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Abstract. The unified correspondence theory for distributive latticeexpansion logics (DLE-logics)
is specialized to strict implication logics. As a consequence of a general semantic consevativity re-
sult, a wide range of strict implication logics can be conservatively extended to Lambek Calculi over
the bounded distributive full non-associative Lambek calculus (BDFNL). Many strict implication se-
quents can be transformed into analytic rules employing oneof the main tools of unified correspon-
dence theory, namely (a suitably modified version of) the Ackermann lemma based algorithmALBA.
Gentzen-style cut-free sequent calculi forBDFNL and its extensions with analytic rules which are
transformed from strict implication sequents, are developed.

1 Introduction

Strict implication is an intensional implication which is semantically interpreted on Kripke bi-
nary relational models in the same fashion as intuitionistic implication. Kripke frames for in-
tuitionistic logic are partially ordered sets, and valuations are required to be persistent, i.e., to
map propositional variables to upsets. The intuitionisticimplication is already an example of
strict implication. Subintuitionistic logics, which are prime examples of strict implication logics
(cf. [30,65,5,13,10,62,37,36,2,48]), arise semantically by dropping some conditions from the in-
tuitionistic models outlined above, such as the requirement that the accessibility relation to be
reflexive or transitive, and the persistency of valuations.For example, Visser’s basic proposi-
tional logicBPL [65] is a subintuitionistic logic characterized by the class of all transitive frames
under the semantics by dropping only the reflexivity condition on frames from the intuitionistic
case, and it is embedded into the normal modal logicK4 via the Gödel-McKinsey-Tarski trans-
lation. Another example is the least subintuitionistic logic F introduced by Corsi [30] which is
characterized by the class of all Kripke frames under the semantics by dropping all conditions on
frames or models. Naturally,F is embeddable into the least normal modal logicK.

The present paper proposes a uniform approach to the proof theory of the family of strict im-
plication logics. Cut-free sequent calculi exist in the literature for some members of this family
[46], for instance, for Visser’s propositional logics [47]. These calculi lack a left- and a right-
introduction rule for→. Instead, there is only one rule in which2n premisses are needed when
the conclusion hasn implication formulas as the antecedent of the sequent. In contrast with
this, in the present paper, we provide modular cut-free calculi for a wide class of strict implica-
tion logics, each of which has the standard left- and right-introduction rules. Our methodology
uses unified correspondence theory. It takes the move from some general semantic conserva-
tivity results which naturally arise from the semantic environment of unified correspondence.
Specifically, we use the fact that certain strict implication logics can be conservatively extended
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to suitable axiomatic extensions of the bounded distributive lattice full non-associative Lambek
calculus (BDFNL)3 , and develop Gentzen-style cut-free sequent calculi for these axiomatic ex-
tensions, using the tools of unified correspondence.

Let us first explain what unified correspondence is and how it can be used in proof theory. In
recent years, based on duality-theoretic insights [27], anencompassing perspective has emerged,
making it possible to export the Sahlqvist theory from modallogic to a wide range of logics
which includes, among others, intuitionistic and distributive lattice-based (normal modal) log-
ics [25], non-normal (regular) modal logics [61], substructural logics [26], hybrid logics [29],
and mu-calculus [21,22]. This work has stimulated many applications. Some are closely related
to the core concerns of the theory itself, such as the understanding of the relationship between
different methodologies for obtaining canonicity results[60], or of the pseudo-correspondence
[28]. Other applications include the dual characterizations of classes of finite lattices [38], com-
puting the first-order correspondence of rules for one-stepframes [8,54], and the identification of
the syntactic shape of axioms which can be translated into analytic structural rules4 of a proper
display calculus [44]. These results have given rise to the theory calledunified correspondence
[23].

The most important technical tools in unified correspondence are: (a) a very general syntactic
definition of Sahlqvist formulas, which applies uniformly to each logical signature and is given
purely in terms of the order-theoretic properties of the algebraic interpretations of the logical
connectives; (b) the Ackermann lemma based algorithmALBA, which effectively computes first-
order correspondents of input term-inequalities, and is guaranteed to succeed on a wide class of
inequalities (the so-calledinductiveinequalities) which, like the Sahlqvist class, can be defined
uniformly in each signature, and which properly and significantly extends the Sahlqvist class.

From the point of view of unified correspondence, the family of strict implication logics is a
very interesting subclass of normal DLE-logics (i.e., logics algebraically identified by varieties
of bounded distributive lattice expansions), not only because they are very well-known and very
intensely investigated, but also because they are enjoyingtwo different and equally natural rela-
tional semantics, namely, the one described above, interpreting the binary implication by means
of a binary relation [13], and another, arising from the standard treatment of binary modal op-
erators, interpreting the binary implication by means of aternary relation [50]. The existence of
these two different semantics makes unified correspondencea very appropriate tool to study the
Sahlqvist-type theory of these logics, because of one of thefeatures specific to unified correspon-
dence theory, namely the possibility of developing Sahlqvist-type theory for the logics of strict
implication in a modular and simultaneous way for their two types of relational semantics.

In the present paper we specialize the two tools of unified correspondence theory from the
general setting of normal DLE-logics to the setting of strict implication logics. The semantic
environment of unified correspondence theory allows for a general semantic conservativity result
for normal DLE logics, which has been briefly outlined in [44]and is further clarified in the
present paper (cf. Theorem 4), and specialized to the setting of strict implication logics.

3 Non-associative Lambek calculus was first developed by Lambek [52,53]. For details about Lambek calculi and
substructural logics, we refer to [39,11,12,58].

4 Informally, analyticrules are those which can be added to a display calculus with cut elimination obtaining again
a display calculus with cut elimination.
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A second reason for exploring strict implication logics with the tools of unified correspon-
dence is given by the recent developments mentioned above, establishing systematic connections
between correspondence results for normal DLE-logics and the characterization of the axiomatic
extensions of basic normal DLE-logics which admit display calculi with cut elimination. In par-
ticular, in [44], the tool (a) of unified correspondence theory has been used to provide the syn-
tactic characterization of those axioms which correspond to analytic rules, and tool (b) has been
used to provide an effective computation of the rules corresponding to each analytic axiom. This
work provides an exhaustive answer, relative to the settingof display calculi, to a key question in
structural proof theory which has been intensely investigated in various proof-theoretic settings
(cf. [59,17,19,43,18,56,51,57,55]).

In fact, a major conceptual motivation of the present paper is provided by the insight that
the unified correspondence methodology can be applied to theanalyticity issue also in proof-
theoretic settings different from display calculi. Following this insight, in the present paper, we
use the tools of unified correspondence in two different ways. Firstly, we present a modified ver-
sion of the algorithmALBA which is specific to the task of the direct computation of analytic
rules of a Gentzen-style calculus for certain logics of strict implication. Secondly, we use this
algorithm as a calculus not only to compute analytic rules, but also to establish semantic (al-
gebraic), hence logical equivalences between axioms of different but related logical signatures.
This latter one is a novel application of unified correspondence.

Structure of the paper. In section 2, we will summarize unified correspondence theory for
DLE-logics with specialization to strict implication logics. Specifically, a general theorem on
semantic conservativity,ALBA algorithm and first-order correspondence will be formulated and
specialized. In section 3, we will introduce the Ackermann lemma based calculusALC for cal-
culating correspondence on over algebras between the strict implication languageLSI and the
languageL•. More conservativity results will be obtained by usingALC. In section 4, we will
develop cut-free Gentzen-style sequent calculus forBDFNL, and then extend it with analytic
rules to obtain cut-free sequent calculi.

2 Preliminaries

In this section, we will summarize the unified correspondence theory for normal DLE-logics
from [44] with specialization to strict implication logics.

2.1 Syntax and semantics for DLE-logics

An order-typeovern ∈ N is ann-tuple ε ∈ {1, ∂}n. Order-types will be typically associated
with arrays of variablesp := (p1, . . . , pn). When the order of the variables inp is not specified,
we will sometimes abuse notation and writeε(p) = 1 or ε(p) = ∂. For every order typeε, we
denote itsoppositeorder type byε∂ , that is,ε∂i = 1 iff εi = ∂ for every1 ≤ i ≤ n. For any lattice
A, we letA1 := A andA∂ be the dual lattice, that is, the lattice associated with theconverse
partial order ofA. For any order typeε, we letAε := Πn

i=1A
εi .

The languageLDLE(F ,G) (sometimes abbreviated asLDLE) consists of: 1) a denumerable
set of proposition lettersAtProp, elements of which are denotedp, q, r, possibly with indexes;
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2) disjoint finite sets of connectivesF andG. Eachf ∈ F (respectivelyg ∈ G) has aritynf ∈ N

(respectivelyng ∈ N) and is associated with some order-typeεf overnf (respectivelyεg over
ng).

Definition 1. Theterms(formulas) ofLDLE are defined recursively as follows:

φ ::= p | ⊥ | ⊤ | (φ ∧ φ) | (φ ∨ φ) | f(φ) | g(φ)

wherep ∈ AtProp, f ∈ F , g ∈ G. Terms (formulas) inLDLE will be denoted either bys, t, or by
lowercase Greek letters such asϕ,ψ, γ etc. AnLDLE-sequent is an expression of the formφ ⊢ ψ.

Definition 2. For any tuple(F ,G) of disjoint sets of function symbols as above, adistributive
lattice expansion(abbreviated as DLE) is a tuple(A,FA,GA) such thatA is a bounded dis-
tributive lattice,FA = {fA | f ∈ F} and GA = {gA | g ∈ G}, such that everyfA ∈ FA

(respectivelygA ∈ GA) is annf -ary (respectivelyng-ary) operation onA. A DLE (A,FA,GA)

is normalif everyfA ∈ FA (respectivelygA ∈ GA) preserves finite joins (respectively meets) in
each coordinate withεf (i) = 1 (respectivelyεg(j) = 1) and reverses finite meets (respectively
joins) in each coordinate withεf (i) = ∂ (respectivelyεg(j) = ∂).

For each operatorf ∈ F (respectivelyg ∈ G) and1 ≤ i ≤ nf (respectively1 ≤ j ≤ ng),
let fi[−] (respectivelygj [−]) be the operatorf (respectivelyg) with a hole at thei-coordinate
(respectively thej-th coordinate), and other coordinates be parameters. Letfi[a] (reap.gj[a]) be
the value off (respectivelyg) when the hole is given the inputa. The class of all normal DLEs,
denoted byDLE, is equationally definable by distributive lattice identities and the following
equations for anyf ∈ F (respectivelyg ∈ G) and1 ≤ i ≤ nf (respectively1 ≤ j ≤ ng):

(1) if εf (i) = 1, thenfi[a ∨ b] = fi[a] ∨ fi[b] andfi[⊥] = ⊥,

(2) if εf (i) = ∂, thenfi[a ∧ b] = fi[a] ∨ fi[b] andfi[⊤] = ⊥,

(3) if εg(j) = 1, thengj [a ∧ b] = gj [a] ∧ gj [b] andgj [⊤] = ⊤,

(4) if εg(j) = ∂, thengj [a ∨ b] = gj [a] ∧ gj [b] andgj [⊥] = ⊤.

Each languageLDLE is interpreted in the appropriate class of normal DLEs. In particular, for
every DLEA, each operationfA ∈ FA (respectivelygA ∈ GA) is finitely join-preserving
(respectively meet-preserving) in each coordinate when regarded as a mapfA : Aεf → A

(respectivelygA : Aεg → A).

Definition 3. For any languageLDLE(F ,G), the minimal DLE-logic is the set ofLDLE-sequents
φ ⊢ ψ, which contains the following axioms:

(1) Sequents for lattice connectives:

p ⊢ p, ⊥ ⊢ p, p ⊢ ⊤, p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r),

p ⊢ p ∨ q, q ⊢ p ∨ q, p ∧ q ⊢ p, p ∧ q ⊢ q,
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(2) Sequents for connectivesf ∈ F andg ∈ G:

εf (i) = 1 εf (i) = ∂

fi[⊥] ⊢ ⊥ fi[⊤] ⊢ ⊥

fi[p ∨ q] ⊢ fi[p] ∨ fi[q] fi[p ∧ q] ⊢ fi[p] ∨ fi[q]

εg(j) = 1 εg(j) = ∂

⊤ ⊢ gj [⊤] ⊤ ⊢ gj [⊥]

gj[p] ∧ gj [q] ⊢ gj [p ∧ q] gj [p] ∧ gj [q] ⊢ gj [p ∨ q]

and is closed under the following inference rules:

φ ⊢ χ χ ⊢ ψ

φ ⊢ ψ

φ ⊢ ψ

φ[χ/p] ⊢ ψ[χ/p]

χ ⊢ φ χ ⊢ ψ

χ ⊢ φ ∧ ψ

φ ⊢ χ ψ ⊢ χ

φ ∨ ψ ⊢ χ

φ ⊢ ψ

fi[φ] ⊢ fi[ψ]
(εf (i) = 1)

φ ⊢ ψ

fi[ψ] ⊢ fi[φ]
(εf (i) = ∂)

φ ⊢ ψ

gj[φ] ⊢ gj [ψ]
(εg(j) = 1)

φ ⊢ ψ

gj [ψ] ⊢ gj [φ]
(εg(j) = ∂).

The formulaφ[χ/p] is obtained fromφ by substitutingχ for p uniformly. The minimal DLE-logic
is denoted byLDLE. For any DLE-languageLDLE, by aDLE-logic we understand any axiomatic
extension ofLDLE.

A sequentφ ⊢ ψ is valid in a DLE(A,FA,GA) if µ(φ) ≤ µ(ψ) for every homomorphism
µ from theLDLE-algebra of formulas overAtProp to A. The notationDLE |= φ ⊢ ψ indicates
thatφ ⊢ ψ is valid in every DLE. Then, by means of a routine Lindenbaum-Tarski construction,
it is easy to show that the minimal DLE-logicLDLE is sound and complete with respect to its
corresponding class ofLDLE-algebrasDLE, i.e. that any sequentφ ⊢ ψ is provable inLDLE if
and only ifDLE |= φ ⊢ ψ.

We will now specialize normal DLE-logics to strict implication logics. Thestrict implication
languageLSI is identified with the DLE-languageLDLE(F ,G) whereF = ∅ andG = {→}. The
order-type of→ is (∂, 1). The definition of normal DLE-algebra is specialized into the following
definition:

Definition 4. An algebraA = (A,∧,∨,⊥,⊤,→) is called abounded distributive lattice with
strict implication(BDI) if its (∧,∨,⊥,⊤)-reduct is a bounded distributive lattice and→ is a
binary operation onA satisfying the following conditions for alla, b, c ∈ A:

(C1) (a→ b) ∧ (a→ c) = a→ (b ∧ c),
(C2) (a→ c) ∧ (b→ c) = (a ∨ b)→ c,
(C3)a→ ⊤ = ⊤ = ⊥ → a.

LetBDI be the class of all BDIs. Henceforth, we also write a BDI as(A,→) whereA is supposed
to be a bounded distributive lattice.

Definition 5. The algebraic sequent systemSBDI consists of the following axioms and rules:
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– Axioms:

(Id) φ ⊢ φ, (D) φ ∧ (ψ ∨ γ) ⊢ (φ ∧ ψ) ∨ (φ ∧ γ),

(⊤) φ ⊢ ⊤, (⊥) ⊥ ⊢ φ, (N⊤) ⊤ ⊢ φ→ ⊤, (N⊥) ⊤ ⊢ ⊥ → φ,

(M1) (φ→ ψ) ∧ (φ→ γ) ⊢ φ→ (ψ ∧ γ),

(M2) (φ→ γ) ∧ (ψ → γ) ⊢ (φ ∨ ψ)→ γ,

– Rules:

(M3)
φ ⊢ ψ

χ→ φ ⊢ χ→ ψ
, (M4)

φ ⊢ ψ

ψ → χ ⊢ φ→ χ
,

(∧L)
φi ⊢ ψ

φ1 ∧ φ2 ⊢ ψ
(i = 1, 2), (∧R)

γ ⊢ φ γ ⊢ ψ

γ ⊢ φ ∧ ψ
,

(∨L)
φ ⊢ χ ψ ⊢ χ

φ ∨ ψ ⊢ γ
, (∨R)

ψ ⊢ φi
ψ ⊢ φ1 ∨ φ2

(i = 1, 2),

(cut)
φ ⊢ ψ ψ ⊢ γ

φ ⊢ γ
,

It is easy to see thatSBDI is a specialization ofLDLE. Some extensions ofSBDI, strict impli-
cation logics extending it, can be obtained by adding ‘characteristic’ sequents. Table 1 list some
characteristic sequents that are considered in literature.5 For any sequent systemS and a set of

Table 1.Some Characteristic Sequents

Name Sequent Literature
(I) q ⊢ p→ p [13]
(Tr) (p→ q) ∧ (q → r) ⊢ p→ r [13][63, p.44]
(MP) p ∧ (p→ q) ⊢ q [13,46]
(W) p ⊢ q → p [13][63, p.34]
(RT) p→ q ⊢ r → (p→ q) [13,46]
(B) p→ q ⊢ (r → p)→ (r → q) [63, p.32]
(B′) p→ q ⊢ (q → r)→ (p→ r) [63, p.32]
(C) p→ (q → r) ⊢ q → (p→ r) [63, p.32]
(Fr) p→ (q → p) ⊢ (p→ q)→ (p→ r) [63, p.44]
(W′) p→ (p→ q) ⊢ p→ q [63, p.44]
(Sym) p ⊢ ((p→ q)→ r) ∨ q [46]
(Euc) ⊤ ⊢ ((p→ q)→ r) ∨ (p→ q) [46]
(D) ⊤ → ⊥ ⊢ ⊥ [46]

sequentsΣ, the notationS + Σ stands for the system obtained fromS by adding all instances

5 These characteristic sequents may have different names or forms in literature. For example, (MP) is written as
p, p → q ⊢ q where the comma means conjunction. The sequent (Fr) is namedby the Frege axiom(p → (q →

r)) → ((p→ q) → (p→ r)).
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of sequents inΣ as new axioms. Strict implication logics in Table 2 can be obtained using these
characteristic sequents. Some of them are considered in literature.6

Table 2.Some Strict Implication Logics

Name System Literature
SWH, GKI SBDI + (I) + (Tr) [13,46,30,32,67]
ST SBDI + (MP)
SW SBDI + (W)
SRT SBDI + (RT)
SB SBDI + (B)
SB′ SBDI + (B′)
SC SBDI + (C)
SFR SBDI + (Fr)
SW′ SBDI + (W′)
SSYM SBDI + (Sym)
SEUC SBDI + (Euc)
SBCA ST + (W) [64,13,46,65,4,5,47]
GKTI GKI + (MP) [30,46]
GK4I GKI + (RT) [30,46]
GS4I GKTI + (RT) [30,46]
GKBI GKI + (Sym) [30,46]
GK5I GKI + (Euc) [46]
GK45I GK5I + (RT) [46]
GKS5I GK45I + (W) [46]
GK4I+ GKI + (W) [46]
GKDI GKI + (D) [30,46]

Each sequentφ ⊢ ψ defines a class of BDIs. Each strict implication logicSBDI+Σ defines a
class of BDIs denoted byAlg(Σ). For example, some subvarieties are considered in [14]. A BDI
(A,→) is called aweak Heyting algebra(WH-algebra) if the following conditions are satisfied
for all a, b, c ∈ A:

(C4) b ≤ a→ a.
(C5) (a→ b) ∧ (b→ c) ≤ (a→ c).

LetWH be the class of all WH-algebras. AwKTσ-algebra is a WH-algebra(A,→) satisfying the
conditiona ∧ (a → b) ≤ b for all a, b ∈ A. A basic algebrais a WH-algebra(A,→) satisfying
the conditiona ≤ b → a for all a, b ∈ A. Let T andBCA be the classes of allwKTσ-algebras
and basic algebras respectively. The variety of Heyting algebras is a subvariety ofBCA, i.e., it is

6 These logics are presented in various ways in literature as Hilbert-style systems, natural deduction systems or se-
quent systems. The nameGKI [46] stands for the Gentzen-style sequent calculus for the minimal strict implication
logic under binary relational semantics which can be embedded into the minimal normal modal logicK.
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the class of all basic algebras(A,→) satisfying the condition⊤ → a ≤ a for all a ∈ A (cf. e.g.
[5,1]).

As a corollary of the soundness and completeness of DLE-logics with respect to theirLDLE-
algebras, one gets the following theorem immediately:

Theorem 1. For any strict implication logicSBDI + Σ, anLSI-sequentφ ⊢ ψ is derivable in
SBDI +Σ if and only ifAlg(Σ) |= φ ⊢ ψ.

2.2 The expanded languageL∗

DLE

Any given languageLDLE = LDLE(F ,G) can be extended to the languageL∗
DLE

= LDLE(F
∗,G∗),

whereF∗ ⊇ F andG∗ ⊇ G are obtained by expandingLDLE with the following connectives:

(1) the Heyting implications←H and→H , the intended interpretations of which are the right
residuals of∧ in the first and second coordinate respectively, and>− and−<, the intended
interpretations of which are the left residuals of∨ in the first and second coordinate, respec-
tively;

(2) thenf -ary connectivef ♯i for 0 ≤ i ≤ nf , the intended interpretation of which is the right
residual off ∈ F in its ith coordinate ifεf (i) = 1 (respectively its Galois-adjoint ifεf (i) =
∂);

(3) theng-ary connectiveg♭i for 0 ≤ i ≤ ng, the intended interpretation of which is the left
residual ofg ∈ G in its ith coordinate ifεg(i) = 1 (respectively its Galois-adjoint ifεg(i) =
∂).

We stipulate that>−,−<∈ F∗, that→H ,←H∈ G
∗, and moreover, thatf ♯i ∈ G

∗ if εf (i) = 1,
andf ♯i ∈ F

∗ if εf (i) = ∂. Dually, g♭j ∈ F
∗ if εg(i) = 1, andg♭j ∈ G

∗ if εg(j) = ∂. The
order-type assigned to the additional connectives is predicated on the order-type of their intended
interpretations.

Definition 6. For any languageLDLE(F ,G), theminimalL∗
DLE

-logic is defined by specializing
Definition 3 to the languageL∗

DLE
= LDLE(F

∗,G∗) and closing under the following additional
rules:

(1) Residuation rules for lattice connectives:

φ ∧ ψ ⊢ χ

ψ ⊢ φ→H χ

φ ∧ ψ ⊢ χ

φ ⊢ χ←H ψ

φ ⊢ ψ ∨ χ

ψ−< φ ⊢ χ

φ ⊢ ψ ∨ χ

φ >−χ ⊢ ψ

Notice that the rules for→H and←H are interderivable, since∧ is commutative; similarly,
the rules for−< and>− are interderivable, since∨ is commutative.

(2) Residuation rules forf ∈ F andg ∈ G:

fi[φ] ⊢ ψ
(εf (i) = 1),

φ ⊢ f ♯i [ψ]

φ ⊢ gj[ψ]
(εg(j) = 1),

g♭j [φ] ⊢ ψ

fi[φ] ⊢ ψ
(εf (i) = ∂),

f ♯i [ψ] ⊢ φ

φ ⊢ gj [ψ]
(εg(j) = ∂).

ψ ⊢ g♭j [φ]
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The double line in each rule above indicates that the rule is invertible. LetL∗

DLE be the minimal
L∗
DLE

-logic.

The algebraic semantics ofL∗

DLE is given by the class of allL∗
DLE

-algebras, defined as
(H,F∗,G∗) such thatH is a bi-Heyting algebra (because there are right adjoints orresiduals
of ∧ and∨ in the algebra) and moreover,

(1) for everyf ∈ F s.t.nf ≥ 1, all ai, b ∈ H with 1 ≤ i ≤ nf ,
– if εf (i) = 1, thenfi[ai] ≤ b iff ai ≤ f

♯
i [b];

– if εf (i) = ∂, thenfi[ai] ≤ b iff ai ≤∂ f ♯i [b].
(2) for everyg ∈ G s.t.ng ≥ 1, anyaj , b ∈ H with 1 ≤ j ≤ ng,

– if εg(j) = 1, thenb ≤ gj [aj ] iff g♭j [b] ≤ aj.
– if εg(j) = ∂, thenb ≤ gj [aj ] iff g♭i [b] ≤

∂ aj .

It is routine to prove using the Lindenbaum-Tarski construction thatL∗

DLE is sound and complete
with respect to. the class of allL∗

DLE
-algebras.

There two ways to specialize the languageL∗DLE and hence the logicLDLE to the strict
implication language: a full and a partial specialization.The full specialization results a language
of bi-intuitionsitic Lambek calculusL∗

SI
which will not be explored in this paper. The partial

specialization is to add the connectives{•,→,←} to LSI and get the language of full Lambek
calculus, as we mentioned in the introduction, denoted byLLC. ClearlyLSI ( LLC ( L∗

SI
. The

partial specialization ofL∗
DLE

-algebras to the languageLLC is given in the following definition:

Definition 7. An algebraA = (A,∧,∨,⊤,⊥,→, •,←) is called abounded distributive lattice-
ordered residuated groupoid(BDRG), if (A,∧,∨,⊤,⊥) is a bounded distributive lattice, and
•,→,← are binary operations onA satisfying the following residuation law for alla, b, c ∈ A:

(RES)a • b ≤ c iff b ≤ a→ c iff a ≤ c← b.

LetBDRG be the class of all BDRGs.

Definition 8. The algebraic sequent calculusBDFNL consists of the following axioms and rules:

– Axioms:
(Id) φ ⊢ φ, (⊤) φ ⊢ ⊤, (⊥) ⊥ ⊢ φ,

(D) φ ∧ (ψ ∨ γ) ⊢ (φ ∧ ψ) ∨ (φ ∧ γ),

– Rules:

(∧L)
φi ⊢ ψ

φ1 ∧ φ2 ⊢ ψ
(i = 1, 2), (∧R)

γ ⊢ φ γ ⊢ ψ

γ ⊢ φ ∧ ψ
,

(∨L)
φ ⊢ γ ψ ⊢ γ

φ ∨ ψ ⊢ γ
, (∨R)

ψ ⊢ φi
ψ ⊢ φ1 ∨ φ2

(i = 1, 2),

(Res1)
φ • ψ ⊢ γ

ψ ⊢ φ→ γ
, (Res2)

ψ ⊢ φ→ γ

φ • ψ ⊢ γ
,

(Res3)
φ • ψ ⊢ γ

φ ⊢ γ ← ψ
, (Res4)

φ ⊢ γ ← ψ

φ • ψ ⊢ γ
,

(cut)
φ ⊢ ψ ψ ⊢ γ

φ ⊢ γ
.
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Fact 2 The following monotonicity rules are derivable inBDFNL:

(1)
φ ⊢ ψ

φ • χ ⊢ ψ • χ
, (2)

φ ⊢ ψ

χ • φ ⊢ χ • ψ
,

(3)
φ ⊢ ψ

χ→ φ ⊢ χ→ ψ
, (4)

φ ⊢ ψ

ψ → χ ⊢ φ→ χ
.

Proof. Here we derive only (1) and (3). The remaining rules are derived similarly.

φ ⊢ ψ

ψ • χ ⊢ ψ • χ
(Res3)

ψ ⊢ (ψ • χ)← χ
(cut)

φ ⊢ (ψ • χ)← χ
(Res4)

φ • χ ⊢ ψ • χ

χ→ φ ⊢ χ→ φ
(Res2)

χ • (χ→ φ) ⊢ φ φ ⊢ ψ
(cut)

χ • (χ→ φ) ⊢ ψ
(Res1)

χ→ φ ⊢ χ→ ψ

This completes the proof. ⊓⊔

The interpretation ofLLC-sequents in BDRGs is standard, i.e.,⊢ is interpreted as the lattice
order≤. By BDRG |= φ ⊢ ψ we mean thatφ ⊢ ψ is valid in all BDRGs. AnLLC-supersequent
is an expression of the formΦ⇒ χ ⊢ δ whereΦ is a set ofLLC-sequents. We say thatΦ⇒ χ ⊢ δ

is derivablein BDFNL if there exists a derivation ofχ ⊢ δ from assumptions inΦ. We say that
Φ ⇒ χ ⊢ δ is valid in a BDRGA if A |= Φ impliesA |= χ ⊢ ψ. We useBDRG |= Φ ⇒ χ ⊢ δ

to denote thatχ ⊢ δ is valid in all BDRGs. By the Lindenbaum-Tarski construction, one gets the
following result (cf. [11]):

Theorem 3 (strong completeness).For everyLLC-supersequentΦ ⇒ χ ⊢ δ, Φ ⇒ χ ⊢ δ is
derivable inBDFNL if and only ifBDRG |= Φ⇒ χ ⊢ δ.

2.3 Semantic conservativity via canonical extension

In this subsection, we will present general results on the semantic conservativity ofL∗
DLE

-logics
overLDLE logics. The proofs of the conservativity is by canonical extensions of DLEs. As a
special case, the Lambek calculusBDFNL is a conservative extension of the strict implication
logic SBDI. First of all, let us recall some concepts from [41]. Given a bounded latticeL, a
completionof L is a complete latticeC of whichL is a sublattice. For a completionC of a lattice
L, an elementx ∈ C is calledclosedif x =

∧

C F for someF ⊆ L; andx ∈ C is calledopenif
x =

∨

C I for someI ⊆ L. The set of all closed elements inC is denoted byK(C), and the set
of all open elements inC byO(C). A completionC of a latticeL is called

– denseif every element ofC can be represented both as a join of meets and as a meet of joins
of elements fromL.

– compactif for anyS ⊆ K(C) andT ⊆ O(C),
∧

S ≤
∨

T iff there are finite subsetsS′ ⊆ S

andT ′ ⊆ T with
∧

S′ ≤
∨

T ′.

A canonical extensionof a latticeL is a dense and compact completion ofL. Every lattice has a
canonical extension, denoted byLδ, which is unique up to an isomorphism [41].
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A distributive lattice isperfectif it is complete, completely distributive and completely join-
generated by the collection of its completely join-prime elements. Equivalently, a distributive
lattice is perfect if and only if it is isomorphic to the lattice of upsets of some poset. A normal
DLE is perfectif the underling distributive lattice is perfect, and eachf -operation (respectively
g-operation) is completely join-preserving (respectivelymeet-preserving) or completely meet-
reversing (respectively join-reversing) in each coordinate. It is well known that the canonical
extension of a bounded distributive lattice is perfect (cf.e.g. [42, Definition 2.14]).

Let h : L → M be any map from a latticeL to M . Following [41, Definition 4.1], one can
define two mapshσ, hπ : Lδ →M δ by setting:

hσ(u) =
∨

{
∧

{h(a) : a ∈ L & x ≤ a ≤ y} : K(Lδ) ∋ x ≤ u ≤ y ∈ O(Lδ)}.

hπ(u) =
∧

{
∨

{h(a) : a ∈ L & x ≤ a ≤ y} : K(Lδ) ∋ x ≤ u ≤ y ∈ O(Lδ)}.

Both hσ and hπ extendh, and hσ ≤ hπ pointwisely. In general, ifh is order-preserving,
thenhσ andhπ are also order-preserving ([41]). The canonical extensionof anLDLE-algebra
A = (A,FA,GA) is the perfectLDLE-algebraAδ = (Aδ ,FAδ

,GA
δ
) such thatfA

δ
andgA

δ
are

defined as theσ-extension offA and as theπ-extension ofgA respectively, for allf ∈ F and
g ∈ G.

Lemma 1. For everyL∗
DLE

-algebra(H,∧,∨,F∗,G∗), its (∧,∨,⊤,⊥,F ,G)-reduct is a normal
DLE.

Proof. Straightforward consequence of the fact that left adjoints(respectively right adjoints)
preserve existing joins (respectively meets). See [31, Proposition 7.31]. ⊓⊔

How can anLDLE-algebra be extended to anL∗
DLE

-algebra? This can be done in the canoni-
cal extensionAδ = (Aδ ,FAδ

,GA
δ
) of A. The canonical extensionAδ of the bounded distributive

latticeA is a perfect lattice which allows for defining adjoints. For eachf ∈ FA and1 ≤ i ≤ nf ,
define

f ♯i [ui] =

{

∨

{w ∈ Aδ | fi[w] ≤ ui}, if εf (i) = 1.
∧

{w ∈ Aδ | fi[w] ≤ ui}, if εf (i) = ∂.

For eachg ∈ GA and1 ≤ g ≤ ng, define

g♭j [uj] =

{

∧

{w ∈ Aδ | uj ≤ gj [w]}, if εg(j) = 1.
∨

{w ∈ Aδ | uj ≤ gj [w]}, if εg(j) = ∂.

LetFAδ ∗

andGA
δ ∗

be extensions ofFAδ
andGA

δ
by adding all operators defined in the above

way.

Lemma 2. The algebraAδE = (Aδ,FAδ ∗

,GA
δ ∗

) is a perfectL∗
DLE

-algebra.

Proof. It suffices to show the residuation laws. We prove only the case forf ∈ F andεf (i) = 1.
The remaining cases are similar. By definition, our goal is toshow
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fi[ui] ≤ w iff ui ≤
∨

{v ∈ Aδ | fi[v] ≤ w}.

The ‘only if’ part is obvious. For the ‘if’ part, assumeui ≤
∨

{v ∈ Aδ | fi[v] ≤ w}. Then
fi[ui] ≤ fi[

∨

{v ∈ Aδ | fi[v] ≤ w}]. By distributivity, one getsfi[ui] ≤
∨

{fi[v] | fi[v] ≤

w} ≤ w. ⊓⊔

Theorem 4. The logicL∗

DLE is a conservative extension ofLDLE, i.e., for everyLDLE-sequent
φ ⊢ ψ, φ ⊢ ψ is derivable inLDLE if and only ifφ ⊢ ψ is derivable inL∗

DLE.

Proof. Assume thatφ ⊢ ψ is derivable inLDLE. By the completeness ofLDLE, φ ⊢ ψ is valid in
all DLEs. By Lemma 1,φ ⊢ ψ is also valid in allL∗

DLE
-algebras. Hence by the completeness of

L∗

DLE, φ ⊢ ψ is derivable in it. Conversely, assume that theLDLE-sequentφ ⊢ ψ is not derivable
in LDLE. Then by the completeness ofLDLE with respect to. the class of DLEs, there exists a
DLE A and a variable assignment under whichφA 6≤ ψA, whereφA andψA are values ofφ and
ψ in A under that assignment respectively. Consider the canonical extensionAδ of A. SinceA is
a subalgebra ofAδ, the sequentφ ⊢ ψ is not satisfied inAδ under the variable assignmentι ◦ v
(ι denoting the canonical embeddingA →֒ Aδ). By Lemma 2, one gets anL∗DLE-algebraAδE

which refutesφ ⊢ ψ. By the completeness ofL∗

DLE, φ ⊢ ψ is not derivable inL∗

DLE. ⊓⊔

The minimal logicsL∗

DLE is in the full languageL∗DLE with all adjoints. If the language
LDLE is expanded partially, i.e., with a portion of adjoint pairs, one can also obtain more general
semantic conservativity results the proofs of which are thesame as the proof of Theorem 4.
Consider the languageLDLE(F ,G). LetX ⊆ F andY ⊆ G. DefineX ♯ as the extension ofX
with right adjoints, andY♭ as the extension ofY with left adjoints.

Theorem 5. Let LDLE(F ,G) be a DLE-language,X ⊆ F and Y ⊆ G. The minimal logic
L∗

DLE(F
∗,G∗) is a conservative extension of the minimal logicLDLE(F ,G,X

♯,Y♭) which is
also a conservative extension of the logicLDLE(F ,G).

Let us consider the specialization of Theorem 5 to the strictimplication logicSBDI and the
Lambek calculusBDFNL. First, as a corollary of Lemma 1, the(∧,∨,⊥,⊤,→)-reduct of a
BDRG is a BDI. Second, the canonical extension of a BDI(A,→) is theπ-extension(Aδ,→π)

which is also a BDI (cf. [41,40]), and we can define binary operators• and← onAδ by setting
u • v =

∧

{w ∈ Aδ | v ≤ u →π w} andu ← v =
∨

{w ∈ Aδ | w • v ≤ u}. As a corollary of
Lemma 2, one gets the residuation law: for allu, v, w ∈ Aδ, u • v ≤ w iff v ≤ u →π w. Then
one can apply Theorem 5 immediately to get the following corollary:

Corollary 1. BDFNL is a conservative extension ofSBDI.

2.4 The algorithmALBA for LDLE-inequalities

In this subsection, we will recall from [44] the definition ofinductiveLDLE-inequalities on which
the algorithmALBA is guaranteed to succeed, and we will further specialize it to inequalities in
the language of strict implication logic.
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Definition 9 (Signed Generation Tree).Thepositive(respectivelynegative) generation treeof
anyLDLE-terms is defined by labelling the root node of the generation tree ofs with the sign+
(respectively−), and then propagating the labelling on each remaining nodeas follows:

(1) For any node labelled with∨ or ∧, assign the same sign to its children nodes.
(2) For any node labelled withh ∈ F ∪ G of arity nh ≥ 1, and for any1 ≤ i ≤ nh, assign

the same (respectively the opposite) sign to itsith child node ifεh(i) = 1 (respectively if
εh(i) = ∂).

Nodes in signed generation trees arepositive(respectivelynegative) if they are signed+ (respec-
tively−). The signed generation tree of an inequalitys ≤ t consists of the generation trees of+s

and−t.

For any term (formula)s(p1, . . . pn), any order typeε over n, and any1 ≤ i ≤ n, an ε-
critical nodein a signed generation tree ofs is a leaf node+pi with εi = 1 or−pi with εi = ∂.
An ε-critical branch in the tree is a branch from anε-critical node. The intuition, which will be
built upon later, is that variable occurrences corresponding to ε-critical nodes areto be solved
for, according toε.

For every terms(p1, . . . pn) and every order typeε, we say that+s (respectively−s) agrees
with ε, and writeε(+s) (respectivelyε(−s)), if every leaf in the signed generation tree of+s

(respectively−s) is ε-critical. In other words,ε(+s) (respectivelyε(−s)) means that all variable
occurrences corresponding to leaves of+s (respectively−s) are to be solved for according to
ε. We will also write+s′ ≺ ∗s (respectively−s′ ≺ ∗s) to indicate that the subterms′ inherits
the positive (respectively negative) sign from the signed generation tree∗s. Finally, we will write
ε(γ) ≺ ∗s (respectivelyε∂(γh) ≺ ∗s) to indicate that the signed subtreeγ, with the sign inherited
from ∗s, agrees withε (respectively withε∂).

Definition 10. Nodes in signed generation trees will be called∆-adjoints, syntactically left
residual (SLR), syntactically right residual (SRR), and syntactically right adjoint (SRA), ac-
cording to the specification given in Table 3. A branch in a signed generation tree∗s, with
∗ ∈ {+,−}, is called agood branchif it is the concatenation of two pathsP1 andP2, one of
which may possibly be of length0, such thatP1 is a path from the leaf consisting (apart from
variable nodes) only of PIA-nodes, andP2 consists (apart from variable nodes) only of Skeleton-
nodes.7

Definition 11 (Inductive inequalities). For any order typeε and irreflexive and transitive re-
lation Ω on p1, . . . pn, the signed generation tree∗s (∗ ∈ {−,+}) of a terms(p1, . . . pn) is
(Ω, ε)-inductive if

(1) for all 1 ≤ i ≤ n, everyε-critical branch with leafpi is good (cf. Definition 10);
(2) everym-ary SRR-node in the critical branch is of the form⊛(γ1, . . . , γj−1, β, γj+1 . . . , γm),

where for anyh ∈ {1, . . . ,m} \ j:
(a) ε∂(γh) ≺ ∗s (cf. discussion before Definition 10), and

7 These classes are grouped together into the super-classesSkeletonand PIA as indicated in the table. This or-
ganization is motivated and discussed in [22] and [23] to establish a connection with analogous terminology in
[7].
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Table 3.Skeleton and PIA nodes forDLE.

Skeleton PIA
∆-adjoints SRA
+ ∨ ∧
− ∧ ∨

+ ∧ g with ng = 1
− ∨ f with nf = 1

SLR SRR
+ ∧ f with nf ≥ 1
− ∨ g with ng ≥ 1

+ ∨ g with ng ≥ 2
− ∧ f with nf ≥ 2

(b) pk <Ω pi for everypk occurring inγh and for every1 ≤ k ≤ n.

We will refer to<Ω as thedependency orderon the variables. An inequalitys ≤ t is (Ω, ε)-
inductive if the signed generation trees+s and−t are (Ω, ε)-inductive. An inequalitys ≤ t is
inductiveif it is (Ω, ε)-inductive for someΩ andε.

The definition of inductive inequalities forLDLE can be easily specialized to the language
LSI of strict implication logic. The specialization needs onlythe classification of nodes in Table
2.4.

Table 4.Skeleton and PIA nodes forLSI.

Skeleton PIA
∆-adjoints SRA
+ ∨ ∧
− ∧ ∨

+ ∧
− ∨

SLR SRR
+ ∧
− ∨ →

+ ∨ →
− ∧

Example 1.Every sequentφ ⊢ ψ can be presented as an inequality when⊢ is replaced with≤
due to the algebraic interpretation of⊢. The inequalities obtained from Table 1 are inductive. For
instance, (Fr) is inductive forεp = εp = εr = 1 andp <Ω q <Ω r. Henceforth we do not
distinguish “sequent” and “inequality” if no confusion will arise.

Now we will define the algorithmALBA in the setting ofLDLE. Consider the expanded lan-
guageL∗+

DLE
, which is built up on the base of the lattice constants⊤,⊥ and a set of propositional

variablesNOM ∪ CONOM ∪ AtProp (the variablesi, j in NOM are referred to asnominals, and
the variablesm,n in CONOM asconomimals), closing under the logical connectives ofL∗

DLE
.

The natural semantic environment ofL∗+
DLE

is given by perfectLDLE-algebras. LetA be a per-
fect LDLE-algebra. An elementa ∈ A is completely join-irreducible(respectively completely
meet-irreducible) ifa =

∨

S (respectivelya =
∧

S) implies thata ∈ S, for every subsetS of
A. Nominals and conominals respectively range over the sets of the completely join-irreducible
elements and the completely meet-irreducible elements of perfect DLEs.

An L∗+
DLE

-inequality is an expression of the formφ ≤ ψ whereφ andψ areL∗+
DLE

-formulas.
An L∗+

DLE
-quasi-inequality is an expression of the formφ1 ≤ ψ1 & . . . & φn ≤ ψn ⇒ φ0 ≤ ψ0.
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where allφi ≤ ψi for i ≤ n areL∗+
DLE

-inequalities. The algorithmALBAmanipulates inequalities
and quasi-inequalities inL∗+

DLE
.

The version ofALBA relative toLDLE runs as detailed in [25,44].LDLE-inequalities are
equivalently transformed into the conjunction of one or moreL∗+

DLE
quasi-inequalities, with the

aim of eliminating propositional variable occurrences viathe application of Ackermann rules.
The proof of the soundness and invertibility of the general rules for the DLE-setting is similar to
the one provided in [25,23]. Here we recall the algorithm from [44] briefly. The algorithmALBA
manipulates input inequalitiesφ ≤ ψ and proceeds in three stages:

First stage: preprocessing and first approximation.ALBA preprocesses the input inequal-
ity φ ≤ ψ by performing the following steps exhaustively in the signed generation trees+φ and
−ψ:

(1) (a) Push down, towards variables, occurrences of+∧, by distributing each of them over their
children nodes labelled with+∨ which are not in the scope of PIA nodes;

(b) Push down, towards variables, occurrences of−∨, by distributing each of them over their
children nodes labelled with−∧ which are not in the scope of PIA nodes;

(c) Push down, towards variables, occurrences of+f for anyf ∈ F , by distributing each
such occurrence over itsith child node whenever the child node is labelled with+∨

(respectively−∧) and is not in the scope of PIA nodes, and wheneverεf (i) = 1 (respec-
tively εf (i) = ∂);

(d) Push down, towards variables, occurrences of−g for anyg ∈ G, by distributing each such
occurrence over itsith child node whenever the child node is labelled with−∧ (respec-
tively +∨) and is not in the scope of PIA nodes, and wheneverεg(i) = 1 (respectively
εg(i) = ∂).

(2) Apply the splitting rules:

α ≤ β ∧ γ

α ≤ β α ≤ γ

α ∨ β ≤ γ

α ≤ γ β ≤ γ

(3) Apply the monotone and antitone variable-elimination rules:

α(p) ≤ β(p)

α(⊥) ≤ β(⊥)

β(p) ≤ α(p)

β(⊤) ≤ α(⊤)

for β(p) positive inp andα(p) negative inp.

Let Preprocess(φ ≤ ψ) be the finite set{φi ≤ ψi | 1 ≤ i ≤ n} of inequalities obtained after
the exhaustive application of the previous rules. Next, thefollowing first approximation ruleis
appliedonly onceto every inequality inPreprocess(φ ≤ ψ):

φ ≤ ψ

i0 ≤ φ ψ ≤m0

Here,i0 andm0 are a nominal and a conominal respectively. The first-approximation step gives
rise to systems of inequalities{i0 ≤ φi, ψi ≤m0} for each inequality inPreprocess(φ ≤ ψ).

Second stage: reduction-elimination cycle.The goal of the reduction-elimination cycle is
to eliminate all propositional variables from the systems received from the preprocessing phase.
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The elimination of each variable is effected by an application of one of the Ackermann rules
given below. In order to apply an Ackermann rule, the system must have a specific shape. The
adjunction, residuation, approximation, and splitting rules are used to transform systems into this
shape.

Residuation rules.Here below we provide the residuation rules relative to eachf ∈ F and
g ∈ G of arity at least1: for each1 ≤ j ≤ nf and each1 ≤ k ≤ ng:

fj[ψj ] ≤ χ
(εf (j) = 1),

ψj ≤ f
♯
j [χ]

fj[ψj ] ≤ χ
(εf (j) = ∂),

f ♯j [χ] ≤ ψj

χ ≤ gk[ψk]
(εg(k) = ∂),

ψk ≤ g
♭
k[χ]

χ ≤ gk[ψk]
(εg(k) = 1).

g♭k[χ] ≤ ψk

Approximation rules. Here below we provide the approximation rules relative to each f ∈
F andg ∈ G of arity at least1: for each1 ≤ j ≤ nf and each1 ≤ k ≤ ng,

i ≤ fj[ψj ]
(εf (j) = 1),

i ≤ fj[j] j ≤ ψj

gk[ψk] ≤m
(εg(k) = 1),

gk[n] ≤m ψk ≤ n

i ≤ fj[ψj ]
(εf (j) = ∂),

i ≤ fj[n] ψk ≤ n

gk[ψk] ≤m
(εg(k) = ∂),

gk[j] ≤m j ≤ ψh

where the variablesi, j (respectivelym,n) are nominals (respectively conominals). The nominals
and conominals introduced by approximation rules must befresh, i.e. not occur in the system
before applying the rule.

Ackermann rules. These rules are the core ofALBA, since their application eliminates
proposition variables. An important feature of Ackermann rules is that they are executed on
the whole set of inequalities in which a given variable occurs, and not on a single inequality.

&{αi ≤ p | 1 ≤ i ≤ n}&&{βj(p) ≤ γj(p) | 1 ≤ j ≤ m} ⇒ i ≤m
(RAR)

&{βj(
∨n

i=1 αi) ≤ γj(
∨n

i=1 αi) | 1 ≤ j ≤ m} ⇒ i ≤m

wherep does not occur inα1, . . . , αn, β1(p), . . . , βm(p) are positive inp, andγ1(p), . . . , γm(p)

are negative inp.

&{p ≤ αi | 1 ≤ i ≤ n}&&{βj(p) ≤ γj(p) | 1 ≤ j ≤ m} ⇒ i ≤m
(LAR)

&{βj(
∧n

i=1
αi) ≤ γj(

∧n
i=1

αi) | 1 ≤ j ≤ m} ⇒ i ≤m

wherep does not occur inα1, . . . , αn, β1(p), . . . , βm(p) are negative inp, andγ1(p), . . . , γm(p)

are positive inp.
Third stage: output. If there was some system in the second stage from which not alloccur-

ring propositional variables could be eliminated through the application of the reduction rules,
thenALBA reports failure and terminates. Else, each system{i0 ≤ φi, ψi ≤ m0} obtained from
Preprocess(ϕ ≤ ψ) has been reduced to a system, denotedReduce(ϕi ≤ ψi), containing no
propositional variables. LetALBA(ϕ ≤ ψ) be the set of quasi-inequalities& [Reduce(ϕi ≤

ψi)] ⇒ i0 ≤ m0 for eachϕi ≤ ψi ∈ Preprocess(ϕ ≤ ψ). Notice that all members of
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ALBA(ϕ ≤ ψ) are free of propositional variables.ALBA returnsALBA(ϕ ≤ ψ) and termi-
nates. The proof of the following theorem is a straightforward generalization of [25, Theorem
10.11], and hence its proof is omitted.

Theorem 6. For any languageLDLE, its corresponding version ofALBA succeeds on all induc-
tiveLDLE-inequalities, which are hence canonical8 and their corresponding logics are complete
with respect to the elementary classes of relational structures defined by their first-order corre-
spondents.

For the specialization of the algorithmALBA for LDLE to the setting of strict implication
logic, the only rules that need to note are the following residuation and approximation rules:

(a) Residuation rule:
ψ ≤ φ→ γ

φ • ψ ≤ γ

(b) Approximation rules:

φ→ ψ ≤m

i ≤ φ i→ ψ ≤m

φ→ ψ ≤m

ψ ≤ n φ→ n ≤m

i ≤ φ • ψ

j ≤ φ i ≤ j • ψ

i ≤ φ • ψ

j ≤ ψ i ≤ φ • j

Example 2.The running ofALBA on the inductiveLSI-sequents (inequalities) in Table 1 will
produce pure inequalities as below:

Sequent Output
(I) ∀ij(j • i ≤ j)

(Tr) ∀ij(j • i ≤ (j • i) • i)

(MP) ∀i(i ≤ i • i)

(W) ∀ij(i • j ≤ j)

(RT) ∀ijk(i • (j • k) ≤ i • k)

(B) ∀ijk(i • (j • k) ≤ (i • j) • k)

(B′) ∀ijk(i • (j • k) ≤ (i • k) • j)

(C) ∀ijk(i • (j • k) ≤ j • (i • k))

(Fr) ∀ijk(i • (j • k) ≤ (i • j) • (i • k))

(W′) ∀ij(j • i ≤ j • (j • i))

(Sym) ∀ij∀mn(j • i ≤m & i→ n ≤m⇒ j ≤m)

(Euc) ∀ij∀mn0n1(j • i ≤ n0 & i→ n1 ≤m & j→ n0 ≤m⇒ ⊤ ≤m)

(D) ⊤ → ⊥ ≤ ⊥

8 An LDLE-inequalitys ≤ t is canonicalif the class ofLDLE-algebras defined bys ≤ t is closed under canonical
extension.
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Here we show only the running ofALBA on (p → q) ∧ (q → r) ≤ p → r which proceeds as
below:

(p→ q) ∧ (q → r) ≤ p→ r (First Approximation)
⇔ ∀i∀m(i ≤ (p→ q) ∧ (q → r) & p→ r ≤m⇒ i ≤m) (Spliting)
⇔ ∀i∀m(i ≤ p→ q & i ≤ q → r & p→ r ≤m⇒ i ≤m) (Residuation)
⇔ ∀i∀m(p • i ≤ q & q • i ≤ r & p→ r ≤m⇒ i ≤m) (Approximation)
⇔ ∀ij∀m(p • i ≤ q & q • i ≤ r & j ≤ p & j→ r ≤m⇒ i ≤m) (RAR)
⇔ ∀ij∀m(j • i ≤ q & q • i ≤ r & j→ r ≤m⇒ i ≤m) (RAR)
⇔ ∀ij∀m((j • i) • i ≤ r & j→ r ≤m⇒ i ≤m) (RAR)
⇔ ∀ij∀m(j→ ((j • i) • i) ≤m⇒ i ≤m)

The output pure quasi-inequality is equivalent to∀ij(j • i ≤ (j • i) • i).

The algorithmALBA for LDLE-logic described above does not only work for the distribu-
tive setting but also in general work for non-distributive lattice setting [26]. Hence the algorithm
ALBA can be specialized to the full Lambek calculus. For the{•,←,→}-fragment of full Lam-
bek calculus, Kurtonina [50] presented a set of Sahlqvist formulas from which the first-order
correspondents can be calculated by the Sahlqvist-van Benthem quantifier elimination procedure.
Kurtonina’s definition of Sahlqvist formulas is narrower than inductive inequalities provided by
ALBA. For example, The (Fr) inequality is inductive but not Sahlqvist. This remark is also dis-
cussed in [26, Example 3.8].

2.5 First-order correspondents

Given an inductiveLDLE-inequalityφ ≤ ψ, the running ofALBA on it will output a pure quasi-
inequality, namely, a quasi-inequality in which no propositional variable occurs. Then the first-
order correspondent ofφ ≤ ψ is obtained when the Kripke semantics forL∗+

DLE
is given such that

L∗+
DLE

-terms are translated into a first-order language. For calculating the first-order correspon-
dents of inductiveLSI-inequalities, there are two kinds of Kripke semantics for the language
L+
LC

(i.e., the extension ofLLC with normals and conominals):binary and ternary relational
semantics.

Binary relational semantics. The binary relational semantics forLLC is given in ordinary
Kripke structures. Abinary frameis a pairF = (W,R) whereW is a non-empty set andR is
a binary relation onW . A binary modelis a tripleM = (W,R, V ) where(W,R) is a binary
frame andV : Prop∪NOM∪CONOM→ P(W ) is a valuation such that (i) for eachi ∈ NOM,
V (i) = {w} for somew ∈ W ; and (ii) for eachm ∈ CONOM, V (m) = W − {u} for some
u ∈ W . Note that here there are no additional conditions assumed for the binary relation or the
valuation. For anyLSI-formulaφ, thesatisfiability relationM, w |= φ under the binary relational
semantics is defined inductively as follows:

(1) M, w |= p iff w ∈ V (p).
(2) M, w |= i iff V (i) = {w}.
(3) M, w |= m iff V (m) =W − {w}.
(4) M, w 6|= ⊥.



Unified Correspondence and Proof Theory for Strict Implication 19

(5) M, w |= φ ∧ ψ iff M, w |= φ andM, w |= ψ.

(6) M, w |= φ ∨ ψ iff M, w |= φ orM, w |= ψ.

(7) M, w |= φ→ ψ iff ∀u ∈W (wRu &M, u |= φ⇒M, u |= ψ).

(8) M, w |= φ← ψ iff ∀u ∈W (uRw &M, u |= ψ ⇒M, w |= φ).

(9) M, w |= φ • ψ iff ∃u ∈W (uRw &M, w |= φ &M, u |= ψ).

Without the semantic clauses for nominals, conominals,← and •, we get the binary relation
semantics for strict implication language [13].9 The algorithmALBA provides a general corre-
spondence theory for the issue of the frame definability by sequents raised in [13].

For a binary frameF = (W,R), the dual algebra ofF is defined asF+ = (P(W ),∪,∩, ∅,W,→2
R

, •2R,←
2
R) where→2

R,←2
R and•2R are binary operations defined onP(W ) by setting

(1) X →2
R Y = {w ∈W | R(w) ∩X ⊆ Y };

(2) X ←2
R Y = {w ∈W | ∀u(uRw & u ∈ Y ⇒ w ∈ X)};

(3) X •2R Y = {w ∈W | ∃u(Ruw & w ∈ X & u ∈ Y )};

It is easy to prove that the algebraF+ is a BDRG. As [25, Theorem 8.1],ALBA is also correct
on binary relational frames. Then we can calculate the first-order correspondents of inductive
LSI-sequents under the binary relational semantics.

Example 3.The outputs ofALBA running on the inductive inequalities in Example 2 can be
transformed into first-order correspondents of the corresponding inductive sequents under the
binary relational semantics as below:

Sequent Binary Relational Correspondent
(I) ∀xy(Ryx ⊃ x = x)

(Tr) ∀xy(Ryx ⊃ Ryx)

(MP) ∀xRxx

(W) ∀xy(Ryx ⊃ x = y)

(RT) ∀xyz(Rxy ∧Ryz ⊃ Rxz)

(B) ∀xyz(Ryx ∧Rzy ⊃ Rzx ∧Ryx)

(B′) ∀xyz(Ryx ∧Rzy ⊃ Ryx ∧Rzx)

(C) ∀xyz(Ryx ∧Rzy ⊃ Rxx ∧ x = y ∧Rzx)

(Fr) ∀xyz(Ryx ∧Rzy ⊃ Rxx ∧Ryx ∧Rzx)

(W′) ∀xy(Ryx ⊃ Rxx)

(Sym) ∀xy(Rxy ⊃ Ryx)

(Euc) ∀xyz(Rxy ∧Rxz ⊃ Ryz)

(D) ∀x∃yRxy

Here we calculate only the first-order binary relational correspondents of (Tr) and (Sym).

9 In [13], the least weak strict implication logicwKσ is introduced using sequents and shown to be strongly complete
with respect to the class of all frames under the binary relational semantics. It is not hard to check that the algebraic
sequent systemSWH is equivalent towKσ .
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(1) The output of runningALBA on (Tr) is the pure inequality∀ij(j • i ≤ (j • i) • i). Note
thatz ∈ {x} •2 {y} if and only ifRyz andz = x.

∀ij(j • i ≤ (j • i) • i)⇔ ∀xy({x} •2 {y} ⊆ ({x} •2 {y}) •2 {y})

⇔ ∀xyz(z ∈ {x} •2 {y} ⊃ z ∈ ({x} •2 {y}) •2 {y})

⇔ ∀xyz(Ryz ∧ z = x ⊃ ∃u(Ruz ∧ z ∈ {x} •2 {y} ∧ u = y))

⇔ ∀xyz(Ryz ∧ z = x ⊃ Ryz ∧Ryz ∧ z = x)

⇔ ∀xyz(Ryz ∧ z = x ⊃ Ryz ∧ z = x)

which is a tautology. (Tr) is in fact derivable inSWH, and the systemSWH is strongly complete
with respect to the class of all binary frames ([13]).

(2) The output of runningALBA on (Sym) is the pure quasi-inequality∀ij∀mn(j • i ≤

m & i → n ≤ m ⇒ j ≤ m). Let j, i,m,n be interpreted as{x}, {y}, {u}c , {v}c respectively
where(.)c is the complement operation. The calculation is as below:

j • i ≤m⇔ {x} •2 {y} ⊆ {u}c

⇔ ∀z(Ryz ∧ z = x ⊃ z 6= u)

⇔ Ryx ⊃ x 6= u

i→ n ≤m⇔ ∀w(w ∈ {y} → {v}c ⊃ w 6= u)

⇔ ∀w(∀w0(Rww0 ∧ w0 = y ⊃ w0 6= v) ⊃ w 6= u)

⇔ ∀w((Rwy ⊃ y 6= v) ⊃ w 6= u)

⇔ ∀w(w = u ⊃ Rwy ∧ y = v)

⇔ Ruy ∧ y = v

∀ij∀mn(j • i ≤m & i→ n ≤m⇒ j ≤m)

⇔ ∀xyuv((Ryx ⊃ x 6= u) ∧Ruy ∧ y = v ⊃ x 6= u)

⇔ ∀xyu((Ryx ⊃ x 6= u) ∧Ruy ⊃ x 6= u)

⇔ ∀xyu(x = u ⊃ (Ruy ⊃ Ryx ∧ x = u))

⇔ ∀xy(Rxy ⊃ Ryx)

The sequent (Sym) defines the symmetry condition on binary frames.

Ternary relational semantics. The strict implication can be viewed as a binary modal operator
added to distributive lattices, and hence there is a ternaryrelational semantics for it (cf. [9,34]).
A ternary frameis a frameF = (W,S) whereS is a ternary relation onW . A ternary model
is a ternary frame with a valuation. The satisfiability relation M, w  φ for the languageLLC
under the ternary relational semantics is defined as usual. In particular, the semantic clauses for
implications and the product are the following (cf. [50]):

(1) M, w  φ→ ψ iff ∀u, v(Svuw & M, u  φ ⇒ M, v  ψ).
(2) M, w  φ← ψ iff ∀u, v(Svwu &M, u  ψ ⇒ M, v  φ).
(3) M, w  φ • ψ iff ∃u, v(Swuv &M, u  φ &M, v  ψ).
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Given a ternary frameF = (W,S), the dual ofF is defined asF∗ = (P(W ),∪,∩, ∅,W,→3
S

, •3S ,←
3
S) where→3

S,←3
S and•3S are binary operations defined onP(W ) by

(1) X →3
S Y = {w ∈W | ∀uv(Svuw & u ∈ X ⇒ v ∈ Y )};

(2) X ←3
S Y = {w ∈W | ∀uv(Svwu & u ∈ Y ⇒ v ∈ X};

(3) X •3S Y = {w ∈W | ∃uv(Swuv & u ∈ X & v ∈ Y )}.

It is easy to check thatF∗ is a BDRG. Then under the ternary relational semantics one can
calculate the first-order correspondents of inductive sequents.

Example 4.As Example 3, we present the first-order correspondents of these inductive sequents
under the ternary relational semantics as below:

Sequent Ternary Relational Correspondent
(I) ∀xyz(Szxy ⊃ z = x)

(Tr) ∀xyz(Szxy ⊃ ∃u(Szuy ∧ Suxy))

(MP) ∀xSxxx

(W) ∀xyz(Szyx ⊃ z = y)

(RT) ∀xyzuv(Suxv ∧ Svyz ⊃ Suxz)

(B) ∀xyzuw(Suxw ∧ Swyz ⊃ ∃v(Suvz ∧ Svxy))

(B′) ∀xyzuw(Suxw ∧ Swyz ⊃ ∃v(Suvy ∧ Svxz))

(C) ∀xyzuw(Suxw ∧ Swyz ⊃ ∃v(Suyv ∧ Svxz))

(Fr) ∀xyzuw(Suxw ∧ Swyz ⊃ ∃v0v1(Suv0v1 ∧ Sv0xy ∧ Sv1xz))

(W′) ∀xyz(Suxy ⊃ ∃u(Szxu ∧ Suxy))

(Sym) ∀xyv(Svyx ⊃ Sxxy)

(Euc) ∀xyzuv(Suxz ∧ Suyz ⊃ Svxz)

(D) ∀x∃yzSzyx

Here we calculate only the first-order ternary relational correspondents of (Tr) and (Sym). Note
thatz ∈ {x} •3 {y} if and only if Szxy.

∀ij(j • i ≤ (j • i) • i) ⇔ ∀xy({x} •3 {y} ⊆ ({x} •3 {y}) •3 {y})

⇔ ∀xyz(z ∈ {x} •3 {y} ⊃ z ∈ ({x} •3 {y}) •3 {y})

⇔ ∀xyz(Szxy ⊃ ∃uv(Szuv ∧ u ∈ ({x} •3 {y}) ∧ v ∈ {y}))

⇔ ∀xyz(Szxy ⊃ ∃uv(Szuv ∧ Suxy ∧ v ∈ {y}))

⇔ ∀xyz(Szxy ⊃ ∃u(Szuy ∧ Suxy)).

The result is not a tautology. The sequent (Tr) defines a special class of ternary relational frames.
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(2) For (Sym), letj, i,m,n be interpreted as{x}, {y}, {u}c, {v}c respectively where(.)c is
the complement operation. The calculation is as below:

j • i ≤m⇔ {x} •3 {y} ⊆ {u}c

⇔ ∀z(Szxy ⊃ z 6= u)

⇔ ∀z(z = u ⊃ ∼ Szxy)

⇔ ∼ Suxy

i→ n ≤m⇔ ∀w(w ∈ {y} → {v}c ⊃ w 6= u)

⇔ ∀w(∀w0w1(Sw1w0w ∧w0 = y ⊃ w1 6= v) ⊃ w 6= u)

⇔ ∀w(∀w1(Sw1yw ⊃ w1 6= v) ⊃ w 6= u)

⇔ ∀w(∀w1(w1 = v ⊃ ∼ Sw1yw) ⊃ w 6= u)

⇔ ∀w( ∼ Svyw ⊃ w 6= u)

⇔ ∀w(w = u ⊃ Svyw)

⇔ Svyu

∀ij∀mn(j • i ≤m & i→ n ≤m⇒ j ≤m)

⇔ ∀xyuv(∼ Suxy ∧ Svyu ⊃ x 6= u)

⇔ ∀xyuv(x = u ⊃ (Suxy∨ ∼ Svyu))

⇔ ∀xyv(Svyx ⊃ Sxxy)

The sequent (Sym) defines ternary frames satisfying∀xyv(Svyx ⊃ Sxxy).

3 Algebraic correspondence: an application ofALBA

The algorithmALBA is essentially a calculus for correspondence between non-classical logic
and first-order logic. It is used for obtaining analytic rules in display calculi for DLE-logics [44].
For the main purpose of the present paper, we will useALBA in a modified form, i.e., the Ack-
ermann based calculusALC based onBDFNL, as a tool for obtaining analytic rules from certain
axioms in the strict implication logic such that Gentzen-style cut-free sequent calculi will be con-
structed in the next section. The calculusALC is also a calculus designed for correspondence, not
correspondence between DLE-language and first-order language over Kripke frames, but corre-
spondence over BDRGs between the languageLSI and the languageL• built from propositional
variables and constants⊤,⊥ using only the operator• of product. The languageL• is quite natu-
ral because many properties of the product, e.g. the associativity, commutativity, contraction and
weakening, can be defined in terms ofL•-sequents.

Let us start from a motivating example. The logicSWH for weak Heyting algebras is obtained
fromSBDI by adding the inductive sequents(Tr) (p→ q)∧(q → r) ⊢ p→ r and(I) q ⊢ p→ p.
Obviously, the logicSWH can be conservatively extended to the extension ofBDFNL with all
instances of(Tr) and(I). From proof-theoretic point of view, we need to know which structural
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rules the additional axioms can be equivalently transformed into if there exists.10 In fact, in
BDFNL, one can prove that(I) is equivalent to(wl) p • q ⊢ p, and that(Tr) is equivalent to
(tr) p • s ⊢ (p • s) • s. Then it is easy to transform the sequents(wl) and(tr) into analytic rules
as we will show in the next section. Here we are in fact saying that two sequents define the same
class of BDRGS. Formally, we say that a sequentφ ⊢ ψ algebraically correspondsto φ′ ⊢ ψ′

over BDRGs when they define the same class of BDRGs.

Example 5.The fact that the sequent(I) algebraically corresponds to(wl) is follows immedi-
ately from the residuation law. Now we prove that the sequent(Tr) algebraically corresponds to
(tr). Let A = (A,→, •,←) be any BDRG. We need to show∀abd ∈ A[(a → b) ∧ (b → d) ≤

a→ d] iff ∀ac ∈ A[a • c ≤ (a • c) • c]. One proof is as follows:

∀abd[(a→ b) ∧ (b→ d) ≤ a→ d]

(I) ⇔ ∀abcd[c ≤ a→ b & c ≤ b→ d⇒ c ≤ a→ d]

(II) ⇔ ∀abcd[a • c ≤ b & b • c ≤ d⇒ a • c ≤ d]

(III) ⇔ ∀acb[a • c ≤ b⇒ a • c ≤ b • c]

(IV) ⇔ ∀ac[a • c ≤ (a • c) • c].

The steps (I) and (III) are obvious. The step (II) is by residuation in BDRGs. For the ‘if’ part
of step (IV), assume that∀ac[a • c ≤ (a • c) • c]. Let b ∈ A anda • c ≤ b. Then one gets
(a • c) • c ≤ b • c. By the assumption, one getsa • c ≤ b • c. The ‘only if’ part is the instantiation
of the universal quantifier.

For the algebraic correspondence, we will not take first-order language butL• as the corre-
sponding language ofLSI. Nominals and conominals will not be needed. Instead, we introduce
a calculusALC in which propositional variables will play the role of nominals or comonimals in
ALBA. The calculusALC will be defined using supersequent rules of the form

Φ⇒ φ ⊢ ψ

Φ′ ⇒ φ′ ⊢ ψ′
(r).

We say that(r) is valid in BDRG if Φ′ ⇒ φ′ ⊢ ψ′ is valid in all BDRGs validatingΦ⇒ φ ⊢ ψ.

Definition 12. The Ackermann lemma based calculusALC based onBDFNL consists of the
following rules:

(1) Splitting rules:

γ ⊢ φ ∧ ψ,Φ⇒ χ ⊢ δ
(∧S)

γ ⊢ φ, γ ⊢ ψ,Φ⇒ χ ⊢ δ

φ ∨ ψ ⊢ γ, Φ⇒ χ ⊢ δ
(∨S)

φ ⊢ γ, ψ ⊢ γ, Φ⇒ χ ⊢ δ

(2) Residuation rules:

ψ ⊢ φ→ γ, Φ⇒ χ ⊢ δ
(RL1)

φ • ψ ⊢ γ, Φ⇒ χ ⊢ δ

φ ⊢ γ ← ψ,Φ⇒ χ ⊢ δ
(RL2)

φ • ψ ⊢ γ, Φ⇒ χ ⊢ δ

10 In [63, Section 2.5], some contraction rules are shown to guarantee certain axioms. For example,(I) follows from
the weakening ruleX · Y ⇒ X, and(Tr) follows from Restall’s contraction rule(CSyll) X;Y ⇒ (X;Y );Y .
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Φ⇒ ψ ⊢ φ→ γ
(RR1)

Φ⇒ φ • ψ ⊢ γ

Φ⇒ φ ⊢ γ ← ψ
(RR2)

Φ⇒ φ • ψ ⊢ γ

(3) Approximation rules:

Φ⇒ φ ⊢ ψ
(Ap1)

p ⊢ φ,Φ⇒ p ⊢ ψ

Φ⇒ φ ⊢ ψ
(Ap2)

ψ ⊢ p, Φ⇒ φ ⊢ p

φ→ ψ ⊢ γ, Φ⇒ χ ⊢ δ
(→Ap1)

p ⊢ φ, p→ ψ ⊢ γ, Φ⇒ χ ⊢ δ

φ→ ψ ⊢ γ, Φ⇒ χ ⊢ δ
(→Ap2)

ψ ⊢ p, φ→ p ⊢ γ, Φ⇒ χ ⊢ δ

γ ⊢ φ→ ψ,Φ⇒ χ ⊢ δ
(→Ap3)

φ ⊢ p, γ ⊢ p→ ψ,Φ⇒ χ ⊢ δ

γ ⊢ φ→ ψ,Φ⇒ χ ⊢ δ
(→Ap4)

p ⊢ ψ, γ ⊢ φ→ p, Φ⇒ χ ⊢ δ

φ ⊢ ψ • γ, Φ⇒ χ ⊢ δ
(•Ap1)

p ⊢ ψ, φ ⊢ p • γ, Φ⇒ χ ⊢ δ

φ ⊢ ψ • γ, Φ⇒ χ ⊢ δ
(•Ap2)

p ⊢ γ, φ ⊢ ψ • p, Φ⇒ χ ⊢ δ

φ • ψ ⊢ γ, Φ⇒ χ ⊢ δ
(•Ap3)

φ ⊢ p, p • ψ ⊢ γ, Φ⇒ χ ⊢ δ

φ • ψ ⊢ γ, Φ⇒ χ ⊢ δ
(•Ap4)

ψ ⊢ p, φ • p ⊢ γ, Φ⇒ χ ⊢ δ

φ ∧ ψ ⊢ γ, Φ⇒ χ ⊢ δ
(∧Ap5)

φ ⊢ p, p ∧ ψ ⊢ γ, Φ⇒ χ ⊢ δ

φ ∧ ψ ⊢ γ, Φ⇒ χ ⊢ δ
(∧Ap6)

ψ ⊢ p, φ ∧ p ⊢ γ, Φ⇒ χ ⊢ δ

φ ⊢ ψ ∨ γ, Φ⇒ χ ⊢ δ
(∨Ap1)

p ⊢ ψ, φ ⊢ p ∨ γ, Φ⇒ χ ⊢ δ

φ ⊢ ψ ∨ γ, Φ⇒ χ ⊢ δ
(∨Ap2)

p ⊢ γ, φ ⊢ ψ ∨ p, Φ⇒ χ ⊢ δ

wherep is a fresh variable, i.e., a variable which does not occur in previous derivation.
(4) Ackermann rules:

φ1 ⊢ p, . . . , φn ⊢ p, Φ, Φ
′ ⇒ χ ⊢ δ

(RAck)
Φ[
∨n

i=1
φi/p], Φ

′ ⇒ (χ ⊢ δ)∗

where (i)p does not occur inΦ′ or φi for 1 ≤ i ≤ n; (ii) Φ = {ψj ⊢ γj | ψj(+p), γj(−p), 1 ≤

j ≤ m} andΦ[
∨n

i=1
φi/p] = {ψj [

∨n
i=1

φi/p] ⊢ γj [
∨n

i=1
φi/p] | ψj ⊢ γj ∈ Φ}; and (iii)

either p does not occur inχ ⊢ δ and (χ ⊢ δ)∗ = χ ⊢ δ, or χ ⊢ δ is positive inp and
(χ ⊢ δ)∗ = χ[

∨n
i=1

φi/p] ⊢ δ[
∨n

i=1
φi/p].

p ⊢ φ1, . . . , p ⊢ φn, Φ, Φ
′ ⇒ χ ⊢ δ

(LAck)
Φ[
∧n

i=1 φi/p], Φ
′ ⇒ (χ ⊢ δ)∗

where (i)p does not occur inΦ′ or φi for 1 ≤ i ≤ n; (ii) Φ = {ψj ⊢ γj | ψj(−p), γj(+p), 1 ≤

j ≤ m} andΦ[
∧n

i=1
φi/p] = {ψj [

∧n
i=1

φi/p] ⊢ γj [
∧n

i=1
φi/p] | ψj ⊢ γj ∈ Φ}; and (iii)

either p does not occur inχ ⊢ δ and (χ ⊢ δ)∗ = x ⊢ δ, or χ ⊢ δ is negative inp and
(χ ⊢ δ)∗ = χ[

∧n
i=1

φi/p] ⊢ δ[
∧n

i=1
φi/p].

The double line in above rules means that the above and the below supersequents can be
derived from each other. A supersequent rule(r) is said to bederivablein ALC if there is a
derivation of the conclusion from the premiss of(r) using only rules inALC.

Theorem 7 (Correctness).All rules inALC are valid inBDRG.
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Proof. The proof is routine. For details, see e.g. [25]. ⊓⊔

Given a set ofLSI-sequentsΦ, letAlg(Φ) andAlg+(Φ) be the class of all BDIs and the class
of all BDRGs validating all sequents inΦ respectively. Similarly, given a set ofL•-sequentsΨ , let
Alg+(Ψ) be the class of all BDRGs validating all sequents inΨ . Obviously, anLSI-sequentφ ⊢ ψ
corresponds to anL•-sequentφ′ ⊢ ψ′ over BDRGs if and only ifAlg+(φ ⊢ ψ) = Alg+(φ′ ⊢ ψ′).

Proposition 1. Given anLSI-sequentφ ⊢ ψ and anL•-sequentχ ⊢ δ, if the rule

⇒ φ ⊢ ψ

⇒ χ ⊢ δ
(r)

is derivable inALC, thenφ ⊢ ψ algebraically corresponds toχ ⊢ δ over BDRGs.

Proof. Assume that the rule (r) is derivable inALC. By the correctness ofALC, the premiss
φ ⊢ ψ and the conclusionχ ⊢ δ defines the same BDRGs, i.e.,Alg+(φ ⊢ ψ) = Alg+(φ′ ⊢ ψ′).

⊓⊔

By Proposition 1, one obtains a proof-theoretic tool for algebraic correspondence over BDRGs
between the languagesLSI andL•.

Example 6.SomeLSI-sequents (inequalities) in Table 1 and their algebraic correspondents in
L• are listed in Table 5.

Table 5.Some Algebraic Correspondents

LSI-sequent L•-sequent
(I) q ⊢ p→ p (wl) p • q ⊢ p
(Tr) (p→ q) ∧ (q → r) ⊢ p→ r (tr) p • s ⊢ (p • s) • s
(MP) p ∧ (p→ q) ⊢ q (ct) p ⊢ p • p
(W) p ⊢ q → p (wr) q • p ⊢ p
(RT) p→ q ⊢ r → (p→ q) (rt) p • (r • s) ⊢ p • s
(B) p→ q ⊢ (r → p)→ (r → q) (b) r • (s • t) ⊢ (r • t) • s
(B′) p→ q ⊢ (q → r)→ (p→ r) (b′) p • (t • s) ⊢ (p • s) • t
(C) p→ (q → r) ⊢ q → (p→ r) (c) p • (q • s) ⊢ q • (p • s)
(Fr) p→ (q → r) ⊢ (p→ q)→ (p→ r) (fr) p • (u • s) ⊢ (p • u) • (p • s)
(W′) p→ (p→ q) ⊢ p→ q (w′) p • r ⊢ p • (p • r)

(Tr) One proof is as follows:

⇒ (p→ q) ∧ (q → r) ⊢ (p→ r)
(AAp1)

s ⊢ (p→ q) ∧ (q → r)⇒ s ⊢ p→ r
(∧S)

s ⊢ p→ q, s ⊢ q → r ⇒ s ⊢ p→ r
(RL1, RR1)

p • s ⊢ q, q • s ⊢ r ⇒ p • s ⊢ r
(RAck)

p • s ⊢ q ⇒ p • s ⊢ q • s
(RAck)

⇒ p • s ⊢ (p • s) • s
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Other pairs of corresponding sequents can be proved similarly. See Appendix A.

Remark 1.Some inductiveLSI-sequents have algebraic correspondents inL• usingALC. But it
is not clear whether all inductive sequents inLSI have algebraic correspondents inL•. Consider
the sequents (Sym), (Euc) and (D). Our conjecture is that these sequents never correspond to any
L•-sequents. Conversely, we conjecture that not allL•-sequents have their algebraic correspon-
dents inLSI. Consider the inverse of(tr) in Table 5. We start from(p • s) • s ⊢ p • s and apply
ALC. The first step is to use approximation rule, and we get

p • s ⊢ q ⇒ (p • s) • s ⊢ q

Using residuation rules, we get

s ⊢ p→ q ⇒ s ⊢ (p • s)→ q

The next step is to consider using the left Ackermann rule because the termp • s on the right
hand side takes a negative position. Then we have

t ≤ p • s, s ⊢ p→ q ⇒ s ⊢ t→ q

Then there is no way to continueALC. It is rather likely that the sequent(p • s) • s ⊢ p • s has
no algebraic correspondent inLSI. The general question on the expressive power ofALC will be
explored in future work.

Let Φ be a set ofLSI-sequents andΨ a set ofL•-sequents. We use the notationΦ ≡ALC Ψ

to denote thatΨ consists ofL•-sequents obtained from sequents inΦ usingALC. Let SBDI(Φ)

be the algebraic sequent system obtained fromSBDI by adding all instances of sequents inΦ
as axioms. Similarly, letBDFNL(Ψ) be the algebraic sequent system obtained fromBDFNL by
adding all instances of sequents inΨ as axioms. ClearlySBDI(Φ) is sound and complete with
respect toAlg(Φ), andBDFNL(Ψ) is sound and complete with respect toAlg+(Ψ).

Lemma 3. LetΦ be a set of inductiveLSI-sequents andΨ a set ofL•-sequents. AssumeΦ ≡ALC

Ψ . For every algebraA in Alg+(Ψ), its (∧,∨,⊥,⊤,→)-reduct is an algebra inAlg(Φ).

Proof. LetA ∈ Alg+(Ψ). ThenA |= Ψ . ByΦ ≡ALC Ψ , one getsA |= Φ. Hence the(∧,∨,⊥,⊤,→
)-reduct ofA is an algebra inAlg(Φ). ⊓⊔

Lemma 4. LetΦ be a set of inductiveLSI-sequents andΨ a set ofL•-sequents. AssumeΦ ≡ALC

Ψ . For every algebraA = (A,→) in Alg(Φ), its canonical extensionAδ = (Aδ ,→π, •,←) is in
Alg+(Ψ).

Proof. Obviously,Aδ is a BDRG. Moreover,(Aδ ,→π) ∈ Alg(Φ) because every inductive se-
quent inΦ is canonical. ByΦ ≡ALC Ψ , one getsAδ |= Ψ . ⊓⊔

By Lemma 3 and Lemma 4, one gets the following theorem immediately:

Theorem 8. Let Φ be a set of inductive sequents inL and Ψ a set ofL•-sequents. Assume
Φ ≡ALC Ψ . The algebraic sequentBDFNL(Ψ) is a conservative extension ofSBDI(Φ).
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Example 7.Notice that(I) q ⊢ p→ p corresponds to(wl) p • q ⊢ p, and(Tr) (p → q) ∧ (q →

r) ⊢ p → r corresponds to(tr) p • s ⊢ (p • s) • s. Both (I) and(Tr) are inductive sequents.
The algebras defined by(wl) and(tr) are BDRGs satisfying the conditions:(wl) a • b ≤ a and
(tr) a • b ≤ (a • b) • b. We call such algebrasresiduated weak Heyting algebras, and the class
of such algebras is denoted byRWH. By Theorem 8, the algebraic sequent systemSRWH is a
conservative extension ofSWH. For sequents in Example 6, one can get similar conservativity
results.

4 Gentzen-style sequent calculi

In this section, we will first introduce a Gentzen-style cut-free sequent calculusGBDFNL for
BDFNL11, which will be presented by introducing structure operators separately for connectives
∧ and•. By the conservativity ofBDFNL overSBDI, and the subformula property ofGBDFNL,
one gets a cut-free sequent calculus forSBDI. LetSBDI(Φ) be an extension ofSBDI with inductive
sequents inΦ as axioms which have algebraic correspondents inL•. One can transform these
axioms into analytic rules, and if these rules which are added to GBDFNL does not effect the
subformula property, one gets a cut-free sequent system forSBDI(Φ) by omitting additional rules
for the two additional operators• and←.

4.1 The sequent calculusGBDFNL

Definition 13. Let⊙ and? be structural operators for the product• and∧ respectively. The set
of all structuresis defined inductively as follows:

Γ ::= φ | (Γ ⊙ Γ ) | (Γ ? Γ ),

whereφ ∈ LLC. We useΓ,∆,Σ etc. with indexes to denote structures. Each structureΓ is
associated with a termτ(Γ ) ∈ LLC defined inductively by

– τ(φ) = φ, for everyφ ∈ LLC;
– τ(Γ ⊙∆) = τ(Γ ) • τ(∆);
– τ(Γ ?∆) = τ(Γ ) ∧ τ(∆).

A consecution(sequent) isΓ ⊢ φ whereΓ is a structure andφ is anLLC-formula.

Given a BDRGA and an assingnmentµ in A, for any structureΓ , defineµ(Γ ) = µ(τ(Γ )).
We say thatΓ ⊢ φ is valid in A if µ(Γ ) ≤ µ(φ) for every assignment inA. We use the notation
BDRG |= Γ ⊢ φ to denote thatΓ ⊢ φ is valid in every BDRG. ObviouslyBDRG |= Γ ⊢ φ iff
BDRG |= τ(Γ ) ⊢ φ.

A contextis a structureΓ [−] with a single hole− for a structure. Formally, contexts are
defined inductively by the following rule:

Γ [−] ::= [−] | Γ [−]⊙∆ | ∆⊙ Γ [−] | Γ [−] ?∆ | ∆? Γ [−],

11 The sequent system forBDFNL defined in e.g. [11,12] does not admit cut elimination. When the distributivity is
added as an axiom, the sequentφ∧ (ψ ∨ (χ∨ δ)) ⊢ (φ∧ψ)∨ ((φ∨ χ)∨ (φ∧ δ)) cannot be proved without cut.
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where∆ is a structure. For any contextΓ [−] and structure∆, letΓ [∆] be the structure obtained
from Γ [−] by substituting∆ for the hole−. For a contextΓ [−], let τ(Γ [−]) be the formula
which contains a hole. In particular, letτ([−]) = −.

Definition 14. The sequent calculusGBDFNL consists of the following axioms and rules:

– Axioms:
(Id) φ ⊢ φ, (⊤) Γ ⊢ ⊤, (⊥) Γ [⊥] ⊢ φ,

– Logical rules:
∆ ⊢ φ Γ [ψ] ⊢ γ

Γ [∆⊙ (φ→ ψ)] ⊢ γ
(→ ⊢),

φ⊙ Γ ⊢ ψ

Γ ⊢ φ→ ψ
(⊢ →),

Γ [φ] ⊢ γ ∆ ⊢ ψ

Γ [(φ← ψ)⊙∆] ⊢ γ
(← ⊢),

Γ ⊙ ψ ⊢ φ

Γ ⊢ φ← ψ
(⊢ ←),

Γ [φ⊙ ψ] ⊢ γ

Γ [φ • ψ] ⊢ γ
(• ⊢),

Γ ⊢ φ ∆ ⊢ ψ

Γ ⊙∆ ⊢ φ • ψ
(⊢ •),

Γ [φ? ψ] ⊢ γ

Γ [φ ∧ ψ] ⊢ γ
(∧ ⊢),

Γ ⊢ φ ∆ ⊢ ψ

Γ ?∆ ⊢ φ ∧ ψ
(⊢ ∧),

Γ [φ] ⊢ γ Γ [ψ] ⊢ γ

Γ [φ ∨ ψ] ⊢ γ
(∨ ⊢),

Γ ⊢ φi
Γ ⊢ φ1 ∨ φ2

(⊢ ∨)(i = 1, 2),

– Structural rules:
Γ [∆?∆] ⊢ φ

Γ [∆] ⊢ φ
(?C),

Γ [∆] ⊢ φ

Γ [Σ ?∆] ⊢ φ
(?W),

Γ [∆? Λ] ⊢ φ

Γ [Λ?∆] ⊢ φ
(?E),

Γ [(∆1 ?∆2) ?∆3] ⊢ φ

Γ [∆1 ? (∆2 ?∆3)] ⊢ φ
(?As).

A derivation inGBDFNL is an instance of an axiom or a tree of applications of logicalor
structural rules. The height of a derivation if the greatestnumber of successive applications of
rules in it, where an axiom has height0. A formula with the connective in a logical rule is called
theprincipal formula of that rule. A sequentΓ ⊢ φ is derivable inGBDFNL if there is a derivation
ending withΓ ⊢ φ in GBDFNL. A rule of sequents is derivable inGBDFNL if the conclusion is
derivable whenever the premisses are derivable inGBDFNL.

Fact 9 The following structural rules are derivable inGBDFNL:

(?W′)
Γ [∆] ⊢ φ

Γ [∆?Σ] ⊢ φ
, (?As′)

Γ [∆1 ? (∆2 ?∆3)] ⊢ φ

Γ [(∆1 ?∆2) ?∆3] ⊢ φ
.

We will now prove the admissibility of cut rule inGBDFNL. The standard cut rule for a ‘deep
inference’ system using contexts with a hole is the following:

∆ ⊢ φ Γ [φ] ⊢ ψ
(cut)

Γ [∆] ⊢ ψ
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Consider the cut in which the right premiss is obtained by(?C) and the left premiss is an axiom
(⊤):

∆ ⊢ ⊤

Γ [⊤?⊤] ⊢ ψ
(?C)

Γ [⊤] ⊢ ψ
(cut)

Γ [∆] ⊢ ψ

To eliminate the cut here, one need to cut simultaneously thetwo occurrences of⊤ in the premiss
of (?C). Then we will consider Gentzen’s multi-cut or mix rule of which the cut rule is a special
case. We use multiple-hole contexts of the formΓ [−] . . . [−] to formulate the mix rule.

Theorem 10. The mix rule

∆ ⊢ φ Γ [φ] . . . [φ] ⊢ ψ

Γ [∆] . . . [∆] ⊢ ψ
(mix)

is admissible inGBDFNL.

Proof. We prove (mix) by simultaneous induction on (i) the complexity of the mixed formulaφ;
(ii) the height of the derivation of∆ ⊢ φ; (iii) the height of the derivation ofΓ [φ] ⊢ ψ. Assume
that∆ ⊢ φ is obtained byR1, andΓ [φ] ⊢ ψ byR2. We have four cases:

(I) At least one ofR1 andR2 is an axiom. We have two cases:

Case 1. BothR1 andR2 are axioms. We have the following subcases:

(1.1)R1 = (⊥) orR2 = (⊤). The conclusion of (mix) is an instance of(⊥) or (⊤).

(1.2)R1 = (Id). Then∆ = φ. The conclusion of (mix) is obtained byR2.

(1.3)R1 = (⊤), R2 = (Id). Thenφ = ⊤ = ψ. The conclusion of (mix) is obtained by(⊤).

(1.4)R1 = (⊤), R2 = (⊥). Thenφ = ⊤, and⊥ occurs inΓ [⊤] . . . [⊤]. The conclusion of
(mix) is obtained by(⊥).

Case 2. Exactly one ofR1 andR2 is an axiom. We have the following subcases:

(2.1)R1 = (Id). Then the conclusion is the same as the right premiss of (mix).

(2.2)R1 = (⊥). Then the conclusion of (mix) is an axiom.

(2.3)R1 = (⊤). Thenφ = ⊤. We have subcases according toR2. If R2 is a right rule of
a logical connective. We first apply (mix) to∆ ⊢ ⊤ and the premiss(es) ofR2, and then apply
the ruleR2. If R2 is a left rule of a logical connective, the proof is similar toCase 6. IfR2 is a
structural rule, the proof is similar to Case 4.

(2.4)R2 = (Id). The conclusion of (mix) is the same as the left premiss of (mix).

(2.5)R2 = (⊤). The conclusion of (mix) is an axiom.

(2.6)R2 = (⊥). If φ 6= ⊥, then the conclusion of (mix) is an instance of(⊥). Supposeφ =

⊥. We have subcases according toR1. ClearlyR1 cannot be a right rule of a logical connective.
If R1 is a left rule of a logical cognitive, the proof is similar to Case 5. IfR1 is a structural rule,
the proof is similar to Case 3.

(II) At least one of R1 andR2 is a structural rule . We have two cases:
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Case 3.R1 is a structural rule. By induction (ii), the (mix) can be pushup to the premiss of
R1 and then applyR1. For example, letR1 = (?C). The derivation

∆′[Σ ?Σ] ⊢ φ
(?C)

∆′[Σ] ⊢ φ Γ [φ] . . . [φ] ⊢ ψ
(mix)

Γ [∆′[Σ]] . . . Γ [∆′[Σ]] ⊢ ψ

is transformed into
∆′[Σ ?Σ] ⊢ φ Γ [φ] . . . [φ] ⊢ ψ

(mix)
Γ [∆′[Σ ?Σ]] . . . [∆′[Σ ?Σ]] ⊢ ψ

(?C∗)
Γ [∆′[Σ]] . . . Γ [∆′[Σ]] ⊢ ψ

where(?C∗) stands for the application of(?C) multiple times.

Case 4.R2 is a structural rule. Suppose thatφ is obtained by(?W) in R2. The derivation

∆ ⊢ φ

Γ [φ] . . . [∆′] . . . [φ] ⊢ ψ
(?W)

Γ [φ] . . . [Σ[φ] ?∆′] . . . [φ] ⊢ ψ
(mix)

Γ [∆] . . . [Σ[∆] ?∆′] . . . [∆] ⊢ ψ

is transformed into
∆ ⊢ φ Γ [φ] . . . [∆′] . . . [φ] ⊢ ψ

(mix)
Γ [∆] . . . [∆′] . . . [∆] ⊢ ψ

(?W)
Γ [∆] . . . [Σ[∆] ?∆′] . . . [∆] ⊢ ψ

For the remaining cases ofR2, by induction (ii), the (mix) can be push up to the premiss ofR2

and then applyR2.

(III) At least one of R1 andR2 is a logical rule, but the mixed formula is not principal.
We have two cases:

Case 5. The mixed formulaφ is not principal in the left premiss. Then we have subcases
according toR1. ClearlyR1 cannot be a right rule of a logical connective. AssumeR1 = (→⊢).
The derivation ends with

∆′ ⊢ χ ∆[δ] ⊢ φ
(→ ⊢)

∆[∆′ ⊙ (χ→ δ)] ⊢ φ Γ [φ] . . . [φ] ⊢ ψ
(mix)

Γ [∆[∆′ ⊙ (χ→ δ)]] . . . [∆[∆′ ⊙ (χ→ δ)]] ⊢ ψ

Firstly we push up (mix) as below:

∆[δ] ⊢ φ Γ [φ] . . . [φ] ⊢ ψ
(mix)

Γ [∆[δ]] . . . [∆[δ]] ⊢ ψ

Then we apply(→ ⊢) to ∆′ ⊢ χ andΓ [∆[δ]] . . . [∆[δ]] ⊢ ψ multiple times, and we get the
conclusion.
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AssumeR1 = (∨ ⊢). The derivation ends with

∆[χ] ⊢ φ ∆[δ] ⊢ φ
(∨ ⊢)

∆[χ ∨ δ] ⊢ φ Γ [φ] . . . [φ] ⊢ ψ
(mix)

Γ [∆[χ ∨ δ]] . . . [∆[χ ∨ δ]] ⊢ ψ

The rule (mix) is push up to sequents with less height of derivation in multiple steps. For the first
occurrence ofφ in Γ [φ] . . . [φ] ⊢ ψ, mix it with ∆[χ] ⊢ φ and∆[δ] ⊢ φ respectively, and by
(∨ ⊢) one getsΓ [∆[χ∨ δ]][φ] . . . [φ] ⊢ ψ. Repeat this process multiple times and we achieve the
conclusionΓ [∆[χ ∨ δ]] . . . [∆[χ ∨ δ]] ⊢ ψ.

The remaining casesR1 = (← ⊢), (• ⊢) or (∧ ⊢) are similar.

Case 6. The mixed formulaφ is principal only in the left premiss. Then we have subcases
according toR2. AssumeR2 = (→ ⊢). If φ does not occur inΣ, then the derivation

∆ ⊢ φ

Σ ⊢ χ Γ ′[δ][φ] . . . [φ] ⊢ ψ
(→⊢)

Γ ′[Σ ⊙ (χ→ δ)][φ] . . . [φ] ⊢ ψ
(mix)

Γ ′[Σ ⊙ (χ→ δ)][∆] . . . [∆] ⊢ ψ

is transformed into

Σ ⊢ χ

∆ ⊢ φ Γ ′[δ][φ] . . . [φ] ⊢ ψ
(mix)

Γ ′[δ][∆] . . . [∆] ⊢ ψ
(→ ⊢)

Γ ′[Σ ⊙ (χ→ δ)][∆] . . . [∆] ⊢ ψ

Suppose thatΣ = Σ′[φ]. The derivation

∆ ⊢ φ

Σ′[φ] ⊢ χ Γ ′[δ][φ] . . . [φ] ⊢ ψ
(→⊢)

Γ ′[Σ′[φ]⊙ (χ→ δ)][φ] . . . [φ] ⊢ ψ
(mix)

Γ ′[Σ′[∆]⊙ (χ→ δ)][∆] . . . [∆] ⊢ ψ

is transformed into

∆ ⊢ φ Σ′[φ] ⊢ χ
(mix)

Σ′[∆] ⊢ χ

∆ ⊢ φ Γ ′[δ][φ] . . . [φ] ⊢ ψ
(mix)

Γ ′[δ][∆] . . . [∆] ⊢ ψ
(→⊢)

Γ ′[Σ′[∆]⊙ (χ→ δ)][∆] . . . [∆] ⊢ ψ

The remaining casesR2 = (← ⊢), (• ⊢), (∧ ⊢), or (∨ ⊢) are similar.

(IV) Both R1 andR2 are logical rules, and the mixed formula is principal. Then we prove
it by induction on the complexity ofφ. Assume thatφ = φ1 • φ2. The derivation

∆1 ⊢ φ1 ∆2 ⊢ φ2
(⊢ •)

∆1 ⊙∆2 ⊢ φ

Γ [φ] . . . [φ1 ⊙ φ2] . . . [φ] ⊢ ψ
(• ⊢)

Γ [φ] . . . [φ1 • φ2] . . . [φ] ⊢ ψ
(mix)

Γ [∆1 ⊙∆2] ⊢ ψ
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is transformed into

∆1 ⊢ φ1

∆2 ⊢ φ2

∆1 ⊙∆2 ⊢ φ Γ [φ] . . . [φ1 ⊙ φ2] . . . [φ] ⊢ ψ
(mix)

Γ [∆1 ⊙∆2] . . . [φ1 ⊙ φ2] . . . [∆1 ⊙∆2] ⊢ ψ
(mix)

Γ [∆1 ⊙∆2] . . . [φ1 ⊙∆2] . . . [∆1 ⊙∆2] ⊢ ψ
(mix)

Γ [∆1 ⊙∆2] . . . [∆1 ⊙∆2] . . . [∆1 ⊙∆2] ⊢ ψ

Note that the (mix) rule is push up to sequents with lesser height in the derivation. The remaining
casesφ = φ1 → φ2, φ1 ← φ2, φ1 ∧ φ2, orφ1 ∨ φ2 are quite similar. ⊓⊔

In all rules ofGBDFNL, no formula disappears in from the premiss(es) to the conclusion.
Hence we get the subformula property ofGBDFNL immediately:

Theorem 11. If a consecutionΓ ⊢ φ has a derivation inGBDFNL, then all formulas in the
derivation are subformulas ofΓ, φ.

Now we will prove the completeness ofGBDFNL with respect toBDRG. Firstly, we have the
following lemma on the invertibility of some rules inGBDFNL:

Lemma 5. The following rules are admissible inGBDFNL:

Γ ⊢ φ→ ψ

φ⊙ Γ ⊢ ψ
(⊢→ ↑),

Γ [φ • ψ] . . . [φ • ψ] ⊢ γ

Γ [φ⊙ ψ] . . . [φ⊙ ψ] ⊢ γ
(• ⊢ ↑),

Γ ⊢ φ← ψ

Γ ⊙ ψ ⊢ φ
(⊢← ↑),

Γ [φ ∧ ψ] . . . [φ ∧ ψ] ⊢ γ

Γ [φ? ψ] . . . [φ? ψ] ⊢ γ
(? ⊢ ↑).

Proof. The proof is done by induction on the height of the derivationof the premiss. Here we
prove only the admissibility of(⊢→ ↑) and(• ⊢ ↑). The remaining rules are shown similarly.
Assume that the premiss is obtained byR.

For (⊢→ ↑), if R is an axiom, one can getφ⊙ Γ ⊢ easily. IfR is a left rule of a connective,
or a rule for?, we push up(⊢→ ↑) to the premiss(es) ofR and then apply the ruleR. If R is a
right rule, it can only be(⊢→) and then one getsφ⊙ Γ ⊢ ψ.

For (• ⊢ ↑), assume thatΓ ⊢ φ→ ψ is obtained byR. We have the following cases:

Case 1.R is an axiom. WhenR is (⊥) or (⊤), the conclusion is also(⊥) or (⊤). Assume
R = (Id). The conclusionφ⊙ ψ ⊢ φ • ψ can be derived by(⊢ •) obviously.

Case 2.R is a logical rule. IfR is a rule of→,←, ∧, orR is (⊢ •), one can push up(⊢→ ↑)
to the premiss ofR and then apply the ruleR. If R = (• ⊢), one can push up(• ⊢ ↑) to the
premiss ofR and obtain the conclusion directly.

Case 3.R is a structural rule. Apply(• ⊢ ↑) to the premiss ofR and then applyR. ⊓⊔

Lemma 6. If φ ⊢ ψ is derivable inBDFNL, thenφ ⊢ ψ is derivable inGBDFNL.

Proof. By induction on the derivation ofφ ⊢ ψ in BDFNL.
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Case 1.φ ⊢ ψ is an axiom. The cases of (Id), (⊤) and (⊥) are clear. For (D), one derivation
is

φ ⊢ φ ψ ⊢ ψ
(⊢ ∧)

φ? ψ ⇒ φ ∧ ψ
(⊢ ∨)

φ? ψ ⇒ (φ ∧ ψ) ∨ (φ ∧ γ)

φ ⊢ φ γ ⊢ γ
(⊢ ∧)

φ? γ ⇒ φ ∧ γ
(⊢ ∨)

φ? γ ⇒ (φ ∧ ψ) ∨ (φ ∧ γ)
(∨ ⊢)

φ? (ψ ∨ γ)⇒ (φ ∧ ψ) ∨ (φ ∧ γ)
(∧ ⊢)

φ ∧ (ψ ∨ γ)⇒ (φ ∧ ψ) ∨ (φ ∧ γ)

Case 2.φ ⊢ ψ is obtained by a rule. Obviously, rules for∧ and∨ are derivable inGBDFNL.
The rule (cut) is a special case of (mix) inGBDFNL. For residuation rules, (Res1) is shown by the
rule(• ⊢ ↑) in Lemma 5 and(• ⊢). (Res2) is obtained by the rule(⊢→ ↑) in Lemma 5 and(• ⊢).
The remaining residuation rules are shown similarly. ⊓⊔

Lemma 7. If a consecutionΓ ⊢ φ is derivable inGBDFNL, then τ(Γ ) ⊢ φ is derivable in
BDFNL.

Proof. By induction on the height of the derivation ofΓ ⊢ φ in GBDFNL.
Case 1.Γ ⊢ φ is an axiom. The cases of (Id) and (⊤) are obvious. We proveτ(Γ [⊥]) ⊢ φ by

induction on the construction ofΓ . We have the following cases:
(1.1)Γ = ψ. ThenΓ [⊥] = ⊥ = ψ. By (⊥), we have⊥ ⊢ φ.
(1.2) Γ = Γ ′ ⊙ ∆. AssumeΓ ′ = Γ ′[⊥]. By induction hypothesis, we haveτ(Γ ′[⊥]) ⊢

φ ← τ(∆). Then by (Res4) inBDFNL, one getsτ(Γ ′[⊥]) • τ(∆) ⊢ φ. Assume∆ = ∆[⊥]. By
induction hypothesis,τ(∆[⊥]) ⊢ τ(Γ )→ φ. By (Res2), one getsτ(Γ ) • τ(∆[⊥]) ⊢ φ.

(1.3)Γ = Γ ′
?∆. Thenτ(Γ [⊥]) = τ(Γ ′[⊥]) ∧ τ(∆) or τ(Γ [⊥]) = τ(Γ ′) ∧ τ(∆[⊥]). By

induction hypothesis, one can easily obtainτ(Γ ) ⊢ φ.
Case 2.Γ ⊢ φ is obtained by(→⊢) or (←⊢). We prove the case of(→⊢) and the other one

is similar. By inductive hypothesis, we haveτ(∆) ⊢ χ andτ(Σ[ξ]) ⊢ φ. Our goal is to prove
τ(Σ[∆ ⊙ (χ → ξ)]) ⊢ φ. Firstly, inBDFNL, from τ(∆) ⊢ χ, one getsχ → ξ ⊢ τ(∆) → ξ.
Then by (Res2), one getsτ(∆) • (χ→ ξ) ⊢ ξ.

Claim. For any contextΣ[−], we haveτ(Σ[τ(∆) • (χ→ ξ)]) ⊢ τ(Σ[ξ]).
Proof of Claim. By induction on the construction ofΣ[−]. The caseΣ[−] = [−] is obvious.

AssumeΣ[−] = Σ′[−] ⊙ ∆′. Thenτ(Σ[−]) = τ(Σ′[−]) • τ(∆′). By induction hypothesis,
one getsτ(Σ′[τ(∆) • (χ → ξ)]) ⊢ τ(Σ′[ξ]). Then one getsτ(Σ′[τ(∆) • (χ → ξ)]) • τ(∆′) ⊢

τ(Σ′[ξ]) • τ(∆′). The remaining cases are similar. This completes the proof of the claim.
Now by applying (cut) toτ(Σ[τ(∆) • (χ → ξ)]) ⊢ τ(Σ[ξ]) and τ(Σ[ξ]) ⊢ φ, one gets

τ(Σ[∆ ⊙ (χ→ ξ)] ⊢ φ).
Case 3.Γ ⊢ φ is obtained by(⊢→) or (⊢←). We prove the case of(⊢→) and the other one

is similar. Letφ = χ→ ξ. From the premissχ⊙ Γ ⊢ ξ of (⊢ →), by inductive hypothesis, one
getsχ • τ(Γ ) ⊢ ξ. By (Res1), one getsτ(Γ ) ⊢ χ→ ξ.

Case 4.Γ ⊢ φ is obtained by(• ⊢). By induction hypothesis, one getsτ(Γ [χ ⊙ ξ]) ⊢ φ is
derivable inBDFNL. Clearly, it is rather easy to check by induction on the construction ofΓ that
τ(Γ [χ⊙ ξ]) = τ(Γ [χ • ξ]). Thereforeτ(Γ [χ • ξ]) ⊢ φ is derivable inBDFNL.

Case 5.Γ ⊢ φ is obtained by(⊢ •). Let φ = χ • ξ. By induction hypothesis, one gets
τ(Γ ) ⊢ χ andτ(∆) ⊢ ξ. By the monotonicity rules of•, one getsτ(Γ ) • τ(∆) ⊢ χ • ξ.

Case 6.Γ ⊢ φ is obtained by(∧ ⊢) or (⊢ ∧). The proof is similar to Case 4 or Case 5.
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Case 7.Γ ⊢ φ is obtained by(∨ ⊢). By induction hypothesis, one getsτ(Γ [χ]) ⊢ φ and
τ(Γ [ξ]) ⊢ φ. We proveτ(Γ [χ ∨ ξ]) ⊢ φ by induction on the construction ofΓ .

(7.1)Γ [−] = [−]. Then we haveχ ⊢ φ andξ ⊢ φ. By (∨L) in BDFNL, one getsχ ∨ ξ ⊢ φ.
(7.2)Γ [−] = Γ1[−]⊙Γ2 orΓ1⊙Γ2[−]. The two cases are quite similar, and we specify only

the first case. Clearly we haveτ(Γ1[χ]) • τ(Γ2) ⊢ φ andτ(Γ1[ξ]) • τ(Γ2) ⊢ φ. By residuation
rules, one getsτ(Γ1[χ]) ⊢ φ ← τ(Γ2) andτ(Γ1[ξ]) ⊢ φ ← τ(Γ2). By induction hypothesis on
Γ1, one getsτ(Γ1[χ ∨ ξ]) ⊢ φ← τ(Γ2). By residuation, one getsτ(Γ1[χ ∨ ξ]) • τ(Γ2) ⊢ φ.

(7.3)Γ [−] = Γ1[−] ? Γ2 or Γ1 ? Γ2[−]. The proof is quite similar to (7.2).
Case 8.Γ ⊢ φ is obtained by(⊢ ∨). The proof is quite similar to Case 5.
Case 9.Γ ⊢ φ is obtained by(?W). By induction hypothesis, one getsτ(Γ [∆]) ⊢ φ. Clearly

one getsτ(Γ [τ(∆)] ⊢ φ. We proveτ(Γ [τ(Σ) ∧ τ(∆)]) ⊢ φ by induction onΓ .
(9.1)Γ [−] = [−]. Then we haveτ(∆) ⊢ φ. In BDFNL we haveτ(Σ) ∧ τ(∆) ⊢ φ.
(9.2) Γ [−] = Γ1[−] ⊙ Γ2 or Γ1 ⊙ Γ2[−]. The two cases are quite similar, and we specify

only the first case. Clearlyτ(Γ1[τ(∆)]) • τ(Γ2) ⊢ φ. By residuation, one getsτ(Γ1[τ(∆)]) ⊢

φ ← τ(Γ2). By induction hypothesis onΓ1, one getsτ(Γ1[τ(Σ) ∧ τ(∆)]) ⊢ φ ← τ(Γ2). By
residuation, one getsτ(Γ1[τ(Σ) ∧ τ(∆)]) • τ(Γ2) ⊢ φ.

(9.3)Γ [−] = Γ1[−] ? Γ2 or Γ1 ? Γ2[χ]. The proof is quite similar to (9.2).
Case 10.Γ ⊢ φ is obtained by(?C), (?E) or (?As). The proof is done by lattice rules in

BDFNL. The proof is quite similar to Case 9. ⊓⊔

Lemma 8. If τ(Γ ) ⊢ φ is derivable inGBDFNL, thenΓ ⊢ φ is derivable inGBDFNL.

Proof. By induction on the construction ofΓ . The case thatΓ is a formula is obvious. Assume
Γ = Γ1 ? Γ2. Assumeτ(Γ1) ∧ τ(Γ2) ⊢ φ. By induction on the construction of a structureΣ
one can easily showΣ ⊢ τ(Σ). Then we haveΓ1 ⊢ τ(Γ1) andΓ2 ⊢ τ(Γ2). By (⊢ ∧), one gets
Γ1 ?Γ2 ⊢ τ(Γ1)∧ τ(Γ2). By (mix), one getsΓ1 ?Γ2 ⊢ φ. The caseΓ = Γ1⊙Γ2 is similar. ⊓⊔

Theorem 12. A consecutionΓ ⊢ φ is derivable inGBDFNL if and only ifBDRG |= Γ ⊢ φ.

Proof. For the ‘if’ part, assumeBDRG |= Γ ⊢ φ. ThenBDRG |= τ(Γ ) ⊢ φ. By the com-
pleteness ofBDFNL, τ(Γ ) ⊢ φ is derivable inBDFNL. By Lemma 6,τ(Γ ) ⊢ φ is derivable in
GBDFNL. By Lemma 8,Γ ⊢ φ is derivable inGBDFNL. For the ‘only if’ part, assume thatΓ ⊢ φ
is derivable inGBDFNL. By Lemma 7,τ(Γ ) ⊢ φ is derivable inBDFNL. By the completeness of
BDFNL, BDRG |= τ(Γ ) ⊢ φ. ThereforeBDRG |= Γ ⊢ φ. ⊓⊔

4.2 Extensions

We will now consider some extensions ofSBDI and their conservative extensions overBDFNL.
Given anL•-sequent(σ) χ ⊢ δ the propositional variables occurred in which are amongp1, . . . , pn,
the structural rule corresponding to(σ) is defined as the following rule(⊙σ):

δ[∆1/p1, . . . ,∆n/pn] ⊢ φ

χ[∆1/p1, . . . ,∆n/pn] ⊢ φ
(⊙σ)

whereδ[∆1/p1, . . . ,∆n/pn] andχ[∆1/p1, . . . ,∆n/pn] are obtained fromδ andχ by substitut-
ing∆i for pi uniformly, and substituting⊙ for •.
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Example 8.For weak Heyting algebras, we have the following structuralrules for(tr) and(wl):

Γ [(Λ⊙∆)⊙∆] ⊢ φ

Γ [Λ⊙∆] ⊢ φ
(⊙tr),

Γ [∆] ⊢ φ

Γ [∆⊙Σ] ⊢ φ
(⊙wl).

LetGRWH be the Gentzen-style sequent system obtained fromGRBDI by adding(⊙tr) and(⊙wl).
We can get similar sequent rules for sequents in Example 6 andGenzten-style sequent systems.

For any set ofL•-sequentsΨ , let⊙Ψ = {⊙σ | σ ∈ Ψ} andGBDFNL(⊙Ψ) be the Gentzen-
style sequent system obtained fromGBDFNL by adding all rules in(⊙Ψ).

Theorem 13. For any set ofL•-sequentsΨ , if for every sequentχ ⊢ δ ∈ Ψ , each propositional
variable inχ occurs only once, then(mix) is admissible inGBDFNL(⊙Ψ).

Proof. Based on the proof of Theorem 10, one needs to consider only the case that the right
premise of (mix) is obtained by(⊙σ). We first apply (mix) to the left premiss of (mix) and the
premiss of(⊙σ). Then by(⊙σ), we get the conclusion of (mix). ⊓⊔

Remark 2.The condition that a propositional variable occurs at most once inχ in Theorem 13
is significant. All sequents in Example 6 satisfy this condition. When a propositional variable
occurs more than once inχ, the proof strategy in Theorem 13 may not work. For example,
consider the the following inverse rule of(⊙tr) which is obtained from(p • q) • q ⊢ p • q:

Γ [Λ⊙∆[ψ]] ⊢ φ

Γ [(Λ⊙∆[ψ]) ⊙∆[ψ]] ⊢ φ
(⊙tr ↑)

and the derivation

Σ ⊢ ψ

Γ [Λ⊙∆[ψ]] ⊢ φ
(⊙tr ↑)

Γ [(Λ⊙∆[ψ])⊙∆[ψ]] ⊢ φ
(mix)

Γ [(Λ⊙∆[Σ])⊙∆[ψ]] ⊢ φ

in which only one occurrence ofψ is mixed. In such a case, we may not be able to push up (mix)
to the premiss of(⊙tr ↑).

An L•-sequentχ ⊢ δ is said to begoodif each propositional variable occurs at most once in
χ. Then we have the following theorem about good sequents:

Theorem 14. For any set of goodL•-sequentsΨ , the following hold:
(1) Γ ⊢ φ is derivable inGBDFNL(⊙Ψ) iff Alg+(Ψ) |= Γ ⊢ φ.
(2) if every propositional variable occurred inδ also occurs inχ for each sequentχ ⊢ δ in

Ψ , thenGBDFNL(⊙Ψ) has the subformula property.

Proof. The proof of (1) is similar to Theorem 12. It suffices to show that the algebraic sequent
systemBDFNL(Ψ) is equivalent toGBDFNL(⊙Ψ). For (2), if every propositional variable oc-
curred inδ also occurs inχ, then every subformula ofδ is a subformula ofχ. Hence the structural
rule (⊙σ) does not effect on the subformula property. ⊓⊔
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LetΦ be a set of inductiveLSI-sequents. Assume thatΨ is set ofL•-sequent such thatΦ ≡ALC

Ψ . Then the algebraic sequent systemBDFNL(Ψ) is a conservative extension ofSBDI(Φ). If Ψ
is a set of goodL•-sequent, one gets a Gentzen-style cut-free sequent calculus GBDFNL(⊙Ψ).
Furthermore, ifGBDFNL(⊙Ψ) has the subformula property, we obtain a Gentzen-style cut-free
sequent calculus forSBDI(Φ) if we omit rules for• and← from GBDFNL(⊙Ψ).

Table 6.Gentzen-style Sequent Calculi

Strict Implication Logic Conservative Extension
GWH GRWH = GBDFNL + (⊙wl) + (⊙tr)
GT GRT = GBDFNL + (⊙ct)
GW GRW = GBDFNL + (⊙wr)
GRT GRRT = GBDFNL + (⊙rt)
GB GRB = GBDFNL + (⊙b)
GB′ GRB′ = GBDFNL + (⊙b′)
GC GRC = GBDFNL + (⊙c)
GFR GRFR = GBDFNL + (⊙fr)
GW′ GRW′ = GBDFNL + (⊙w′)
GBCA GRBCA = GT + (⊙w)
GKT GRKT = GRWH + (⊙ct)
GK4 GRK4 = GRWH + (⊙rt)
GS4 GRS4 = GRKT + (⊙rt)
GKW GRKW = GWH + (⊙w)

For example, the algebraic correspondents in Table 5 are good L•-sequents. Then we get
Gentzen-style sequent calculi in Table 6 for residuated BDIs defined by the correspondingL•-
sequents. These calculi admit(mix) and have the subformula property.

4.3 Comparison with literature

Our framework in the present paper is to apply unified correspondence theory to proof theory of
strict implication logics. The sequent calculi developed for conservative extensions are Gentzen-
style. This framework is quite different from the approaches in literature. Here we compare some
sequent calculi for strict implication logics in literature with these calculi listed in Table 6.

Two types of calculi for non-classical logics in literatureare distinguished by Alenda, Olivetti
and Pozzato [3]:

“Similarly to modal logics and other extensions/alternative to classical logics two types
of calculi: externalcalculi which make use of labels and relations on them to import the
semantics into the syntax, andinternal calculi which stay within the language, so that a
configuration’ (sequent, tableaux node ...) can be directlyinterpreted as a formula of the
language.” [3, p.15]

Obviously the sequent calculi developed in the present paper areinternalbecause every structure
in anLLC-sequent is directly translated into anLLC-formula. Ishigaki and Kashima [46] also
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developed internal sequent calculi for some strict implication logics, but we have mentioned the
advantages of our approach in Section 1.

External calculi for strict implication logics are also developed in literature. Labelled sequent
calculi for intermediate logics are developed by Dyckhoff and Negri [35], and their connections
with Hilbert axioms and hypersequents are investigated by Ciabattoni et al [20]. In this approach,
any intermediate logic characterized by a class of relational frames that is definable by first-
ordergeometric axioms12, can be formalized in a cut-free and contraction-free labelled sequent
calculus that extends the labelled sequent calculus for intuitionistic logic with geometric rules
transformed from these geometric axioms. Using the same approach, Yamasaki and Sano [67]
developed labelled sequent calculi for some subintuitionistic logics [30].

The development of an external calculus for a strict implication logic depends on that the
logic has geometric relational semantics, i.e., it is soundand complete with respect to a class of
relational frames which is definable by a set of geometric theories. Our internal calculi for strict
implication logics are developed for subvarieties of BDI algebras and they do not necessarily
have relational semantics. The strict implication logicSBDI is indeed an example without binary
relational semantics.

The algorithmALBA, one of the main tools in unified correspondence theory, is applied in
the present paper to the proof theory of strict implication logics. Firstly, it is used as a tool to
calculate the first-order correspondents of inductiveLSI-sequents. If the correspondents of a set
of inductive sequents are geometric axioms, they can be transformed into geometric rules, and
hence some labelled sequent calculi for strict implicationlogics can be developed. It is unknown
if ALBA can capture all geometric axioms. A general converse correspondence theory is un-
known yet. Secondly, our novel application ofALBA is to calculate the algebraic correspondents
of some inductiveLSI-sequents in the languageL•. A proof-theoretic consequence of this ap-
plication is that one can obtain mix-free internal sequent calculi for the conservative extensions
of some strict implication logics. However, the systematicconnections between algebraic and
first-order correspondents is unknown.

Our framework in the present paper may not be able to cover allsuch logics which have
binary relational semantics. Consider strict implicationlogics containing (Sym) or (Euc) based
on SWH in Table 6. Since (Sym) and (Euc) may not have correspondent in L•, these logics
may not admit Gentzen-style sequent calculi that are obtained fromGWH by adding structural
rules about⊙. Another example is Visser’s logicFPL (formal provability logic) [65] which is a
strict implication logic that extends basic propositionallogic with the Löb’s axiom(q → p) →

p ⊢ q → p. This axiom is not inductive. A labelled sequent calculus may be developed forFPL
because it has binary relational semantics. But it is impossible to develop a Gentzen-style sequent
calculus for it in our framework.

12 A geometric axiom is a first-order formula of the form∀z(P1 ∧ . . . ∧ Pm ⊃ ∃x(M1 ∨ . . . ∨Mn)) where each
Pi is an atomic formula, and eachMj is a conjunction of atomic formulas, andz andx are sequences of bounded
variables. Each geometric axiom can be transformed into a geometric rule [35].
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5 Conclusion

The present work studies the proof theory for strict impaction logic using unified correspondence
theory as a proof-theoretic tool. First of all, we present general results about the semantic con-
servativity on DLE-logics via canonical extension. A consequence is that the strict implication
logic SBDI is conservatively extended to the Lambek calculusBDFNL. The algorithmALBA as
a calculus for correspondence between DLE-logic and first-order logic and hence for canonicity,
is specialized to the strict implication logic and Lambek calculus. The main contribution of the
present paper is that we obtain an Ackermann lemma based calculus ALC from the algorithm
ALBA as a tool for proving algebraic correspondence between a wide range of strict implication
sequents and sequents in the languageL•. This tool gives not only more conservativity results,
but also analytic rules needed for introducing the Gentzen-style cut-free sequent calculi. Another
contribution is that we introduce a Gentzen-style sequent calculus forBDFNL and some of its
extensions with analytic rules.

The final remark is about goodL•-sequents that are used for obtaining cut-free sequent cal-
culus. It is very likely that a hiearchy ofL•-sequents from which one obtains analytic rules can be
established. Other connectives∧,∨ and→ can be in principle added into the languageL• such
that more analytic rules will be obtained. This is our work inprogress. Moreover, our approach
to the proof theory of strict implication may be generalizedto arbitrary DLE-logics.
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A Algebraic Correspondence

(I)
⇒ q ⊢ p→ p

RR1
⇒ p • q ⊢ p

(MP)
⇒ p ∧ (p→ q) ⊢ q

Ap1
r ⊢ p ∧ (p→ q)⇒ r ⊢ q

∧S
r ⊢ p, r ⊢ p→ q ⇒ r ⊢ q

RL1
r ⊢ p, p • r ⊢ q ⇒ r ⊢ q

LAck
p • p ⊢ q ⇒ p ⊢ q

RAck
⇒ p ⊢ p • p

(W)
⇒ p ⊢ q → p

RR1
⇒ q • p ⊢ p

(RT)
⇒ p→ q ⊢ r → (p→ q)

Ap1
s ⊢ p→ q ⇒ s ⊢ r→ (p→ q)

RL1
p • s ⊢ q ⇒ s ⊢ r → (p→ q)

RR1
p • s ⊢ q ⇒ r • s ⊢ p→ q

RR1
p • s ⊢ q ⇒ p • (r • s) ⊢ q

RAck
⇒ p • (r • s) ⊢ p • s

(B)
⇒ p→ q ⊢ (r → p)→ (r → q)

Ap1
s ⊢ p→ q ⇒ s ⊢ (r → p)→ (r → q)

RL1
p • s ⊢ q ⇒ s ⊢ (r → p)→ (r → q)

RR1
p • s ⊢ q ⇒ (r → p) • s ⊢ r → q

RR1
p • s ⊢ q ⇒ r • ((r → p) • s) ⊢ q

RAck
⇒ r • ((r → p) • s) ⊢ p • s

RR1
⇒ (r → p) • s ⊢ r → (p • s)

RR2
⇒ r→ p ⊢ (r → (p • s))← s

Ap1
t ⊢ r → p⇒ t ⊢ (r → (p • s))← s

RL1
r • t ⊢ p⇒ t ⊢ (r → (p • s))← s

RR2
r • t ⊢ p⇒ s • t ⊢ r→ (p • s)

RR1
r • t ⊢ p⇒ r • (s • t) ⊢ p • s

RAck
⇒ r • (s • t) ⊢ (r • t) • s
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(B′)
⇒ p→ q ⊢ (q → r)→ (p→ r)

Ap1
s ⊢ p→ q ⇒ s ⊢ (q → r)→ (p→ rt)

RL1
p • s ⊢ q ⇒ s ⊢ (q → r)→ (p→ r)

RR1
p • s ⊢ q ⇒ (q → r) • s ⊢ p→ r

RR1
p • s ⊢ q ⇒ p • ((q → r) • s) ⊢ r

RAck
⇒ p • ((p • s→ r) • s) ⊢ r

RR1
⇒ (p • s→ r) • s ⊢ p→ r

RR2
⇒ p • s→ r ⊢ (p→ r)← s

Ap1
t ⊢ p • s→ r ⇒ t ⊢ (p→ r)← s

RL1
(p • s) • t ⊢ r ⇒ t ⊢ (p→ r)← s

RR2
(p • s) • t ⊢ r ⇒ t • s ⊢ p→ r

RR1
(p • s) • t ⊢ r ⇒ p • (t • s) ⊢ r

RAck
⇒ p • (t • s) ⊢ (p • s) • t

(C)
⇒ p→ (q → r) ⊢ q → (p→ r)

Ap1
s ⊢ p→ (q → r)⇒ s ⊢ q → (p→ r)

RL1
p • s ⊢ q → r ⇒ s ⊢ q → (p→ r)

RL1
q • (p • s) ⊢ r ⇒ s ⊢ q → (p→ r)

RR1
q • (p • s) ⊢ r ⇒ q • s ⊢ p→ r

RR1
q • (p • s) ⊢ r ⇒ p • (q • s) ⊢ r

RAck
⇒ p • (q • s) ⊢ q • (p • s)

(Fr)
⇒ p→ (q → r) ⊢ (p→ q)→ (p→ r)

(Ap1, Ap2)
s ⊢ p→ (q → r), (p→ q)→ (p→ r) ⊢ t⇒ s ⊢ t

(RL1)
q • (p • s) ⊢ r, (p→ q)→ (p→ r) ⊢ t⇒ s ⊢ t

(→Ap1,→Ap2)
q • (p • s) ⊢ r, u ⊢ p→ q, p→ r ⊢ v, u→ v ⊢ t⇒ s ⊢ t

(RL1)
q • (p • s) ⊢ r, p • u ⊢ q, p→ r ⊢ v, u→ v ⊢ t⇒ s ⊢ t

(AAP2)
q • (p • s) ⊢ r, p • u ⊢ q, p→ r ⊢ v ⇒ s ⊢ u→ v

(RR1)
q • (p • s) ⊢ r, p • u ⊢ q, p→ r ⊢ v ⇒ u • s ⊢ v

(AAp2)
q • (p • s) ⊢ r, p • u ⊢ q ⇒ u • s ⊢ p→ r

(RR1)
q • (p • s) ⊢ r, p • u ⊢ q ⇒ p • (u • s) ⊢ r

(AAp2)
p • u ⊢ q ⇒ p • (u • s) ⊢ q • (p • s)

(RAck)
⇒ p • (u • s) ⊢ (p • u) • (p • s)
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(W′)
⇒ p→ (p→ q) ⊢ p→ q

Ap1
r ⊢ p→ (p→ q)⇒ r ⊢ p→ q

RL1
p • r ⊢ p→ q ⇒ r ⊢ p→ q

RL1
p • (p • r) ⊢ q ⇒ r ⊢ p→ q

RR1
p • (p • r) ⊢ q ⇒ p • r ⊢ q

RAck
⇒ p • r ⊢ p • (p • r)
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