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Abstract

We proposestratified institutionga decade old generalised version of the theory of institstiof Goguen
and Burstall) as a fully abstract model theoretic approachddal logic. This allows for a uniform treatment
of model theoretic aspects across the great multiplicitgaftemporary modal logic systems. Moreover
Kripke semantics (in all its manifold variations) is cagdrin an implicit manner free from the sometimes
bulky aspects of explicit Kripke structures, also accomating) other forms of concrete semantics for
modal logic systems. The conceptual power of stratifiedtirn&ins is illustrated with the development of a
modal ultraproducts method that is independent of the evaatetails of the actual modal logical systems.
Consequently, a wide array of compactness results in ctenoredal logics may be derived easily.

1. Introduction

The model theory oriented formalisation by Goguen and Billrkt4] of the notion of a logical system
as aninstitution has started a line of important developments of adequabslyact and general approaches
to the foundations of software specifications and formalesysdevelopment (se€()]) as well as a mod-
ern version of very abstract model theory (s8R.[ One of the main original motivations for introducing
institution theory was to respond to the explosion in theytation of logics in use in computing about
three decades ago, a situation that continues today peaba@psaccelerated pace. Among the logics with
relevance in various areas of informatics there is of cotivredamily of modal logics, with its great multi-
plicity of flavours. The recent works on ‘modalizations’ oftitutions P-11, 18] (see also §]), in which
only the modalities (and eventually nominals and @) and k&igemantics are kept explicit, while the other
ingredients (e.g. sorts, functions, predicates, comggagtc.) are abstracted away, has intensified the quest
for a fully abstract institution theoretic approach thad tiee potential to address adequately the specificities
of modality and Kripke semantics while leaving none of thesglicit.

Our paper proposes stratified institutions 2ffés a general framework for a fully abstract approach to
the semantics of modal logic. In particular this means ndiexpnodalities, no explicit Kripke structures,
while still retaining the essence of Kripke semantics. @guently a very general form of model theory
uniformly applicable to a wide range of concrete modal logyistems, either conventional or more eccen-
tric, can be developed. Results can be developed in a top-doanner with hypotheses kept as general as
possible and introduced on a by-need basis, the whole dewelat process being guided by structurally
clean causality. From the perspective of institution tiieour proposal yields an institution theoretic struc-
ture fully capable of addressing modality. The conventiatedinition of institution [L4] may lack enough
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structure to capture various specificities of modal logies)ce our work can be regarded as a minimal but
suficient refinement of the concept of institution towards maadgics.

We illustrate the power of our concepts with the developnoértry general modal-oriented ultraprod-
ucts method. This provides rather automatically tosestileoremsH, 16] for a wide range of concrete
modal systems, as a puzzle of preservation results in the @ty7, 8, 11]. In conventional model theory
the method of ultraproducts is renowned as extremely pavarfd pervading a lot of deep results (sBg [
for example), many of these been lifted to the level of alesirstitutions (seef]]). Our developments may
represent the beginning of a similar journey in the realm oflality and Kripke semantics. From the many
consequences of ultraproducts, here we focus only on camgscresults. Hence we derive a series of
modal compactness results for our benchmark exampleqriigss having a generic nature.

Summary and Contributions.

1. We recall briefly some category and institution theoretiocepts and notations that are necessary for
our paper.

2. We from P] the concept of stratified institution and slightly upgratleOrdinary institutions arise
as stratified institutions with a trivial stratification; this way stratified institutions can be seen as
more general than ordinary institutions. The move in theeottirection is given by two general
interpretations of stratified institutions as ordinarytitagsions. They represent high abstractions of
the concepts dbcal andglobal satisfactiorfrom modal logic, respectively.

3. We provide a series of examples of stratified institutithrad include both conventional and eccentric
modal logic systems. The former category includes projoosit and first order modal logic, possibly
with hybrid and polyadic modalities features, while thadaincludes the double hybridization of
[10, 17] and a first order valuation semantics for first order modgiddhat is based upon the ‘internal
stratification’ example introduced i2]f These are to be used as benchmark examples for the further
developments in the paper.

4. We give a straightforward extension of the well knownitogibn theoretic semantics of the Boolean
connectivesa, —, etc. and of the quantifierg, 3 to the more refined level of stratified institutions
and establish the relationship with their corresponderds fthe local and the global institutions
associated to the stratified institution.

5. We introduce a semantics for modalities and for hybrituiiess in abstract stratified institutions. This
is one of the crucial contributions of this paper.

6. We extend the institution theoretic method of ultrapeidy?z, 8] to stratified institutions. The core
contributions here consist of a series of general presenvagsults across the abstract semantics for
Boolean connectives, quantifiers, modalities, nominals, T®ese cover related previous develop-
ments from 1] (also to be found in§]), but with significant diferences in generality: (1) stratified
institutions with their lack of commitment to explicit mdi#es and Kripke structures are much more
general than the ‘modalized’ institutions d@fl]); (2) the results of our paper cover polyadic modalities
and hybrid features whil€elfl] considers only the unary® and<. The above mentionedftitrences
reflect very much in the way the preservation results areafigtabtained.

7. Derivation of compactness properties for the local aedytbbal institutions associated to a stratified
institution via ultraproducts.

2. Category and institution theoretic preliminaries

In this section we recall some category and institution o notions that will be used in the paper.
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We will use the diagrammatic notation for compositions agbass in categories, i.e. if : A —> B
andg: B — C are arrows therf; g denotes their composition. goncrete categoryA, U) consists of a
categoryA and a faithful functold : A — Set! A functor of concrete categorids: (A,U) — (B,V)
is just a functorF : A — B such thatU = F;V. Let CCAT denote the category that has the concrete
categories as objects and functors of concrete categaiag@ws. When it is clear from the context we
may omitU and simply refer to#l, U) asA. This implies also that foA € |A| we may writea € A instead
of a € U(A). We use double arrows rather than single arrow for natural transformations. A functor
U : C — C preservesa (co-)limitu of a functorD : J — C whenut is a (co-)limit of D; U. It lifts a
(co-)limit i’ of D; U, if there exists a (co-)limit: of D such thap = u’'.

The original standard reference for definitions below ofiinions and institution morphisms i44].

Definition 2.1 (Institution). Aninstitution 7 = (Sigr, Sed, Mod’, = ) consists of

e a category Sighwhose objects are callesignatures

e a sentence functor Sén Sign’ — Setdefining for each signature a set whose elements are called
sentencesver that signature and defining for each signature morphéssentence translatioiunc-
tion,

e a model functor Mol : (Sigrf)°® — CAT defining for each signaturg the category Mo#i(Z)
of Z-modelsand Z-model homomorphisms, and for each signature morphidime reductfunctor

Mod’ (¢),
o for every signatur&, a binaryX-satisfaction relatiorng c IMod (2)| x Sed (),

such that for each morphispn: £ — 3’ e Sigrf, the Satisfaction Condition
(1) M EL Sed (¢)(o) if and only if Mod (¢)(M") L p
holds for each Me [Mod’ (2')| andp € Ser (2).

> IMod ()] —~— Serf (%)
¢ Mod? (t,a)/[ Serf (¢)
) [Mod! (z)| = Serd (%)

We may omit the superscripts or subscripts from the notatairthe components of institutions when there
is no risk of ambiguity. For example, if the considered ingitbn and signature are clear, we may denote
|:§ just by, For M = Mod(¢)(M’), we say that M is the-reductof M’ and that M is a g-expansiorof

M.

Notation 2.1. In any institution as above we use the following notations:

— for any EC SerfX), E* denote§M € |[Mod(X)| | M Ex p for eachp € E}.
— forany EE’ C SerX), E E E’ denotes EC E™.

Definition 2.2 (Compactnessd]). An institution? is

1This is most commonly accepted definition for concrete aaieg, although in1] this is called ‘concrete oveBet or ‘con-
struct’.
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— m-compactvhen for each set E af-sentences, E# 0 if and only if for each 5 C E finite, Ej # 0;

— compactwhen for each set E af-sentences and eaghsentence, if E =5 p then there exists a finite
Ep € E such that i Ex p.

Definition 2.3 (Morphism of institutions) Given two institutiond’; = (Sign, Sen, Mod,, k), with i € {1, 2},
an institution morphisn(®, a,8) : 7, — I, consists of

¢ a signature functod : Sign, — Sign,
e a natural transformationr : Sen = ®; Sen, and
e a natural transformatio8 : Mod, = ©°F; Mod;

such that the following satisfaction condition holds foryaf,-signatureX,, X>-model M and ®(Z,)-
sentence:

Mz 2 as,(p) if and only if B5,(M2) E1 p.

The literature (e.g. §, 20]) shows myriads of logical systems from computing or fromtmeanatical
logic captured as institutions. In fact, an informal thesiglerlying institution theory is that any ‘logic’ may
be captured by the above definition. While this should bertakith a grain of salt, it certainly applies
to any logical system based on satisfaction between sergamud models of any kind. The institutions
introduced in the following couple of examples will be useténsively in the paper in various ways.

Example 2.1(Propositional logic®£)). This is defined as followsSigri% = Set, for any setP, Ser{P) is
generated by the grammar

S:=P|SAS|=S

and Mod™:(P) = (2P,<). For any functionp: P — P, Seff4(¢) replaces the each elemepte P
that occur in a sentenge by ¢(p), and Mod™(¢)(M’) = ¢; M for eachM’ € 2F". For anyP-model
M c P andp € Sefd%(P), M E p is defined by induction on the structure @by (M E p) = (p € M),

(M E p1Ap2) =(MEp1) A(ME pz) and M [ —p) = =(M [ p).

Example 2.2(First order logic $OL)). For reasons of simplicity of notation, our presentation it forder
logic considers only its single sorted, without equalityriant. A detailed presentation of full many sorted
first order logic with equality as institution may be foundiimmerous works in the literature (e.@)],[etc.).
TheFOL signatures are pair§ (= (Fn)new> P = (Pn)new) WhereF,, andP,, are sets of function symbols
and predicate symbols, respectively, of afity Signature morphisme : (F,P) — (F’,P’) are tuples
@' = (@ )news ¢P = (@P)new) SUch thaty! © Fn — Fandgl : Py — Pl,. ThusSigrfo- = Set’ x Set’.
For anyFOL-signature F, P), the sefS of the (, P)-sentences is generated by the grammar:

(2) S:i=n(ty,....t)) |ISAS| -S| @AXS

wheren(ty, ..., t,) are the atoms with € P, andty, .. ., t, being terms formed with function symbols from
F, and whereS’ denotes the set oF(+ x, P)-sentences witk + x denoting the family of function symbols
obtained by adding the single variabl¢o Fg.

An (F, P)-modelM is a tuple

M= (M|,{My: IM" = [M|| o € Fo,n€ w},{M; C IM|" | 7 € Pp,n € w}).



where|M| is a set called thearrier of M. An (F, P)-model homomorphisnn: M — N is a function
IM| — |N] such thath(M, (X1, ..., Xn)) = Ne(h(xy),...,h(x,)) for anyo € F, andh(M,) c N, for each
m € Pq.

The satisfaction relatioM t:g?é) p is the usual Tarskian style satisfaction defined on indanatio the
structure of the sentenge

Given a signature morphism: (F,P) — (F’,P), the induced sentence translatiSerf%%(y) just
replaces the symbols of anl,(P)-sentence with symbols fronfr(, P’) accordingy, and the induced model
reductMod™@£(¢)(M’) leaves the carrier set as it is and for atfunction or predicate symbol of(P), it
interpretsx asM_ .

In what follows we shall also consider the following parts ‘Gub-institutions’) ofFOL that are deter-
mined by restricting th¢O.L signatures as follows:

e REL: no function symbols (henc®igr®L =~ Set);
e BREL: no function symbols and only one binary predicate symbienceSigrP%L = {4)):;
e S&7C: no predicate symbols and no function symbols of arity gretitan 0 (henc8ign¥’ = Se);

e BRELC: one binary predicate symbol and no function symbols of griéater than 0 (hen@igrPEL =~
Sed;

3. Stratified institutions

The structure and contents of this section is as follows:

1. We recall the definition of stratified institution df][and slightly upgrade it;

2. We provide two canonical extractions of ordinary ingtitns out of stratified institutions, correspond-
ing to the local and global satisfaction in modal logic, exsjvely;

3. We present a series of examples of modal logical systeptarea as stratified institutions.

3.1. Stratified institutions: the concept

Informally, the main idea behind the concept of stratifiestitntion as introduced in?] is to enhance
the concept of institution with ‘states’ for the models. Sheach modeM comes equipped with set[ M].
A typical example is given by the Kripke models, wheid]is the set of the possible worlds in the Kripke
structureM.

Definition 3.1 (Stratified institution) A stratified institutionZ = (Sigr?, Serd, Mod, [ ], ) consists of:

a category Sigh of signatures,

a sentence functor Sén Sigr¥ — Set

a model functor Mofl: (Sigrf)°P — CAT;

a “stratification” lax natural transformatior]_] : Mod’ = SET, where SET Signi’ — CAT is a
functor mapping each signature 8et and

— a satisfaction relation between models and sentenceshwhig@arameterized by model states,
M (E7)¥ p where we [M]{ such that

(3 Mod (9)(M) (=5 p ifand only it M (=) Serl (¢)(o)

holds for any signature morphisgn: X — ¥/, ¥’-model M, we |[M]|§,, andX-sentence.
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Like for ordinary institutions, when appropriate we shd@use simplified notations without superscripts
or subscripts that are clear from the context.

The lax natural transformation property of]fis depicted in the diagram below

3 Mod(z”) 3%, Set

Lﬂ’ Mod(ga’)l % J:

)% Mod(X’) —[1»—=$ Set

AN
%) [

z Mod( Set
with the following compositionality property for eaét¥-modelM”:
I[MH]I (¢ = I[M”]I @' I[MOd(SD’)(MH)]It,a-

Moreover the natural transformation property of each,[is given by the commutativity of the following
diagram:

@ W M1z 2% [Modig) (M)
h’J [h,kl l[MOd(SO)(h')]z
N [Ny 7 [Mod@)(N)1

The satisfaction relation can be presented as a naturalforamation= : Sen= [Mod(.)) — Sef
where the functor lod()) — Sefl : Sign— Setis defined by

— for each signaturg € |Sigr], [Mod(X) — Sef] denotes the set of all the mappin§s |Mod(X)| —
Setsuch thatf (M) ¢ [M]y; and

— for each signature morphisg: X — Y/, [Mod(¢) — Sef( f)(M’) = |[M’]|;1(f(Mod(<,o)(M’))).

A straightforward check reveals that the Satisfaction @@md(3) appears exactly as the naturality property
of E:

» Serfs) — = [Mod(x) — Sef]
9{ Sema)l l{Mod(@ﬁSeu
2/

Ordinary institutions are the stratified institutions fanieh [M]y is always a singleton set. In Dff8.1
we have removed the surjectivity condition okI{], from the definition of the stratified institutions df][
and will rather make it explicit when necessary. This is naid by the fact that most of the results devel-
oped do not depend upon this condition which however holddl iexamples known by us. In fact in most
of the examples J1’], are even identities, which makeg] [a strict rather than lax natural transformation.
A notable exception, when]is a proper lax natural transformation is given by Bx6. Also the definition
of stratified institution of 2] did not introduce [] as a lax natural transformation, but rather as an indexed
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family of mappings without much compositionality propestj which was enough for the developments in
[2].

The following very expected property does not follow frore tixioms of Dfn.3.1, hence we impose it
explicitly. It holds in all the examples discussed in thipga
Assumption: In all considered stratified institutions the satisfactispreserved by model isomorphisms,
i.e. for eachz-model isomorphisnin: M — N, eachw € [ M] s, and eaclz-sentence,

M EY p if and only if N MW 4

3.2. Reducing stratified institutions to ordinary institurts

The following construction will be used systematically ihat follows for reducing stratified institution
theoretic concepts to ordinary institution theoretic @apts, and consequently for reusing results from the
latter to the former realm.

Fact 3.1. Each stratified institutiord’ = (Sign SenMod, [ _], ) determines the following ordinary institu-
tion 7* = (Sign SenMod, =#) (called thelocal institution of7’) where

— the objects of Mo”cQZ) are the pairs(M, w) such that Me [Mod(X)| and we [ M]s;
— theX-homomorphisméM, w) — (N, v) are the pairs(h,w) such thatit M — N and[h]z(w) = v;
— for any signature morphisip: X — ¥’ and anyx’-model(M’, w’)

Mod (¢)(M’, W) = (Mod(g)(M"), [M'T,(w));

— for eachZ-model M, each v& [ M]z, and eactp € SerfX)
(M, w) L p) = (M EY p).

The preservation of under model isomorphisms imply the preservatior=bfunder model isomor-
phisms. This follows immediately by noting thdt, () is a model isomorphism id* if and only if his a
model isomorphism id’.

The following second interpretation of stratified insfiluts as ordinary institutions has been given in
[2]. Note that unlikeZ* above,7* below shares witd” the model functor.

Definition 3.2. For any stratified institution/ = (Sign SenMod, [ ], E) we say thaf _] is surjectivewhen
for each signature morphisg: X — X’ and eachz’-model M, [M], : [M]s — [Mod(e)(M")]s is
surjective.

Fact 3.2. Each stratified institution = (Sign SenMod,[_], ) with [_] surjective determines an (ordi-
nary) institutionZ* = (Sign SenMod, E*) (called theglobal institution of7’) by defining

MEsp) = AIMEY p|we [M]s).
Fact 3.3. Let I be a stratified institutiory with [ _] surjective. For each E SerfX) and eaclp € Sern¥),
we have that

E Ef p implies EE* p.

The institutionsZ* and 7* represent generalizations of the concepts of local andaglsdtisfaction,

respectively, from modal logic (e.g4]).
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3.3. Examples of stratified institutions

Example 3.1(Modal propositional logic M£L)). This is the most common form of modal logic (e.d],[
etc.).

Let Sign"£ = Set For any signatur®, commonly referred to as ‘set of propositional variabléisg
set of its sentenceSerM”£(P) is the setS defined by the following grammar

5) S = P|ISAS|-S|CS
A P-model is Kripke structureW, M) where

e W = (|W|,W,) consists of set (of ‘possible worlddY| and an ‘accesibility’ relatioWV, < |W| x |W[;
and

e M: |W|— 2P,

A homomorphismh: (W, M) — (V, N) between Kripke structures is a homomorphism of binaryticra
h: W—-V(.e.h: |[W| - |V|such thah(W,) C V,) and such that for eacl € |W|, MW ¢ N"W),

The satisfaction of anfP-sentence in a Kripke structure\(, M) atw € |W| is defined by recursion on
the structure op:

o (WM)ELn) = (e M),

o (W M) ER p1Ap2) = (W M) ES p1) A (W M) ER p2);
e (WM)ES —p) =-((W M) [Ef p); and

o (W M)ER ©p) = Vawyew, (W M) EY p).

For any functionp : P — P’ the p-translation of aP-sentence just replaces eacle P by ¢(r) and the
p-reduct of aP’-structure YV, M’) is the P-structure Y\, M) where for eachw € |W|, MY = ¢; MW,

The stratification is defined by Y, M)]p = [W|.

Various ‘sub-institutions’ ofM®L are obtained by restricting the semantics to particulassea of
frames. Important examples abdPLt, MPLsA, and MPLS5 which are obtained by restricting the frames
W to those which are respectively, reflexive, preorder, ohvedgence (see e.g4]).

Example 3.2(First order modal logic MFQOL)). First order modal logicI2] extends classical first order
logic with modalities in the same way propositional modagjitcextends classical propositional logic. How-
ever there are several variants thdteti slightly in the approach of the quantifications. Here wespnt a
capture of one of the most common variants of first order mlodgd as a stratified institution.

MFOL has the category of signaturesffL but for the sentences adfis:= ¢S to theFOL grammar
(2). The MFOL (F, P)-models upgrade thaM1PL Kripke structures\(, M) to the first order situation by
letting M :  |W| — [Mod™@(F, P)| such that the following sharing conditions hold: for any € W],
IM'| = |MI| and alsoM, = M, for each constant € Fo. The concept ofMFOL-model homomorphism is
also an upgrading of the concept 80L-model homomorphism as followst: (W, M) — (V,N) is pair
(ho, h1) wherehy : W — V is a homomorphism of binary relations (like M#L) andhy : MW — N
is an F, P)-homomorphism offOL-models for eachv € |W|.

The satisfaction\{, M) l:(ﬁi?‘: p is defined by recursion on the structureppfiike in MPL for A, —,
and <, for the atoms the”OL satisfaction relation is used, and for the quantifier c8$eV() = p) (IX)p
if and only if there is a valuation of into |[M| such that\, M) e+« p) p for the corresponding expansion
(W, M) of (W, M) to (F+x, P). (This makes sense because in AdfOL Kripke structure the interpretations
of the carriers and of the constants are shared.)
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The translation of sentences and the model reducts comdsmpto anM¥FOL sighature morphism
are obtained by the obvious blend of the corresponding laoss and reducts, respectively, MPL and
FOL.

The stratification is like i®MPL, with [(W, M)] £p) = [WI.

In the institution theory literature (e.g8,[9, 11, 18)) first order modal logic is often considered in a
more general form in which the symbols that have sharedaratations are ‘user defined’ rather than being
‘predefined’ like here. In short this means that the sigrest@xhibit designated symbols (sorts, function, or
predicate) that are ‘rigid’ in the sense that in a given Keigructure they share the same interpretations
across the possible worlds. For the single reason of makimgeading easier we stick here with a simpler
variant that has constants and the single sort being predefia rigid.

Example 3.3(Hybrid logics (HPL, HFOL)). Hybrid logics B, 19] refine modal logics by adding explicit
syntax for the possible worlds. Our presentation of hybogids as stratified institutions is related to the
recent institution theoretic works on hybrid logi&s 18].

The refinement of modal logics to hybrid ones is achieved llirgda set component (Nom) to the
signatures for the so-called ‘nominals’ and by adding torspective grammars

(6) S:=i-sen @S| (3i)S

wherei e Nom andS’ is the set of the sentences of the signature that extends Nibrthw nominal variable

i. The models upgrade the respective concepts of Kripketategto (M, M) by adding tdV interpretations

of the nominals, i.eW = (W, {W, € [W| | i € Nom}, W,). The satisfaction relations between models (i.e.
Kripke structures) and sentences extend the satisfaatiatians of the corresponding non-hybrid modal
institutions with

o (W M)EYi-sen)= (W = w);
o (W M)EY @p) = (W M) EY p); and
o (W M)EY@@ip) = VI(W, M) EYp | W expansion ofW to Nom+i}.

Note that quantifiers over nominals allow us to simulate thedr operator | p) of [15] by (Vi)i = p.

The translation of sentences and model reducts corresppndisignature morphisms are canonical
extensions of the corresponding concepts ftbtRL and MFOL.

The stratifications of#PL andHFOL are like for MPL and MFOL, i.e. [(W, M)] (nomz) = [WI.

Example 3.4 (Polyadic modalities MIMPL, MHPL, MMFOL, MHFOL)). Multi-modal logics (e.g.
[13]) exhibit several modalities instead of only the tradiabr> and O and moreover these may have
various arities. If one considers the sets of modalitiesstodriable then they have to be considered as part
of the signatures. We may extend eactWPL, HPL, MFOL andHFOL to the multi-modal case,

e by adding an M’ in front of each of these names;

e by adding a componemt = (An)new to the respective signature concept (with standing for the
modalities symbols of arity), e.g. anMHFOL signature would be a tuple of the form (Nom (F, P));

e by replacing in the respective grammars the @ile= S by the set of rules
¢ by replacing the binary relatiow/, from the models\(\\, M) with a set of interpretation@V,  |W|" |

A € Ap, N € w}.
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Consequently the definition of the satisfaction relatiots ggograded with

for each A € An.t, (W M) EY (D(or o) = \/ A\ (WM)EY p).

(W,Wy,...,Wn)eW,; 1<i<n

The stratification is the same like in the previous examples[(W, M)] (voma.x) = IWI.

Example 3.5(Modalizations of institutionsHHPL). In a series of worksd, 11, 18] modal logic and Kripke
semantics are developed by abstracting away details thadtdmelong to modality, such as sorts, functions,
predicates, etc. This is achieved by extensions of abstraiitutions (in the standard situations meant in
principle to encapsulate the atomic part of the logics) whith essential ingredients of modal logic and
Kripke semantics. The result of this process, when insgtadito various concrete logics (or to their atomic
parts only) generate uniformly a wide range of hierarchicehbinations between various flavours of modal
logic and various other logics. Concrete examples disclisg®, 11, 18] include various modal logics over
non-conventional structures of relevance in computingrsm, such as partial algebra, preordered algebra,
etc. Various constraints on the respective Kripke modebmynof them having to do with the underlying
non-modal structures, have also been considered. All trésmas examples of stratified institutions like the
examples presented above in the paper. This great multplitnon-conventional modal logics constitute
an important range of applications for this work.

An interesting class of examples that has emerged quite thiflgoout of the general works on hy-
bridizatior? of institutions is that of multi-layered hybrid logics thatovide a logical base for specifying
hierarchical transition systems (sd€]). As a single simple example let us present here the doapéréd
hybridization of propositional logic, denotddHPL.2 This amounts to a hybridization G#PL, its models
thus being “Kripke structures of Kripke structures”.

The HHPL signatures are triples (NdhNomt, P) with Nom? and Nont denoting the nominals of the
first and second layer of hybridization, respectively. THert®, Nom', P)-sentences are built over the two
hybridization layers by taking the (NdhP)-sentences as atoms in the grammar for#fe£ sentences
with nominals from Norh. In order to prevent potential ambiguities, in general wettee symbols of the
respective layers of hybridization by the superscript®ttie first layer) and 1 (for the second layer). This
convention should include nominals and connectivesA, etc.) as well as quantifiers. For instance, the
expression @ko At DY is a sentence oHHPL where the symbolk and j represent nominals of the
first and second level of hybridization apda L sentence. On the other hand, according to this tagging
convention the expression @* A! Op would not parse.

Our tagging convention extends also+PL models. A (Nom, Nomt, P)-model is a pair (!, M?)
with W being aMod®€ (1) model andM?* = ((M1)¥),,ws where MY)Y is a (Non?, P)-model inHPL,
denoted ((VO)V, (MOW). We also require that for allv, w € W3, we have that(W%"| = |(W%)"| and
(WOW = (WO for eachi € NomP.

These definitions extend in the obvious way to signature hismps, sentence translations, model
reducts and satisfaction relation. We leave these detmikxarcise for the reader. ThéiHPL has the
same stratified structure lik&°L andHrOL, namely [W*, MY] yomo nontpy = IWH-

It is easy to see that ik{/HPL the semantics of the Boolean connectors and of the quatitificawith
nominals of the lower layer is invariant with respect to tlybridization layer; this means that in these cases
the tagging is not necessary. For exampjeig anPL sentence therv{i®)p and °i%)p are semantically

2].e. Modalization including also hybrid logic features.
30ther interesting examples that may be obtained by doubieuttiple hybridizations of logics would bgtHFOL, HHHPL,
etc., and also their polyadic multi-modalities extensions
10



equivalent, while ifo is not anHPL sentence (which means it has some ingredients from the ddayper
of hybridization) then\{°i®)p would not parse. In both cases just using the notati?) (vould not carry
any ambiguities.

The next series of examples include multi-modal first ordgids whose semantics are given by ordinary
first order rather than Kripke structures.

Example 3.6(Multi-modal open first order logicdFOL, MOFOL, HOFOL, HMOFOL)). The stratified
institution OFOL is a theFOL instance ofSt(J), the ‘internal stratification’ abstract example devebkbje
[2]. An OFOL signature is a pair¥, X) consisting ofFOL signatureX and a finite block of variables. An
OFOL signature morphisnp : (£, X) — (¥, X’) is just aFfOL signature morphisnp : £ — ¥’ such that
XcX.

We letSe” 2L ((F, P), X) = SefP4(F + X, P) andMod”P4((F, P), X) = Mod™P4(F, P).

For each (F, P), X)-modelM, eachw e [M|X, and each {, P), X)-sentence we define

(M(Izg:}-%gx)wp) = (MW IZ(T:O;_CXP) ,0)

where M is the expansion oM to (F + X, P) such thatM§/ = w. This is a stratified institution with
[Mlsx = IM|X for each E, X)-model M. For any signature morphis@: (Z,X) — (', X’) and any
(&', X")-model M’, [M'], : IM'¥" — |[M’[X is defined by M],(a) = alx (i.e. the restriction ofa to
X). Note that [M'], is surjective and that this provides an example whehig§ a proper lax natural
transformation.

We may refinedFOL to a multi-modal logic MOFOL) by adding

to the grammar defining ea®el” %£((F, P), X) and consequently by extending the definition of the satis-
faction relation with

o (M EY (my(o1,...,pn)) = \/(w,wl,...,wn)e(Mx),, /\1§isn(M E pi) for eachr € Pyi1, N € w.

(Here and elsewher&X denotes théX-power of M in the category ofFOL (F, P)-models.)

Or else we may refin@7rOL with nominals (HOFOL) by adding the grammar for nominals)( for each
constani € Fo, to the grammar defining ea@el” %4 ((F, P), X) and consequently extending the definition
of the satisfaction relation with

o (MELp x i-sen)= (M%), = w);

Xy.
o ME{px @)= (M EEp)x o) | |
e (M IZ\(AII:,P),X 3)p) = VIM’ |:\(N|=+4,P),xp| M’ expansion ofM to (F+i, P)}.

We can also hav&{MOFOL as the blend betweeHOFOL and MOFOL.

4. The logic of stratified institutions

We start the section by extending the definition of the seitsof Boolean connectives and quantifiers
from ordinary institutions (se€7[ 8, 22] etc.) to stratified institutions. After this, based on theatfied
structure of stratified institutions, we define the semardfanodalities, nominals, @ at the level of abstract
stratified institutions. In each of these cases a minimaifficgent additional structure is employed.

11



Definition 4.1. In any stratified institutionZ = (Sign SenMod, [ ], E)

e a X-sentencey; Ap, is anexternal conjunctiorof X-sentencep; and p, when for eactE-model M
and each we [M]s,

(M E" p1Ap2) = (M EY p1) A (M EY p2);

e aX-sentencep; = p, is anexternal implicatiorof Z-sentenceg, and p, when for eactE-model M
and each we [M]s,

(MEY p1=p2) = (M E" p1) = (M EY p2);

e aX-sentence;Vp» is anexternal disjunctiorof X-sentencep; andp, when for eactE-model M and
each we [M]s,

(M EY p1vp2) = (M EY p1) V(M EY p);

e a X-sentence-p is the external negatiorof a X-sentencep when for eachz-model M and each
we [M]s,

(M EY —p) = ~(M E" p)

e a X-sentencqVy)p’ is an external universal-quantificationof a ¥’-sentence’ for y : ¥ — ¥’
signature morphism when for adymodel M and each w [M]x

MEY )= A N\ (MEY )
Mod()(M)=M  we[ M'];(w)

e a X-sentencddy)p’ is anexternal existential-quantificationof a ¥’-sentencep’ for y: £ — ¥’
signature morphism when for adymodel M and each w [M] »

MEY@) =/ (MEYp)

Mod(x)(M)=M  we[ M'];*(w)

Remark 4.1. In Dfn. 4.1 the notationso1 A p», —p, etc. are meta-notations in the sense that they may
not correspond to how the actual sentences appegein For example irSe.({x, 7'}) (see Ex.3.1),
according to the respective grammar, there is no actuakseatsuch ag = n’, however MPL has
implications, in the realm of the meta notations= =’ corresponding to the actual sentende A —n').

So, these meta-notations of D#1rather denote semantical equivalence classes of sentendesh goes
well with our work since here we never need to distinguishMeen semantically equivalent sentences.
We will keep employing such meta-notations also below inghper when introducing the semantics for
modalities (Dfn.4.3) or for the hybrid features (DfA.5).

On the one hand, the concepts of Boolean connectives andifipations in ordinary institutions (e.g.
from [7, 8, 21] etc.) arise as an instance of D#h1when the underlying set of eaciM[] s is a singleton set.
On the other hand, Fadt1below shows that Dfré.1is not a proper generalization of the corresponding or-
dinary institution theoretic concepts since the stratiiinstitution theoretic concepts of Boolean connectives
and quantifications may also be regarded as corresponditanires of the respective ordinary institution
theoretic concepts. The importance of Dfnl resides thus in the fact that it gives an explicit account of
how Boolean connectors and quantifications reflect in aifschsetup.

“Classes of sentences that hold exactly in the same models.
12



Fact 4.1. When they exist, the conjunctions, disjunctions, imgbeet, negations, universakistentialy-
quantifications coincide i and 7*.

Corollary 4.1. In any stratified institution we have the following:

1. =(=p1 A =p») is an external disjunctiop; V p»;
2. =p1 V p2 is an external implicatiop; = po;
3. =(3y)—p is an external universal quantificatiqi¥y)p.

Proposition 4.1. In any stratified institutiony” with [ _] surjective

1. any external conjunctions i#i is an external conjunction id* too; and
2. for any signature morphisrp, any external universa}-quantifications inZ is an external universal
x-quantifications in/* too.

Proof. 1. For eactE-modelM and any conjunctiop A p2 in I we have that

ME" p1Ap2 = Awerm(M EY p1Ap2) (by definition of *)
Awermp (M EY p1) A (M EY p2)) (sincep1 Ap2 is conjunction inf)
(Awermp (M EY p1)) A (Awermp (M EY p2))
= (ME p1) A (ME* p2) (by definition of =),

2. Let M be aX-model and {x)p a universally quantified-sentence ir? for y : £ — X’ signature
morphism. We have that

@ Mk (e = Awermi(M Ez (VX))
= MM EY plwe [M].Mod()(M') = M.w & [M'] ()},

On the other hand we have that
(8) A NELe)= N\ C N\ (NELp)
Mod(x)(N")=M Mod()(N)=M Vve[N]y

In order to show thatfy)p is an external universal quantification ifi we have to prove that the values in
the equations?) and @) are equal.

(7) < (8) | For eachMod(y)(N") = M andw’ € [N’]x like in (8) we considetM’ = N’, w = V' and
w=[MT,W)in (7).

(8) < (7) | For eachw € [ M], Mod(x)(M’) = M andw’ € |[M’]|);1(w) like in (7) we takeN’ = M’ and
vV =w in (8). O

In general,7* may lack other connectives besides conjunction and alsexiséential quantifications
that 7 does have.

Definition 4.2 (Frame extraction)Given a stratified institutiod’, a frame extractions a pair L, Fr consist-
ing of a functor L: Sigrf — Sigrf€£ and a lax natural transformation Fr Mod! = L; Mod®< such that
[] = Fr; L(Mod®£ = SET).

Mod(x) — =, set

forgetful
FI’): T 9

Mod®L(L(x))
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Example 4.1. The following table shows some frame extractions for thati$ieed institutions introduced
above.

stratified institution L Fr
MPLMFOL, HPL, HFOL, HHPL LE)={1: 2}  Frs(W M) = (W], W)
MMPL, MMTOL, MWL, MHFOL L(Z, A) =A Fl’z(VV, M) (|W|, (W/l)/leAml,new)
MOFOL, HMOFOL  L((F.P).X) =P Frg(M) = (IM[*, (M")x)xePy,1.new)-

Definition 4.3. Let 1 be a stratified institution endowed with a frame extractigiri. For any 2 € L(X)n.1
and anyZz-sentencegs, ..., on

e aX-sentencé€l)(ps,...pn) is anexternall-possibility ofps, ..., on When
(M EY (D(o1, .- pn)) = \V (\ MEY i)
(Waw,...Wh)e(Frs(M)), 1<i<n
e aX-sentencgA](o1,...pn) is anexternall-necessity op, ..., on When

(M E" [A(or. - -pn) = A ME ),

(W,w,...Wn)e(Frg(M)), 1<i<n
for eachX-model M and for each w [ M]x.
Fact 4.2. In any stratified institution like in Dffd.3, =(A)(—p, ..., —pn) IS ad-necessity gb, ..., pn.

Definition 4.4 (Nominals extraction) Given a stratified institutiod’, a nominals extractiots a pair N Nm
consisting of afunctor N Sign’ — Sign®¥’C and a lax natural transformation Nm Mod? = N; Mod¥’®
such thaff ] = Nnp N(Mod¥’¢ = SET).

Mod(z) —32 set

\ /‘\forgetful
Nmy

Mod¥C(N())

Example 4.2. The following table shows some nominals extractions fossthatified institutions introduced
above. Note thatfHPL admits two such nominals extractions.

stratified institution N Nm
HPL, HFOL, MHPL, MHFOL N(Nom,X) = Nom NMnomz) (W, M) = (W], (W )ienom)
HHPL N(Nom”,Nom', P) = Nom” Nm(W2, M%) = (((WO)™], (WO)™); cnomp)
N(Nom?, Nom*, P) = Nom*  Nm(W*, M%) = (W2, (WD), nomt)
HOFOL, HMOFOL N((F,P), X) = Fo NmM(M) = (IMIX, (M%);)icr,)

Definition 4.5. Let 7 be a stratified institution endowed with a nominals exti@etN Nm. For any i€

NomZ)

e aX-sentence Benis an isentencavhen

(M EY i-sen)= (Nmy(M)); = w);
14



¢ for anyX-sentence, a X-sentence@;p is thesatisfaction op ati when
(M EY @p) = (M NN ),

for eachX-model M and for each w [ M]x.

Example 4.3. The following table shows what of the properties of Dril, 4.3and4.5are satisfied by the
examples of stratified institutions given above in the paper

AV a2 > §29) (E)9) O [1 i-sen @
MPL v v v Y > O
MFOL v v v v (V% EN) > O
HPL v V v Y (V) €D S O v v
HFOL v <« v v (0, () @, @ © O v v
MMPL v v v v
MHPL v v V (V) €D v v v
MMFOL v v v v (% ax) v
MHFOL v v v v (I, () @, @) v v v
HHPL v v < v (9, (iH @9, @y < 0O iOsenilsen @, @:
oF0L v v v v (¥ EN)
MOFOL v v v v (¥ 3% v
HOFOL v v v v (¥, (V) (@x), @) v v
HMOFOL v < v + (W), () @), @) « v v

In the table ¥x), (Vi) stand for {y) wherey is an extension of the signature with a first order variabte, o
a nominal variable, respectively, and similarly for thestantial quantifiers. The case of the quantifiers re-
minds us once more that in spite of the abstract simplicitphefinstitution theoretic approach to quantifiers,
just based upon model reducts, they are a very powerful gbscgporting a wide range of quantifications
within a single uniform definition. Basically, one may qufnbver any syntactic entity that is supported
by the respective concept of signature morphisms. In oungies this means first order variables and nom-
inals alike. An particularly interesting situation is givey HHPL, where the concept of signature supports
guantification over two kinds of nominals, correspondinghetwo layers of hybridization.

5. Model ultraproducts in stratified institutions

The structure of the section is as follows:

1. We start with a recollection of the concept of filtered protdn abstract categories.

2. Then we discuss filtered products of models in stratifiestitutions and develop some technical
results about the representation of filtered products ofatsdd 7*, the local institution associated to
a stratified institutior? .

3. The last part of this section is concerned with the devekt of a £o§ styled theorem for abstract
stratified institutions that carry some implicit modal stire. This means a gathering of relevant
preservation properties for the connectives commonly ussgntences in various modal logic sys-
tems; the connectives are considered by their semanticittis given in Sect4. Here also the
compactness consequence of £os theorem is studied bdile &viel of abstract structured institu-
tions and at the level of concrete examples.
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5.1. Areminder of categorical filtered products

For each non-empty sétwe denote the set of all subsetsldiy P(I). A filter F over | is defined to be
a setF € P(l) such that

o | eF,
e XNYeFif Xe FandY eF, and
e YeFif XcYandX eF.

Afilter F is properwhenF is not#(l) and it is arultrafilter whenX € F if and only if (1 \ X) ¢ F for each
X € P(1). Notice that ultrafilters are proper filters. We will alwagssume that all our filters are proper.

Let F be a filter overll andl” c |. Thereduction of F to 1 is denoted byF|;» and defined afl’ N X |
X e F}

Fact 5.1. The reduction of any filter is still a filter.

Definition 5.1. A class¥ of filters isclosed under reductiorisand only if H; € # for each Fe ¥ and
JeF.

Examples of classes of filters closed under reductions diecthe class of all filters, the class of all
ultrafilters, the clas§l} | | set, etc.

Definition 5.2 (Categorical filtered products). et F be a filter over | andM;)ic; a family of objects in a
category with small direct products. Then anrfikered product of M;)ic; (or F-product for short) is a
co-limit{uy : My — Mg | J € F} of the directed diagram of canonical projectioff®>y : My — My |
J ¢ J e F}, where for each & F, {p3i : My — M; |i € J}is adirect product o{M))je;.

M,
: M
Pai lp‘]\
M; My Mg

Py i
If F is an ultrafilter then F-products are calledltraproducts

Note that a direct produd];c; A is the same as afi}-product of &;)ic;. Obviously, as co-limits of
diagrams of products, filtered products are unique up to@phisms. Since the co-limits defining filtered
products are directed, affigient condition for the existence of filtered products, vhapplies to many
situations, is the existence of small products and of dégcb-limits of models. Note however that this is
not a necessary condition because only co-limits over diagrof projections are involved. For example
models of higher order logi®[ 8] in general are known to have only direct products and utbdpcts.

Definition 5.3 (Preservatiofiifting of filtered products 7, 8]). Consider a functor G ¢’ —» Cand F a
filter over a set I.

e G preserves--productswhen for each F-produgt’ of a family(M,)i¢; in |C’|, G(u") is an F-product
(in C) of (G(M)))icr.

e G lifts F-productswhen for each familyM/)ic, in |C’| and each F-produgt in C of (G(M!))iei, there
exists an F-product’ of (My)i¢ in C” such that Gu’) = p.

For any classF of filters, we say that a functgreservefifts #-productsf it preservedifts all F-products
for each filter Fe .
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Fact 5.2. If G lifts F-products then it also preserves them.
In many situations the following applies.
Fact 5.3. A functor G preservdgfts F-products if it preservelifts direct products and directed co-limits.

The concept has been introduced first time7junder a diferent terminology and in a slightly fiierent
form, and has been subsequently used in several works mia&tiyn [8, 11].

Definition 5.4 (Inventing of filtered products)Let# be a class of filters closed under reductions. A functor
G: C’ — Cinvents¥ -productswhen for each Fe F, for each F-productu;: My —» Mg | J e F}ofa
family (Mj)i¢ in |C|, and for each Be |C’| such that GB) = Mg,

— there exists & F and(M/)ic; a family in|C’| such that GM/) = M; for each ie J and such that
— there exists an [g-product{u’, : M), — B| J € Fl|s} of (M)icy such that Gu’,) = uy for each
J e F|J

When J= | we say that difts completelythe respective F-product. (Note that in this case the closdF
under reductions is redundant.)

In essence, the inventing property of D14 means that eacft-product construction d&(B) can be
established as the image 8yof an# -product construction dB by means of a filter reduction.

5.2. Filtered products in stratified institutions

Definition 5.5. Let ¥ be any class of filters. A stratified institutidvas (concrete¥ -productswhen for
each signatur&, Mod(X) has¥ -products (and ]y : Mod(X) — SetpreservesF-products).

As the following examples show, in practice it is common that7 -products are concrete.

Example 5.1. In all examples of SecB.3the respective stratified institutions have Rproducts, which
are concrete, as follows.

1. TheF-products inMPL, MFOL, HPL, HFOL, HHPL are obtained as direct instances of the gen-
eral result on existence &-products developed irL]]. In the case ofHHPL this has to be applied
twice, first for gettingF-products in#PL from the F-products in”L, and then for getting thé-
products inHHPL from the F-products inHPL.

2. In the case oMMPL, MHPL, MMFOL, MHFOL we may apply a straightforward extension of
the above mentioned result df]] to the multi-modal situation.

3. In the case 0OFOL, MOFOL, HOFOL, HMOFOL the F-products are much simpler than in the
previous cases because the models in all these institwiensistFOL models.

In the case oMPL, MFOL, HPL, HFOL, MMPL, MHPL, MMFOL, MHFOL, HHPL, according
to [11] the construction of filtered products is done in two stepst &t the level of the Kripke frames and
next lifted to the level of the Kripke models Mod(X); this shows that [ s creates filtered products. For
example, inMFOL anF-product of a family Wi, M))ic; is {ug @ (W3, Mj) = (Wg, Mg) | J € F} where

e {(u3)o: W3 — W | J € F}is anF-product of the family ofBREL models W)ic; whereW; is the

cartezian product o)ics; and
o for each W)ic; € W] and each] € F we IetMSWj)jeJ denote the cartezian product dmf")jej; note

that botthSWj)jEJl and (I\/ISW")J‘J)X for x constant are invariant with respect 1 ¢, ;
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o let{(uy)r: |MSW")jEJ| — |Mg| | J € F} be a directed co-limit irset
e since the underlying carrier functr : Mod™@£(Z) — Set creates directed co-limits, for each
(W)ier € |W;| we lift the directed co-limit of the previous item to a diredtco-limit{(u;); : MSW")J'“ -
M(F‘“)O((W‘)ie') | J € F} of Mod™@£(2)-models; it is not diicult to check that the definition d¥lg is
correct in the sense thatilo(Wiic1) = (1 )o((W)ier) implies thatmellia) — ppGo(tikie),
In the case 0OFOL, MOFOL, HOFOL, HMOFOL, [ -1 is just the composition betweerr@,L underlying

carrier functorM — |M|, and a power functaM| — |[M[X, which are known (e.g.g], etc.) to create direct
products and directed co-limits, and thus filtered products

The following result gives a representationfoproducts in the local institutiodi* from theF-products
in the stratified institutiory .

Proposition 5.1. If a stratified institutionZ has concrete F-products, theff has F-products, which for
any family{(Mij,w;) | M; € IMod(Z)|,w; € [Mi]s,i € |} may be defined by

9 Ao, wy) i (Mg, wi) = (Mg, [ ](wi)) | J € F,

where{u; : Mj — Mg | J e F}is an F-product in Mo¢X) and w is the unigue element §M ;] such that
for each ie J, [ pail(wy) = w;.

Proof. Let (Mj)ic| be a family injMod(X)| andF be a filter oved. We first show that for each e F,
(10) {(pgi,wy) 1 (Mg, wy) = (M, w;) | i€ J}

is a direct product iModf(Z). By the definition ofwj, each py;, w;) is well defined, i.e. piJ(w;) = w.
For any family{(f;,v) : (N,v) —» (M;j,w;) | i € J}, by the universal property of the direct products in
Mod(Z) there exists an uniqué: N — Mj such that for eache J, f; py; = fi.

(f.v)
(M3, wj) ——— (N, V)
(pJ,i,wJ){ %
(Mi, wi)

Hence, for each € J, [psiI([ f1(v)) = [ fil(v) = w;. Since [py;] are cartezian projections, it follows that
[ f1(v) = wy. This completes the proof of the universal property of theatiproduct 10).

It follows immediately that for eacl’ c J € F, (pyoy, W) : (M3, wj;) = (My,wy) is a corresponding
canonical projection itMod*(Z). Let us show thatq) is a co-limit inModf ().

(M3, wy)

(13, 05) (73,5)

(P32 Wg)

(My,wWy) ——— (Mg, [t ](W)))

(k3 W)
(m\

First, note that eachu(, w;) is well defined, i.e. thatd;](w;) = [« 1(w), which is given by the following
calculation:

L I(wi) = [pisas al(wi) = [al (I pisal(wy )]).8: [ral(ws).

(N.v)

(VJ’ ’WJ')



For establishing the universal property of the co-canew;) <k let us consider another co-cong,(w;) e
over (Pi-y,W3)ioxer- Let (N,v) denote it vertex. By the universal property @fjfser in Mod(X) there
exists an uniqud : Mg — N such that for eacld € F, uj; f = v3. The argument is completed if we
showed that []([ i1 1(w)) = v. This holds by the following calculation:

[EIC e I(W)) = [prs £1(wr) = [ l(wi) = v.
O

Corollary 5.1. For any signature morphisng in any stratified institution/ with concrete F-products, if
Mod(y) preserves F-products ifi then Mod(y) preserves F-products if?.

Proof. Lety : ¥ — ¥’ be sighature morphism such thdod(y) preservesd--products and let
{hw) o (Mj,wy) = (Mg, [f](wi)) | € F}

be anF-product in Modﬁ(Z’) like in Prop.5.1. We denoteMod(x)(M/) = M;, Mod(x)(M}) = M;,
Mod(x)(M¢) = Mg, andMod(y)(u;) = u3. We have to show that

{(a, IM3] (Wa)) + (Mg, IM3](W3)) = (Me, IMgD (L1 (wi))) | I € F}
is anF-product inModﬁ(Z). First we should establish that for eatle F
(11) {(Mod(x)(Pai). [M3],(Wy)) = (Mg, [M3],(Wa)) — (Mi, [M{T, (W) |i € 3}
is a direct product. Consider

{(fi,v) 1 (N,v) = (M, [M/T,(w)) | i € J}.

SinceMod(y) preserves products kod(Z), we have that the part of (L1) is a direct product, hence let
f : N — M; such thatf; Mod(y)(pgi) = fi. For showing thatX1) is a direct product iModf(Z) it remains
to show that [f]=(v) = [M]], (w;). This holds by the following calculation

[Mod(x)(Pu)l=([ f1z(W) = [fil(V)
= [M1,(w) (by the definition off;)
= [M1,([pails (wi)) (by the definition ofw;)

[Mod(x)(Pai)l=(IM]],(ws)) (by (4))

and by the fact thaMod(y) and []x preserve direct products, we hav thafldd(y)(pai)]s are direct
product projections.

Then it follows immediately thai{Mod(x)(pszy), [Mj],(W3)) | I € J € F} is a diagram of projections.
Now consider any co-cone for the above diagram as follows:

{(va, M1, (W3)) © (Mg, [M],(W3)) = (N,v) | J € F}.

SinceMod(y) preserved--products it follows thafu; : My — Mg | J € F}is anF-product inMod(X),
hence there exists an unigde Mg — N such that for eacl € F, uj; f = v3. In order to show that
(L, IMED (T ICwi))) is aMod*(=) homomorphism Mg, IMED ([ 1(w1))) — (N, v) we still have to show
that [f]=(I Mg ([ 1= (Wi))) = v. This holds by the following calculation:

[fIs(IMEL (Tds)) = [fIs(ul=@MT (wi))  (by (4))
= [nl=((IM{1, (W) (sincew; f =)
=V (by the homomorphism property of;( ([ M1, (w))).

O
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5.3. Los theorem in stratified institutions

The following definition generalizes the corresponding aiquteservation concept o8 11] to the
much more general setup of stratified institutions.

Definition 5.6. Let ¥ be a class of filters and et be a stratified institution withF-products. AX-sentence
pis
e preserved by -productswhen for each ve [ Mg], “there exists Je F and ke [13] ~*(w) such that
M; EXi p for each je J”implies Mg EY p, and
e preserved byF-factorswhen for each we [Mg], Mg EW p implies “there exists Je F and k e
[13]%(w) such that M EXi p for each je J”

for each filter Fe # over a set | and for each famiM;);c; of =-models, and whergu;: Mj — Mg |
J € F} denotes an F-product ¢M))jc; and k = [ pj]=(K).

When all [M] z have singletons as their underlying sets, B8yields the preservation 3§ -productgfactors
in ordinary institutions as defined i7,[8]. On the other hand, the following result shows that steadifi
preservations by -productgfactors of Dfn.5.6 may be an instance of their ordinary versions fraing).

Proposition 5.2. For any stratified institutionZ with concretef -products the following are equivalent for
anyX-sentence:

1. pis preserved by -productgactors inf; and
2. pis preserved by -productgactors inZ*.

Proof. In this proof we use the notations of Pr&pl First note that sincé has# -products, by Propb.1
T* has# -products too. Moreover, by the assumption of preservatf@atisfaction by model isomorphisms,
without any loss of generality, we may consider only Exproducts given byq) of Prop.5.1

For the preservation by -products, let i, w))ic; andF € F filter over| and assume that
there exists) € F such that for each € J, (Mj, w;) # p. By the definition of=* we have that for each
j €3, Mj EY p. By 1. it follows thatMg I o Since ful(wi) = [ual([ Pi2al(Wi)) = [ral(wy) it
follows that Mg, [t ](W)) E p.

For the preservation by -factors, let i, w;)ic; andF € F filter over| such that Mg, [ ](W)) E* p.
HenceMg EV p wherew = [1](w;). By the hypothesis 1. there exislse F andk e [u3] (W) such
that for eachj € J, M; EX p. Because f3](k) = [u3](w;) we have that there exists2 J’ € F such that
[ p251(k) = wy. Hence for each € J', (M;, w;) ¥ p.

For the preservation b§-products, let i)ic; andF € F filter over | and for any fixed
w € [Mg] assume that there exisse F andk € [u3] *(w) such that for each € J, M; EK p. Letus
take anyk; € [M;] for eachi ¢ J and letk, be defined by p,;1(k) = ki for eachi € |. Since for each
j €3, (M, k) EF p, by 2. it follows that Mg, [111(k)) E* p. Since u1(k) = [13](k) = wit means that
Me EY p.

For the preservation by -factors, let Mi)ic; andF € F filter overl. Let us assume thaflg EY p. Let
k e [1u]~(w). By (9) of Prop.5.1we have thatNg, w) is the F-product of ((M;, k))ici. By the hypothesis
2. there exists) € F such that for eachi € J, (M;, kj) E* p, which meansvi; £ p. O

Proposition 5.3. For any stratified institutior” with F-products, if a sentengeis preserved by F-products
in 7 then it is preserved by F-products # too.
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Proof. Let us assume thal’ = {j € | | Mj " p} € F for {u3: My — Mg | J € F} anF-product of a
family (M;)jei of Z-models. Lew e [ Me]. For anyk € [15]1(w) and eachj € J’ we have thaM; X p
(sinceM; E* p). Because is preserved by -products inZ it follows thatMg E" p. HenceMr E* p. O

According to [7, 8] any institution in which all its sentences are preservedlbgproducts is m-compact.
Hence from Prop5.3and5.2we get the following consequence.

Corollary 5.2. Let I be a stratified institution with ultraproducts such that baaf its sentences are pre-
served by ultraproducts. Then

1. I* is m-compact; and
2. if in addition the ultraproducts are concrete théh is m-compact too.

The following consequence of Prap2represents a transfer of preservation results from orglimati-
tutions to stratified institutions.

Corollary 5.3. In any stratified institution/- with concretef -products

1. both the sentences preserved/byproducts and those preserved $yfactors are closed under con-
junctions;

2. if p is preserved by -products then-p is preserved by -factors;

3. if p is preserved by -factors and# contains only ultrafilters themyp is preserved by -products;
and

4. if ¥ is closed under reductions, M@g preserves-products, ang is preserved by -products then
(Ax)p is preserved by -products.

Proof. 1., 2., 3. By Fact.1, the conjunction and negation coincidefirandZ*. By Prop.5.2, preservation
by F-productgfactors also coincides ifi andZ*. The conclusions for 1., 2., 3. follow because Byd] the
considered preservation properties hold in general in adipary institution and in particular if*.

4. By Prop.5.2p is preserved byF-products inZ*. By Cor. 5.1 it follows thatModﬁ(X) preserves
¥ -products. From7, 8] we know that in general, in any (ordinary) institution, fmosuch conditions it
follows that @y)p is preserved by -products. We apply this conclusion withifi. By Fact4.1 (existential
quantification coincide i and inZ#) and by Prop5.2it now follows that @y)p is preserved b§ -products
in 7. O

The conclusions of Cob.3 may be obtained directly without reliance upon Pro2. Some of them
may be obtained under the slightly milder condition thatdoat require thé& -products to be concrete, how-
ever this generality is largely meaningless in the appboatbecause thE-products are usually concrete
(in fact we do not know examples &f-products that are not concrete).

Proposition 5.4. In any stratified institution/ with #-products, if¥ is closed under reductions, Mg
inventsF -products, ang is preserved by -factors then(dy)p is preserved by -factors.

Proof. Lety : ¥ — X’ signhature morphism, ldt € F, and let{u; : My — Mg | J € F} be anF-product
of a family (M))ic; of Z-models. Assume thailr EY (Ay)p.

It follows that there existd1” andw’ such thatMg = Mod(y)(M’), W € |[M’]|);1(w), andM’ Y p. By
the inventing condition there existse F and anF|;-product{u}, : M), — M’ | J € F[3} of a family
(le)jej of X’-models such that/lod(,y)(Mjf) = M;j for eachj € J and for allJ” ¢ J' € F|; we have that
Mod(x)(P}53.) = Py2y andMod(x)(u’) = py. Sincep is preserved by -factors there exists’ € F|;
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andk’ e [u4]5H(w) such thatvi/ N p for eachj € J'. Letk = [M},],(K). For eachj € J’ we have the
following:

ki = [Mod(x)(py.j)I(k) (by the definition ok;)
[Mod(x)(py )I(I M31,(K)) (by the definition ok)
= [Mil ([ ps.iI(K)) (by (4))
= |[Mj]|X(k3) (by the definition oik}).

SinceModcy)(M}) = M; we get thatM; EK (3y)p. It remains to show thatf; (k) = w, which holds by
the following calculation:

[131:® = [url=(IM}1,(K)) (by the definition of JK)
[MT, ([, 1=(K))  (by @)

[MT, (W) (sincek’ € [y 151w))
= W.

O

Proposition 5.5. Let 7 be a stratified institution endowed with a frame extraction ISigrf — Sigrf€£,
Fr: Mod! = L; Mod®£. Assume thaf has F-products for a filter F over a set .

1. If Fry preserves direct products and, ..., p, are preserved by F-products then aaypossibility
(M(o1, . ..pn) is also preserved by F-products.

2. If Fry preserves F-products and, . . ., pn are preserved by F-factors then atypossibility{1)(o1, . . . pn)
is also preserved by F-factors.

Proof. 1. We consider af-product{u; : My — Mg | J € F} for a family (M;)ic; of £-models and assume
that there existd € F andk € [u3] ~1(w) such that for each € J, M; EX (1) (o1, . .. pn). We have to prove
thatMg EV () (o1, . ..,pn), i.€. that there existsy,wa, ..., W) € (Frg(M)), such thatMg EY p; for each
1<i<n

For eachj € J, M; EK (1)(p1, ...pn) means that there existkj(k.l,...,k’.‘) € (Frg(Mj))a such that
M; |:k'i pi for each 1< i < n. SinceFry preserves products we have thiats(pyj) : Frs(My) — Frz(Mj) |
j € J}is direct product inMod®“(L(Z)). Hence for each k i < n, there exist«k' e [M;] such that
[psj1(K) = K for eachj € J. We definew; = [u5](K).

By the direct product property dfrs(M;) in Mod®4(L(Z)) we have thatk, kjl, KN e (Fre(M)a
for eachj € Jimplies thatk, k, ..., k") € (Frg(M;)),. SinceFrs(uy) is @ homomorphism dflod™&4(L(Z))-

models it follows that\{, wi, . .., Wp) = ([31(K), [a1(KY), . .., [13](kM) € (Frs(Mg)),.
That for each ki < n, Mg " p;, follows from the hypothesis that is preserved by-products and

becausé' € [u3] 1(w;) and M; |:k'i pi for eachj € J.

2. We consider ar-product{u; : Mj — Mg | J € F} for a family (M;)i¢; of Z-models and assume
thatMe EY (1)(o1, . .., pn). We have to prove that there exists F andk € [13] ~2(w) such that for each
j€Jd, M ki (o1, - -, pn), i.e. that there existk(, ki,...,k") e (Frs(Mj)). such that for each £ i < n,

M; EX o
FromMg EW (1)(o1, ..., pn) it follows that there existsw, wy, ..., wy) € (Frs(Mg)), such thatMg EW
pi for each 1< i < n. By the hypothesis that eaghis preserved b¥-factors, this means there exisks= F

andl’ € [u3] 1(w) such thatM; "5 p; for eachj € J.
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SinceFry preserve$-products it follows thatFrs(uj) : Fre(M;) — Fre(Mg) | J € F}is anF-product
of (Frz(Mj))jer in Mod®4(L(Z)). Hence, W, W, . .., Wy) € (Frs(Mg)), implies that there existd € F and
(V,V1,...,Vn) € (Frs(My)) with [ua](v) =wand [uy](vi) = w; foreach 1<i < n.

Let us taked” = J' N (N1<i<n Ji- Since filters are closed under intersections, it folloves # € F. For
each 1< i < nwe have that

[0 3 P32 1(1) = Luad(1) = Wi = [uyI(W) = [ 1(Pr2a- ().
Since{Frs(us) : Fre(My) — Frs(Mg) | J € F}is anF-product, which means it is a particular directed
co-limit, it follows that there exists € J” such that Py 2](1') = [ py2a](vi) for each 1<i < n.
For each 1< i < nwe definek' = [ pyo31(1') = [ pyosl(vi). We also lek = [ pyoil(V).

— Since ¢,v1,...,Vn) € (Frg(My)),, by the homomorphism property &fs(pyoj) it follows that
(k. KL, ..., k") € (Frg(M;)):. By the homomorphism property of eagh; it further follows that
(kj, kjl, .. KD) € (Frs(M))), for eachj € J.

— Note that for each X i <nand each € J

I = [pg 7107 = [pa I Pa=al (1) = [pajI(K) = K.

Since we know thaM; |:'iJ pi it means thai; |:kii pi for eachj € J.

O

Proposition 5.6. Let 7 be a stratified institution endowed with a nominals ext@ttN: Signf —
Sign¥C, Nm: Mod! = N:Mod¥C. Assume thaf has F-products for a filter F over a set |. For
any signaturez and any ie N(X),

1. If Nmy preserves direct products thersénis preserved by F-products.

2. If Nmg preserves F-products thersenis preserved by F-factors.

3. If pis preserved by F-products then each sente@igeis preserved by F-products too.

4. If Nmg preserves F-products andis preserved by F-factors then each sente@g is preserved by
F-products too.

Proof. We considefu; : My — Mg | J € F} anF-product a family M;)je; in Mod(Z).
1. Let us assume that there exidts F andk € |[;13]|£1(W) such thatV; K i-sen for each € J. This
means for eaclj€ J

(12) (Nmy(M;))i = Kj = Nme(pgj)(K).

Also, by the homomorphism property Nims(p;j) we have that for eache J

(13) (Nme(Mj))i = Nme(paj)((Nme(My))i).

SinceNmy, preserves direct products, froh2) and (L3) it follows that (Nm(M,;))i = k. We have that

(Nme(Mg))i = Nme(ua)((Nme(My))i) - (by the homomorphism property dim (u))
N () (K) =W,

which meandMg EY i-sen.
2. Let us assume thal £V i-sen, which meandNmg(Mg)); = w. SinceNmy;, preserved--products,
{Nmg(u3) : Nmg(Mj) —» Nmg(Mg) | J € F} is a directed co-limit, hence there existse F such that
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Nmy(ug)((Nme(M;y))i) = (Nme(Mg))i. Letk = (Nmg(My));. For eachj € J, by the homomorphism
property ofNmy(py;) it follows thatk; = Nmg(paj)(K) = Nme(pyj)((Nme(My))i) = (Nme(M)))i which
meansM; EXi i-sen.

3. Let us assume that there existe F andk e |[/JJ]|£1(W) such thatM; EX @ip for eachj € J,
which just meandv; EN™ M) 5 for eachj € J. Since by the homomorphism propertyMfrs ;) and of
Nme(py;), for eachj € J, we have thalmy (u5)((Nm:(My))i) = (Nme(ME))i and thalNme(pa j) ((Nme(M,))i) =
(Nm:(M)));, respectively, and because by hypothesispreserved b -products it follows thaMpg EN™Me)
o which meandMg EY @ip.

4. Let us assumdlr " @ip, which meandMg EN™MME) 5 |t is enough to show that there exists
J € F such thatvl; ENMMD) 5 for eachj e J.

— SinceNny, preserves=-products{Nmg(u3) : Nmy(Mj) - Nmy(Mg) | J € F}is a directed co-limit,
hence there exist¥ € F such thalNmg(uy )(Nme(My))i) = (Nme(MEg));.

— By the hypothesis that is preserveg byr-factors, it follows that there existy” € F andk” €
[13-15H(Nme(ME))) such thatM; Y p for eachj e 3.

Since fuy]s((Nmx(My))i) = [rs]1s(k”) and becaus€[usls : [Msls — [Mels | J € F}is a directed
co-limit, there exists] € J’ N J” € F such that

(14) [Py20ls((Nme(My))i) = [ps2a]s(K”).
For eachj € J we have that

(Nme(Mj))i =
= Nmg(pyj)(Nm(My))i) (by the homomorphism property dim:(py j))
= Nmg(paj)(NMe(py23)((Nme(My))i))  (by the homomorphism property 8fims(py2J))
= Nmg(paj)(Nme(pyr23)(K”)) (by (14))
= [py.jl=(k”) = k.
Hence for eachj € J, Mj ENMMD) 5, O

Note that from the six preservation results included in Psopand5.6, one does not assume anything
on the framgnominals extraction, two assume that the respective didrecpreserve direct products, and
three that the they preserteproducts.

The preservation results of Cé.3 and of Prop5.4-5.6 may be applied for lifting preservation prop-
erties from simpler to more complex sentences. They can && atsthe induction step when establishing
preservation properties by induction on the structure efeéntences. The following result and its corollary
constitute a general approach to the base case of suchimpebofs, that in general corresponds to the
atomic sentences.

Lemma 5.1. Let(®,a,B) : B — B be an institution morphism such that egghpreserves F-products.
Then for anyd(X)-sentence that is preserved by F-produdiactors, thex-sentencers(p) is preserved by
F-productgactors.

Proof. Let us assume aR-product{y: M) — Mg | J € F} of a family (M/)ic/ of Z-models for a
#’-signatureX. By hypothesis we have th#8s (1)) : Bz(M)) — Bs(M[) | J € F}is anF-product of
(B=(M))ier in Mod®(@(%)).
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For the preservation blf-products, let us assundee F such thatM s ax(p) for eachi € J. By the
satisfaction condition ofd, «, 8) this meangs(M/) o) p for eachi € J, hence becauseis preserved
by F-products 8z(M{) Fa() p- By the satisfaction condition ofly, o, 8) it follows that M ks as(p).

For the preservation bif-factors, let us assume thBt. s ax(p). By the satisfaction condition of
(D, ,p) it follows thatgs(Mr) Fae) p. Sincep is preserved by--factors, there existd € F such that
B=(M/) ko) p for eachi € J. By the satisfaction condition ofl, a, 3) we obtain thatM; s ax(p) for
eachi € J. O

The following is an immediate consequence of PEbgand Lemma. 1, which is applicable in concrete
situations.

Corollary 5.4. Let I be a stratified institution with concretg-products. Let(®,,8): I* — B be
an institution morphism such that eagh preservess -products. Then for eactb(X)-sentence that is
preserved by -productgactors,as(p) is preserved by -productgactors in7.

Now we can put together the results of this section and appgiytto our concrete benchmark examples.

Corollary 5.5. LetI € {MPL, MFOL, HPL, HFOL, MMPL, MHPL, MMFOL, MHFOL, HHPL, OFOL,
MOFOL, HOFOL, HMOFOL)}. Then inf each sentence is preserved by all ultraproducts and ulttafs.
Consequently* and 7* are m-compact and in additiofi* is compact.

Proof. The first conclusion is proved by induction on the structurd @entences through application of
the preservation results of Cér4, 5.3 Prop.5.4, 5.5, and5.6 as follows.

From Ex.5.1let us note thaf has concret&-products for any filtef.

The base case of our induction proof on the structure offt#sentences is represented, with the ex-
ception of HHPL, only by atomic sentences. These atomic sentences may e &frids, either atomic
sentences aPL or FOL, or elsei-sen. In the case offHPL, besides!-sen at the base case we also have
the sentences of thEPL corresponding to the lower layer of hybridization. For theewhen the sentence
is a not a nominal sentence, we apply Cad. Let APL and AFOL denote the sub-institutions &tL
(propositional logic) and of QL (first order logic), respectively, that have only the atomheir sentences.
Let B be HPL whenI = HHPL, APL whenI € {MPL, HPL, MMPL, MFHPL} and AFOL otherwise.
The institution morphism®, «,8) : I — B is defined as follows:

e O forgets the modalities symbalswhen? € { MMPL, MHPL, MMFOL, MHFOL} and the nom-
inals symbols whed € {(HPL, HFOL, MHPL, MHFOL, HHPL)® and is identity otherwise;

e « isjust the inclusion of the sentences@PL or of AFOL as atomic sentences &f and

e Bs(M,w) = MW,

The Satisfaction Condition fody, «, 8) is an immediate consequence of the satisfaction of atoemtesces
in 7 (or of the satisfaction of th@#P£-sentences ifHHPL) and of the definition of* (see FacB.1).

Now we establish that eagh preserves alF-products. By Prop5.1we know thatF-products inZ*
are of the form

{(ma,w3) 1 (Mg, w3) = (Mg, [t ](wi)) | J € F).
According to the definition g8, we have to show that

15) % M¥ - MBI g e Fy

5In the HHPL case we havé(Nom®, Nomt, P) = (Nom®, P).
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is anF-product too. Without any loss of generality we may furthsswane thaiM; are cartezian products.
Note thatw; = (w;)je; when thel-models are Kripke models amdg); p;j = wj in the other cases. It follows
thatM}"J is the product ofM" | j € J}. When theZ-models are Kripke models, from the construction of
F-products of Kripke models, by Lemma 11.11 8f {the same with Lemma 1 ofLfl]) it follows that (15)

is anF-product of M\J-Nj)jd. Whenr e {OFOL, MOFOL, HOFrOL, HMOFOL} then the argument that %)

is anF-product is much simpler becauge; : Mj — Mg | J € F} is anF-product offOL (F, P)-models
and (L5) is just an expansion of this t&+ X, P).6

When 8 # HPL then all B-sentences are atoms, hence according/t@] they are ‘finitary basic
sentences’ and consequently are preserved bf-glloducts and alF-factors. WhenB = HPL then
we have to use the conclusion of this corollary for= HPL, that all HPL-sentences are preserved by
ultraproducts. This completes the set of conditions foryapg Cor. 5.4, which gets us to the conclusion
that, apart of the nominal sentendesen, all sentences at the base case are preserved byadtrefsr and
ultrafactors. For the sentencesen we apply the relevant part of Pr&p6. For this we have just to note
that the condition thalNmy preserves direct products and ultraproducts is covereddyaict thatZ has
concreteF-products. This covers the base case of our induction proof.

According to the definition of satisfaction if all 7-sentences are built by iterative application of
external Boolean connectives, quantifiers, modalitieg, f@m atoms wherd # HHPL and fromHPL-
sentences plug-sen whenl = HHPL. Hence for the induction step part of the proof, we have takhe
the conditions of Col5.3 Prop.5.4, 5.5 and5.6. The preservation of direct products and of ultraproducts
by Fry, Nmy is a direct consequence of the construction of filtered prtsdof Kripke models. Because the
class of all ultrafilters is closed under reductions, it remeanly to show that, when applicable, for each
signature extensiog with first order variables or with nominals variablédpd(y) preserves and invents
ultraproducts.

The preservation property holds for &products as follows. First we have to notice it for the direc
products. Wherd € {OFOL, MOFOL, HOFOL, HMOFOL} this is just a matter of preservation of direct
products ofFOL models by reducts forgetting interpretations of constamtgch is obvious. When thé-
models are Kripke models, this is a consequence of the fattthenever we expand a direct prodist 1)
of a family (Wi, Mj)i¢ of reducts of Kripke modelsW/, M/)ic; with an interpretation of a new constaxt
in (W, M) by Wi = ((W)x)ier Whenx is nominal or byM; = ((M/)x)ici Whenx s a first order constant,
this yields a direct product of}/, M/)ie| ./ The argument is completed by noting that the directed cd-lim
component of any-product is preserved by reducts corresponding to sigaaxpansiong with nominal
or first order variables as a consequence of the fact that adghmomomorphisnMod(y)(M’) — N may
be expanded uniquely to a model homomorphidm— N’.8 This property holds both in the simpler case
when thel -models areFOL-models but also in the case when they are Kripke modelsgifatter situation,
in the case of the first order variables the uniquenedd’ atlies upon the fact that interpretations of the
underlying carriers and of the first order constants aresshacross the possible worlds.

Now we show that the inventing property holds in the complietsn for all F-products. Ley : £ — ¥’
be a signature extension with nominal or first order variglaled let{u; : Mj; — Mg | J € F} be anF-
product of a family M;)ic; of ¥-models. LetN’ be anyy-expansion ofMg. Sincey, : M; — Mg is

5Note that in this argumerft is overloaded, it means both the filter and the family of fisresymbols of the signature.

"Note that here, in order to simplify the discussion, we itif§f assumed cartezian products, which is no loss of gdihgra
and that since in all situations fdr the interpretation of first order constants are shared ipadkible worlds we may have a
notation such adly instead ofMy'.

8At the level of abstract institutions, i8] this property is called ‘quasi-representability’; moveo [8] gives a general result
that quasi-representable signature morphisms alwaysmweedirected co-limits.
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surjectivé there existdM| a y-expansion oM, such thay, is aX’-model homomorphisnM; — N’. For
eachi € | we letM; be they-expansion oM; such thatp;j : M| — M/ is ¥’-homomorphism. This yields
a lifting of {uy: My — Mg | J € F} to a co-conduy : Mj — N’ | J € F} over a directed diagram of
projections inMod(X’). For any other co-congry: M} — N” | J € F} we leth: Mg — Mod(y)(N")
be the unique mediating homomorphism given by the co-limapprty of{u;: My —» Mg | J e F}. It
remains to show that: N’ — N” is a homomorphism of’-models. This follows by virtue of the fact
thaty,; h = v; and because, is a homomorphism af’-models.

The m-compactness properties Bf and 7# follow immediately from the first part of this corollary
via Cor.5.2. The compactness property &f follows from the general result that compactness and m-
compactness are equivalent properties in institutionshtiage external negations and conjunctions (8ge [
which by Fact.1is the case for all institutiong* considered here. O

6. Conclusions

In this paper we have showed that the stratified institutmfii®] may serve as a general fully abstract
model theoretic framework for modal logical systems. Weehslvown that stratified institutions allow for
an abstract semantics for modalities, nominals, and aatish operator (@); in each of these cases we had
been able to employ the minimal structures supporting thesponding semantics. Within this context we
have developed a general ultraproducts method, includgenaral £.0s theorem, applicable to a wide vari-
ety of modal logical systems. Compactness results haveliesm® derived from this ultraproducts method.
The concepts introduced and the results developed havedpgdied to a series of concrete benchmark
examples that include both well known and quite unconveationodal logical systems from logic and
computing. Due to the very high level of generality of our eélepments, without commitment to explicit
forms of Kripke semantics, our work may be easily applicabla multitude of new unconventional logical
systems. Moreover it may constitute a starting point forepdastitution theoretic approach to a dedicated
model theory for modal logical systems in the style &jf [

AcknowledgementsThis work has been supported by a grant of the Romanian Natidathority for
Scientific Research, CNCS-UEFISCDI, project number PNDHPCE-2011-3-0439.

References

[1] Jiri Adamek, Horst Herrlich, and George Streck&hstract and Concrete Categorie3ohn Wiley, 1990.

[2] Marc Aiguier and Razvan Diaconescu. Stratified insitiins and elementary homomorphismimformation Processing
Letters 103(1):5-13, 2007.

[3] Patrick Blackburn. Representation, reasoning, anati@ial structures: a hybrid logic manifesthogic Journal of IGPL,.
8(3):339-365, 2000.

[4] Patrick Blackburn, Maarten de Rijke, and Yde Veneriwtndal Logic Cambridge University Press, 2001.

[5] Chen-Chung Chang and H. Jerome KeisMbodel Theory North Holland, Amsterdam, 1990.

[6] Mihai Codescu. The model theory of higher order logic. dtéa’s thesis, Scoala Normala Superioara Bucureg@i7 2

[7] Razvan Diaconescu. Institution-independent ultogipicts.Fundamenta Informatica®5(3-4):321-348, 2003.

[8] Razvan Diaconescunstitution-independent Model Theorgirkhauser, 2008.

[9] Razvan Diaconescu. Quasi-varieties and initial sefmsnn hybridized institutions.Journal of Logic and Computation
DOI:10.1093logcomext016.

[10] Razvan Diaconescu and Alexandre Madeira. Encodifgiflized institutions into first order logidMathematical Structures

in Computer Science

%In the case of Kripke models this means that all its companare surjective.

27



[11]

[12]
[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

Razvan Diaconescu and Petros Stefaneas. Ultrapi@dnd possible worlds semantics in institutionseoretical Computer
Science379(1):210-230, 2007.

Melvin Fitting and Richard L. Mendelsohtirst-order Modal Logic Kluwer/Springer, 1998.

Dov M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyasch&any-dimensional modal logics: theory and applications.
Elsevier, 2003.

Joseph Goguen and Rod Burstall. Institutions: Abstraadel theory for specification and programmingpurnal of the
Assaociation for Computing Machiner$9(1):95-146, 1992.

Valentin Goranko. Hierarchies of modal and temporajide with reference pointersJournal of Logic, Language and
Information 5(1):1-24, 1996.

Jerzy £05. Quelques remarques, théoremes etegmus 'sur les classes définissables d’algebreblathematical Interpre-
tation of Formal Systemgages 98-113. North-Holland, Amsterdam, 1955.

Alexandre MadeiraFoundations and techniques for software reconfigurabilRiD thesis, Universidades do Minho, Aveiro
and Porto (Joint MAP-i Doctoral Programme), 2013.

Manuel-Antonio Martins, Alexandre Madeira, Razvaménescu, and Luis Barbosa. Hybridization of institusionin
Andrea Corradini, Bartek Klin, and Corina Cirstea, edit@lgebra and Coalgebra in Computer Sciengelume 6859 of
Lecture Notes in Computer Scienpages 283-297. Springer, 2011.

Arthur N. Prior. Past, Present and Futuré@xford University Press, 1967.

Donald Sannella and Andrzej Tarleckbundations of Algebraic Specifications and Formal SofeAevelopmentSpringer,
2012.

Andrzej Tarlecki. Bits and pieces of the theory of ingfions. In David Pitt, Samson Abramsky, Axel Poigné, araid Ry-
deheard, editor$roceedings, Summer Workshop on Category Theory and Cenragrammingvolume 240 ofLecture
Notes in Computer Scienggages 334-360. Springer, 1986.

Andrzej Tarlecki. Quasi-varieties in abstract algabinstitutions.Journal of Computer and System Scien&3¢3):333-360,
1986.

28



	1 Introduction
	2 Category and institution theoretic preliminaries
	3 Stratified institutions
	3.1 Stratified institutions: the concept
	3.2 Reducing stratified institutions to ordinary institutions
	3.3 Examples of stratified institutions

	4 The logic of stratified institutions
	5 Model ultraproducts in stratified institutions
	5.1 A reminder of categorical filtered products
	5.2 Filtered products in stratified institutions
	5.3 Łoš theorem in stratified institutions

	6 Conclusions

