ]),C10 = C9((S , F(C4)) × [ ]), C11 = C9((R, E(C4)) × [ ]), and
C12 = C3((R ◦ S , E × F(C4)) × [ ]). By R and Proposition 4, we have that C8 ∼ C12, C7 ∼ C11, and

C5 ∼ C10. By the definition of bisimulation, we have that R, E
C4
−−→
C10

a
R′, E′, S , F

C4
−−→
C11

b
S ′, F′, and

T,G
C4
−−→
C10

c
T ′,G′, where E′ ∼ E′′, F′ ∼ F′′, and G′ ∼ G′′. Then, by the (Prod) rule, we have that

R◦S , E×F
C4
−−→
C9

ab
R′◦S ′, E′′×F′′, and that R◦S ◦T, (E×F)×G

C4
−−→
C3

abc
R′◦S ′◦T ′, (E′′×F′′)×G′′.

As E′ ∼ E′′, F′ ∼ F′′, and G′ ∼ G′′, we have that E′ × (F′ × G′)R (E′′ × F′′) × G′′. The other
cases are similar. Hence R is closed and a bisimulation.

�

3.4. A Cost-sensitive Modal Logic. As mentioned in Section 1, we make use of a modal logic, formulated
in the style of Hennessy–Milner logic [20, 19, 33], as developed for bunched systems in [11, 13, 14], to
express properties of the models that are built using the process algebra defined in the previous section. Of
particular interest are action modalities, that describe what actions a process can (or must) perform, and
cost modal connectives, that describe the cost of choices a process can (or must) make.

The semantics is given by a satisfaction relation

(4) C |=C′ φ,

where C is a closed context, C′ is an open context, and φ is a formula of a (Hennessy–Milner-style) modal
logic of processes: this may be read ‘the primary context C satisfies φ in the surrounding context C′’.

The context C may satisfy different logical propositions, perhaps even negations of each other, when
placed in different surrounding contexts; an example of this is below. Context-sensitive logics have been
studied previously [31, 5]. The structural nature of processes and resources provides a semantic framework
in which such logics seem particularly natural.

The propositions of the logic are defined by the following grammar:

(5)

φ ::= p | ⊥ | > | ¬φ | φ ∨ φ | φ ∧ φ | φ→ φ
| 〈a〉φ | [a]φ
| I | φ ∗ φ | φ�−−∗ φ
| 〈≤ n〉φ | [≤ n]φ | 〈> n〉φ | [> n]φ,

where p ranges over atomic propositions, a over actions, and n over rational numbers. The symbols for
propositions for false, true, negation, disjunction, (additive) conjunction, and (additive) implication are
standard. The (additive) modalities are 〈a〉 and [a]. The connectives I, ∗, and �−−∗ are the multiplicative
unit, conjunction, and (a contextual version of) multiplicative implication, respectively. The implication �−−∗
differs from the usual bunched −−∗ in that the meanings of its constituent formulæ are given relative to each
other’s contexts, so capturing a degree of inter-dependency. The (cost) modalities are 〈≤ n〉, [≤ n], 〈> n〉,
[> n], and denote possible and necessary modal bounds on costed evolutions.
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C |=C′ p iff C ∈ V(p)
C |=C′ ⊥ never
C |=C′ > always
C |=C′ ¬φ iff C 6|=C′ φ
C |=C′ φ ∨ ψ iff C |=C′ φ or C |=C′ ψ
C |=C′ φ ∧ ψ iff C |=C′ φ and C |=C′ ψ
C |=C′ φ→ ψ iff C |=C′ φ implies C |=C′ ψ
C1 |=C2 〈a〉φ iff for some C′1, C′2, b such that

C1
e,1
−−→
C2

a
C′1and C2

C1
−−→
C∅

b
C′2,

C′1 |=C′2 φ

C1 |=C2 [a]φ iff for all C′1, C′2, b such that

C1
e,1
−−→
C2

a
C′1 and C2

C1
−−→
C∅

b
C′2,

C′1 |=C′2 φ

Figure 5. Interpretation of Additive Propositional formulæ

A valuation, V, is a function that maps each atomic proposition to a ∼-closed set of closed contexts.
⊥, >, ¬, ∨, ∧, and → are all interpreted (essentially) classically. The action modalities are interpreted
normally (see, for example, [11, 14]) as possibility and necessity. The interpretation of the multiplicative
connectives here is similar to that for the logic MBI [14]. In the interpretation of atoms, the surrounding
context is wrapped around the primary context, and the valuation of the atom consulted to see if it contains
this compound context. This is what makes the logic context-sensitive, rather than just having worlds with
two parts.

The satisfaction relation for additive formulæ is specified in Figure 5 and that for multiplicative formulæ
is specified in Figure 6.

R, E |=C′ I iff R = e and E ∼ 1

R, E |=C′ φ ∗ ψ iff there are S , T , F, G such that if
R = S ◦ T , E ∼ F ×G, then
S , F |=C′(T,[ ]×G) φ and T,G |=C′(S ,F×[ ]) ψ

R, E |=C′ φ�−−∗ψ iff for all S,F such that R◦S is defined,
S , F |=C′(R,E×[ ]) φ and R, E |=C′(S ,F×[ ]) ψ

Figure 6. Interpretation of Multiplicative Propositional formulæ

The interpretation of cost modalities is straightforward. The possibility modalities 〈≤ n〉φ and 〈> n〉φ
denote that there exists an evolution whose cost m is less than or equal to, or greater than, n, respectively,
where the resulting state satisfies φ. The necessity modalities [≤ n] and [> n] denote that in all evolutions
whose cost m is less than or equal to, or greater than, n, respectively, where the resulting state satisfies φ.
The satisfaction relation for cost modalities is specified in Figure 7.

The standard interpretation of logics formulated in Hennessy–Milner-style uses the relation specified
by the operational semantics as a Kripke structure to support the modalities. In our work, the operational
semantics is more complex: a context occurs, and evolves alongside an outer context. Therefore, when
we consider whether C1 |=C2 〈≤ n〉φ holds, we have to consider whether there are evolutions of the form

C1
e,1

==⇒
C2

m
C′1 and C2

C1
==⇒
C∅

o
C′2 such that C′1 |=C′2 φ and m ≤ n. The occurrence of the tick process and

the empty context ensure that no extraneous contextual information is introduced into the evolutions of
interest. This is what makes our logic context-sensitive. Other modal operators are interpreted similarly.
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C1 |=C2 〈≤ n〉φ iff for some C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1, C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 |=C′2 φ

C1 |=C2 [≤ n]φ iff for all C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1, C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 |=C′2 φ

C1 |=C2 〈> n〉φ iff for some C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1, C2

C1
==⇒
C∅

o
C′2, and m > n,

C′1 |=C′2 φ

C1 |=C2 [> n]φ iff for all C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1, C2

C1
==⇒
C∅

o
C′2, and m > n,

C′1 |=C′2 φ

Figure 7. Interpretation of Propositional Cost Modalities

The logic admits the usual classical (or, if preferred, intuitionistic) propositional connectives, as well
as thus usual ‘separating’ or ‘resource-sensitive’ multiplicatives from bunched logic [34], as in [14], and
action modalities, as in Hennessy–Milner logic [20, 19, 33].

Behaviourally equivalent processes are also logically equivalent (they satisfy the same logical proper-
ties). This is half of the Hennessy–Milner property [20, 19, 33].

Theorem 7. If C1 |=C2 φ, and C1 ∼ C3, and C2 ∼ C4, then C3 |=C4 φ.

Proof. By induction over the derivation of of C1 �C2 φ.
• Case C1 �C2 p. By the definition of V we have that if C ∼ C′ and C ∈ V(p) then C′ ∈ V(p). By

Proposition 4, we have that C2(C1) ∼ C4(C3), and hence C4(C3) ∈ V(p).
• Case C1 �C2 ⊥. As the premisses assume C1 �C2 φ, we have a contradiction and can disregard this

case.
• Case C1 �C2 >. We have that C3 �C4 >, straightforwardly.
• Case C1 �C2 φ ∧ ψ. By the induction hypothesis, we know that C3 �C4 φ and C3 �C4 ψ. Hence we

have that C3 �C4 φ ∧ ψ.
• Case C �C′ φ ∨ ψ. By the induction hypothesis, we know that C3 �C4 φ or C3 �C4 ψ. Hence we

have that C3 �C4 φ ∨ ψ.
• Case C �C′ φ→ ψ. By the induction hypothesis, we know that C3 �C4 φ whenever C1 �C2 φ and

C3 �C4 ψ whenever C1 �C2 ψ. Hence we have that C3 �C4 φ→ ψ.

• Case C1 �C2 〈a〉φ. As there exist C′1, C′2, and b such that C1
C∅
−−→
C2

a
C′1 and C2

C1
−−→
C∅

b
C′2 and C′1 �C′2 φ,

then, by the definition of bisimulation, we know that there exist C′3 and C′4 such that C3
C∅
−−→
C4

a
C′3

and C4
C3
−−→
C∅

b
C′4. By the induction hypothesis, we know that, as C′1 �C′2 φ, then C′3 �C′4 φ. Hence we

have that C3 �C4 〈a〉φ.

• Case C1 �C2 [a]φ. We have that, for all C′1, C′2, b such that C1
C∅
−−→
C2

a
C′1 and C2

C1
−−→
C∅

b
C′2, C′1 �C′2 φ.

By the definition of bisimulation, we know that, for all C′3 and C′4 such that C3
C∅
−−→
C4

a
C′3 and

C4
C3
−−→
C∅

b
C′4, C′1 ∼ C′3 and C′2 ∼ C′4. By the induction hypothesis, we know that, as C′1 �C′2 φ then

C′3 �C′4 φ. Hence we have that C3 �C4 [a]φ.
• Case R, E �C2 I. Let C3 = R, F. By Theorem 5, we have that, as E ∼ 1 and E ∼ F, E ∼ 1. Hence

we have that R, F �C4 I.
• Case R ◦ S , E �C2 φ ∗ ψ. Let C3 = R,H. By Theorem 5, we have that as E ∼ H and E ∼ F ×G that

hence H ∼ F ×G. By the induction hypothesis, we have that R, F �C2(S ,[ ]×G) φ and S ,G �C2(S ,F×[ ])
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ψ. By Proposition 4, we have that C2(S , [ ]×G) ∼ C4(S , [ ]×G) and C2(S , F × [ ]) ∼ C4(S , F × [ ]).
Then, by the induction hypothesis, we have that R, F �C4(S ,[ ]×G) φ and S ,G �C4(S ,F×[ ]) ψ, and hence
that R ◦ S ,H �C4 φ ∗ ψ.

• Case R, E �C2 φ�−−∗ψ. Let C3 = R,G. By the induction hypothesis, we have that if S , F �C2 φ, then
S , F �C4 φ and that R ◦ S ,G × F �C4 ψ. Hence we have that R,G �C4 φ�−−∗ψ.

• Case C1 �C2 〈≤ n〉φ. As there exist C′1, C′2, and m such that C1
C∅

==⇒
C2

m
C′1, C2

C1
==⇒
C∅

o
C′2, C′1 �C′2 φ, and

m ≤ n, by the definition of bisimulation, we know that there exist C′3 and C′4 such that C3
C∅

==⇒
C4

m
C′3,

C4
C3

==⇒
C∅

o
C′4, where C′1 ∼ C′3 and C′2 ∼ C′4. By the induction hypothesis, we know that, as C′1 �C′2 φ

then C′3 �C′4 φ. Hence we have that C3 �C4 〈≤ n〉φ.

• Case C1 �C2 [≤ n]φ. We have that, for all C′1 and C′2 such that C1
C∅

==⇒
C2

m
C′1, C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 �C′2 φ. By the definition of bisimulation, we know that, for all C′3 and C′4 such that C3
C∅

==⇒
C4

m
C′3

and C4
C3

==⇒
C∅

o
C′4, C′1 ∼ C′3 and C′2 ∼ C′4. By the induction hypothesis, we know that as C′1 �C′2 φ,

C′3 �C′4 φ. Hence we have that C3 �C4 [a]φ.

• Case C1 �C2 〈> n〉φ. As there exist C′1, C′2, and m such that if C1
C∅

==⇒
C2

m
C′1 and C2

C1
==⇒
C∅

o
C′2, then

C′1 �C′2 φ, for m > n. By the definition of bisimulation, we know that there exist C′3 and C′4 such

that C3
C∅

==⇒
C4

m
C′3, C4

C3
==⇒
C∅

o
C′4, where C′1 ∼ C′3 and C′2 ∼ C′4. By the induction hypothesis, we know

that, as C′1 �C′2 φ, we have C′3 �C′4 φ. Hence we have that C3 �C4 〈≤ n〉φ.

• Case C1 �C2 [> n]φ. We have that, for all C′1 and C′2 such that C1
C∅

==⇒
C2

m
C′1 and C2

C1
==⇒
C∅

o
C′2, and

m > n, C′1 �C′2 φ. By the definition of bisimulation, we know that there exist C′3 and C′4 such that

C3
C∅

==⇒
C4

m
C′3 and C4

C3
==⇒
C∅

o
C′4, where C′1 ∼ C′3 and C′2 ∼ C′4. By the induction hypothesis, we know

that, as C′1 �C′2 φ, C′3 �C′4 φ. Hence we have that C3 �C4 [a]φ.

�

So, bisimilar processes can be used interchangeably within a larger system, without changing the logical
properties of the larger system.

It is unclear whether a useful converse can be obtained for the given, global, bisimulation relation. By
restricting the logic to the fragment without�−−∗, and taking a different, local, equivalence relation, however,
it is possible to obtain a converse [1, 2, 14] — the local equivalence fails, however, to be a congruence, and
as such its usefulness is limited; it is a strictly local reasoning tool that supports decomposition but not, in
general, composition.

To this end, we introduce the local equivalence relation ≈ ⊆ (OCont ×CCont)× (OCont ×CCont), the
largest binary relation such that, if C1,D1 ≈ C2,D2 (with C′1 and D′1 , etc., modifying them, as usual), then

(1) for all C′1 ∈ OCont,D′1 ∈ CCont, a, b ∈ Act, if C1
D1
−−→
C∅

a
C′1, and D1

e,1
−−→
C1

b
D′1, then there exist

C′2 ∈ OCont and D′2 ∈ CCont such that C2
D2
−−→
C∅

a
C′2, D2

e,1
−−→
C2

b
D′2, and C′1,D

′
1 ≈ C′2,D

′
2, and, for all

C′1 ∈ OCont,D′1 ∈ CCont, m, n, if C1
D1

==⇒
C∅

m
C′1, and D1

e,1
==⇒

C1

n
D′1, then there exist C′2 ∈ OCont and

D′2 ∈ CCont such that C2
D2

==⇒
C∅

m
C′2, D2

e,1
==⇒

C2

n
D′2, and C′1,D

′
1 ≈ C′2,D

′
2, and,

(2) for all C′2 ∈ OCont, D′2 ∈ CCont, a, b ∈ Act, if C′2 ∈ OCont and D′2 ∈ CCont such that C2
D2
−−→
C∅

a
C′2,

D2
e,1
−−→
C2

b
D′2, then there exist C′1 ∈ OCont and D′1 ∈ CCont such that C1

D1
−−→
C∅

a
C′1, and D1

e,1
−−→
C1

b
D′1,
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and C′1,D
′
1 ≈ C′2,D

′
2, and for all C′2 ∈ OCont, D′2 ∈ CCont, m, n, if C2

D2
==⇒

C∅

m
C′2, D2

e,1
==⇒

C2

n
D′2,

then there exist C′1 ∈ OCont and D′1 ∈ CCont such that C1
D1

==⇒
C∅

m
C′1, and D1

e,1
==⇒

C1

n
D′1, and

C′1,D
′
1 ≈ C′2,D

′
2, and

(3) R = S .

The union of any set of relations that satisfy these two conditions also satisfies these conditions, so the
largest such relation is well-defined.

Essentially, this equivalence relation starts from the view that processes should be considered equivalent
whenever they have the same behaviour given the same resources and similar context. The local equiva-
lence relation fails to be a congruence, however, as it is not respected by the product constructor, ×, for
processes [13]. Therefore, we do not have an analogue of Theorem 5 for local equivalence. (Note that,
in [11, 13, 14], the equivalence corresponding to the equivalence ∼ taken here is referred to as the global
equivalence.)

We can, however, obtain a version of the full Hennessy-Milner theorem, provided we restrict the logic
to the fragment without �−−∗. The need for this restriction arises from the failure of the local equivalence to
be a congruence, because the satisfaction relation for �−−∗ requires that two subsystems be combined using
×.

Consider the fragment of the logic that excludes �−−∗. Assume that all atomic propositions are values as
sets of contexts that are also closed under ≈. Alter the I and ∗ clauses of the interpretation so that

C |=C1 I iff C1,C ≈ C1, (e, 1)
C |=C1 φ ∗ ψ iff there exist S , T and F, G such that C1,C ≈ C1, (S ◦ T, F ×G), and

S , F |=C2 φ and T,G |=C3 ψ, where C2 = C′(T, [ ] ×G) and
C3 = C′(S , F × [ ]).

We also alter the valuation function so that it maps each atomic proposition to a ≈-closed set of closed
contexts (i.e., if C1,D1 ≈ C2,D2 and C1(D1) ∈ V, then C2(D2) ∈ V).

We define two contexts (with accompanying outer contexts) to be logically equivalent if they satisfy
exactly the same set of logical statements; that is, C1,D1 ≡ C2,D2 if and only if, for all φ, D1 �C1 φ iff
D2 �C2 φ.

In the proof of the first part of the Hennessy–Milner property for global bisimulation (Theorem 7) we
make explicit use of the fact that global bisimulation is a congruence. We also make implicit use of the
sub-property of congruence that global bisimulation is an equivalence relation. We cannot obtain the first
part of the Hennessy–Milner property for the full logic. In order to obtain the first part of the Hennessy–
Milner property for the remainder of the logic, it is necessary, however, to show that local bisimulation is
an equivalence relation.

Lemma 8. The local equivalence ≈ is an equivalence relation; that is, it is reflexive, symmetric, and
transitive.

Proof. By induction on the structure of bisimulations. We give illustrative cases.

(1) Reflexive. Let R = {((C1,D1), (C1,D1))}. The relation R is a local bisimulation if and only if,
for all (C1,D1)R (C2,D2), the following holds: for all C′1 ∈ OCont,D′1 ∈ CCont, a, b ∈ Act, if

C1
D1
−−→
C∅

a
C′1, and D1

e,1
−−→
C1

b
D′1, then there exist C′2 ∈ OCont and D′2 ∈ CCont such that C2

D2
−−→
C∅

a
C′2,

D2
e,1
−−→
C2

b
D′2, and C′1,D

′
1 ≈ C′2,D

′
2, and, for all C′1 ∈ OCont,D′1 ∈ CCont, m, n, if C1

D1
==⇒

C∅

m
C′1, and

D1
e,1

==⇒
C1

n
D′1, then there exist C′2 ∈ OCont and D′2 ∈ CCont such that C2

D2
==⇒

C∅

m
C′2, D2

e,1
==⇒

C2

n
D′2,

and C′1,D
′
1 ≈ C′2,D

′
2, and, for all C′2 ∈ OCont, D′2 ∈ CCont, a, b ∈ Act, if C′2 ∈ OCont and

D′2 ∈ CCont such that C2
D2
−−→
C∅

a
C′2, D2

e,1
−−→
C2

b
D′2, then there exist C′1 ∈ OCont and D′1 ∈ CCont

such that C1
D1
−−→
C∅

a
C′1, and D1

e,1
−−→
C1

b
D′1, and C′1,D

′
1 ≈ C′2,D

′
2, and for all C′2 ∈ OCont, D′2 ∈ CCont,
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m, n, if C2
D2

==⇒
C∅

m
C′2 and D2

e,1
==⇒

C2

n
D′2, then there exist C′1 ∈ OCont and D′1 ∈ CCont such that

C1
D1

==⇒
C∅

m
C′1, D1

e,1
==⇒

C1

n
D′1, and C′1,D

′
1 ≈ C′2,D

′
2, and R = S .

Consider some (C1,D1)R (C2,D2). By the definition of the relation, we know that C2 = C1 and
D2 = D1. As any evolution of each of the processes C1 and D1 is decorated with the same outer
and inner contexts (C∅ and D1, and C1 and e, 1, respectively), we immediately have reflexivity.

(2) Symmetric. Let R = {((C2,D2), (C1,D1)) | C1,D1 ≈ C2,D2} ∪ ≈. If C2
D2
−−→
C∅

a
C′2, and D2

e,1
−−→
C2

b
D′2,

then we need to show that C1
D1
−−→
C∅

a
C′1, and D1

e,1
−−→
C1

b
D′1, where C′2,D

′
2 RC′1,D

′
1. As C1,D1 ≈

C2,D2, by the definition of local bisimulation, we have that C1
D1
−−→
C∅

a
C′1 and D1

e,1
−−→
C1

b
D′1, where

C′1,D
′
1 ≈ C′2,D

′
2, and hence C′2,D

′
2 RC′1,D

′
1. The other cases are similar. Hence R is closed and a

bisimulation.
(3) Transitive. Let R = {((C1,D1), (C3,D3)) | C1,D1 ≈ C2,D2 and C2,D2 ≈ C3,D3}. If C1

D1
−−→
C∅

a
C′1,

and D1
e,1
−−→
C1

b
D′1, then we need to show that C3

D3
−−→
C∅

a
C′3, D3

e,1
−−→
C3

b
D′3, where C′1,D

′
1 RC′3,D

′
3. By

the definition of local bisimulation, as C1
D1
−−→
C∅

a
C′1 and D1

e,1
−−→
C1

b
D′1, we have that C2

D2
−−→
C∅

a
C′2 and

D2
e,1
−−→
C2

b
D′2, where C′1,D

′
1 ≈ C′2,D

′
2, and, similarly, as C2

D2
−−→
C∅

a
C′2 and D2

e,1
−−→
C2

b
D′2, we have that

C3
D3
−−→
C∅

a
C′3 and D3

e,1
−−→
C3

b
D′3, where C′2,D

′
2 ≈ C′3,D

′
3. As C′1,D

′
1 ≈ C′2,D

′
2 and C′2,D

′
2 ≈ C′3,D

′
3,

we then have that (C′1,D
′
1)R (C′3,D

′
3). The other cases are similar. Hence R is closed and a

bisimulation.
�

The following analogue of Theorem 7 then holds for the local equivalence:

Theorem 9. If C1,D1 ≈ C2,D2, then C1,D1 ≡ C2,D2.

Proof. Straightforward, by induction over the definition of D1 |=C1 φ, essentially following the proof of
Theorem 7. The different cases are as follows:

• Case D1 |=C1 p. This is valid if and only if C1(D1) ∈ V(p). AsV is ≈-closed and C1,D1 ≈ C2,D2,
we hence have that C2(D2) ∈ V(p);

• Case D1 |=C1 I. By Lemma 8, we have that, as ≈ is transitive, so C2,D2 ≈ C1, (e, 1), and hence
that D2 |=C2 I;

• Case D1 |=C1 φ ∗ ψ. By the hypothesis, we have that there exist some S , T and F, G such that
C1,D1 ≈ C1, (S ◦ T, F × G), S , F |=C2 φ, and T,G |=C3 ψ, where C2 = C′(T, [ ] × G) and C3 =

C′(S , F× [ ]). By Lemma 8, we have that ≈ is transitive, and hence that C2,D2 ≈C1, (S ◦T, F×G),
so that D2 |=C2 φ ∗ ψ.

�

We can now obtain, in the absence of multiplicative implication, a converse to Theorem 9.

Theorem 10. Consider the modal logic without the multiplicative implication, �−−∗. If C1,D1 ≡ C2,D2,
then C1,D1 ≈ C2,D2.

Proof. Suppose, for a contradiction, that the theorem is false. Then there must be some contexts C1, D1,

C2, D2, with C1,D1 ≡ C2,D2 and, without loss of generality, some transition C1
D1
−−→
C∅

a
C′1, and transition

D1
e,1
−−→
C1

b
D′1 (or some C1

D1
==⇒

C∅

m
C′1, and transition D1

e,1
−−→
C1

n
D′1), for some C′1 and D′1 such that there is no C′2

and D′2 with both C2
D2
−−→
C∅

a
C′2 and transition D2

e,1
−−→
C2

b
D′2, (or C2

D2
==⇒

C∅

m
C′2 and transition D2

e,1
==⇒

C2

n
D′2), and

C′1,D
′
1 ≈ C′2,D

′
2.
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Let B = {(C′2,D
′
2) | C2

D2
−−→
C∅

a
C′2 and D2

e,1
−−→
C2

b
D′2}. If B = ∅ then know that D1 can do a b action and D2

cannot, and we can hence show that D1 �C1 〈b〉> and D2 2C2 〈b〉>, which contradicts the hypothesis that
C1,D1 ≡ C2,D2. Therefore B must be non-empty. Since D2 is image finite (in context C2) then we may
enumerate the n elements as (C′21

,D′21
), . . . , (C′2n

,D′2n
). Also, as, for each i ∈ 1, . . . , n, C′1,D

′
1 . C′2i

,D′2i
then

there is some φi such that D′1 �C′1 φi and D′2i
2C′2i

φi. But then we can show that D1 �C1 〈a〉(φ1∧ . . .∧φn) and
D2 2C2 〈a〉(φ1 ∧ . . . ∧ φn), which contradicts the hypothesis that C1,D1 ≡ C2,D2. Therefore, B cannot be
non-empty. A similar approach can be taken for ==⇒ transitions. AsB cannot be both empty and non-empty,
our supposition must be false and we are done. �

To obtain stronger results of this type, with full congruence properties and a Hennessy–Milner equiva-
lence theorem for the full logic with respect to local equivalence, it seems to be necessary to require a quite
significant adjustment of our conceptual set-up.

A key component of our set-up is the co-evolution of resources and processes,

R, E
a
−→ R′, E′,

where the resource elements R are drawn from a resource monoid,

R = (R,v, ◦, e).

Whilst resource monoids have proved very valuable in range of settings, including the bunched logic
BI and its application to program verification via Separation Logic [24, 37], it seems that in the setting
of a process algebra with both concurrent product and choice, a richer structure is required if the desired
meta-theoretic properties are to be obtained. More specifically, we conjecture that it necessary for the
underlying resource semantics to have, correspondingly, two combinators with appropriate properties. This
foundational work will be pursued elsewhere.

4. Trust Domains

In our modelling approach, the decision of an agent to trust some other agents (a context) is modelled
by a choice of reduction that interacts with the context. The behaviour that the agent performs within that
interaction can be characterized using logical properties. We can then describe the notion of whether an
agent trusts some context by whether or not it fulfils a given logical property. The decision to trust some
context will, however, have some cost or risk associated with the trust, and we want to describe a given
agent’s risk appetite, at a given choice point. We can describe this cost-bound using the cost modalities, as
introduced in Section 3.4.

We define the trust domain associated with an agent E, relative to available (implicitly located) resources
R, precondition φ, required trust property, ψ, and cost-bound, n, as follows:

(6) T D((R, E), φ, ψ, n) = {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉ψ}.

The precondition φ limits the agent’s contexts being considered; for example, imposing a locality condi-
tion. This definition enables us to talk about choice decisions that an agent makes under some, usually
incomplete, knowledge about its surroundings.

For a brief technical justification of the definition, recall that multiplicative implication is valid if, for
any context that fulfils the left hand side of the implication, when it is added to the current agent’s context,
the agent fulfils the right hand side of the implication. Essentially, a trust domain is the collection of such
contexts for the logical property φ�−−∗〈≤ n〉ψ interpreted with respect to the agent that is doing the trusting.

This approach is depicted schematically in the first diagram of Figure 8. Again, the diagram is intended
to be understood in the context of the classical model of distributed systems (see, for example, [15, 14])
in which processes (here, agents) execute relative to collections of resources, located at specified places
within the system. The system is understood as residing within an environment from which events are
incident upon it and to which it exports events [15, 14].

In Figure 8 (for now, we assume a fixed trust property), the left-hand diagram shows the cost-bounds
for agent A, which trusts agent B at cost-bound l1, trusts agent D at cost-bound l2, and trusts agent C at
cost-bound l3. The right-hand diagram shows the cost-bounds for agent B, which trusts agent A and C at
the cost-bound m1. The centre diagram shows the cost-bound n1 for a combined agent A × B, where we
require that combined cost-bound l3 + m1 be less than the cost-bound n1. In this example, D is trusted by
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Figure 8. Cost Bounds and Trust Domains

A at cost-bound l2, though not at l1, and not trusted by B at m1. D is not trusted by A × B at l1 + m1. Here,
B accepts a cost (and uses its higher cost-bound) in order to ‘convince’ A to trust C. In order to do so, B,
however, has to give up trusting D (as it cannot use its other higher m2 cost-bound for D as well). This
corresponds to the notion that A × B trusts C, provided B is accepts the risk with respect to trusting C.
Similarly, in order to trust C together with B, agent A must use its cost bound l3, giving up trusting either
D or C on their own.

5. Trust Domain Combinators

Given the formal definition of trust domains, stated in the previous section, we can now explore how
trust domains can be constructed and deconstructed. We introduce a running example. We then discuss
several ways to construct trust domains with more complex logical properties, from those with simpler
logical properties.

We consider negation, and then go on to simple combinators of additive conjunction and disjunction.
We discuss additive implication, and show that it has the standard interpretation as the disjunction between
the negation of the premiss, and the conclusion. We describe how to determine what is trusted by the
combination of two agents together, with respect to what each trusts individually. Finally, we describe
substitution for trust domains, with cases for the substitution of logical properties, cost-bounds, and agents.

5.1. Running Example: Contract Choices. To aid the discussion we make use of a running example,
that of a mergers and acquisitions (M&A) deal team. As part of a M&A process, a bank provides a series
of cost valuations of different parts of the companies that are being merged/acquired. The task requires
access to very confidential details of the companies being valued. There are many specialized aspects of
the valuation, however, and often appropriate analysts are not employed within the bank. In these cases the
bank makes use of external specialist contractors. Given that the contractors have varying levels of security
infrastructure, which are generally less efficacious than that of the bank itself, there is a very real risk of
loss of data that is shared to contractors.

Consider a scenario (portrayed by the first diagram in Figure 8) where Alice’s bank (A) has three poten-
tial contractors, each of which could be used to perform the analysis: Big Corp (B), Dad and Son’s (D),
and Fly By Night Ltd. (C). Big Corp can provide a generic valuation (logically represented by the property
ψ1 = 〈gen val〉>), at a lower cost l1. Dad and Son’s can provide a specialized valuation (logically repre-
sented by the property ψ2 = 〈spec val〉>), but at a slightly higher cost l2. Finally, Fly By Night Ltd. can
also provide a specialized valuation (and is similarly logically represented). C are not trusted on its own at
own at any cost level, as they are a new business and there is a risk they will renege on their commitments.
Big Corp is a large enough company that it can provide dedicated consultants to go work on site at the bank,
but the other two have very few consultants, and work from their offices, on multiple contracts at the same
time. Hence Alice’s bank must share its information on the company being valued off-site, when working
with D or C (logically represented by the property ψ3 = 〈share〉>). In order to mitigate the risks associated
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with sharing information, the bank can coerce D and C into contracts with punitive repercussions if the
data is leaked (logically represented by the property ψ4 = 〈contract〉>), but is unable to do so with B.

Note that, for these examples, agents A, B, and so on are contexts, and hence consist of both a process
and a resource component. We now proceed to describe the combinator meta-theory, making use of this
running example.

5.2. Negation. A trust domain describes whether an agent is able to fulfil a property within a cost-bound.
Conversely, we may wish to ensure that an agent is not able to fulfil a property within a cost-bound

(7) ¬T D((R, E), φ, ψ, n) = {V, I |V, I �R,E×[ ] φ1 and R, E �U,H×[ ] ¬〈≤ n〉ψ}.

Typically, classical possibility and necessity modalities are dual: in our present setting, having an agent
fulfilling the property ¬〈≤ k〉ψ would be equivalent to having that an agent fulfilling the property [< k]¬ψ.
In order to obtain this duality, we define negation on trust domains as

(8) T DN((R, E), φ, ψ, n) = {S , F | S , F �R,E φ and R, E �S ,F [< n]ψ}.

Trust domain negation is used to reason about properties that we want to always hold; such as that an
individual is never trusted, or that an agent always avoids data leaks.

We can represent that an agent is not able to fulfil a property within a given cost-bound, as in Equation 7,
using a trust domain negation, as in Equation 8, and vice versa.

Lemma 11.
(1) ¬T D((R, E), φ, ψ, n) = T DN((R, E), φ,¬ψ, n).
(2) ¬T DN((R, E), φ, ψ, n) = T D((R, E), φ,¬ψ, n).

Proof.
(1)

¬T D((R, E), φ, ψ, n) = {V, I |V, I �R,E×[ ] φ1 and R, E �U,H×[ ] ¬〈≤ n〉ψ}
= {V, I |V, I �R,E×[ ] φ1 and R, E �U,H×[ ] [≤ n]¬ψ}
= T DN((R, E), φ,¬ψ, n)

(2)
¬T DN((R, E), φ, ψ, n) = {S , F | S , F �R,E φ and R, E �S ,F [≤ n]ψ}

= {S , F | S , F �R,E φ and R, E �S ,F ¬〈≤ n〉 ¬ψ}
= T D((R, E), φ,¬ψ, n).

�

Lemma 12. A trust domain and its negation are disjoint.

Proof.

T D((R, E), φ, ψ, n) ∩ ¬T D((R, E), φ, ψ, n)
= {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉ψ} ∩ {V, I |V, I �R,E×[ ] φ1 and R, E �U,H×[ ] ¬〈≤ n〉ψ}.
= {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉ψ and R, E �S ,F×[ ] ¬〈≤ n〉ψ}
= ∅.

�

An example of trust domain negation is in the discussion of additive implication below. We recover the
expected property of the conjunct of a property with its negation

(9) T D((R, E), φ, ψ, n) ∩ ¬T D((R, E), φ, ψ, n) = ∅.

5.3. Additive Disjunction. The bank may be interested in either the generalized valuation, or it may be
interested in the specialized valuation. The former can be represented using the trust domain T D1 =

T D(A,>, 〈gen val〉>, l1), and the latter using T D2 = T D(A,>, 〈spec val〉>, l2). In this case, Alice will
trust B to do the generalized valuation (T D1 = { B× [ ] }). If l2 < l3, then Alice will trust D but not C to do
the specialized valuation (T D2 = { D × [ ] }).

The bank may, however, be indifferent to whether or not the valuation is specialized. This can be
represented by the logical property 〈gen val〉>∨〈spec val〉>. If l1 = l2, the trust domain for this disjunction
T D3 = T D(A,>, ψ1 ∨ ψ2, l1) = { B × [ ],D × [ ] } is simply the set union of trust domains T D1 and T D2.
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In general, we have the following, with symmetric properties for disjunction of the preconditions:

Lemma 13.
(1) T D((R, E), φ, ψ1 ∨ ψ2, n) = T D((R, E), φ, ψ1, n) ∪ T D((R, E), φ, ψ2, n).
(2) T DN((R, E), φ, ψ1 ∨ ψ2, n) = T DN((R, E), φ, ψ1, n) ∪ T DN((R, E), φ, ψ2, n).

Proof.

(1)

T D((R, E), φ, ψ1 ∨ ψ2, n) = {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉ψ1 ∨ ψ2}

= {S , F | S , F �R,E×[ ] φ and (R, E �S ,F×[ ] 〈≤ n〉ψ1 or R, E �S ,F×[ ] 〈≤ n〉ψ2)}
= {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉ψ2} ∪

{S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉ψ1}

= T D((R, E), φ, ψ1, n) ∪ T D((R, E), φ, ψ2, n)

(2)

T DN((R, E), φ, ψ1 ∨ ψ2, n)
= {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] [≤ n]ψ1 ∨ ψ2}

= {S , F | S , F �R,E×[ ] φ and for all C′1,C
′
2,m, o.C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2, and m ≤ n

C′1 �C′2 ψ1 ∨ ψ2}

= {S , F | S , F �R,E×[ ] φ and for all C′1,C
′
2,m, o.C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 �C′2 ψ1 or C′1 �C′2 ψ2}

= {S , F | S , F �R,E×[ ] φ and for all C′1,C
′
2,m, o.C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 �C′2 ψ1} ∪ {S , F | S , F �R,E×[ ] φ and for all C′1,C
′
2,m, o.C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2,

and m ≤ n,C′1 �C′2 ψ2}

= {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] [≤ n]ψ1}∪

{S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] [≤ n]ψ2}

= T DN((R, E), φ, ψ1, n) ∪ T DN((R, E), φ, ψ2, n),
�

5.4. Additive Implication. If the data necessary for the valuation is analysed off site, then there is a higher
chance of it being leaked. As such, we may wish to ensure that the logical property ψ3 = 〈share〉> does not
hold. The risk can be mitigated, however, by using contracts (represented by ψ4 = 〈contract〉> holding)
that include punitive costs in the case that information is leaked; this money can then be used to cover
legal costs, work to reduce reputational damage, and so on. This requirement can be represented using the
logical implication ψ3 → ψ4. If l1 = l2, the trust domain for this property, T D4 = T D(A,>, ψ3 → ψ4, l2) =

{ B× [ ],D× [ ] }, can be interpreted as those contexts where either there is no choice within the cost-bound
such that the information is shared (a trust domain negation), combined by set union with those where there
is a contract available.

In general, we have the following:

Lemma 14.

T D((R, E), φ, ψ1 → ψ2, n) = T DN((R, E), φ,¬ψ1, n) ∪ T D((R, E), φ, ψ2, n).

Proof.

T D((R, E), φ, ψ1 → ψ2, n) = {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉ψ1 → ψ2}

= {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉 ¬ψ1 ∨ ψ2}

= {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉 ¬ψ1} ∪

{S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉ψ2}

= T D((R, E), φ,¬ψ1, n) ∪ T D((R, E), φ, ψ2, n).
�
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5.5. Additive Conjunction. The bank is interested in contractors that can both perform a relevant analysis,
and can either perform it without sharing (i.e., on site) or admits a strong contract. This can be represented
by the logical property 〈spec val〉> ∧ (ψ3 → ψ4). We make use of trust domains T D1 and T D4 from the
previous sections. If l1 = l2, the trust domain for this conjunction T D5 = T D(A,>, ψ1 ∧ (ψ3 → ψ4), l2) =

{ B × [ ] } is simply the set intersection of trust domains T D1 and T D4.
In general, we have the following, with symmetric properties for conjunction of the preconditions:

Lemma 15.
(1) T D((R, E), φ, ψ1 ∧ ψ2, n) ⊆ T D((R, E), φ, ψ1, n) ∩ T D((R, E), φ, ψ2, n)
(2) T DN((R, E), φ, ψ1 ∧ ψ2, n) = T DN((R, E), φ, ψ1, n) ∩ T DN((R, E), φ, ψ2, n).

Proof.
(1)

T D((R, E), φ, ψ1 ∧ ψ2, n)
= {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] 〈≤ n〉ψ1 ∧ ψ2}

= {S , F | S , F �R,E×[ ] φ and, for some C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 �C′2 ψ1 ∧ ψ2}}

= {S , F | S , F �R,E×[ ] φ and, for some C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 �C′2 ψ1 and C′1 �C′2 ψ2}

⊆ {S , F | S , F �R,E×[ ] φ and, for some C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 �C′2 ψ1} ∩ {S , F | S , F �R,E×[ ] φ and, for some C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2,

and m ≤ n,C′1 �C′2 ψ2}

= T D((R, E), φ, ψ1, n) ∩ T D((R, E), φ, ψ2, n)

(2)

T DN((R, E), φ, ψ1 ∧ ψ2, n)
= {S , F | S , F �R,E×[ ] φ and R, E �S ,F×[ ] [≤ n]ψ1 ∧ ψ2}

= {S , F | S , F �R,E×[ ] φ and, for all C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 �C′2 ψ1 ∧ ψ2}}

= {S , F | S , F �R,E×[ ] φ and, for all C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 �C′2 ψ1 and C′1 �C′2 ψ2}

= {S , F | S , F �R,E×[ ] φ and, for all C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2, and m ≤ n,

C′1 �C′2 ψ1} ∩ {S , F | S , F �R,E×[ ] φ and, for some C′1,C
′
2,m, o such that C1

e,1
==⇒

C2

m
C′1,C2

C1
==⇒
C∅

o
C′2,

and m ≤ n,C′1 �C′2 ψ2}

= T DN((R, E), φ, ψ1, n) ∩ T DN((R, E), φ, ψ2, n),
�

The former is not equality because T D1 denotes that agent A can make a choice and fulfil property ψ1,
and T D2 denotes that an agent A can make a choice and fulfil property ψ2. There is no guarantee they are
the same choice.

5.6. Multiplicative Conjunction. So far our analysis has not been very favourable towards Fly By Night
Ltd. The risk associated with them, by Alice’s bank, is high, and as such they haven’t managed to make
it into any of the bank’s trust domains. If Fly By Night Ltd. is a pet project of a senior individual of Big
Corp, however, B may have a much lower cost associated with interacting with C than A does. In fact, Big
Corp may be willing to accept the tender from Alice’s bank and subcontract part of it out to Fly By Night
Ltd.

Recall the cost-bounds introduced in the second and third diagrams of Figure 8; let these represent the
bounds of the joint system of Alice’s Bank working with Big Corp and the bounds of Big Corp, respectively.
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Consider the case where l3 + m2 < n1. In the previously considered trust domains, T D1 and T D2, C was
never trusted. Here we can trade off the higher cost associated with A trusting C with the lower cost
associated with B trusting C.

Consider a trust domain for Alice’s bank T D6 = T D(A,>, (ψ1 ∨ψ2), l3) = { D× [ ], B× [ ], B×C × [ ] },
where ψ1 ∨ ψ2 denotes that the bank is interested in either a general or a specialized analysis, but doesn’t
care which. Consider also a trust domain for Big Corp T D7 = T D(B,>, ψ5,m1) = { A × C × [ ] }, where
ψ5 denote some logical property that Big Corp is interested in. We want to show that the trust domain for
the combined agents is T D8 = { C × [ ] }. Note that T D6 contains the context B × F × [ ], and that T D7
contains the context A × C × [ ]. When constructing the trust domain of a combined agent, from the trust
domains of the sub agents, we can do so by finding the contexts that differ only in the first agent’s context
containing the second agent, and the second agent’s context containing the first agent. If we strip each of
the agents from the context (B from B×C × [ ], A from A×C × [ ]) then we get the expected context C × [ ].

In general, where A = R, E, where B = S , F, and where C = R ◦ S , E × F, we have the following:

Lemma 16.
T D(C, φ, (ψ1 ∗ ψ2), n) =

⋃
n1+n2=n

{W, J | S ◦W, F×J∈T D(A, (φ ∗ p1), ψ1, n1)

and R ◦W, E × J ∈ T D(B, (φ ∗ p2), ψ2, n2)}

Proof.

T D(R ◦ S , E × F, φ, (ψ1 ∗ ψ2), n) = {V, I | V, I �R◦S ,E×F×[ ] φ and R ◦ S , E × F �V,I×[ ] 〈≤ n〉ψ1 ∗ ψ2}

= {V, I | V, I �R◦S ,E×F×[ ] φ and, for some G′,C′2,m, o such that R ◦ S , E × F
e,1

==⇒
V,I

m
R ◦ S ,G′

and V, I
R◦S ,E×F

=======⇒
C∅

o
C′2, and m ≤ n,R ◦ S ,G′ �C′2 ψ1 ∗ ψ2}

= {V, I | V, I �R◦S ,E×F×[ ] φ and, for some G′,C′2,m, o such that R ◦ S , E
e,1

==⇒
V,I

m
R ◦ S ,G′,

V, I
R◦S ,E×F

=======⇒
C∅

o
C′2, and m ≤ n, there exist E′, F′ such that G′ ∼ E′ × F′,

R, E′ �C′2(S ,[ ]×F′) ψ1 and S , F′ �C′2(R,E′×[ ]) ψ2}

= {V, I | V, I �R◦S ,E×F×[ ] φ and, for some E′, F′,C′2,m1,m2, o such that

R, E
e,1

========⇒
C2(S ,[ ]×F)

m1

R, E′, S , F
e,1

========⇒
C2(R,E×[ ])

m2

S , F′, m1 + m2 ≤ n,

V, I
R◦S ,E◦F

======⇒
C∅

o
C′2, R, E′ �C′2(S ,[ ]×F′) ψ1 and S , F′ �C′2(R,E′×[ ]) ψ2}

= {V, I | V, I �R◦S ,E×F×[ ] φ and, for some m1,m2 such that m1 + m2 ≤ n,
R, E �S ◦V,F×I×[ ] 〈≤ m1〉ψ1 and S , F �R◦V,E×I×[ ] 〈≤ m2〉ψ2}

=
⋃

m1+m2≤n
{V, I | V, I �R◦S ,E×F×[ ] φ and R, E �S ◦V,F×I×[ ] 〈≤ m1〉ψ1 and S , F �R◦V,E×I×[ ] 〈≤ m2〉ψ2}

=
⋃

m1+m2≤n
{V, I | V, I �R◦S ,E×F×[ ] φ and S , F �R◦V,E×I×[ ] p1, R, E �S ◦V,F×I×[ ] p2,

R, E �S ◦V,F×I×[ ] 〈≤ m1〉ψ1, and S , F �R◦V,E×I×[ ] 〈≤ m2〉ψ2}

=
⋃

m1+m2≤n
{V, I | T ◦V,G×I ∈ {R ◦ V, E × I | R, E �S ◦T,F×G×[ ] φ, R, E �S ◦V,F×I×[ ] p2,

and S , F �R◦V,E×I×[ ] 〈≤ n2〉ψ2} and
U ◦ V,H × I ∈ {R ◦ V, E × I | R, E �S ◦T,F×G×[ ] φ and R, E �S ◦V,F×I×[ ] p2

and S , F �R◦V,E×I×[ ] 〈≤ n2〉ψ2}}.
=
⋃

m1+m2≤n
{V, I | T ◦V,G × I ∈ T D(A, (φ ∗ p1), ψ1, n1) and U ◦ V,H × I ∈ T D(B, (φ ∗ p2), ψ2, n2)}.

�

There are a few technicalities of note in this definition. Firstly, we consider any cost-bounds n1 and n2,
associated with the agents R, E and S , F, that sum to the cost-bound n of the joint agents’ trust domain.
Secondly, in the sub trust domains T D((R, E), (φ p1), ψ1, n1) and T D((S , F), (φ ∗ p2), ψ2, n2) are defined
with extended preconditions (φ ∗ p1) and (φ ∗ p2) respectively. The atomic proposition p1 characterizes
agent S , F, and p2 characterizes agent R, E; this is used to permit us to strip off the second agent from the
first agent’s context, and vice versa, as described above.
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⊥ 4 φ φ 4 > φ ∧ ψ 4 φ φ 4 φ

ψi 4 φi

o(
−→
ψi) 4 o(

−→
φi)

where o(
−→
ψi) generalizes the logical operators in the language as functions of vectors of sub-formulæ.

Figure 9. Logical Strengthening Relation

There does not appear to be any obvious trust domain combinator based on multiplicative implication.
We hypothesize that this is because the trust domain definition itself is essentially that of a multiplicative
implication, and hence no additional information can be brought to bear through the inclusion of another.

6. Trust Domain Substitution

The notion of substitution is used when moving from a more skeletal to a more fleshed out model, using
more detailed descriptions of trust domains in place of more general ones, without having to reconsider the
results obtained from the more abstract model.

In order to explain notions of substitution, we make use of a running example based around hospital
staffing. We consider several different notions of substitution. For some trust domain T D((R, E), φ, ψ, n),
we describe how substitution of trust domains corresponds to substituting each of the parameters of its
definition, namely: substituting logical properties; substituting cost-bounds; and substituting agents. We
describe how substitution interacts with the combinators discussed in the previous section.

6.1. Running Example: Hospital Staffing. To aid the discussion we make use of a running example, that
of staffing within a hospital. We consider a small hospital, with limited staff. The surgeon is supported in
the operating theatre by a generalist nurse. We denote the skill of the surgeon by ψsu, and those of the nurse
by φnu.

Consider the situation when the nurse is absented, with little notice. The hospital administrators have
several possible choices: they can continue with reduced staff, which has financial cost associated with
cancelling appointments; they can transfer patients to other hospitals, which has reputational cost; or they
can employ substitute a nurse from the general workforce.

Consider further the case where the local workforce consists of specialized nurses, but no generalized
nurses. These specialized nurses will cost more to employ, and hence the choice to employ replacement
nurses has associated financial cost, beyond that normally incurred by employing the generalist nurse. The
specialist nurses’ skills are denoted by the logical properties φsn.

6.2. Logical Property Substitution. The surgeon A, if supported by a suitably qualified nurse (irregard-
less of the rest of the environment), can perform their job within certain cost-bounds. This defines a trust
domain T D(A,> ∗ φnu, ψsu, nsu), referred to as T D1. As a specialist nurse also has the skills of a generalist
nurse, the nurse fulfils both the specialized property φsn and the generalized property φnu. Intuitively, a
trust domain based on the general nursing skills should be replaceable by a trust domain based on the heart
and lungs nursing skills, which include the general skills. Alternatively, we can write this as

(10) T D(A,> ∗ φsn ∧ φnu, ψsu, nsu) ⊆ T D(A,> ∗ φnu, ψsu, nsu).

If either of the logical properties used in the definition of a trust domain are strengthened, whilst the
other trust domain parameters are kept constant, then the resulting trust domain is a subset of the original
trust domain. We formalize what we mean by strengthening in Figure 9; intuitively, when strengthening
a formula, any sub-formula may be replaced by a conjunction including that sub-formula, and top may be
replaced by any other formula. We can show that, for all formulæ φ and ψ, and for all contexts C1 and C2,
that if ψ 4 φ then C1 �C2 ψ implies C1 �C2 φ. Then we have that, if φ′ 4 φ

(11)
T D((R, E), φ′, ψ, n) ⊆ T D((R, E), φ, ψ, n)
and
T DN((R, E), φ′, ψ, n) ⊆ T DN((R, E), φ, ψ, n).
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As any instance of > can be strengthened to any other logical formula, we can replace top with a
multiplicative formula. This allows us to specify the presence and properties of additional agents in the
trusted ecosystem.

When we build a model of hospital staffing decisions, we can model the administrators to require the
skills of the surgeons, but to make no requirements with respect to the support staff; the necessary skills
can be more effectively specified by the relevant surgeons.

The administrator AD’s trust domain can be written as

T D2 = T D(AD, (> ∗ 〈≤ nsu〉φsu) , φad, nad).

This states that, in the presence of a surgeon who can make a trust decision and then perform the relevant
duties, the administrators can achieve their goals. The properties of the agents that can be trusted by the
surgeon are left loosely defined.

If the surgeon is composed with any context in the surgeon’s trust domain T D1, then together they
satisfy the administrators’ precondition φad = (>∗ 〈≤ nsu〉φsu). The administrator’s trust domain can hence
be defined in terms of a loosely specified surgeon’s trust domain T D3 = T D(A,>, ψsu, nsu), here

(12) T D(AD, φad, ψad, nad) ⊇ {C × A |C ∈ T D3 and AD �C×A 〈nad〉ψad}.

Our previous trust domain for the heart and lungs surgeon T D1 was defined as T D(A,> ∗ φnu, ψsu, nsu).
According to Equation 11 we can substitute contexts in T D1 for those in T D3, and hence show that

(13) T D(AD, φad, ψad, nad) ⊇ {C × A |C ∈ T D1 and AD �C×A 〈nad〉ψad}.

6.3. Cost-bound Substitution. Two possible options, when the general nurse is absented, are the transfer
of patients to other hospitals, which has reputational cost, and the employment of substitute nurses. We
represent the transfer option with the formula ψ1

ad, and the substitute option with the formula ψ2
ad. The

acceptable cost for the different cases may, however, be different.
In Section 5.3 we describe how to combine two trust domains with the same pre-condition and cost-

bound, and different trust properties. Similarly, we can consider trust domains with different trust bounds.
If the first option is held to a tighter cost-bound (i.e., that n < nad) then we can show that

(14) T D(AD, φad, ψ
1
ad, n) ∪ T D(AD, φad, ψ

2
ad, nad) ⊆ T D(AD, φad, ψ

1
ad ∨ ψ

2
ad, nad)

In general, if we strengthen the cost-bound associated of a trust domain, then the resulting trust domain
is a subset of the original. Formally, if n′ ≤ n then

(15)
T D((R, E), φ, ψ, n′) ⊆ T D((R, E), φ, ψ, n)
and
T DN((R, E), φ, ψ, n′) ⊆ T DN((R, E), φ, ψ, n).

6.4. Agent Substitution. One of the advantages of our mathematical modelling approach is the ability to
reason equationally about processes’ behaviour. Bisimulation describes processes that can make the same
actions, and the same choices with the same costs, but that are structurally different. If two processes are
bisimilar, then, by Theorem 7, they fulfil the same logical properties. Given this fact, we can substitute
bisimilar processes (E ∼ F) in the trust domain definitions, and obtain equivalent trust domains:

(16)
T D((R, E), φ, ψ, n) = T D((R, F), φ, ψ, n)
and
T DN((R, E), φ, ψ, n) = T DN((R, F), φ, ψ, n).

7. Discussion

We have considered how to model trust in complex systems of interacting agents, describing the un-
derlying mathematical framework, based in models or location, resource, and process, and a substructural
modal process logic of utility. The logic we consider contains both action and cost modalities, and additive
and multiplicative connectives. Using this framework, we define the notion of trust domain in terms of
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the boundary established by the combination of a requisite logical property and an associated cost. As we
have explained, in Section 3.4, theoretical improvements to the relationship between local equivalence of
processes and logical equivalence should be obtained.

We have defined several combinators for trust domains corresponding to connectives of the process
logic, giving set-theoretic operations on trust domains. Using these combinators, we show how to represent
notions of transitivity and trade-offs through use of the multiplicative conduction operator. Additionally,
we consider how to perform substitution of trust domains, in terms of each of the possible components
of a trust domain. We illustrate the meta-theory of trust domains using two examples: contract choices
in a mergers and acquisitions process; and staffing concerns in a hospital environment. A richer logic
— perhaps with multiplicative modalities and both additive and multiplicative quantifiers, as described in
[11, 13, 14] — might yield useful additional combinators. This possibility should be explored.

Using multiplicative conjunction, we have shown how a conjoined system’s costs can be split up be-
tween its various sub-systems. This provides preliminary insight into how the logical formulæ are associ-
ated with costs. The relationship between the structure of resource–process models and the costs associated
with them, and the relationship between the structure of logical formulæ and the costs associated with them,
is of significant interest, and warrants significant further study.

Markov chains support reasoning about complex notions such as average utility with a given time dis-
count (e.g., [26]), but do not provide compositionality results over model structures. The calculus presented
here could be extended include probabilistic evolution and expected cost [28], thereby enriching the notion
of trust domain with the ability to accommodate stochastic environments. We aim to use our modelling
approach in larger scale case studies, such as [6, 9], where costly activities such as hardware-supported and
managed security are considered.
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this paper.
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