• OAI
  • SRU
  • Mapa web
  • Castellano
    • Inglés
AMERICANAE
  • Inicio
  • Presentación
  • Búsqueda
  • Directorio
  • Repositorios OAI
AMERICANAE
Gobierno de España Ministerio de Asuntos Exteriores, Unión Europea y Cooperación Agencia Española de Cooperación Internacional para el Desarrollo
AMERICANAE
  • Inicio
  • Presentación
  • Búsqueda
  • Directorio
  • Repositorios OAI
Está en:  › Datos de registro
Linked Open Data
The First-Order Hypothetical Logic of Proofs
Identificadores del recurso
Steren, Gabriela; Bonelli, Eduardo Augusto; The First-Order Hypothetical Logic of Proofs; Oxford University Press; Journal of Logic and Computation; 27; 4; 9-2017; 1023-1066
0955-792X
http://hdl.handle.net/11336/42132
CONICET Digital
CONICET
Procedencia
(LA Referencia)

Ficha

Título:
The First-Order Hypothetical Logic of Proofs
Tema:
FIRST ORDER LOGIC OF PROOFS
CURRY HOWARD
NORMALIZATION
LAMBDA CALCULUS
Ciencias de la Computación
Ciencias de la Computación e Información
CIENCIAS NATURALES Y EXACTAS
Descripción:
The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [​[t]​]​A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[​[t]​]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [​[t]​]​A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given.
Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fuente:
reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Idioma:
English
Relación:
info:eu-repo/semantics/altIdentifier/doi/10.1093/logcom/exv090
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/article-abstract/27/4/1023/2917861
Autor/Productor:
Steren, Gabriela
Bonelli, Eduardo Augusto
Editor:
Oxford University Press
Derechos:
info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Fecha:
2017-09
info:eu-repo/date/embargoEnd/2018-07-01
Tipo de recurso:
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
Formato:
application/pdf
application/zip
About:
http://ri.conicet.gov.ar/oai/requestoai:ri.conicet.gov.ar:11336/421322020-12-29T21:20:07Zhttp://www.openarchives.org/OAI/2.0/oai_dc/opendoar:3498CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas

oai_dc

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <oai_dc:dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

    1. <dc:title>The First-Order Hypothetical Logic of Proofs</dc:title>

    2. <dc:creator>Steren, Gabriela</dc:creator>

    3. <dc:creator>Bonelli, Eduardo Augusto</dc:creator>

    4. <dc:subject>FIRST ORDER LOGIC OF PROOFS</dc:subject>

    5. <dc:subject>CURRY HOWARD</dc:subject>

    6. <dc:subject>NORMALIZATION</dc:subject>

    7. <dc:subject>LAMBDA CALCULUS</dc:subject>

    8. <dc:subject>Ciencias de la Computación</dc:subject>

    9. <dc:subject>Ciencias de la Computación e Información</dc:subject>

    10. <dc:subject>CIENCIAS NATURALES Y EXACTAS</dc:subject>

    11. <dc:description>The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [​[t]​]​A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[​[t]​]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [​[t]​]​A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given.</dc:description>

    12. <dc:description>Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina</dc:description>

    13. <dc:description>Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina</dc:description>

    14. <dc:date>2017-09</dc:date>

    15. <dc:date>info:eu-repo/date/embargoEnd/2018-07-01</dc:date>

    16. <dc:type>info:eu-repo/semantics/article</dc:type>

    17. <dc:type>info:eu-repo/semantics/publishedVersion</dc:type>

    18. <dc:type>http://purl.org/coar/resource_type/c_6501</dc:type>

    19. <dc:type>info:ar-repo/semantics/articulo</dc:type>

    20. <dc:identifier>Steren, Gabriela; Bonelli, Eduardo Augusto; The First-Order Hypothetical Logic of Proofs; Oxford University Press; Journal of Logic and Computation; 27; 4; 9-2017; 1023-1066</dc:identifier>

    21. <dc:identifier>0955-792X</dc:identifier>

    22. <dc:identifier>http://hdl.handle.net/11336/42132</dc:identifier>

    23. <dc:identifier>CONICET Digital</dc:identifier>

    24. <dc:identifier>CONICET</dc:identifier>

    25. <dc:language>eng</dc:language>

    26. <dc:relation>info:eu-repo/semantics/altIdentifier/doi/10.1093/logcom/exv090</dc:relation>

    27. <dc:relation>info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/article-abstract/27/4/1023/2917861</dc:relation>

    28. <dc:rights>info:eu-repo/semantics/embargoedAccess</dc:rights>

    29. <dc:rights>https://creativecommons.org/licenses/by-nc-sa/2.5/ar/</dc:rights>

    30. <dc:format>application/pdf</dc:format>

    31. <dc:format>application/zip</dc:format>

    32. <dc:format>application/pdf</dc:format>

    33. <dc:publisher>Oxford University Press</dc:publisher>

    34. <dc:source>reponame:CONICET Digital (CONICET)</dc:source>

    35. <dc:source>instname:Consejo Nacional de Investigaciones Científicas y Técnicas</dc:source>

    36. <dc:source>instacron:CONICET</dc:source>

    37. <about>

      1. <provenance>

        1. <originDescription altered="false" harvestDate="2020-12-29 21:20:09.12">

          1. <baseURL>http://ri.conicet.gov.ar/oai/request</baseURL>

          2. <identifier>oai:ri.conicet.gov.ar:11336/42132</identifier>

          3. <datestamp>2020-12-29T21:20:07Z</datestamp>

          4. <metadataNamespace>http://www.openarchives.org/OAI/2.0/oai_dc/</metadataNamespace>

          5. <repositoryID>opendoar:3498</repositoryID>

          6. <repositoryName>CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas</repositoryName>

          </originDescription>

        </provenance>

      </about>

    </oai_dc:dc>

xoai

Descargar XML

    <?xml version="1.0" encoding="UTF-8" ?>

  1. <metadata schemaLocation="http://www.lyncode.com/xoai http://www.lyncode.com/xsd/xoai.xsd">

    1. <element name="dc">

      1. <element name="title">

        1. <element name="none">

          1. <field name="value">The First-Order Hypothetical Logic of Proofs</field>

          </element>

        </element>

      2. <element name="creator">

        1. <element name="none">

          1. <field name="value">Steren, Gabriela</field>

          2. <field name="value">Bonelli, Eduardo Augusto</field>

          </element>

        </element>

      3. <element name="subject">

        1. <element name="none">

          1. <field name="value">FIRST ORDER LOGIC OF PROOFS</field>

          2. <field name="value">CURRY HOWARD</field>

          3. <field name="value">NORMALIZATION</field>

          4. <field name="value">LAMBDA CALCULUS</field>

          5. <field name="value">Ciencias de la Computación</field>

          6. <field name="value">Ciencias de la Computación e Información</field>

          7. <field name="value">CIENCIAS NATURALES Y EXACTAS</field>

          </element>

        </element>

      4. <element name="description">

        1. <element name="none">

          1. <field name="value">The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [​[t]​]​A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[​[t]​]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [​[t]​]​A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given.</field>

          2. <field name="value">Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina</field>

          3. <field name="value">Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina</field>

          </element>

        </element>

      5. <element name="publisher">

        1. <element name="none">

          1. <field name="value">Oxford University Press</field>

          </element>

        </element>

      6. <element name="date">

        1. <element name="none">

          1. <field name="value">2017-09</field>

          2. <field name="value">info:eu-repo/date/embargoEnd/2018-07-01</field>

          </element>

        </element>

      7. <element name="type">

        1. <element name="none">

          1. <field name="value">info:eu-repo/semantics/article</field>

          2. <field name="value">info:eu-repo/semantics/publishedVersion</field>

          3. <field name="value">http://purl.org/coar/resource_type/c_6501</field>

          4. <field name="value">info:ar-repo/semantics/articulo</field>

          </element>

        </element>

      8. <element name="format">

        1. <element name="none">

          1. <field name="value">application/pdf</field>

          2. <field name="value">application/zip</field>

          3. <field name="value">application/pdf</field>

          </element>

        </element>

      9. <element name="identifier">

        1. <element name="none">

          1. <field name="value">Steren, Gabriela; Bonelli, Eduardo Augusto; The First-Order Hypothetical Logic of Proofs; Oxford University Press; Journal of Logic and Computation; 27; 4; 9-2017; 1023-1066</field>

          2. <field name="value">0955-792X</field>

          3. <field name="value">http://hdl.handle.net/11336/42132</field>

          4. <field name="value">CONICET Digital</field>

          5. <field name="value">CONICET</field>

          </element>

        </element>

      10. <element name="relation">

        1. <element name="none">

          1. <field name="value">info:eu-repo/semantics/altIdentifier/doi/10.1093/logcom/exv090</field>

          2. <field name="value">info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/article-abstract/27/4/1023/2917861</field>

          </element>

        </element>

      11. <element name="rights">

        1. <element name="none">

          1. <field name="value">info:eu-repo/semantics/embargoedAccess</field>

          2. <field name="value">https://creativecommons.org/licenses/by-nc-sa/2.5/ar/</field>

          </element>

        </element>

      12. <element name="source">

        1. <element name="none">

          1. <field name="value">reponame:CONICET Digital (CONICET)</field>

          2. <field name="value">instname:Consejo Nacional de Investigaciones Científicas y Técnicas</field>

          3. <field name="value">instacron:CONICET</field>

          </element>

        </element>

      13. <element name="language">

        1. <element name="*">

          1. <field name="value">eng</field>

          </element>

        </element>

      </element>

    2. <element name="bundles" />
    3. <element name="others">

      1. <field name="handle" />
      2. <field name="lastModifyDate">2020-12-29T21:20:07Z</field>

      3. <field name="identifier">oai:ri.conicet.gov.ar:11336/42132</field>

      </element>

    4. <element name="repository">

      1. <field name="repositoryType">Institucional</field>

      2. <field name="repositoryURL">http://ri.conicet.gov.ar/</field>

      3. <field name="institutionType">Organismo científico-tecnológico</field>

      4. <field name="institutionURL">No corresponde</field>

      5. <field name="baseURL">http://ri.conicet.gov.ar/oai/request</field>

      6. <field name="mail">dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar</field>

      7. <field name="country">Argentina</field>

      8. <field name="DOI">No corresponde</field>

      9. <field name="ISSN">No corresponde</field>

      10. <field name="ISSN_L">No corresponde</field>

      11. <field name="repositoryID">opendoar:3498</field>

      12. <field name="harvestDate">2020-12-29 21:20:09.12</field>

      13. <field name="name">CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas</field>

      14. <field name="altered">false</field>

      </element>

    </metadata>

  • Biblioteca AECID
  • Av. Reyes Católicos, nº 4. 28040 Madrid.
  • biblio.cooperacion@aecid.es
  • (+34) 91 583 81 75 - (+34) 91 583 81 64
  • Aviso legal
  • Protección de datos
  • Accesibilidad
  • 
  • Logo Flickr
  • 
  • 
  • 