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Implicit Kripke Semantics and Ultraproducts in Stratified Institutions
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Abstract

We proposestratified institutions(a decade old generalised version of the theory of institutions of Goguen
and Burstall) as a fully abstract model theoretic approach to modal logic. This allows for a uniform treatment
of model theoretic aspects across the great multiplicity ofcontemporary modal logic systems. Moreover
Kripke semantics (in all its manifold variations) is captured in an implicit manner free from the sometimes
bulky aspects of explicit Kripke structures, also accommodating other forms of concrete semantics for
modal logic systems. The conceptual power of stratified institutions is illustrated with the development of a
modal ultraproducts method that is independent of the concrete details of the actual modal logical systems.
Consequently, a wide array of compactness results in concrete modal logics may be derived easily.

1. Introduction

The model theory oriented formalisation by Goguen and Burstall [14] of the notion of a logical system
as aninstitutionhas started a line of important developments of adequately abstract and general approaches
to the foundations of software specifications and formal system development (see [20]) as well as a mod-
ern version of very abstract model theory (see [8]). One of the main original motivations for introducing
institution theory was to respond to the explosion in the population of logics in use in computing about
three decades ago, a situation that continues today perhapsat an accelerated pace. Among the logics with
relevance in various areas of informatics there is of coursethe family of modal logics, with its great multi-
plicity of flavours. The recent works on ‘modalizations’ of institutions [9–11, 18] (see also [8]), in which
only the modalities (and eventually nominals and @) and Kripke semantics are kept explicit, while the other
ingredients (e.g. sorts, functions, predicates, constraints, etc.) are abstracted away, has intensified the quest
for a fully abstract institution theoretic approach that has the potential to address adequately the specificities
of modality and Kripke semantics while leaving none of theseexplicit.

Our paper proposes stratified institutions of [2] as a general framework for a fully abstract approach to
the semantics of modal logic. In particular this means no explicit modalities, no explicit Kripke structures,
while still retaining the essence of Kripke semantics. Consequently a very general form of model theory
uniformly applicable to a wide range of concrete modal logicsystems, either conventional or more eccen-
tric, can be developed. Results can be developed in a top-down manner with hypotheses kept as general as
possible and introduced on a by-need basis, the whole development process being guided by structurally
clean causality. From the perspective of institution theory, our proposal yields an institution theoretic struc-
ture fully capable of addressing modality. The conventional definition of institution [14] may lack enough
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structure to capture various specificities of modal logics,hence our work can be regarded as a minimal but
sufficient refinement of the concept of institution towards modallogics.

We illustrate the power of our concepts with the developmentof very general modal-oriented ultraprod-
ucts method. This provides rather automatically Łoś-style theorems [5, 16] for a wide range of concrete
modal systems, as a puzzle of preservation results in the style of [7, 8, 11]. In conventional model theory
the method of ultraproducts is renowned as extremely powerful and pervading a lot of deep results (see [5],
for example), many of these been lifted to the level of abstract institutions (see [8]). Our developments may
represent the beginning of a similar journey in the realm of modality and Kripke semantics. From the many
consequences of ultraproducts, here we focus only on compactness results. Hence we derive a series of
modal compactness results for our benchmark examples, thisprocess having a generic nature.

Summary and Contributions.

1. We recall briefly some category and institution theoreticconcepts and notations that are necessary for
our paper.

2. We from [2] the concept of stratified institution and slightly upgradeit. Ordinary institutions arise
as stratified institutions with a trivial stratification; inthis way stratified institutions can be seen as
more general than ordinary institutions. The move in the other direction is given by two general
interpretations of stratified institutions as ordinary institutions. They represent high abstractions of
the concepts oflocal andglobal satisfactionfrom modal logic, respectively.

3. We provide a series of examples of stratified institutionsthat include both conventional and eccentric
modal logic systems. The former category includes propositional and first order modal logic, possibly
with hybrid and polyadic modalities features, while the latter includes the double hybridization of
[10, 17] and a first order valuation semantics for first order modal logic that is based upon the ‘internal
stratification’ example introduced in [2]. These are to be used as benchmark examples for the further
developments in the paper.

4. We give a straightforward extension of the well known institution theoretic semantics of the Boolean
connectives∧, ¬, etc. and of the quantifiers∀, ∃ to the more refined level of stratified institutions
and establish the relationship with their correspondents from the local and the global institutions
associated to the stratified institution.

5. We introduce a semantics for modalities and for hybrid features in abstract stratified institutions. This
is one of the crucial contributions of this paper.

6. We extend the institution theoretic method of ultraproducts [7, 8] to stratified institutions. The core
contributions here consist of a series of general preservation results across the abstract semantics for
Boolean connectives, quantifiers, modalities, nominals, @. These cover related previous develop-
ments from [11] (also to be found in [8]), but with significant differences in generality: (1) stratified
institutions with their lack of commitment to explicit modalities and Kripke structures are much more
general than the ‘modalized’ institutions of [11]; (2) the results of our paper cover polyadic modalities
and hybrid features while [11] considers only the unary✷ and✸. The above mentioned differences
reflect very much in the way the preservation results are actually obtained.

7. Derivation of compactness properties for the local and the global institutions associated to a stratified
institution via ultraproducts.

2. Category and institution theoretic preliminaries

In this section we recall some category and institution theoretic notions that will be used in the paper.
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We will use the diagrammatic notation for compositions of arrows in categories, i.e. iff : A → B
andg : B → C are arrows thenf ; g denotes their composition. Aconcrete category(A,U) consists of a
categoryA and a faithful functorU : A → Set.1 A functor of concrete categoriesF : (A,U) → (B,V)
is just a functorF : A → B such thatU = F; V. Let CCAT denote the category that has the concrete
categories as objects and functors of concrete categories as arrows. When it is clear from the context we
may omitU and simply refer to (A,U) asA. This implies also that forA ∈ |A| we may writea ∈ A instead
of a ∈ U(A). We use double arrow⇒ rather than single arrow→ for natural transformations. A functor
U : C → C′ preservesa (co-)limit µ of a functorD : J → C whenµU is a (co-)limit of D;U. It lifts a
(co-)limit µ′ of D;U, if there exists a (co-)limitµ of D such thatµU = µ′.

The original standard reference for definitions below of institutions and institution morphisms is [14].

Definition 2.1 (Institution). An institutionI =
(

SignI,SenI,ModI, |=I
)

consists of

• a category SignI whose objects are calledsignatures,

• a sentence functor SenI : SignI → Setdefining for each signature a set whose elements are called
sentencesover that signature and defining for each signature morphisma sentence translationfunc-
tion,

• a model functor ModI : (SignI)op → CAT defining for each signatureΣ the category ModI(Σ)
of Σ-modelsand Σ-model homomorphisms, and for each signature morphismϕ the reductfunctor
ModI(ϕ),

• for every signatureΣ, a binaryΣ-satisfaction relation|=I
Σ
⊆ |ModI(Σ)| × SenI(Σ),

such that for each morphismϕ : Σ→ Σ′ ∈ SignI, theSatisfaction Condition

M′ |=I
Σ′

SenI(ϕ)(ρ) if and only if ModI(ϕ)(M′) |=I
Σ
ρ(1)

holds for each M′ ∈ |ModI(Σ′)| andρ ∈ SenI(Σ).

Σ

ϕ

��

∣

∣

∣ModI(Σ)
∣

∣

∣

|=I
Σ SenI(Σ)

SenI(ϕ)
��

Σ′
∣

∣

∣ModI(Σ′)
∣

∣

∣

ModI(ϕ)

OO

|=I
Σ′

SenI(Σ′)

We may omit the superscripts or subscripts from the notations of the components of institutions when there
is no risk of ambiguity. For example, if the considered institution and signature are clear, we may denote
|=I
Σ

just by|=. For M = Mod(ϕ)(M′), we say that M is theϕ-reductof M′ and that M′ is aϕ-expansionof
M.

Notation 2.1. In any institution as above we use the following notations:

– for any E⊆ Sen(Σ), E∗ denotes{M ∈ |Mod(Σ)| | M |=Σ ρ for eachρ ∈ E}.

– for any E,E′ ⊆ Sen(Σ), E |= E′ denotes E∗ ⊆ E′∗.

Definition 2.2 (Compactness [8]). An institutionI is

1This is most commonly accepted definition for concrete categories, although in [1] this is called ‘concrete overSet’ or ‘con-
struct’.
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– m-compactwhen for each set E ofΣ-sentences, E∗ , ∅ if and only if for each E0 ⊆ E finite, E∗0 , ∅;

– compactwhen for each set E ofΣ-sentences and eachΣ-sentenceρ, if E |=Σ ρ then there exists a finite
E0 ⊆ E such that E0 |=Σ ρ.

Definition 2.3 (Morphism of institutions). Given two institutionsIi = (Signi ,Seni ,Modi , |=i), with i ∈ {1, 2},
an institution morphism(Φ, α, β) : I2→ I1 consists of

• a signature functorΦ : Sign2→ Sign1,

• a natural transformationα : Sen1⇒ Φ; Sen2, and

• a natural transformationβ : Mod2⇒ Φ
op; Mod1

such that the following satisfaction condition holds for any I2-signatureΣ2, Σ2-model M2 and Φ(Σ2)-
sentenceρ:

M2 |=2 αΣ2(ρ) if and only if βΣ2(M2) |=1 ρ.

The literature (e.g. [8, 20]) shows myriads of logical systems from computing or from mathematical
logic captured as institutions. In fact, an informal thesisunderlying institution theory is that any ‘logic’ may
be captured by the above definition. While this should be taken with a grain of salt, it certainly applies
to any logical system based on satisfaction between sentences and models of any kind. The institutions
introduced in the following couple of examples will be used intensively in the paper in various ways.

Example 2.1(Propositional logic (PL)). This is defined as follows.SignPL = Set, for any setP, Sen(P) is
generated by the grammar

S ::= P | S ∧ S | ¬S

and ModPL(P) = (2P,⊆). For any functionϕ : P → P′, SenPL(ϕ) replaces the each elementp ∈ P
that occur in a sentenceρ by ϕ(p), andModPL(ϕ)(M′) = ϕ; M for eachM′ ∈ 2P′ . For anyP-model
M ⊆ P andρ ∈ SenPL(P), M |= ρ is defined by induction on the structure ofρ by (M |= p) = (p ∈ M),
(M |= ρ1 ∧ ρ2) = (M |= ρ1) ∧ (M |= ρ2) and (M |= ¬ρ) = ¬(M |= ρ).

Example 2.2(First order logic (FOL)). For reasons of simplicity of notation, our presentation of first order
logic considers only its single sorted, without equality, variant. A detailed presentation of full many sorted
first order logic with equality as institution may be found innumerous works in the literature (e.g. [8], etc.).

TheFOL signatures are pairs (F = (Fn)n∈ω,P = (Pn)n∈ω) whereFn andPn are sets of function symbols
and predicate symbols, respectively, of arityn. Signature morphismsϕ : (F,P) → (F′,P′) are tuples
(ϕ f = (ϕ f

n)n∈ω, ϕ
p = (ϕp

n)n∈ω) such thatϕ f
n : Fn→ F′n andϕp

n : Pn→ P′n. ThusSignFOL = Setω × Setω.
For anyFOL-signature (F,P), the setS of the (F,P)-sentences is generated by the grammar:

S ::= π(t1, . . . , tn) | S ∧ S | ¬S | (∃x)S′(2)

whereπ(t1, . . . , tn) are the atoms withπ ∈ Pn andt1, . . . , tn being terms formed with function symbols from
F, and whereS′ denotes the set of (F + x,P)-sentences withF + x denoting the family of function symbols
obtained by adding the single variablex to F0.

An (F,P)-modelM is a tuple

M = (|M|, {Mσ : |M|n→ |M| | σ ∈ Fn, n ∈ ω}, {Mπ ⊆ |M|
n | π ∈ Pn, n ∈ ω}).
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where |M| is a set called thecarrier of M. An (F,P)-model homomorphismh : M → N is a function
|M| → |N| such thath(Mσ(x1, . . . , xn)) = Nσ(h(x1), . . . , h(xn)) for anyσ ∈ Fn andh(Mπ) ⊆ Nπ for each
π ∈ Pn.

The satisfaction relationM |=FOL(F,P) ρ is the usual Tarskian style satisfaction defined on induction on the
structure of the sentenceρ.

Given a signature morphismϕ : (F,P) → (F′,P′), the induced sentence translationSenFOL(ϕ) just
replaces the symbols of any (F,P)-sentence with symbols from (F′,P′) accordingϕ, and the induced model
reductModFOL(ϕ)(M′) leaves the carrier set as it is and for anyx function or predicate symbol of (F,P), it
interpretsx asM′ϕ(x).

In what follows we shall also consider the following parts (or ‘sub-institutions’) ofFOL that are deter-
mined by restricting theFOL signatures as follows:

• REL: no function symbols (henceSignREL � Setω);

• BREL: no function symbols and only one binary predicate symbolλ (henceSignBREL � {λ});

• SETC: no predicate symbols and no function symbols of arity greater than 0 (henceSignSETC � Set);
• BRELC: one binary predicate symbol and no function symbols of arity greater than 0 (henceSignBRELC �

Set);

3. Stratified institutions

The structure and contents of this section is as follows:

1. We recall the definition of stratified institution of [2] and slightly upgrade it;
2. We provide two canonical extractions of ordinary institutions out of stratified institutions, correspond-

ing to the local and global satisfaction in modal logic, respectively;
3. We present a series of examples of modal logical systems captured as stratified institutions.

3.1. Stratified institutions: the concept

Informally, the main idea behind the concept of stratified institution as introduced in [2] is to enhance
the concept of institution with ‘states’ for the models. Thus each modelM comes equipped with aset[[ M]].
A typical example is given by the Kripke models, where [[M]] is the set of the possible worlds in the Kripke
structureM.

Definition 3.1 (Stratified institution). A stratified institutionI = (SignI,SenI,ModI, [[ ]]I, |=I) consists of:

– a category SignI of signatures,

– a sentence functor SenI : SignI → Set;
– a model functor ModI : (SignI)op→ CAT ;

– a “stratification” lax natural transformation[[ ]]I : ModI ⇒ SET, where SET: SignI → CAT is a
functor mapping each signature toSet; and

– a satisfaction relation between models and sentences which is parameterized by model states,
M (|=I)w

Σ
ρ where w∈ [[ M]]I

Σ
such that

ModI(ϕ)(M) (|=I)
[[ M]]ϕ(w)
Σ

ρ if and only if M (|=I)w
Σ′ SenI(ϕ)(ρ)(3)

holds for any signature morphismϕ : Σ→ Σ′, Σ′-model M, w∈ [[ M]]I
Σ′

, andΣ-sentenceρ.
5



Like for ordinary institutions, when appropriate we shall also use simplified notations without superscripts
or subscripts that are clear from the context.

The lax natural transformation property of [[]] is depicted in the diagram below

Σ′′ Mod(Σ′′)
[[ ]]Σ′′

//

Mod(ϕ′)
�� ��

,,

Set

[[ ]]ϕ′
m� ♦♦
♦♦♦♦
♦♦ =

��

Σ′

ϕ′

OO

Mod(Σ′)

Mod(ϕ)
��

[[ ]]Σ′ //

��
,,

Set

=

��
[[ ]]ϕ

m� ♦♦
♦♦♦♦
♦♦

Σ

ϕ

OO

Mod(Σ)
[[ ]]Σ

// Set

with the following compositionality property for eachΣ′′-modelM′′:

[[ M′′]] (ϕ′;ϕ) = [[ M′′]]ϕ′ ; [[Mod(ϕ′)(M′′)]]ϕ.

Moreover the natural transformation property of each [[]]ϕ is given by the commutativity of the following
diagram:

M′

h′

��

[[ M′]]Σ′
[[ M′]]ϕ

//

[[h′]]Σ′
��

[[Mod(ϕ)(M′)]]Σ

[[Mod(ϕ)(h′)]]Σ
��

N′ [[N′]]Σ′ [[N′]]ϕ
// [[Mod(ϕ)(N′)]]Σ

(4)

The satisfaction relation can be presented as a natural transformation|= : Sen⇒ [[Mod( ) → Set]]
where the functor [[Mod( )→ Set]] : Sign→ Set is defined by

– for each signatureΣ ∈ |Sign|, [[Mod(Σ) → Set]] denotes the set of all the mappingsf : |Mod(Σ)| →
Setsuch thatf (M) ⊆ [[ M]]Σ; and

– for each signature morphismϕ : Σ→ Σ′, [[Mod(ϕ)→ Set]]( f )(M′) = [[ M′]]−1
ϕ ( f (Mod(ϕ)(M′))).

A straightforward check reveals that the Satisfaction Condition (3) appears exactly as the naturality property
of |=:

Σ

ϕ

��

Sen(Σ)
|=Σ

//

Sen(ϕ)
��

[[Mod(Σ)→ Set]]

[[Mod(ϕ)→Set]]
��

Σ′ Sen(Σ′)
|=Σ′

// [[Mod(Σ′)→ Set]]

Ordinary institutions are the stratified institutions for which [[M]]Σ is always a singleton set. In Dfn.3.1
we have removed the surjectivity condition on [[M′]]ϕ from the definition of the stratified institutions of [2]
and will rather make it explicit when necessary. This is motivated by the fact that most of the results devel-
oped do not depend upon this condition which however holds inall examples known by us. In fact in most
of the examples [[M′]]ϕ are even identities, which makes [[]] a strict rather than lax natural transformation.
A notable exception, when [[]] is a proper lax natural transformation is given by Ex.3.6. Also the definition
of stratified institution of [2] did not introduce [[]] as a lax natural transformation, but rather as an indexed
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family of mappings without much compositionality properties, which was enough for the developments in
[2].

The following very expected property does not follow from the axioms of Dfn.3.1, hence we impose it
explicitly. It holds in all the examples discussed in this paper.
Assumption: In all considered stratified institutions the satisfactionis preserved by model isomorphisms,
i.e. for eachΣ-model isomorphismh : M → N, eachw ∈ [[ M]]Σ, and eachΣ-sentenceρ,

M |=w ρ if and only if N |=[[h]](w) ρ.

3.2. Reducing stratified institutions to ordinary institutions

The following construction will be used systematically in what follows for reducing stratified institution
theoretic concepts to ordinary institution theoretic concepts, and consequently for reusing results from the
latter to the former realm.

Fact 3.1. Each stratified institutionI = (Sign,Sen,Mod, [[ ]] , |=) determines the following ordinary institu-
tion I♯ = (Sign,Sen,Mod♯, |=♯) (called thelocal institution ofI) where

– the objects of Mod♯(Σ) are the pairs(M,w) such that M∈ |Mod(Σ)| and w∈ [[ M]]Σ;

– theΣ-homomorphisms(M,w)→ (N, v) are the pairs(h,w) such that h: M → N and[[h]]Σ(w) = v;

– for any signature morphismϕ : Σ→ Σ′ and anyΣ′-model(M′,w′)

Mod♯(ϕ)(M′,w′) = (Mod(ϕ)(M′), [[ M′]]ϕ(w
′));

– for eachΣ-model M, each w∈ [[ M]]Σ, and eachρ ∈ Sen(Σ)

((M,w) |=♯
Σ
ρ) = (M |=w

Σ ρ).

The preservation of|= under model isomorphisms imply the preservation of|=♯ under model isomor-
phisms. This follows immediately by noting that (h,w) is a model isomorphism inI♯ if and only if h is a
model isomorphism inI.

The following second interpretation of stratified institutions as ordinary institutions has been given in
[2]. Note that unlikeI♯ above,I∗ below shares withI the model functor.

Definition 3.2. For any stratified institutionI = (Sign,Sen,Mod, [[ ]] , |=) we say that[[ ]] is surjectivewhen
for each signature morphismϕ : Σ → Σ′ and eachΣ′-model M′, [[ M′]]ϕ : [[ M′]]Σ′ → [[Mod(ϕ)(M′)]]Σ is
surjective.

Fact 3.2. Each stratified institutionI = (Sign,Sen,Mod, [[ ]] , |=) with [[ ]] surjective determines an (ordi-
nary) institutionI∗ = (Sign,Sen,Mod, |=∗) (called theglobal institution ofI) by defining

(M |=∗Σ ρ) =
∧

{M |=w
Σ
ρ | w ∈ [[ M]]Σ}.

Fact 3.3. LetI be a stratified institutionI with [[ ]] surjective. For each E⊆ Sen(Σ) and eachρ ∈ Sen(Σ),
we have that

E |=♯ ρ implies E|=∗ ρ.

The institutionsI♯ andI∗ represent generalizations of the concepts of local and global satisfaction,
respectively, from modal logic (e.g. [4]).
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3.3. Examples of stratified institutions

Example 3.1(Modal propositional logic (MPL)). This is the most common form of modal logic (e.g. [4],
etc.).

Let SignMPL = Set. For any signatureP, commonly referred to as ‘set of propositional variables’,the
set of its sentencesSenMPL(P) is the setS defined by the following grammar

S ::= P | S ∧ S | ¬S | ✸S(5)

A P-model is Kripke structure (W,M) where

• W = (|W|,Wλ) consists of set (of ‘possible worlds’)|W| and an ‘accesibility’ relationWλ ⊆ |W| × |W|;
and

• M : |W| → 2P.

A homomorphismh : (W,M) → (V,N) between Kripke structures is a homomorphism of binary relations
h : W→ V (i.e. h : |W| → |V| such thath(Wλ) ⊆ Vλ) and such that for eachw ∈ |W|, Mw ⊆ Nh(w).

The satisfaction of anyP-sentenceρ in a Kripke structure (W,M) at w ∈ |W| is defined by recursion on
the structure ofρ:

• ((W,M) |=w
P π) = (π ∈ Mw);

• ((W,M) |=w
P ρ1 ∧ ρ2) = ((W,M) |=w

P ρ1) ∧ ((W,M) |=w
P ρ2);

• ((W,M) |=w
P ¬ρ) = ¬((W,M) |=w

P ρ); and

• ((W,M) |=w
P ✸ρ) =

∨

(w,w′)∈Wλ((W,M) |=w′
P ρ).

For any functionϕ : P → P′ theϕ-translation of aP-sentence just replaces eachπ ∈ P by ϕ(π) and the
ϕ-reduct of aP′-structure (W,M′) is theP-structure (W,M) where for eachw ∈ |W|, Mw = ϕ; M′w.

The stratification is defined by [[(W,M)]] P = |W|.
Various ‘sub-institutions’ ofMPL are obtained by restricting the semantics to particular classes of

frames. Important examples areMPLt,MPLs4, andMPLs5 which are obtained by restricting the frames
W to those which are respectively, reflexive, preorder, or equivalence (see e.g. [4]).

Example 3.2(First order modal logic (MFOL)). First order modal logic [12] extends classical first order
logic with modalities in the same way propositional modal logic extends classical propositional logic. How-
ever there are several variants that differ slightly in the approach of the quantifications. Here we present a
capture of one of the most common variants of first order modallogic as a stratified institution.
MFOL has the category of signatures ofFOL but for the sentences addsS ::= ✸S to theFOL grammar

(2). TheMFOL (F,P)-models upgrade theMPL Kripke structures (W,M) to the first order situation by
letting M : |W| → |ModFOL(F,P)| such that the following sharing conditions hold: for anyi, j ∈ |W|,
|Mi | = |M j | and alsoMi

x = M j
x for each constantx ∈ F0. The concept ofMFOL-model homomorphism is

also an upgrading of the concept ofFOL-model homomorphism as follows:h : (W,M) → (V,N) is pair
(h0, h1) whereh0 : W→ V is a homomorphism of binary relations (like inMPL) andh1 : Mw → Nh0(w)

is an (F,P)-homomorphism ofFOL-models for eachw ∈ |W|.
The satisfaction (W,M) |=MFOL(F,P) ρ is defined by recursion on the structure ofρ, like inMPL for ∧, ¬,

and✸, for the atoms theFOL satisfaction relation is used, and for the quantifier case (W,M) |=(F,P) (∃x)ρ
if and only if there is a valuation ofx into |M| such that (W,M′) |=(F+x,P) ρ for the corresponding expansion
(W,M′) of (W,M) to (F+x,P). (This makes sense because in anyMFOL Kripke structure the interpretations
of the carriers and of the constants are shared.)
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The translation of sentences and the model reducts corresponding to anMFOL signature morphism
are obtained by the obvious blend of the corresponding translations and reducts, respectively, inMPL and
FOL.

The stratification is like inMPL, with [[(W,M)]] (F,P) = |W|.
In the institution theory literature (e.g. [8, 9, 11, 18]) first order modal logic is often considered in a

more general form in which the symbols that have shared interpretations are ‘user defined’ rather than being
‘predefined’ like here. In short this means that the signatures exhibit designated symbols (sorts, function, or
predicate) that are ‘rigid’ in the sense that in a given Kripke structure they share the same interpretations
across the possible worlds. For the single reason of making the reading easier we stick here with a simpler
variant that has constants and the single sort being predefined as rigid.

Example 3.3(Hybrid logics (HPL,HFOL)). Hybrid logics [3, 19] refine modal logics by adding explicit
syntax for the possible worlds. Our presentation of hybrid logics as stratified institutions is related to the
recent institution theoretic works on hybrid logics [9, 18].

The refinement of modal logics to hybrid ones is achieved by adding a set component (Nom) to the
signatures for the so-called ‘nominals’ and by adding to therespective grammars

S ::= i-sen|@iS | (∃i)S
′(6)

wherei ∈ Nom andS′ is the set of the sentences of the signature that extends Nom with the nominal variable
i. The models upgrade the respective concepts of Kripke structures to (W,M) by adding toW interpretations
of the nominals, i.e.W = (|W|, {Wi ∈ |W| | i ∈ Nom},Wλ). The satisfaction relations between models (i.e.
Kripke structures) and sentences extend the satisfaction relations of the corresponding non-hybrid modal
institutions with

• ((W,M) |=w i-sen)= (Wi = w);

• ((W,M) |=w @iρ) = ((W,M) |=Wi ρ); and

• ((W,M) |=w (∃i)ρ) =
∨

{(W′,M) |=w ρ |W′ expansion ofW to Nom+i}.

Note that quantifiers over nominals allow us to simulate the binder operator (↓ ρ) of [15] by (∀i)i ⇒ ρ.
The translation of sentences and model reducts corresponding to signature morphisms are canonical

extensions of the corresponding concepts fromMPL andMFOL.
The stratifications ofHPL andHFOL are like forMPL andMFOL, i.e. [[(W,M)]] (Nom,Σ) = |W|.

Example 3.4 (Polyadic modalities (MMPL, MHPL, MMFOL, MHFOL)). Multi-modal logics (e.g.
[13]) exhibit several modalities instead of only the traditional ✸ and✷ and moreover these may have
various arities. If one considers the sets of modalities to be variable then they have to be considered as part
of the signatures. We may extend each ofMPL,HPL,MFOL andHFOL to the multi-modal case,

• by adding an ‘M’ in front of each of these names;

• by adding a componentΛ = (Λn)n∈ω to the respective signature concept (withΛn standing for the
modalities symbols of arityn), e.g. anMHFOL signature would be a tuple of the form (Nom,Λ, (F,P));

• by replacing in the respective grammars the ruleS ::= ✸S by the set of rules

{S ::= 〈λ〉Sn | λ ∈ Λn+1, n ∈ ω};

• by replacing the binary relationWλ from the models (W,M) with a set of interpretations{Wλ ⊆ |W|n |
λ ∈ Λn, n ∈ ω}.

9



Consequently the definition of the satisfaction relation gets upgraded with

for each λ ∈ Λn+1, ((W,M) |=w 〈λ〉(ρ1, . . . , ρn)) =
(

∨

(w,w1,...,wn)∈Wλ

∧

1≤i≤n

(W,M) |=wi ρi
)

.

The stratification is the same like in the previous examples,i.e. [[(W,M)]] (Nom,Λ,Σ) = |W|.

Example 3.5(Modalizations of institutions;HHPL). In a series of works [9, 11, 18] modal logic and Kripke
semantics are developed by abstracting away details that donot belong to modality, such as sorts, functions,
predicates, etc. This is achieved by extensions of abstractinstitutions (in the standard situations meant in
principle to encapsulate the atomic part of the logics) withthe essential ingredients of modal logic and
Kripke semantics. The result of this process, when instantiated to various concrete logics (or to their atomic
parts only) generate uniformly a wide range of hierarchicalcombinations between various flavours of modal
logic and various other logics. Concrete examples discussed in [9, 11, 18] include various modal logics over
non-conventional structures of relevance in computing science, such as partial algebra, preordered algebra,
etc. Various constraints on the respective Kripke models, many of them having to do with the underlying
non-modal structures, have also been considered. All thesearise as examples of stratified institutions like the
examples presented above in the paper. This great multiplicity of non-conventional modal logics constitute
an important range of applications for this work.

An interesting class of examples that has emerged quite smoothly out of the general works on hy-
bridization2 of institutions is that of multi-layered hybrid logics thatprovide a logical base for specifying
hierarchical transition systems (see [17]). As a single simple example let us present here the double layered
hybridization of propositional logic, denotedHHPL.3 This amounts to a hybridization ofHPL, its models
thus being “Kripke structures of Kripke structures”.

TheHHPL signatures are triples (Nom0,Nom1,P) with Nom0 and Nom1 denoting the nominals of the
first and second layer of hybridization, respectively. The (Nom0,Nom1,P)-sentences are built over the two
hybridization layers by taking the (Nom0,P)-sentences as atoms in the grammar for theHPL sentences
with nominals from Nom1. In order to prevent potential ambiguities, in general we tag the symbols of the
respective layers of hybridization by the superscripts 0 (for the first layer) and 1 (for the second layer). This
convention should include nominals and connectives (✸, ∧, etc.) as well as quantifiers. For instance, the
expression @j1k

0 ∧1
✷

1ρ is a sentence ofHHPL where the symbolsk and j represent nominals of the
first and second level of hybridization andρ aPL sentence. On the other hand, according to this tagging
convention the expression @j0k

1 ∧1
✷

1ρ would not parse.
Our tagging convention extends also toHHPL models. A (Nom0,Nom1,P)-model is a pair (W1,M1)

with W1 being aModBRELC(λ) model andM1 = ((M1)w)w∈|W1| where (M1)w is a (Nom0,P)-model inHPL,
denoted ((W0)w, (M0)w). We also require that for allw,w′ ∈ |W1|, we have that|(W0)w| = |(W0)w′ | and
(W0)w

i = (W0)w′
i for eachi ∈ Nom0.

These definitions extend in the obvious way to signature morphisms, sentence translations, model
reducts and satisfaction relation. We leave these details as exercise for the reader. ThenHHPL has the
same stratified structure likeHPL andHFOL, namely [[(W1,M1)]] (Nom0,Nom1,P) = |W

1|.
It is easy to see that inHHPL the semantics of the Boolean connectors and of the quantifications with

nominals of the lower layer is invariant with respect to the hybridization layer; this means that in these cases
the tagging is not necessary. For example ifρ is anHPL sentence then (∀1i0)ρ and (∀0i0)ρ are semantically

2I.e. Modalization including also hybrid logic features.
3Other interesting examples that may be obtained by double ormultiple hybridizations of logics would beHHFOL,HHHPL,

etc., and also their polyadic multi-modalities extensions.
10



equivalent, while ifρ is not anHPL sentence (which means it has some ingredients from the second layer
of hybridization) then (∀0i0)ρ would not parse. In both cases just using the notation (∀i0) would not carry
any ambiguities.

The next series of examples include multi-modal first order logics whose semantics are given by ordinary
first order rather than Kripke structures.

Example 3.6(Multi-modal open first order logic (OFOL,MOFOL, HOFOL, HMOFOL)). The stratified
institutionOFOL is a theFOL instance ofS t(I), the ‘internal stratification’ abstract example developed in
[2]. An OFOL signature is a pair (Σ,X) consisting ofFOL signatureΣ and a finite block of variables. An
OFOL signature morphismϕ : (Σ,X) → (Σ′,X′) is just aFOL signature morphismϕ : Σ → Σ′ such that
X ⊆ X′.

We letSenOFOL((F,P),X) = SenFOL(F + X,P) andModOFOL((F,P),X) = ModFOL(F,P).
For each ((F,P),X)-modelM, eachw ∈ |M|X, and each ((F,P),X)-sentenceρ we define

(M(|=OFOL(F,P),X)wρ) = (Mw |=FOL(F+X,P) ρ)

where Mw is the expansion ofM to (F +X,P) such thatMw
X = w. This is a stratified institution with

[[ M]]Σ,X = |M|X for each (Σ,X)-model M. For any signature morphismϕ : (Σ,X) → (Σ′,X′) and any
(Σ′,X′)-model M′, [[M′]]ϕ : |M′|X

′

→ |M′|X is defined by [[M′]]ϕ(a) = a|X (i.e. the restriction ofa to
X). Note that [[M′]]ϕ is surjective and that this provides an example when [[]] is a proper lax natural
transformation.

We may refineOFOL to a multi-modal logic (MOFOL) by adding

{S ::= 〈π〉Sn | π ∈ Pn+1, n ∈ ω}

to the grammar defining eachSenOFOL((F,P),X) and consequently by extending the definition of the satis-
faction relation with

• (M |=w 〈π〉(ρ1, . . . , ρn)) =
∨

(w,w1,...,wn)∈(MX)π
∧

1≤i≤n(M |=wi ρi) for eachπ ∈ Pn+1, n ∈ ω.

(Here and elsewhereMX denotes theX-power ofM in the category ofFOL (F,P)-models.)
Or else we may refineOFOL with nominals (HOFOL) by adding the grammar for nominals (6), for each

constanti ∈ F0, to the grammar defining eachSenOFOL((F,P),X) and consequently extending the definition
of the satisfaction relation with

• (M |=w
(F,P),X i-sen)= ((MX)i = w);

• M |=w
(F,P),X @iρ) = (M |=(MX)i

(F,P),X ρ);

• (M |=w
(F,P),X (∃i)ρ) =

∨

{M′ |=w
(F+i,P),X ρ | M

′ expansion ofM to (F+i,P)}.

We can also haveHMOFOL as the blend betweenHOFOL andMOFOL.

4. The logic of stratified institutions

We start the section by extending the definition of the semantics of Boolean connectives and quantifiers
from ordinary institutions (see [7, 8, 22] etc.) to stratified institutions. After this, based on the stratified
structure of stratified institutions, we define the semantics of modalities, nominals, @ at the level of abstract
stratified institutions. In each of these cases a minimally sufficient additional structure is employed.

11



Definition 4.1. In any stratified institutionI = (Sign,Sen,Mod, [[ ]] , |=)

• a Σ-sentenceρ1∧ρ2 is anexternal conjunctionof Σ-sentencesρ1 andρ2 when for eachΣ-model M
and each w∈ [[ M]]Σ,

(M |=w ρ1∧ρ2) = (M |=w ρ1) ∧ (M |=w ρ2);

• a Σ-sentenceρ1⇒ ρ2 is anexternal implicationof Σ-sentencesρ1 andρ2 when for eachΣ-model M
and each w∈ [[ M]]Σ,

(M |=w ρ1⇒ρ2) = (M |=w ρ1)⇒ (M |=w ρ2);

• aΣ-sentenceρ1∨ρ2 is anexternal disjunctionofΣ-sentencesρ1 andρ2 when for eachΣ-model M and
each w∈ [[ M]]Σ,

(M |=w ρ1∨ρ2) = (M |=w ρ1) ∨ (M |=w ρ2);

• a Σ-sentence¬ρ is the external negationof a Σ-sentenceρ when for eachΣ-model M and each
w ∈ [[ M]]Σ,

(M |=w ¬ρ) = ¬(M |=w ρ)

• a Σ-sentence(∀χ)ρ′ is an external universalχ-quantificationof a Σ′-sentenceρ′ for χ : Σ → Σ′

signature morphism when for anyΣ-model M and each w∈ [[ M]]Σ

(M |=w
Σ (∀χ)ρ′) =

∧

Mod(χ)(M′)=M

(

∧

w′∈[[ M′]]−1
χ (w)

(M′ |=w′
Σ′ ρ

′)
)

• a Σ-sentence(∃χ)ρ′ is an external existentialχ-quantificationof a Σ′-sentenceρ′ for χ : Σ → Σ′

signature morphism when for anyΣ-model M and each w∈ [[ M]]Σ

(M |=w
Σ (∃χ)ρ′) =

∨

Mod(χ)(M′)=M

(

∨

w′∈[[ M′]]−1
χ (w)

(M′ |=w′
Σ′ ρ

′)
)

Remark 4.1. In Dfn. 4.1 the notationsρ1 ∧ ρ2, ¬ρ, etc. are meta-notations in the sense that they may
not correspond to how the actual sentences appear inSen. For example inSenMPL({π, π′}) (see Ex.3.1),
according to the respective grammar, there is no actual sentence such asπ ⇒ π′, howeverMPL has
implications, in the realm of the meta notationsπ ⇒ π′ corresponding to the actual sentence¬(π ∧ ¬π′).
So, these meta-notations of Dfn.4.1rather denote semantical equivalence classes of sentences4, which goes
well with our work since here we never need to distinguish between semantically equivalent sentences.
We will keep employing such meta-notations also below in thepaper when introducing the semantics for
modalities (Dfn.4.3) or for the hybrid features (Dfn4.5).

On the one hand, the concepts of Boolean connectives and quantifications in ordinary institutions (e.g.
from [7, 8, 21] etc.) arise as an instance of Dfn.4.1when the underlying set of each [[M]]Σ is a singleton set.
On the other hand, Fact4.1below shows that Dfn.4.1is not a proper generalization of the corresponding or-
dinary institution theoretic concepts since the stratifiedinstitution theoretic concepts of Boolean connectives
and quantifications may also be regarded as corresponding instances of the respective ordinary institution
theoretic concepts. The importance of Dfn.4.1 resides thus in the fact that it gives an explicit account of
how Boolean connectors and quantifications reflect in a stratified setup.

4Classes of sentences that hold exactly in the same models.
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Fact 4.1. When they exist, the conjunctions, disjunctions, implications, negations, universal/existentialχ-
quantifications coincide inI andI♯.

Corollary 4.1. In any stratified institution we have the following:

1. ¬(¬ρ1 ∧ ¬ρ2) is an external disjunctionρ1∨ρ2;
2. ¬ρ1 ∨ ρ2 is an external implicationρ1⇒ρ2;
3. ¬(∃χ)¬ρ is an external universal quantification(∀χ)ρ.

Proposition 4.1. In any stratified institutionI with [[ ]] surjective

1. any external conjunctions inI is an external conjunction inI∗ too; and
2. for any signature morphismχ, any external universalχ-quantifications inI is an external universal
χ-quantifications inI∗ too.

Proof. 1. For eachΣ-modelM and any conjunctionρ1 ∧ ρ2 in I we have that

M |=∗ ρ1∧ρ2 =
∧

w∈[[ M]] (M |=
w ρ1∧ρ2) (by definition of |=∗)

=
∧

w∈[[ M]]
(

(M |=w ρ1) ∧ (M |=w ρ2)
)

(sinceρ1∧ρ2 is conjunction inI)
=
(∧

w∈[[ M]] (M |=
w ρ1)

)

∧
(∧

w∈[[ M]] (M |=
w ρ2)

)

= (M |=∗ ρ1) ∧ (M |=∗ ρ2) (by definition of |=∗).

2. Let M be aΣ-model and (∀χ)ρ a universally quantifiedΣ-sentence inI for χ : Σ → Σ′ signature
morphism. We have that

M |=∗
Σ

(∀χ)ρ =
∧

w∈[[ M]] (M |=
w
Σ

(∀χ)ρ)
=
∧

{(M′ |=w′
Σ′
ρ | w ∈ [[ M]] ,Mod(χ)(M′) = M,w′ ∈ [[ M′]]−1

χ (w)}.
(7)

On the other hand we have that
∧

Mod(χ)(N′)=M

(N′ |=∗Σ′ ρ
′) =

∧

Mod(χ)(N′)=M

(

∧

v′∈[[N′]]Σ′

(N′ |=v′
Σ′ ρ)
)

(8)

In order to show that (∀χ)ρ is an external universal quantification inI∗ we have to prove that the values in
the equations (7) and (8) are equal.

(7) ≤ (8) For eachMod(χ)(N′) = M andw′ ∈ [[N′]]Σ′ like in (8) we considerM′ = N′, w′ = v′ and
w = [[ M′]]χ(w′) in (7).

(8) ≤ (7) For eachw ∈ [[ M]], Mod(χ)(M′) = M andw′ ∈ [[ M′]]−1
χ (w) like in (7) we takeN′ = M′ and

v′ = w′ in (8).

In general,I∗ may lack other connectives besides conjunction and also theexistential quantifications
thatI does have.

Definition 4.2 (Frame extraction). Given a stratified institutionI, a frame extractionis a pair L,Fr consist-
ing of a functor L: SignI → SignREL and a lax natural transformation Fr: ModI ⇒ L; ModREL such that
[[ ]] = Fr; L(ModREL ⇒ SET).

Mod(Σ)
[[ ]]Σ

//

FrΣ ''◆
◆◆

◆◆
◆◆

◆◆
◆

Set

ModREL(L(Σ))

forgetful

OO
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Example 4.1. The following table shows some frame extractions for the stratified institutions introduced
above.

stratified institution L Fr
MPL,MFOL,HPL,HFOL,HHPL L(Σ) = {λ : 2} FrΣ(W,M) = (|W|,Wλ)

MMPL,MMFOL,MHPL,MHFOL L(Σ,Λ) = Λ FrΣ(W,M) = (|W|, (Wλ)λ∈Λn+1,n∈ω)
MOFOL,HMOFOL L((F,P),X) = P FrΣ(M) = (|M|X, ((MX)π)π∈Pn+1,n∈ω).

Definition 4.3. LetI be a stratified institution endowed with a frame extraction L,Fr. For anyλ ∈ L(Σ)n+1

and anyΣ-sentencesρ1, . . . , ρn

• a Σ-sentence〈λ〉(ρ1, . . . ρn) is anexternalλ-possibility ofρ1, . . . , ρn when

(M |=w 〈λ〉(ρ1, . . . ρn)) =
∨

(w,w1,...,wn)∈(FrΣ(M))λ

(

∧

1≤i≤n

M |=wi ρi
)

;

• a Σ-sentence[λ](ρ1, . . . ρn) is anexternalλ-necessity ofρ1, . . . , ρn when

(M |=w [λ](ρ1, . . . ρn)) =
∧

(w,w1,...,wn)∈(FrΣ(M))λ

(

∨

1≤i≤n

M |=wi ρi
)

;

for eachΣ-model M and for each w∈ [[ M]]Σ.

Fact 4.2. In any stratified institution like in Dfn.4.3, ¬〈λ〉(¬ρ, . . . ,¬ρn) is aλ-necessity ofρ1, . . . , ρn.

Definition 4.4 (Nominals extraction). Given a stratified institutionI, a nominals extractionis a pair N,Nm
consisting of a functor N: SignI → SignSETC and a lax natural transformation Nm: ModI ⇒ N; ModSETC

such that[[ ]] = Nm; N(ModSETC ⇒ SET).

Mod(Σ)
[[ ]]Σ

//

NmΣ ''❖
❖❖

❖❖
❖❖

❖❖
❖❖

Set

ModSETC(N(Σ))

forgetful

OO

Example 4.2.The following table shows some nominals extractions for thestratified institutions introduced
above. Note thatHHPL admits two such nominals extractions.

stratified institution N Nm
HPL,HFOL,MHPL,MHFOL N(Nom,Σ) = Nom Nm(Nom,Σ)(W,M) = (|W|, (Wi)i∈Nom)

HHPL N(Nom0,Nom1,P) = Nom0 Nm(W1,M1) = (|(W0)w|, ((W0)w
i )i∈Nom0)

N(Nom0,Nom1,P) = Nom1 Nm(W1,M1) = (|W1|, (W1
i )i∈Nom1)

HOFOL,HMOFOL N((F,P),X) = F0 Nm(M) = (|M|X, ((MX)i)i∈F0)

Definition 4.5. Let I be a stratified institution endowed with a nominals extraction N,Nm. For any i∈
Nom(Σ)

• a Σ-sentence i-senis an i-sentencewhen

(M |=w i-sen)= ((NmΣ(M))i = w);
14



• for anyΣ-sentenceρ, aΣ-sentence@iρ is thesatisfaction ofρ at i when

(M |=w @iρ) = (M |=(NmΣ(M))i ρ);

for eachΣ-model M and for each w∈ [[ M]]Σ.

Example 4.3. The following table shows what of the properties of Dfn.4.1, 4.3and4.5are satisfied by the
examples of stratified institutions given above in the paper.

∧ ∨ ¬ ⇒ (∀χ) (∃χ) 〈λ〉 [λ] i-sen @i

MPL X X X X ✸ ✷

MFOL X X X X (∀x) (∃x) ✸ ✷

HPL X X X X (∀i) (∃i) ✸ ✷ X X

HFOL X X X X (∀x), (∀i) (∃x), (∃i) ✸ ✷ X X

MMPL X X X X X X

MHPL X X X X (∀i) (∃i) X X X X

MMFOL X X X X (∀x) (∃x) X X

MHFOL X X X X (∀x), (∀i) (∃x), (∃i) X X X X

HHPL X X X X (∀i0), (∀i1) (∃i0), (∃i1) ✸ ✷ i0-sen,i1-sen @i0, @i1

OFOL X X X X (∀x) (∃x)
MOFOL X X X X (∀x) (∃x) X X

HOFOL X X X X (∀x), (∀i) (∃x), (∃i) X X

HMOFOL X X X X (∀x), (∀i) (∃x), (∃i) X X X X

In the table (∀x), (∀i) stand for (∀χ) whereχ is an extension of the signature with a first order variable, or
a nominal variable, respectively, and similarly for the existential quantifiers. The case of the quantifiers re-
minds us once more that in spite of the abstract simplicity ofthe institution theoretic approach to quantifiers,
just based upon model reducts, they are a very powerful concept supporting a wide range of quantifications
within a single uniform definition. Basically, one may quantify over any syntactic entity that is supported
by the respective concept of signature morphisms. In our examples this means first order variables and nom-
inals alike. An particularly interesting situation is given byHHPL, where the concept of signature supports
quantification over two kinds of nominals, corresponding tothe two layers of hybridization.

5. Model ultraproducts in stratified institutions

The structure of the section is as follows:

1. We start with a recollection of the concept of filtered product in abstract categories.
2. Then we discuss filtered products of models in stratified institutions and develop some technical

results about the representation of filtered products of models inI♯, the local institution associated to
a stratified institutionI.

3. The last part of this section is concerned with the development of a Łoś styled theorem for abstract
stratified institutions that carry some implicit modal structure. This means a gathering of relevant
preservation properties for the connectives commonly usedin sentences in various modal logic sys-
tems; the connectives are considered by their semantic definitions given in Sect.4. Here also the
compactness consequence of Łoś theorem is studied both at the level of abstract structured institu-
tions and at the level of concrete examples.
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5.1. A reminder of categorical filtered products

For each non-empty setI we denote the set of all subsets ofI byP(I ). A filter F over I is defined to be
a setF ⊆ P(I ) such that

• I ∈ F,

• X ∩ Y ∈ F if X ∈ F andY ∈ F, and

• Y ∈ F if X ⊆ Y andX ∈ F.

A filter F is properwhenF is notP(I ) and it is anultrafilter whenX ∈ F if and only if (I \ X) < F for each
X ∈ P(I ). Notice that ultrafilters are proper filters. We will alwaysassume that all our filters are proper.

Let F be a filter overI and I ′ ⊆ I . Thereduction of F to I′ is denoted byF |I ′ and defined as{I ′ ∩ X |
X ∈ F}.

Fact 5.1. The reduction of any filter is still a filter.

Definition 5.1. A classF of filters isclosed under reductionsif and only if F|J ∈ F for each F∈ F and
J ∈ F.

Examples of classes of filters closed under reductions include the class of all filters, the class of all
ultrafilters, the class{{I } | I set}, etc.

Definition 5.2 (Categorical filtered products). Let F be a filter over I and(Mi)i∈I a family of objects in a
category with small direct products. Then an F-filtered product of (Mi)i∈I (or F-product, for short) is a
co-limit {µJ : MJ → MF | J ∈ F} of the directed diagram of canonical projections{pJ⊇J′ : MJ → MJ′ |

J′ ⊆ J ∈ F}, where for each J∈ F, {pJ,i : MJ → Mi | i ∈ J} is a direct product of(M j) j∈J.

MJ
pJ,i

xxrr
rr
rr
rr
rr
r

pJ⊇J′

��

µJ

  

Mi MJ′pJ′ ,i
oo

µJ′
// MF

If F is an ultrafilter then F-products are calledultraproducts.

Note that a direct product
∏

i∈I Ai is the same as an{I }-product of (Ai)i∈I . Obviously, as co-limits of
diagrams of products, filtered products are unique up to isomorphisms. Since the co-limits defining filtered
products are directed, a sufficient condition for the existence of filtered products, which applies to many
situations, is the existence of small products and of directed co-limits of models. Note however that this is
not a necessary condition because only co-limits over diagrams of projections are involved. For example
models of higher order logic [6, 8] in general are known to have only direct products and ultraproducts.

Definition 5.3 (Preservation/lifting of filtered products [7, 8]). Consider a functor G: C′ → C and F a
filter over a set I.

• G preservesF-productswhen for each F-productµ′ of a family(M′i )i∈I in |C′|, G(µ′) is an F-product
(in C) of (G(M′i ))i∈I .

• G lifts F-productswhen for each family(M′i )i∈I in |C′| and each F-productµ in C of (G(M′i ))i∈I , there
exists an F-productµ′ of (M′i )i∈I in C′ such that G(µ′) = µ.

For any classF of filters, we say that a functorpreserves/lifts F -productsif it preserves/lifts all F-products
for each filter F∈ F .
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Fact 5.2. If G lifts F-products then it also preserves them.

In many situations the following applies.

Fact 5.3. A functor G preserves/lifts F-products if it preserves/lifts direct products and directed co-limits.

The concept has been introduced first time in [7] under a different terminology and in a slightly different
form, and has been subsequently used in several works most notably in [8, 11].

Definition 5.4 (Inventing of filtered products). LetF be a class of filters closed under reductions. A functor
G : C′ → C inventsF -productswhen for each F∈ F , for each F-product{µJ : MJ → MF | J ∈ F} of a
family (Mi)i∈I in |C|, and for each B∈ |C′| such that G(B) = MF,

– there exists J∈ F and(M′i )i∈J a family in |C′| such that G(M′i ) = Mi for each i∈ J and such that

– there exists an F|J-product {µ′J′ : M′J′ → B | J′ ∈ F |J} of (M′i )i∈J such that G(µ′J′) = µJ′ for each
J′ ∈ F |J.

When J= I we say that Glifts completelythe respective F-product. (Note that in this case the closure ofF
under reductions is redundant.)

In essence, the inventing property of Dfn.5.4 means that eachF -product construction ofG(B) can be
established as the image byG of anF -product construction ofB by means of a filter reduction.

5.2. Filtered products in stratified institutions

Definition 5.5. Let F be any class of filters. A stratified institutionhas (concrete)F -productswhen for
each signatureΣ, Mod(Σ) hasF -products (and[[ ]]Σ : Mod(Σ)→ SetpreservesF -products).

As the following examples show, in practice it is common thattheF -products are concrete.

Example 5.1. In all examples of Sect.3.3 the respective stratified institutions have allF-products, which
are concrete, as follows.

1. TheF-products inMPL,MFOL,HPL,HFOL,HHPL are obtained as direct instances of the gen-
eral result on existence ofF-products developed in [11]. In the case ofHHPL this has to be applied
twice, first for gettingF-products inHPL from the F-products inPL, and then for getting theF-
products inHHPL from theF-products inHPL.

2. In the case ofMMPL,MHPL,MMFOL,MHFOL we may apply a straightforward extension of
the above mentioned result of [11] to the multi-modal situation.

3. In the case ofOFOL, MOFOL, HOFOL, HMOFOL the F-products are much simpler than in the
previous cases because the models in all these institutionsare justFOL models.

In the case ofMPL,MFOL, HPL, HFOL,MMPL,MHPL,MMFOL,MHFOL, HHPL, according
to [11] the construction of filtered products is done in two steps, first at the level of the Kripke frames and
next lifted to the level of the Kripke models inMod(Σ); this shows that [[]]Σ creates filtered products. For
example, inMFOL anF-product of a family (Wi ,Mi)i∈I is {µJ : (WJ,MJ)→ (WF ,MF) | J ∈ F} where

• {(µJ)0 : WJ → WF | J ∈ F} is anF-product of the family ofBREL models (Wi)i∈I whereWJ is the
cartezian product of (Wi)i∈J; and

• for each (wi)i∈I ∈ |WI | and eachJ ∈ F we let M
(wj ) j∈J

J denote the cartezian product of (M
wj

j ) j∈J; note

that both|M
(wj ) j∈J

J | and (M
(wj ) j∈J

J )x for x constant are invariant with respect to (wi)i∈I ;
17



• let {(µJ)1 : |M
(wj ) j∈J

J | → |MF | | J ∈ F} be a directed co-limit inSet;

• since the underlying carrier functor| | : ModFOL(Σ) → Set creates directed co-limits, for each
(wi)i∈I ∈ |WI |we lift the directed co-limit of the previous item to a directed co-limit{(µJ)1 : M

(wj ) j∈J

J →

M(µI )0((wi )i∈I )
F | J ∈ F} of ModFOL(Σ)-models; it is not difficult to check that the definition ofMF is

correct in the sense that (µI )0((wi)i∈I ) = (µI )0((vi)i∈I ) implies thatM(µI )0((wi )i∈I )
F = M(µI )0((vi )i∈I )

F .

In the case ofOFOL,MOFOL,HOFOL,HMOFOL, [[ ]]Σ is just the composition between aFOL underlying
carrier functorM 7→ |M|, and a power functor|M| 7→ |M|X, which are known (e.g. [8], etc.) to create direct
products and directed co-limits, and thus filtered products.

The following result gives a representation ofF-products in the local institutionI♯ from theF-products
in the stratified institutionI.

Proposition 5.1. If a stratified institutionI has concrete F-products, thenI♯ has F-products, which for
any family{(Mi ,wi) | Mi ∈ |Mod(Σ)|,wi ∈ [[ Mi]]Σ, i ∈ I } may be defined by

{(µJ,wJ) : (MJ,wJ)→ (MF , [[µI ]](wI )) | J ∈ F},(9)

where{µJ : MJ → MF | J ∈ F} is an F-product in Mod(Σ) and wJ is the unique element of[[ MJ]] such that
for each i∈ J, [[ pJ,i ]](wJ) = wi.

Proof. Let (Mi)i∈I be a family in|Mod(Σ)| andF be a filter overI . We first show that for eachJ ∈ F,

{(pJ,i ,wJ) : (MJ,wJ)→ (Mi ,wi) | i ∈ J}(10)

is a direct product inMod♯(Σ). By the definition ofwJ, each (pJ,i ,wJ) is well defined, i.e. [[pJ,i ]](wJ) = wi.
For any family{( fi , v) : (N, v) → (Mi ,wi) | i ∈ J}, by the universal property of the direct products in

Mod(Σ) there exists an uniquef : N → MJ such that for eachi ∈ J, f ; pJ,i = fi .

(MJ,wJ)

(pJ,i ,wJ)
��

(N, v)
( f ,v)

oo

( fi ,v)
xx♣♣
♣♣
♣♣
♣♣
♣♣
♣

(Mi ,wi)

Hence, for eachi ∈ J, [[ pJ,i ]]([[ f ]](v)) = [[ fi ]](v) = wi . Since [[pJ,i ]] are cartezian projections, it follows that
[[ f ]](v) = wJ. This completes the proof of the universal property of the direct product (10).

It follows immediately that for eachJ′ ⊂ J ∈ F, (pJ⊇J′ ,wJ) : (MJ,wJ)→ (MJ′ ,wJ′) is a corresponding
canonical projection inMod♯(Σ). Let us show that (9) is a co-limit inMod♯(Σ).

(MJ,wJ)
(pJ⊇J′ ,wJ)

vv❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

(µJ,wJ)
��

(νJ,wJ)

��

(MJ′ ,wJ′) (µJ′ ,wJ′ )
//

(νJ′ ,wJ′ )
22

(MF , [[µI ]](wI ))

( f ,[[µI ]](wI )) ((P
PP

PP
PP

PP
PP

P

(N, v)

First, note that each (µJ,wJ) is well defined, i.e. that [[µJ]](wJ) = [[µI ]](wI ), which is given by the following
calculation:

[[µI ]](wI ) = [[ pI⊃J; µJ]](wI ) = [[µJ]]([[ pI⊃J]](wI )) = [[µJ]](wJ).
18



For establishing the universal property of the co-cone (µJ,wJ)J∈F let us consider another co-cone (νJ,wJ)J∈F

over (pJ⊃J′ ,wJ)J⊃J′∈F. Let (N, v) denote it vertex. By the universal property of (µJ)J∈F in Mod(Σ) there
exists an uniquef : MF → N such that for eachJ ∈ F, µJ; f = νJ. The argument is completed if we
showed that [[f ]]([[ µI ]](wI )) = v. This holds by the following calculation:

[[ f ]]([[ µI ]](wI )) = [[µI ; f ]](wI ) = [[νI ]](wI ) = v.

Corollary 5.1. For any signature morphismχ in any stratified institutionI with concrete F-products, if
Mod(χ) preserves F-products inI then Mod♯(χ) preserves F-products inI♯.

Proof. Let χ : Σ→ Σ′ be signature morphism such thatMod(χ) preservesF-products and let

{(µ′J,wJ) : (M′J,wJ)→ (M′F , [[µ
′
I ]](wI )) | J ∈ F}

be anF-product in Mod♯(Σ′) like in Prop. 5.1. We denoteMod(χ)(M′i ) = Mi, Mod(χ)(M′J) = MJ,
Mod(χ)(M′F) = MF, andMod(χ)(µ′J) = µJ. We have to show that

{(µJ, [[ M′J]]χ(wJ)) : (MJ, [[ M′J]]χ(wJ))→ (MF , [[ M′F]]χ([[µ
′
I ]](wI ))) | J ∈ F}

is anF-product inMod♯(Σ). First we should establish that for eachJ ∈ F

{(Mod(χ)(pJ,i ), [[ M′J]]χ(wJ)) : (MJ, [[ M′J]]χ(wJ))→ (Mi , [[ M′i ]]χ(wi)) | i ∈ J}(11)

is a direct product. Consider

{( fi , v) : (N, v)→ (Mi , [[ M′i ]]χ(wi)) | i ∈ J}.

SinceMod(χ) preserves products inMod(Σ), we have that theI part of (11) is a direct product, hence let
f : N→ Mi such thatf ; Mod(χ)(pJ,i ) = fi . For showing that (11) is a direct product inMod♯(Σ) it remains
to show that [[f ]]Σ(v) = [[ M′J]]χ(wJ). This holds by the following calculation

[[Mod(χ)(pJ,i )]]Σ([[ f ]]Σ(v)) = [[ fi ]](v)
= [[ M′i ]]χ(wi) (by the definition offi)
= [[ M′i ]]χ([[ pJ,i ]]Σ′(wJ)) (by the definition ofwJ)
= [[Mod(χ)(pJ,i )]]Σ([[ M′J]]χ(wJ)) (by (4))

and by the fact thatMod(χ) and [[ ]]Σ preserve direct products, we hav that [[Mod(χ)(pJ,i )]]Σ are direct
product projections.

Then it follows immediately that{(Mod(χ)(pJ⊇J′ ), [[ M′J]]χ(wJ)) | J′ ⊆ J ∈ F} is a diagram of projections.
Now consider any co-cone for the above diagram as follows:

{(νJ, [[ M′J]]χ(wJ)) : (MJ, [[ M′J]]χ(wJ))→ (N, v) | J ∈ F}.

SinceMod(χ) preservesF-products it follows that{µJ : MJ → MF | J ∈ F} is anF-product inMod(Σ),
hence there exists an uniquef : MF → N such that for eachJ ∈ F, µJ; f = νJ. In order to show that
( f , [[ M′F]]χ([[µ′I ]](wI ))) is aMod♯(Σ) homomorphism (MF , [[ M′F]]χ([[µ′I ]](wI ))) → (N, v) we still have to show
that [[ f ]]Σ([[ M′F ]]χ([[µ′I ]]Σ′(wI ))) = v. This holds by the following calculation:

[[ f ]]Σ([[ M′F]]χ([[µ′I ]]Σ′)) = [[ f ]]Σ([[µI ]]Σ([[ M′I ]]χ(wI ))) (by (4))
= [[νI ]]Σ(([[ M′I ]]χ(wI )) (sinceµI ; f = νI )
= v (by the homomorphism property of (νI , ([[ M′I ]]χ(wI ))).
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5.3. Łoš theorem in stratified institutions

The following definition generalizes the corresponding modal preservation concept of [8, 11] to the
much more general setup of stratified institutions.

Definition 5.6. LetF be a class of filters and letI be a stratified institution withF -products. AΣ-sentence
ρ is

• preserved byF -productswhen for each w∈ [[ MF]] , “there exists J∈ F and k∈ [[µJ]]−1(w) such that
M j |=

kj ρ for each j∈ J” implies MF |=
w ρ, and

• preserved byF -factorswhen for each w∈ [[ MF]] , MF |=
w ρ implies “there exists J∈ F and k ∈

[[µJ]]−1(w) such that Mj |=
kj ρ for each j∈ J”

for each filter F∈ F over a set I and for each family(M j) j∈I of Σ-models, and where{µJ : MJ → MF |

J ∈ F} denotes an F-product of(M j) j∈I and kj = [[ pJ, j ]]Σ(k).

When all [[M]]Σ have singletons as their underlying sets, Dfn.5.6yields the preservation byF -products/factors
in ordinary institutions as defined in [7, 8]. On the other hand, the following result shows that stratified
preservations byF -products/factors of Dfn.5.6may be an instance of their ordinary versions from [7, 8].

Proposition 5.2. For any stratified institutionI with concreteF -products the following are equivalent for
anyΣ-sentenceρ:

1. ρ is preserved byF -products/factors inI; and
2. ρ is preserved byF -products/factors inI♯.

Proof. In this proof we use the notations of Prop.5.1. First note that sinceI hasF -products, by Prop.5.1
I♯ hasF -products too. Moreover, by the assumption of preservationof satisfaction by model isomorphisms,
without any loss of generality, we may consider only theF-products given by (9) of Prop.5.1.

1.⇒ 2. For the preservation byF -products, let (Mi ,wi)i∈I andF ∈ F filter over I and assume that
there existsJ ∈ F such that for eachj ∈ J, (M j ,w j) |=♯ ρ. By the definition of|=♯ we have that for each
j ∈ J, M j |=

wj ρ. By 1. it follows thatMF |=
[[µJ]](wJ) ρ. Since [[µI ]](wI ) = [[µJ]]([[ pI⊇J]](wI )) = [[µJ]](wJ) it

follows that (MF , [[µI ]](wI )) |= ρ.
For the preservation byF -factors, let (Mi ,wi)i∈I andF ∈ F filter over I such that (MF , [[µI ]](wI )) |=♯ ρ.

HenceMF |=
w′ ρ wherew′ = [[µI ]](wI ). By the hypothesis 1. there existsJ ∈ F andk ∈ [[µJ]]−1(w′) such

that for eachj ∈ J, M j |=
kj ρ. Because [[µJ]](k) = [[µJ]](wJ) we have that there existsJ ⊇ J′ ∈ F such that

[[ pJ,J′ ]](k) = wJ′ . Hence for eachj ∈ J′, (M j ,w j) |=♯ ρ.
2.⇒ 1. For the preservation byF -products, let (Mi)i∈I and F ∈ F filter over I and for any fixed

w ∈ [[ MF]] assume that there existsJ ∈ F andk ∈ [[µJ]]−1(w) such that for eachj ∈ J, M j |=
kj ρ. Let us

take anyki ∈ [[ Mi ]] for each i < J and letkI be defined by [[pI ,i ]](kI ) = ki for eachi ∈ I . Since for each
j ∈ J, (M j , k j) |=♯ ρ, by 2. it follows that (MF , [[µI ]](kI )) |=♯ ρ. Since [[µI ]](kI ) = [[µJ]](k) = w it means that
MF |=

w ρ.
For the preservation byF -factors, let (Mi)i∈I andF ∈ F filter over I . Let us assume thatMF |=

w ρ. Let
k ∈ [[µI ]]−1(w). By (9) of Prop.5.1we have that (MF ,w) is theF-product of ((Mi , ki))i∈I . By the hypothesis
2. there existsJ ∈ F such that for eachj ∈ J, (M j , k j) |=♯ ρ, which meansM j |=

kj ρ.

Proposition 5.3. For any stratified institutionI with F-products, if a sentenceρ is preserved by F-products
in I then it is preserved by F-products inI∗ too.
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Proof. Let us assume thatJ′ = { j ∈ I | M j |=
∗ ρ} ∈ F for {µJ : MJ → MF | J ∈ F} an F-product of a

family (M j) j∈I of Σ-models. Letw ∈ [[ MF]]. For anyk ∈ [[µJ′ ]]−1(w) and eachj ∈ J′ we have thatM j |=
kj ρ

(sinceM j |=
∗ ρ). Becauseρ is preserved byF-products inI it follows that MF |=

w ρ. HenceMF |=
∗ ρ.

According to [7, 8] any institution in which all its sentences are preserved byultraproducts is m-compact.
Hence from Prop.5.3and5.2we get the following consequence.

Corollary 5.2. LetI be a stratified institution with ultraproducts such that each of its sentences are pre-
served by ultraproducts. Then

1. I∗ is m-compact; and
2. if in addition the ultraproducts are concrete thenI♯ is m-compact too.

The following consequence of Prop.5.2represents a transfer of preservation results from ordinary insti-
tutions to stratified institutions.

Corollary 5.3. In any stratified institutionI with concreteF -products

1. both the sentences preserved byF -products and those preserved byF -factors are closed under con-
junctions;

2. if ρ is preserved byF -products then¬ρ is preserved byF -factors;
3. if ρ is preserved byF -factors andF contains only ultrafilters then¬ρ is preserved byF -products;

and
4. if F is closed under reductions, Mod(χ) preservesF -products, andρ is preserved byF -products then

(∃χ)ρ is preserved byF -products.

Proof. 1., 2., 3. By Fact4.1, the conjunction and negation coincide inI andI♯. By Prop.5.2, preservation
byF -products/factors also coincides inI andI♯. The conclusions for 1., 2., 3. follow because by [7, 8] the
considered preservation properties hold in general in any ordinary institution and in particular inI♯.

4. By Prop.5.2 ρ is preserved byF -products inI♯. By Cor. 5.1 it follows that Mod♯(χ) preserves
F -products. From [7, 8] we know that in general, in any (ordinary) institution, from such conditions it
follows that (∃χ)ρ is preserved byF -products. We apply this conclusion withinI♯. By Fact4.1(existential
quantification coincide inI and inI♯) and by Prop.5.2it now follows that (∃χ)ρ is preserved byF -products
in I.

The conclusions of Cor.5.3 may be obtained directly without reliance upon Prop.5.2. Some of them
may be obtained under the slightly milder condition that does not require theF-products to be concrete, how-
ever this generality is largely meaningless in the applications because theF-products are usually concrete
(in fact we do not know examples ofF-products that are not concrete).

Proposition 5.4. In any stratified institutionI with F -products, ifF is closed under reductions, Mod(χ)
inventsF -products, andρ is preserved byF -factors then(∃χ)ρ is preserved byF -factors.

Proof. Let χ : Σ → Σ′ signature morphism, letF ∈ F , and let{µJ : MJ → MF | J ∈ F} be anF-product
of a family (Mi)i∈I of Σ-models. Assume thatMF |=

w (∃χ)ρ.
It follows that there existsM′ andw′ such thatMF = Mod(χ)(M′), w′ ∈ [[ M′]]−1

χ (w), andM′ |=w′ ρ. By
the inventing condition there existsJ ∈ F and anF |J-product{µ′J′ : M′J′ → M′ | J′ ∈ F |J} of a family
(M′j) j∈J of Σ′-models such thatMod(χ)(M′j) = M j for each j ∈ J and for allJ′′ ⊆ J′ ∈ F |J we have that
Mod(χ)(p′J′⊇J′′ ) = pJ′⊇J′′ andMod(χ)(µ′J′ ) = µJ′ . Sinceρ is preserved byF -factors there existsJ′ ∈ F |J
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andk′ ∈ [[µ′J′ ]]
−1
Σ′

(w′) such thatM′j |=
k′j ρ for each j ∈ J′. Let k = [[ M′J′ ]]χ(k

′). For eachj ∈ J′ we have the
following:

k j = [[Mod(χ)(pJ′ , j)]](k) (by the definition ofk j)
= [[Mod(χ)(pJ′ , j)]]([[ M′J′ ]]χ(k

′)) (by the definition ofk)
= [[ M′j]]χ([[ pJ′ , j]](k′)) (by (4))
= [[ M′j]]χ(k

′
j) (by the definition ofk′j).

SinceMod(χ)(M′j ) = M j we get thatM j |=
kj (∃χ)ρ. It remains to show that [[µJ′ ]]Σ(k) = w, which holds by

the following calculation:

[[µJ′ ]]Σ(k) = [[µJ′ ]]Σ([[ M′J′ ]]χ(k
′)) (by the definition of )k)

= [[ M′]]χ
(

[[µ′J′ ]]Σ′(k
′)
)

(by (4))
= [[ M′]]χ(w′) (sincek′ ∈ [[µ′J′ ]]

−1
Σ′

(w′))
= w.

Proposition 5.5. LetI be a stratified institution endowed with a frame extraction L: SignI → SignREL,
Fr : ModI ⇒ L; ModREL. Assume thatI has F-products for a filter F over a set I.

1. If Fr Σ preserves direct products andρ1, . . . , ρn are preserved by F-products then anyλ-possibility
〈λ〉(ρ1, . . . ρn) is also preserved by F-products.

2. If Fr Σ preserves F-products andρ1, . . . , ρn are preserved by F-factors then anyλ-possibility〈λ〉(ρ1, . . . ρn)
is also preserved by F-factors.

Proof. 1. We consider anF-product{µJ : MJ → MF | J ∈ F} for a family (Mi)i∈I of Σ-models and assume
that there existsJ ∈ F andk ∈ [[µJ]]−1(w) such that for eachj ∈ J, M j |=

kj 〈λ〉(ρ1, . . . ρn). We have to prove
that MF |=

w 〈λ〉(ρ1, . . . , ρn), i.e. that there exists (w,w1, . . . ,wn) ∈ (FrΣ(M))λ such thatMF |=
wi ρi for each

1 ≤ i ≤ n.
For eachj ∈ J, M j |=

kj 〈λ〉(ρ1, . . . ρn) means that there exists (k j , k1
j , . . . , k

n
j ) ∈ (FrΣ(M j))λ such that

M j |=
ki

j ρi for each 1≤ i ≤ n. SinceFrΣ preserves products we have that{FrΣ(pJ, j) : FrΣ(MJ)→ FrΣ(M j) |
j ∈ J} is direct product inModREL(L(Σ)). Hence for each 1≤ i ≤ n, there existski ∈ [[ MJ]] such that
[[ pJ, j ]](ki) = ki

j for each j ∈ J. We definewi = [[µJ]](ki).

By the direct product property ofFrΣ(MJ) in ModREL(L(Σ)) we have that (k j , k1
j , . . . , k

n
j ) ∈ (FrΣ(M j))λ

for eachj ∈ J implies that (k, k1, . . . , kn) ∈ (FrΣ(MJ))λ. SinceFrΣ(µJ) is a homomorphism ofModREL(L(Σ))-
models it follows that (w,w1, . . . ,wn) = ([[µJ]](k), [[µJ]](k1), . . . , [[µJ]](kn)) ∈ (FrΣ(MF))λ.

That for each 1≤ i ≤ n, MF |=
wi ρi , follows from the hypothesis thatρi is preserved byF-products and

becauseki ∈ [[µJ]]−1(wi) andM j |=
ki

j ρi for each j ∈ J.
2. We consider anF-product{µJ : MJ → MF | J ∈ F} for a family (Mi)i∈I of Σ-models and assume

that MF |=
w 〈λ〉(ρ1, . . . , ρn). We have to prove that there existsJ ∈ F andk ∈ [[µJ]]−1(w) such that for each

j ∈ J, M j |=
kj 〈λ〉(ρ1, . . . , ρn), i.e. that there exists (k j , k1

j , . . . , k
n
j ) ∈ (FrΣ(M j))λ such that for each 1≤ i ≤ n,

M j |=
ki

j ρi .
FromMF |=

w 〈λ〉(ρ1, . . . , ρn) it follows that there exists (w,w1, . . . ,wn) ∈ (FrΣ(MF))λ such thatMF |=
wi

ρi for each 1≤ i ≤ n. By the hypothesis that eachρi is preserved byF-factors, this means there existsJi ∈ F

andl i ∈ [[µJi ]]
−1(wi) such thatM j |=

lij ρi for each j ∈ Ji .
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SinceFrΣ preservesF-products it follows that{FrΣ(µJ) : FrΣ(MJ)→ FrΣ(MF) | J ∈ F} is anF-product
of (FrΣ(M j)) j∈I in ModREL(L(Σ)). Hence, (w,w1, . . . ,wn) ∈ (FrΣ(MF))λ implies that there existsJ′ ∈ F and
(v, v1, . . . , vn) ∈ (FrΣ(MJ′))λ with [[µJ′ ]](v) = w and [[µJ′ ]](vi) = wi for each 1≤ i ≤ n.

Let us takeJ′′ = J′ ∩
⋂

1≤i≤n Ji . Since filters are closed under intersections, it follows that J′′ ∈ F. For
each 1≤ i ≤ n we have that

[[µJ′′ ]]([[ pJi⊇J′′ ]]( l i )) = [[µJi ]]( l i ) = wi = [[µJ′ ]](vi) = [[µJ′′ ]]( pJ′⊇J′′ (vi)).

Since{FrΣ(µJ) : FrΣ(MJ) → FrΣ(MF) | J ∈ F} is anF-product, which means it is a particular directed
co-limit, it follows that there existsJ ⊆ J′′ such that [[pJi⊇J]]( l i ) = [[ pJ′⊇J]](vi ) for each 1≤ i ≤ n.

For each 1≤ i ≤ n we defineki = [[ pJi⊇J]]( l i ) = [[ pJ′⊇J]](vi ). We also letk = [[ pJ′⊇J]](v).

– Since (v, v1, . . . , vn) ∈ (FrΣ(MJ′))λ, by the homomorphism property ofFrΣ(pJ′⊇J) it follows that
(k, k1, . . . , kn) ∈ (FrΣ(MJ))λ. By the homomorphism property of eachpJ, j it further follows that
(k j , k1

j , . . . , k
n
j ) ∈ (FrΣ(M j))λ for each j ∈ J.

– Note that for each 1≤ i ≤ n and eachj ∈ J

l ij = [[ pJi , j]]( l i ) = [[ pJ, j ]]([[ pJi⊇J]]( l i )) = [[ pJ, j ]](ki) = ki
j .

Since we know thatM j |=
lij ρi it means thatM j |=

ki
j ρi for each j ∈ J.

Proposition 5.6. Let I be a stratified institution endowed with a nominals extraction N : SignI →
SignSETC, Nm: ModI ⇒ N; ModSETC. Assume thatI has F-products for a filter F over a set I. For
any signatureΣ and any i∈ N(Σ),

1. If NmΣ preserves direct products then i-senis preserved by F-products.
2. If NmΣ preserves F-products then i-senis preserved by F-factors.
3. If ρ is preserved by F-products then each sentence@iρ is preserved by F-products too.
4. If NmΣ preserves F-products andρ is preserved by F-factors then each sentence@iρ is preserved by

F-products too.

Proof. We consider{µJ : MJ → MF | J ∈ F} anF-product a family (M j) j∈I in Mod(Σ).
1. Let us assume that there existsJ ∈ F andk ∈ [[µJ]]−1

Σ
(w) such thatM j |=

kj i-sen for eachj ∈ J. This
means for eachj ∈ J

(NmΣ(M j))i = k j = NmΣ(pJ, j)(k).(12)

Also, by the homomorphism property ofNmΣ(pJ, j) we have that for eachj ∈ J

(NmΣ(M j))i = NmΣ(pJ, j)((NmΣ(MJ))i).(13)

SinceNmΣ preserves direct products, from (12) and (13) it follows that (NmΣ(MJ))i = k. We have that

(NmΣ(MF))i = NmΣ(µJ)((NmΣ(MJ))i) (by the homomorphism property ofNmΣ(µJ))
= NmΣ(µJ)(k) = w,

which meansMF |=
w i-sen.

2. Let us assume thatMF |=
w i-sen, which means (NmΣ(MF))i = w. SinceNmΣ preservesF-products,

{NmΣ(µJ) : NmΣ(MJ) → NmΣ(MF) | J ∈ F} is a directed co-limit, hence there existsJ ∈ F such that
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NmΣ(µJ)((NmΣ(MJ))i) = (NmΣ(MF))i . Let k = (NmΣ(MJ))i . For each j ∈ J, by the homomorphism
property ofNmΣ(pJ, j) it follows that k j = NmΣ(pJ, j)(k) = NmΣ(pJ, j)((NmΣ(MJ))i) = (NmΣ(M j))i which
meansM j |=

kj i-sen.
3. Let us assume that there existsJ ∈ F andk ∈ [[µJ]]−1

Σ
(w) such thatM j |=

kj @iρ for each j ∈ J,
which just meansM j |=

(NmΣ(M j ))i ρ for each j ∈ J. Since by the homomorphism property ofNmΣ(µJ) and of
NmΣ(pJ, j), for eachj ∈ J, we have thatNmΣ(µJ)((NmΣ(MJ))i) = (NmΣ(MF))i and thatNmΣ(pJ, j)((NmΣ(MJ))i) =
(NmΣ(M j))i , respectively, and because by hypothesisρ is preserved byF-products it follows thatMF |=

(NmΣ(MF ))i

ρ which meansMF |=
w @iρ.

4. Let us assumeMF |=
w @iρ, which meansMF |=

(NmΣ(MF ))i ρ. It is enough to show that there exists
J ∈ F such thatM j |=

(NmΣ(M j ))i ρ for each j ∈ J.

– SinceNmΣ preservesF-products,{NmΣ(µJ) : NmΣ(MJ) → NmΣ(MF) | J ∈ F} is a directed co-limit,
hence there existsJ′ ∈ F such thatNmΣ(µJ′)((NmΣ(MJ′))i) = (NmΣ(MF))i .

– By the hypothesis thatρ is preserved byF-factors, it follows that there existsJ′′ ∈ F and k′′ ∈
[[µJ′′ ]]−1

Σ
((NmΣ(MF))i) such thatM j |=

k′′j ρ for each j ∈ J′′.

Since [[µJ′ ]]Σ((NmΣ(MJ′))i) = [[µJ′′ ]]Σ(k′′) and because{[[µJ]]Σ : [[ MJ]]Σ → [[ MF]]Σ | J ∈ F} is a directed
co-limit, there existsJ ⊆ J′ ∩ J′′ ∈ F such that

[[ pJ′⊇J]]Σ((NmΣ(MJ′))i) = [[ pJ′′⊇J]]Σ(k
′′).(14)

For eachj ∈ J we have that

(NmΣ(M j))i =

= NmΣ(pJ, j)((NmΣ(MJ))i) (by the homomorphism property ofNmΣ(pJ, j))
= NmΣ(pJ, j)

(

NmΣ(pJ′⊇J)((NmΣ(MJ′))i)
)

(by the homomorphism property ofNmΣ(pJ′⊇J))
= NmΣ(pJ, j)

(

NmΣ(pJ′′⊇J)(k′′)
)

(by (14))
= [[ pJ′′ , j]]Σ(k′′) = k′′j .

Hence for eachj ∈ J, M j |=
(NmΣ(M j ))i ρ.

Note that from the six preservation results included in Prop. 5.5and5.6, one does not assume anything
on the frame/nominals extraction, two assume that the respective extractions preserve direct products, and
three that the they preserveF-products.

The preservation results of Cor.5.3 and of Prop.5.4–5.6 may be applied for lifting preservation prop-
erties from simpler to more complex sentences. They can be used at the induction step when establishing
preservation properties by induction on the structure of the sentences. The following result and its corollary
constitute a general approach to the base case of such induction proofs, that in general corresponds to the
atomic sentences.

Lemma 5.1. Let (Φ, α, β) : B′ → B be an institution morphism such that eachβΣ preserves F-products.
Then for anyΦ(Σ)-sentenceρ that is preserved by F-products/factors, theΣ-sentenceαΣ(ρ) is preserved by
F-products/factors.

Proof. Let us assume anF-product {µ′J : M′J → M′F | J ∈ F} of a family (M′i )i∈I of Σ-models for a
B′-signatureΣ. By hypothesis we have that{βΣ(µ′J) : βΣ(M′J) → βΣ(M′F) | J ∈ F} is an F-product of
(βΣ(M′i ))i∈I in ModB(Φ(Σ)).
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For the preservation byF-products, let us assumeJ ∈ F such thatM′i |=Σ αΣ(ρ) for eachi ∈ J. By the
satisfaction condition of (Φ, α, β) this meansβΣ(M′i ) |=Φ(Σ) ρ for eachi ∈ J, hence becauseρ is preserved
by F-products,βΣ(M′F) |=Φ(Σ) ρ. By the satisfaction condition of (Φ, α, β) it follows that M′F |=Σ αΣ(ρ).

For the preservation byF-factors, let us assume thatM′F |=Σ αΣ(ρ). By the satisfaction condition of
(Φ, α, β) it follows that βΣ(M′F) |=Φ(Σ) ρ. Sinceρ is preserved byF-factors, there existsJ ∈ F such that
βΣ(M′i ) |=Φ(Σ) ρ for eachi ∈ J. By the satisfaction condition of (Φ, α, β) we obtain thatM′i |=Σ αΣ(ρ) for
eachi ∈ J.

The following is an immediate consequence of Prop.5.2and Lemma5.1, which is applicable in concrete
situations.

Corollary 5.4. Let I be a stratified institution with concreteF -products. Let(Φ, α, β) : I♯ → B be
an institution morphism such that eachβΣ preservesF -products. Then for eachΦ(Σ)-sentenceρ that is
preserved byF -products/factors,αΣ(ρ) is preserved byF -products/factors inI.

Now we can put together the results of this section and apply them to our concrete benchmark examples.

Corollary 5.5. LetI ∈ {MPL,MFOL,HPL,HFOL,MMPL,MHPL,MMFOL,MHFOL,HHPL,OFOL,
MOFOL,HOFOL,HMOFOL}. Then inI each sentence is preserved by all ultraproducts and ultrafactors.
ConsequentlyI♯ andI∗ are m-compact and in additionI♯ is compact.

Proof. The first conclusion is proved by induction on the structure of I-sentences through application of
the preservation results of Cor.5.4, 5.3, Prop.5.4, 5.5, and5.6as follows.

From Ex.5.1 let us note thatI has concreteF-products for any filterF.
The base case of our induction proof on the structure of theI-sentences is represented, with the ex-

ception ofHHPL, only by atomic sentences. These atomic sentences may be of two kinds, either atomic
sentences ofPL or FOL, or elsei-sen. In the case ofHHPL, besidesi1-sen at the base case we also have
the sentences of theHPL corresponding to the lower layer of hybridization. For the case when the sentence
is a not a nominal sentence, we apply Cor.5.4. Let APL andAFOL denote the sub-institutions ofPL
(propositional logic) and ofFOL (first order logic), respectively, that have only the atoms as their sentences.
Let B beHPL whenI = HHPL, APL whenI ∈ {MPL,HPL,MMPL,MHPL} andAFOL otherwise.
The institution morphism (Φ, α, β) : I → B is defined as follows:

• Φ forgets the modalities symbolsΛ whenI ∈ {MMPL,MHPL,MMFOL,MHFOL} and the nom-
inals symbols whenI ∈ {HPL,HFOL,MHPL,MHFOL,HHPL}5 and is identity otherwise;

• α is just the inclusion of the sentences ofAPL or ofAFOL as atomic sentences ofI; and

• βΣ(M,w) = Mw.

The Satisfaction Condition for (Φ, α, β) is an immediate consequence of the satisfaction of atomic sentences
in I (or of the satisfaction of theHPL-sentences inHHPL) and of the definition of|=♯ (see Fact3.1).

Now we establish that eachβΣ preserves allF-products. By Prop.5.1 we know thatF-products inI♯

are of the form

{(µJ,wJ) : (MJ,wJ)→ (MF , [[µI ]](wI )) | J ∈ F}.

According to the definition ofβ, we have to show that

{µwJ
J : MwJ

J → M[[µI ]](wI )
F | J ∈ F}(15)

5In theHHPL case we haveΦ(Nom0,Nom1,P) = (Nom0,P).
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is anF-product too. Without any loss of generality we may further assume thatMJ are cartezian products.
Note thatwJ = (w j) j∈J when theI-models are Kripke models andwJ; pJ, j = w j in the other cases. It follows
that MwJ

J is the product of{M
wj

j | j ∈ J}. When theI-models are Kripke models, from the construction of
F-products of Kripke models, by Lemma 11.11 of [8] (the same with Lemma 1 of [11]) it follows that (15)
is anF-product of (M

wj

j ) j∈I . WhenI ∈ {OFOL,MOFOL,HOFOL,HMOFOL} then the argument that (15)
is anF-product is much simpler because{µJ : MJ → MF | J ∈ F} is anF-product ofFOL (F,P)-models
and (15) is just an expansion of this to (F + X,P).6

WhenB , HPL then allB-sentences are atoms, hence according to [7, 8] they are ‘finitary basic
sentences’ and consequently are preserved by allF-products and allF-factors. WhenB = HPL then
we have to use the conclusion of this corollary forI = HPL, that allHPL-sentences are preserved by
ultraproducts. This completes the set of conditions for applying Cor. 5.4, which gets us to the conclusion
that, apart of the nominal sentencesi-sen, all sentences at the base case are preserved by ultraproducts and
ultrafactors. For the sentencesi-sen we apply the relevant part of Prop.5.6. For this we have just to note
that the condition thatNmΣ preserves direct products and ultraproducts is covered by the fact thatI has
concreteF-products. This covers the base case of our induction proof.

According to the definition of satisfaction inI all I-sentences are built by iterative application of
external Boolean connectives, quantifiers, modalities, @i, from atoms whenI , HHPL and fromHPL-
sentences plusi1-sen whenI = HHPL. Hence for the induction step part of the proof, we have to check
the conditions of Cor.5.3, Prop.5.4, 5.5, and5.6. The preservation of direct products and of ultraproducts
by FrΣ,NmΣ is a direct consequence of the construction of filtered products of Kripke models. Because the
class of all ultrafilters is closed under reductions, it remains only to show that, when applicable, for each
signature extensionχ with first order variables or with nominals variables,Mod(χ) preserves and invents
ultraproducts.

The preservation property holds for allF-products as follows. First we have to notice it for the direct
products. WhenI ∈ {OFOL,MOFOL,HOFOL,HMOFOL} this is just a matter of preservation of direct
products ofFOL models by reducts forgetting interpretations of constants, which is obvious. When theI-
models are Kripke models, this is a consequence of the fact that whenever we expand a direct product (W,M)
of a family (Wi ,Mi)i∈I of reducts of Kripke models (W′i ,M

′
i )i∈I with an interpretation of a new constantx

in (W,M) by W′x = ((W′i )x)i∈I when x is nominal or byM′x = ((M′i )x)i∈I when x is a first order constant,
this yields a direct product of (W′i ,M

′
i )i∈I .7 The argument is completed by noting that the directed co-limit

component of anyF-product is preserved by reducts corresponding to signature expansionsχ with nominal
or first order variables as a consequence of the fact that any model homomorphismMod(χ)(M′) → N may
be expanded uniquely to a model homomorphismM′ → N′.8 This property holds both in the simpler case
when theI-models areFOL-models but also in the case when they are Kripke models; in the latter situation,
in the case of the first order variables the uniqueness ofN′ relies upon the fact that interpretations of the
underlying carriers and of the first order constants are shared across the possible worlds.

Now we show that the inventing property holds in the completeform for all F-products. Letχ : Σ→ Σ′

be a signature extension with nominal or first order variables and let{µJ : MJ → MF | J ∈ F} be anF-
product of a family (Mi)i∈I of Σ-models. LetN′ be anyχ-expansion ofMF. SinceµI : MI → MF is

6Note that in this argumentF is overloaded, it means both the filter and the family of function symbols of the signature.
7Note that here, in order to simplify the discussion, we implicitly assumed cartezian products, which is no loss of generality,

and that since in all situations forI the interpretation of first order constants are shared in allpossible worlds we may have a
notation such asMx instead ofMw

x .
8At the level of abstract institutions, in [8] this property is called ‘quasi-representability’; moreover [8] gives a general result

that quasi-representable signature morphisms always preserve directed co-limits.
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surjective9 there existsM′I a χ-expansion ofMI such thatµI is aΣ′-model homomorphismM′I → N′. For
eachi ∈ I we let M′i be theχ-expansion ofMi such thatpI ,i : M′I → M′i is Σ′-homomorphism. This yields
a lifting of {µJ : MJ → MF | J ∈ F} to a co-cone{µJ : M′J → N′ | J ∈ F} over a directed diagram of
projections inMod(Σ′). For any other co-cone{νJ : M′J → N′′ | J ∈ F} we leth : MF → Mod(χ)(N′′)
be the unique mediating homomorphism given by the co-limit property of{µJ : MJ → MF | J ∈ F}. It
remains to show thath : N′ → N′′ is a homomorphism ofΣ′-models. This follows by virtue of the fact
thatµI ; h = νI and becauseνI is a homomorphism ofΣ′-models.

The m-compactness properties ofI∗ andI♯ follow immediately from the first part of this corollary
via Cor. 5.2. The compactness property ofI♯ follows from the general result that compactness and m-
compactness are equivalent properties in institutions that have external negations and conjunctions (see [8]),
which by Fact4.1 is the case for all institutionsI♯ considered here.

6. Conclusions

In this paper we have showed that the stratified institutionsof [2] may serve as a general fully abstract
model theoretic framework for modal logical systems. We have shown that stratified institutions allow for
an abstract semantics for modalities, nominals, and satisfaction operator (@); in each of these cases we had
been able to employ the minimal structures supporting the corresponding semantics. Within this context we
have developed a general ultraproducts method, including ageneral Łoś theorem, applicable to a wide vari-
ety of modal logical systems. Compactness results have havebeen derived from this ultraproducts method.
The concepts introduced and the results developed have beenapplied to a series of concrete benchmark
examples that include both well known and quite unconventional modal logical systems from logic and
computing. Due to the very high level of generality of our developments, without commitment to explicit
forms of Kripke semantics, our work may be easily applicableto a multitude of new unconventional logical
systems. Moreover it may constitute a starting point for a deep institution theoretic approach to a dedicated
model theory for modal logical systems in the style of [8].
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[11] Răzvan Diaconescu and Petros Stefaneas. Ultraproducts and possible worlds semantics in institutions.Theoretical Computer
Science, 379(1):210–230, 2007.

[12] Melvin Fitting and Richard L. Mendelsohn.First-order Modal Logic. Kluwer/Springer, 1998.
[13] Dov M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal logics: theory and applications.

Elsevier, 2003.
[14] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for specification and programming.Journal of the

Association for Computing Machinery, 39(1):95–146, 1992.
[15] Valentin Goranko. Hierarchies of modal and temporal logics with reference pointers.Journal of Logic, Language and

Information, 5(1):1–24, 1996.
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[18] Manuel-Antonio Martins, Alexandre Madeira, Răzvan Diaconescu, and Luis Barbosa. Hybridization of institutions. In

Andrea Corradini, Bartek Klin, and Corina Cı̂rstea, editors, Algebra and Coalgebra in Computer Science, volume 6859 of
Lecture Notes in Computer Science, pages 283–297. Springer, 2011.

[19] Arthur N. Prior.Past, Present and Future. Oxford University Press, 1967.
[20] Donald Sannella and Andrzej Tarlecki.Foundations of Algebraic Specifications and Formal Software Development. Springer,

2012.
[21] Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David Pitt, Samson Abramsky, Axel Poigné, and David Ry-
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