
Categorical Comprehensions and
Recursion
Joaquín Díaz Boilsa,∗

aFacultad de Ciencias Exactas y Naturales.
Pontificia Universidad Católica del Ecuador.

170150. Quito. Ecuador.

Abstract

A new categorical setting is defined in order to characterize the subrecursive
classes belonging to complexity hierarchies. This is achieved by means of coer-
cion functors over a symmetric monoidal category endowed with certain recur-
sion schemes that imitate the bounded recursion scheme. This gives a categorical
counterpart of generalized safe composition and safe recursion.

Keywords: Symmetric Monoidal Category, Safe Recursion, Ramified
Recursion.

1. Introduction

Various recursive function classes have been characterized in categorical
terms. It has been achieved by considering a category with certain structure
endowed with a recursion scheme. The class of Primitive Recursive Functions
(PR in the sequel), for instance, has been chased simply by means of a carte-
sian category and a Natural Numbers Object with parameters (nno in the sequel,
see [11]). In [13] it can be found a generalization of that characterization to a
monoidal setting, that is achieved by endowing a monoidal category with a spe-
cial kind of nno (a left nno) where the tensor product is included. It is also
known that other classes containing PR can be obtained by adding more struc-
ture: considering for instance a topos ([8]), a cartesian closed category ([14]) or
a category with finite limits ([12]).1

Less work has been made, however, on categorical characterizations of sub-
recursive function classes, that is, those contained in PR (see [4] and [5]). In
PR there is at least a sequence of functions such that every function in it has a
more complex growth than the preceding function in the sequence. Such func-
tion scale allows us to define a hierarchy in PR with which we can classify the

∗corresponding author at: boils@uji.es
1See [15] for a summary of those results.

Preprint submitted to Elsevier

ar
X

iv
:1

50
1.

06
88

9v
2

 [
m

at
h.

C
T

]
 2

8
Ja

n
20

15

primitive recursive functions according to its level of complexity. This is the
case of the Grzegorzcyk Hierarchy.

A reason to not have more studies of subrecursive function classes in Cat-
egory Theory at our disposal is that we lack a recursive diagram with enough
expressiveness to characterize the operation of bounded recursion under which
most of those classes are closed and looking like

f(u, 0) = g(u)

f(u, x+ 1) = h(u, x, f(u, x))

f(u, x) ≤ j(u, x)

The problem arises when, given those functions g, h and j, we want to know if
there exists a function f satisfying the three conditions in the bounded recursion
scheme.

The known as safe recursion scheme was introduced by Bellantoni and Cook
in [2] as a way to substitute the bounding condition in the above scheme by a
syntactical condition. The central idea of S. Bellantoni and S. Cook was to
define two different kinds of variables (normal and safe variables) according
to the use we make of them in the process of computation (see [2] for more
details). In [2] the class of polynomial time functions has been characterized
and, subsequently, several other subrecursive classes.

The ramified recursion, in turn, is a way to avoid impredicativity problems.
In a ramified system the objects are defined using levels such that the definition
of an object in level i depends only on levels below i. According to [9], by
considering recursion over a word algebra A, we can get a collection of levels
Aj of A seen as types or universes where everyone of them contains a copy of
the constructors.

The method we will use consists in considering a collection of copies of N,
denoted by Nk, such that the functions defined in every (isomorphic) copy are:

• in N0 certain initial functions where zero and successor are always present

• in Nk+1 the definable functions using functions defined in Nj with j ≤ k
and certain operators, among which are recursion operators, and whose
recursion has been made over values in Ns with s ≤ k.

We will call these Ni levels of the natural numbers and they have a close relation
with different function classes according to its complexity level.

The thesis [10] uses categories of ordinal numbers2 to define coercion functors
with the idea of chasing the ramification conditions of [9]. Using this method,
and introducing the concept of symmetric monoidal 2- and 3-Comprehensions,
J. R. Otto tries to characterize several subrecursive function classes such as
linear time, polynomial time, polynomial space and the classes E2 and E3 of
Grzegorzcyk Hierarchy.

2Hereafter we will only consider finite ordinals.

2

The aim of this paper is to give a categorical characterization of subrecursive
hierarchies based on the operations of safe recursion and composition.

2. Basic structures

Definition 1. For each n ∈ N the category n has as objects the natural numbers
lower than n and as arrows

0 −→ 1 −→ · · · −→ n− 1

corresponding to the order of n. We denote by mi,j the only arrow from i to j
with 0 ≤ i ≤ j < n.

Definition 2. LetMop
n be the monoid of endofunctors in n in which the product

fg is the composition g ◦ f .3
Let’s establish a set of elements in Mop

n from which one can generate the
rest of elements by means of multiplication. This set is used in [10] in the case
of n = 2 and n = 3.

Let be for every 0 ≤ k < n − 1 the functors id : n −→ n, Tk : n −→ n and
Gk : n −→ n such that for all j ∈ n:

id(j) = j Tk(j) =

{
k + 1 if j = k
j if j 6= k

Gk(j) =

{
k if j = k + 1
j if j 6= k + 1

taking the form

[T0] 0

$$

0

1 // 1

2 // 2

...
...

n− 1 // n− 1

[T1] 0 // 0

1

$$

1

2 // 2

...
...

n− 1 // n− 1

· · · [Tn−2] 0 // 0

1 // 1

...
...

n− 2

$$

n− 2

n− 1 // n− 1

and

3Mop
n is exactly the set of monotone functions from (n,≤) to (n,≤) with n = {0, ..., n−1}.

3

[G0] 0 // 0

1

::

1

2 // 2

...
...

n− 1 // n− 1

[G1] 0 // 0

1 // 1

2

::

2

...
...

n− 1 // n− 1

· · · [Gn−2] 0 // 0

1 // 1

...
...

n− 2 // n− 2

n− 1

::

n− 1

In the sequel we will refer to different T and G as coercion functors.

Proposition 3. For every n ∈ N the monoidMop
n can be generated by the finite

set
{G0, · · · , Gn−2, T0, · · · , Tn−2}.

Now we consider some particular natural transformations in n.

Definition 4. Let εk : Gk =⇒ id and ηk : id =⇒ Tk (0 ≤ k ≤ n − 2) be such
that for i ∈ n

εk(i) =

{
mi,i if i 6= k + 1
mi−1,i if i = k + 1

ηk(i) =

{
mi,i if i 6= k
mi,i+1 if i = k

.

Theorem 5. Every non-identity natural transformation in n can be generated
by means of a composition of natural transformations from Definition 4 and
right and left multiplication of those natural transformations and functors from
Proposition 3.

Mop
n can be seen as a category whose objects are the endofunctors in n and

whose arrows are the natural transformations in n.

Theorem 6. For the definitions given above we have the following chain of
adjunctions

Tk a Gk a Tk+1 a Gk+1

for every k ∈ {0, 1, ..., n− 3}.

3. SM n-Comprehensions

For the definition of SM n-Comprehension in this Section we need to con-
sider relations among categories allowing the definition of categorical structures

4

arising from other structures based on certain properties that the former inher-
its from the latter. A category will then have the same certain bicategorical
property of another category if the same commutative diagrams are satisfied for
them both. That is, if there exists a bifunctor between them.

Definition 7. A SM n-Comprehension (C,
〈
T Ck
〉
,
〈
GCk
〉
,
〈
ηCk
〉
,
〈
εCk
〉
) consists of

• A SM category C = (⊗,>, l, a, σ),4

• for every k such that 0 ≤ k < n− 1 the SM functors T Ck , G
C
k : C −→ C,5

• for every k such that 0 ≤ k < n−1 the SM transformations ηCk : id =⇒ T Ck
and εCk : GCk =⇒ id,6

and the existence of a bifunctor = : Mop
n → (C, C) such that =(Tk) = T Ck ,

=(Gk) = GCk , =(ηk) = ηCk and =(εk) = εCk .
7

We will denote (C, 〈Tk〉 , 〈Gk〉 , 〈ηk〉 , 〈εk〉) for (C,
〈
T Ck
〉
,
〈
GCk
〉
,
〈
ηCk
〉
,
〈
εCk
〉
) when

there is no ambiguity.
We will now see that an analogous structure can be defined for the expo-

nential of a category by considering two different starting cases: a given SM
n-Comprehension (Exemple 8) or simply a SM category (Exemple 9). We will
see for both structures how a sort of exponential SM n-Comprehension can be
constructed in quite a different way. This is achieved by using the cotensor
product of two V-categories, a concept we recall in Appendix 1, specialized to
the case of n(C.

4We omit the introduction of the right identity r : C ⊗> → C defined for every object C
in C for being definable in terms of σ and l as C⊗> σ→ >⊗C l→ C. It will be used elsewhere
in the sequel, however. We also express the objects modulo associativity and symmetry in the
sequel.

5By SM functors we understand that TCk , G
C
k : C −→ C satisfy:

TCk > = GCk> = >

TCk (f ⊗ Y) = TCk f ⊗ T
C
k Y GCk(f ⊗ Y) = GCkf ⊗G

C
kY

TCk aXY Z = a(TCkX)(TCk Y)(TCk Z) GCkaXY Z = a(GCkX)(GCkY)(GCkZ)

TCk σXY = σ(TCkX)(TCk Y) GCkσXY = σ(GCkX)(GCkY)

TCk lX = lTCkX GCk lX = lGCkX.

6By SM functors we understand that ηCk : id =⇒ TCk and εCk : GCk =⇒ id satisfy

ηCk> = εCk> = 1>, ηCk (X ⊗ Y) = ηCkX ⊗ η
C
kY and εk(X ⊗ Y) = εCkX ⊗ ε

C
kY

7That is, what we ask is to commute the same diagrams for TCk , G
C
k , η

C
k and εCk than Tk,

Gk, ηk and εk. For = exist we are looking at Mop
n as a bicategory with a unique 0-cell n.

5

Example 8. An exemple of an exponential SM n-Comprehension from a given
a SM n-Comprehension (C,

〈
T Ck
〉
,
〈
GCk
〉
,
〈
ηCk
〉
,
〈
εCk
〉
) is constructed in the fol-

lowing. We denote for χCk = ηCk ◦ εCk a natural transformation from GCk to T Ck for
each k = 0, ..., n− 2 and for which we have the obvious equalities

T Ck ε
C
k = GCkη

C
k = χCk .

We define a functor between C and n(C by taking the following endofunc-
tors in C8

GCn−2...G
C
kT
C
0 ...T

C
k−1

whose corresponding functors in n give constant values for 0 ≤ k ≤ n− 1. That
is

Gn−2...GkT0...Tk−1(j) = k

for every j = 0, ..., n− 1.
We denote k for GCn−2...G

C
kT
C
0 ...T

C
k−1 where 0 ≤ k ≤ n − 1. Let χ be then

the assignation
χ(k) = k

χ(mk,k+1) = kχCk

and
χ(f ◦ g) = χ(f) ◦ χ(g),

for all k = 0, 1, ..., n− 2 and for every pair of morphisms f and g in n. We then
have the following assignations:

8Whenever k = 0 this expression takes the form GCn−2...G
C
0 and in the case of k = n − 1

the form TC0 ...T
C
n−2.

6

n
χ−→ SM(C, C)

0

m0,1

��

0

0χC0
��

1

m1,2

��

1

1χC1
��

2

m2,3 ��

=⇒ 2

2χC2��
...

mn−3,n−2

��

...

(n−3)χCn−3

��
n− 2

mn−2,n−1

��

(n− 2)

(n−2)χCn−2

��
n− 1 (n− 1)

We stress here that χCk : GCk =⇒ T Ck are natural transformations for end-
ofunctors in C while χ can be seen as a bifunctor with domain n, seen as a
bicategory, and SM(C, C) as codomain.

For n(C functors are chains of natural transformations in the form

kχk

with 0 ≤ k ≤ n− 2. That is, starting from the unique (n− 1)-tuple of natural
transformations

[0χ0, 1χ1, ..., (n− 2)χn−2]

in SM(C, C), that can be seen as the assignation of

χ : n→ SM(C, C)

for constant values in Cat, it can be generated another assignation9

χ : C → n(C

in SM. This new assignation has in the case of a n-Comprehension, among
others, the form we have introduced above.
With this construction we can assert that whenever (C, 〈Tk〉 , 〈Gk〉 , 〈ηk〉 , 〈εk〉)

9By considering the isomorphism SM(C,n(C) ∼= Cat(n,SM(C, C)) given above.

7

is a SM n-Comprehension we can construct a new tuple

(n(C, 〈Tn
k 〉 , 〈Gn

k 〉 , 〈ηnk 〉 , 〈εnk 〉)

being itself a SM n-Comprehension.

Example 9. An exemple of an exponential SM n-Comprehension from a given
SM category C is constructed by considering again n(C.

We now define some endofunctors T e and Ge acting in such a way that for
every

X0
h0−→ ...

hn−2−→ Xn−1

we obtain

T ek (X0 → ...→ Xn−1) = X0 → ...→ Xk−1
t−→ Xk+1

id−→ Xk+1 → ...→ Xn−1

and
Gek(X0 → ...→ Xn−1) = X0 → ...→ Xk

id−→ Xk
g−→ Xk+2 → ...→ Xn−1

where t = hk−1 ◦ hk and g = hk ◦ hk+1 and for every chain of vertical arrows
(f0, ..., fn−1) we obtain10

T ek (f0, ..., fn−1) = (f0, ..., fk−1, fk+1, fk+1, ..., fn−1)

and
Gek(f0, ..., fn−1) = (f0, ..., fk, fk, fk+2, ..., fn−1)

Making of n(C a SM n-Comprehension.
Fixing a single object X there are some special objects in the form

X0 = X

��
>

��
>

��
>

��
...
>

X1 = X

idX
��
X

��
>

��
>

��
...
>

X2 = X

idX
��
X

idX
��
X

��
>

��
...
>

· · · Xn−1 = X

idX
��
X

idX
��
X

idX
��
X

idX
��
...
X

where the chains are formed by n objects and n−1 arrows. We call these objects
the levels of X. This levels of an object X can also be generated by applications

10With the notation established in the description of n(C in Appendix 1.

8

of the endofunctors Gek starting from X0:

Xk = Gek−1X
k−1

or else, starting from Xn−2 and excluding Xn−1, by

Xk = T ek+1X
k+1

when k = 0, ..., n− 2. It gives the following table for the levels of the object X

X0 X1 ... Xn−3 Xn−2 Xn−1

T e0 1n X1 ... Xn−3 Xn−2 Xn−1

Ge0 X1 X1 ... Xn−3 Xn−2 Xn−1

T e1 X0 X0 ... Xn−3 Xn−2 Xn−1

Ge1 X0 X2 ... Xn−3 Xn−2 Xn−1

...
...

...
...

...
...

...
Gen−3 X0 X1 ... Xn−2 Xn−2 Xn−1

T en−2 X0 X1 ... Xn−3 Xn−3 Xn−1

Gen−2 X0 X1 ... Xn−3 Xn−1 Xn−1

4. SM n-Comprehensions with Recursion

Following [13], where some categorical structures giving rise to primitive re-
cursive functions in the initial monoidal category with a left natural numbers
object were introduced, we can establish for some objects in the free SM n-
Comprehension with Recursion analogous results. We will see in fact, in the fol-
lowing Section, that the morphisms generated in the free SM n-Comprehension
with Recursion are morphisms between cocommutative comonoids in a SM cat-
egory (see Appendix 2 for a description of these concepts). This is done to
justify the introduction of the safe dependent recursion schemes in the class of
SM n-Comprehensions with Recursion for the so-called cartesian objects below.

We have the following Theorem related to this point (taken from [1]).

Theorem 10. Let C be a SM category, 4 : C −→ C a functor such that 4(C) =
C ⊗ C and t : C −→ C a functor such that t(C) = > for every object C in C
with monoidal natural transformations δ : id −→ 4 and τ : id −→ t such that
for every object C in C the diagrams

C
δC // C ⊗ C

C⊗τC
��

C

C

OO

C ⊗>
r

oo

C
δC // C ⊗ C

τC⊗C
��

C

C

OO

>⊗ C
l

oo

commute. Then C is cartesian SM.

Proof. See Appendix 3.

9

This Theorem says essentially that every SM category is a cartesian SM
category if we can duplicate and delete data and, roughly speaking, duplicate
and delete the same datum is the same thing than doing nothing.11

We now define the basic categorical structure from which we’ll develop
recursion in n-Comprehensions. That is done by taking a class of SM n-
Comprehensions endowed with more structure, that is, some recursive diagrams.
We then proceed to modify and enrich the structure with initial diagrams and
recursive operators. For that we denote by CRn a new class named SM n-
Comprehension with Recursion obtained from a SM n-Comprehension in the
form of the following Definition.

Definition 11. We define the class of SM n-Comprehensions with Recur-
sion, denoted by CRn, as the class of SM n-Comprehensions in the form
(C, 〈Tk〉 , 〈Gk〉 , 〈ηk〉 , 〈εk〉)

• containing an object N0 and two arrows 00 and s0 whose diagram (named
initial diagram) is

> 00−→ N0
s0−→ N0.

We define recursively for each i = 1, ..., n−2 the objects Ni by the rules12

N1 = G0N0

Ni+1 = GiNi

and morphisms 0j and sj .13 In C we have for each i = 0, 1, ..., n − 2 and
j = 0, 1, ..., n− 1

TiNj =

> if i = j = 0

Ni−1 if i = j 6= 0

Nj otherwise
GiNj =

{
Ni+1 if i = j

Nj otherwise
.

With these definitions we can generate all initial diagrams in the form

> 0j−→ Nj
sj−→ Nj

for 0 < j < n− 1 as well as

T0(> 0−→ N0
s−→ N0) = > 1−→ > 1−→ >;

• closed under flat recursion (FR):

11In the original in [1] that condition was argued to be actually necessary and sufficient.
We state just a direction for being enough for the purpose of this paper.

12Ni will be the levels of N .

13Defined by the following schemes:

{
01 = G0(00)

0j+1 = Gj(0j)
and

{
s1 = G0(s0)

sj+1 = Gj(sj)
.

10

for all morphisms

g : X −→ Y and h : N0 ⊗X −→ Y

where X and Y are in the form Nα
0 there exist a unique

f : N0 ⊗X −→ Y

in C, which we will denote by FR(g, h), such that the following diagram
commutes14

>⊗X 00⊗X //

g◦l
((

N0 ⊗X

f

��

N0 ⊗X

h
uu

s0⊗Xoo

Y

• closed under safe ramified recursion diagrams on each level k (SRRk):

for all k = 0, 1, ..., n− 2 and for all morphisms

g : X −→ Y and h : Y −→ Y

where Tk...T0Y is isomorphic to > there exist a unique

f : Nk+1 ⊗X −→ Y

in C, which we will denote by SRRk(g, h), such that the following diagram
commutes

>⊗X 0⊗X //

l

��

Nk+1 ⊗X
s⊗X //

f

��

Nk+1 ⊗X

f

��
X

g
// Y

h
// Y

• naming cartesian objects in CRn the objects in the form
n−1⊗
i=0

Nαi
i , we have

that for every cartesian object CRn is also closed under safe dependent
recursion in each level k (SDRk):

for all k = 0, ..., n− 2 and for all morphisms

g : X −→ Y and h : (Nk+1 ⊗X)⊗ Y −→ Y

14This is actually a coproduct diagram. By applying G to this diagram we obtain flat
recursion for successive levels of N , we denote them by FRk for 1 ≤ k ≤ n−2. FRk diagrams
give to the initial diagrams appropriate properties such as the injectivity of the successor
function s.

11

where Tk...T0Y is isomorphic to > and X and Y are cartesian objects
there exist a unique

f : Nk+1 ⊗X −→ Y

in C, which we will denote by SDRk(g, h), such that the following diagram
commutes

>⊗X
0k+1⊗X //

(0k+1⊗X),g◦π1))

Nk+1 ⊗X
sk+1⊗X //

id,f

��

Nk+1 ⊗X

f

��
(Nk+1 ⊗X)⊗ Y

h
// Y

Elements of CRn are then SM n-Comprehensions with four different shaped
diagrams and certain bounding conditions on the objects over which those dia-
grams are acting. Note at this point also that the number of nested recursions
made in every step is exactly the recursion level in every scheme (see [3]).

Example 12. Our exemple of SM n-Comprehension with Recursion consists
of defining a cotensor in the form of a presheaf. Consider the category Setn

op

which we denote by Ŝet. Its objects are chains of sets indexed by nop:

Xn−1
fn−2−→ ...

f0−→ X0

and its arrows squares built out of them.
By fixing a single set X we have some special objects Xk for k = 0, ..., n− 1

in the same form than those given in the Exemple 9

• Ŝet is a SM category

• It has as terminal object chains 1 → . . . → 1 denoted by 1n where 1 is
whatever set with a single object

• For k ∈ {0, 1, ..., n − 1} and taking 0 (zero) and s (successor) from the
usual diagram 1

0−→ N
s−→ N in Set we have the chains of functions

– 0k : 1n → Nk in the form

1 //

0
��

· · · // 1

0
��

// 1

��

// · · · // 1

��
N // · · · // N // 1 // · · · // 1

with k zero arrows and n − k − 1 arrows with no name which are
identities

12

– sk : Nk → Nk in the form

N //

s

��

· · · // N

s

��

// 1

��

// · · · // 1

��
N // · · · // N // 1 // · · · // 1

with k successor arrows and n − k − 1 arrows with no name which
are identities.

• We define the endofunctors T êk and Gêk in Ŝet in the same way than Ex-
emple 9 but reversing the subindexes:

for every Xn−1
hn−2−→ ...

h0−→ X0 we obtain

T êk (Xn−1 → ...→ X0) =

= Xn−1 → ...→ Xn−1−k
id−→ Xn−1−k

t−→ Xn−3−k → ...→ X0

and
Gêk(Xn−1 → ...→ X0) =

Xn−1 → ...→ Xn−k
g−→ Xn−2−k

id−→ Xn−2−k → ...→ X0

where t = hn−3−k ◦ hn−2−k and g = hn−1−k ◦ hn−2−k and for every chain
of vertical arrows (fn−1, ..., f0) we obtain15

T êk (fn−1, ..., f0) = (fn−1, ..., fn−1−k, fn−1−k, fn−3−k, ..., f0)

and
Gêk(fn−1, ..., f0) = (fn−1, ..., fn−k, fn−k, fn−2−k, ..., f0)

• We can define a bifunctor = : Mop
n → (Ŝet, Ŝet) sending every Tk, Gk, ηk, εk

to T êk , G
ê
k, η

ê
k, ε

ê
k respectively.

Proposition 13. Every cartesian object in C ∈ CRn is endowed with diagonal
and eraser morphisms satisfying the hypothesis of Theorem 10.

Proof. Eraser and duplication morphisms can be both defined on every cartesian
object in CRn. Let then be X a cartesian object belonging to C in CRn:

1. Eraser morphisms τX : X −→ > in C can be defined recursively by con-
sidering:

• if X = > we take τ> = 1>

15With the notation established in the description of n(C in Appendix 1.

13

• if X = Nk+1 with k = 0, ..., n− 1 we can form the following instance
of safe ramified recursion

>⊗>
0k+1⊗> //

l
))

Nk+1 ⊗>

f

��

sk+1⊗> // Nk+1 ⊗>

f

��
>

id
// >

and the composition τNk+1
= f ◦ r−116

• if X = Y ⊗ Z with Y and Z in any of the former cases then we also
have the eraser morphism by recalling that τXX = τY Y ⊗ τZZ.

2. Duplication morphisms δNk can be obtained by the following diagrams

>⊗>
0k+1⊗> //

0k⊗0k))

Nk+1 ⊗>
sk+1⊗> //

f

��

Nk+1 ⊗>

f

��
Nk ⊗Nk sk⊗sk

// Nk ⊗Nk

for each k = 1, ..., n− 2 and the composition δNk = Gk(f ◦ r−1).

Squares of Theorem 10 involving eraser and duplication are also commutative
in C ∈ CRn because of their uniqueness.

Remark 14. δN0
has the problem that we have not at our disposal neither a

diagram giving it nor coercion functors allowing us, when n = 2, to lower the
level of the object over which it is acting. We’ll consider therefore in the sequel
n > 2.

Example 15. Exemple 12 can be extended to get cartesian objects. They exist
obviously in Ŝet as those chains of sets Xn−1 → ... → X0 where each Xk is of

the form
n−1⊗
i=0

Nαi
i for k = 0, ..., n− 1.

With the last result we point that every cartesian object in C ∈ CRn behave
as we expect, that is, they are really cartesian in the sense of Theorem 10. That
concept of cartesian object was devoted in the Definition of CRn to introduce
the so-called safe dependent recursion and is inspired on the results in [13],
where it was proven that all the objects in the initial monoidal category with a
left natural numbers object are powers of it.

16To obtain the arrow τN0
: N0 −→ > we take ηN0.

14

5. The free SM n-Comprehension with Recursion

By endowing the initial SM category with all initial diagrams and all re-
quired recursion schemes, we consider the free SM n-Comprehension with Re-
cursion, which we denote FRn. Now, regarding some concepts of the previous
section and some results of [13], we see that FRn is actually a cartesian SM
category, which allows us to consider SDR diagrams in it.

Theorem 16. FRn is cartesian.

Proof. It is a consequence of Proposition 13.

Now we have the following results related to the concept of cocommutative
comonoid, given in Appendix 2, that were first stated in [13]. We won’t mention
the subscripts of δ and τ when they are obvious and n will be greater than 2
for the following.

Proposition 17. (Ni, δ, τ) are cocommutative comonoids in FRn for all i =
0, 1, ..., n− 1.

Corollary 18. (Nk
i , δ, τ) are cocommutative comonoids in FRn for all k ∈ N

and for all i = 0, 1, ..., n− 1.

Theorem 19. The tensor product of two cartesian objects in FRn is a cartesian
product.

Proof. All cartesian objects in FRn are cocommutative comonoids.

It’s important here to note that this Theorem allowed us to introduce SDR
diagrams in FRn as it was seen in Proposition 13.

6. The standard model

The Freyd Cover, technique that we will use to prove some properties of the
syntactical structures defined up to now, is a particular case of the following
Definition.

Definition 20. Given a functor Γ : C −→ Set we call Artin Glueing the comma
category Set/Γ generated from Γ:

• whose objects are groups of three (X, f, U) where

– X is a set

– U is an an object of C
– f is a function X −→ ΓU

15

• whose morphisms between the objects (X, f1, U) and (Y, f2, V) are com-
mutative squares

X
h1 //

f1
��

Y

f2
��

ΓU
Γh2

// ΓV

that is, ordered pairs (h1, h2) where X h1−→ Y and U h2−→ V .

Definition 21. If C is a category with a terminal object 1 its Freyd Cover is
the Artin Glueing for the functor Γ = C(1,−).

Morphisms in FRn that we will call formal, because of their resemblance
with the terms in the formal languages, can be identified with programs gener-
ated in that category.

Definition 22. The standard model of formal morphisms is the functor Γn
given by the diagram

FRn Γn //

χ &&

n(Set

n(FRn
n(Γ

77

that is Γn = (n(Γ) ◦χ where Γ : FRn −→ Set is defined by ΓX = Fn(>, X)
and Γf = f ◦ −.17

Taking into account that the functor Γn acts over the objects > and Nn−1

in FRn as
Γn> = 1 −→ 1 −→ . . . −→ 1

and
ΓnNn−1 = Nn−1 −→ Nn−1 −→ . . . −→ Nn−1

where the arrows are identities, its expressions over the elements in FRn are:

• over the objects Nj in FRn for 0 ≤ j ≤ n− 2 we have

ΓnNj = [(n(Γ) ◦ χ](Nj)

17This is a special case of the global sections functor.

16

being equal to n(Γ applied to18

0Nj // 1Nj // · · · // n− 2Nj // n− 1Nj

and giving

0Nj
// 1Nj

// · · · // n− 2Nj
// n− 1Nj

This is both an object in n(Set and a function composition in Set.19

• over morphisms f : Nk −→ Nj in FRn for 1 ≤ k, j ≤ n−2 it is represented
by commutative squares in the form

Γnf = [(n(Γ) ◦ χ](f) = (n(Γ)(χNk −→ χNj)

18We point here that we have the following identities:

kNj =

{
> if 0 ≤ j ≤ k − 1

Nn−1 other
kNj =

{
1 if 0 ≤ j ≤ k − 1

Nn−1 other

19In terms of sequences out of 1 and N we had n− 1 chains of commutative squares.

17

giving

0Nk

0χ0Nk

��

0f // 0Nj

0χ0Nj

��
1Nk

1χ1Nk

��

1f // 1Nj

1χ1Nj

��

...
...

�� ��
n− 2Nk

n−2χn−2Nk

��

n−2f // n− 2Nj

n−2χn−2Nj

��
n− 1Nk

n−1f // n− 1Nj

This is both an arrow in n(Set and a chain of commutative squares in
Set.20

In a more general case we could consider objects in the form N
αj
j . In that case,

given that the endofunctors T and G preserve the tensor product, we had chains
in the form

0Nj ⊗
αj· · · ⊗ 0Nj → ...→ n− 1Nj ⊗

αj· · · ⊗ n− 1Nj

and an analogous expression for the morphisms. We will work modulo tensor
powers due to the enormous length of those expressions.

Definition 23. In the case of the n-Comprehension n(Set the Freyd Cover of
FRn is given by the comma category (n(Set)/Γn with the functor Γn : FRn −→
n(Set whose

20In terms of sequences out of 1 and N we had n− 1 chains of commutative cubes.

18

• objects are triples (X, f, U) where

– X is an object of n(Set, that is, a chain in the form

X0 → X1 → ...→ Xn−1

– U is an object of FRn, that is, the tensor product of distinct tensor
powers of objects Nk in the form

n−1⊗
j=0

N
αj
j

– f is a function X −→ ΓnU in n(Set, that is, a chain of squares

• morphisms between objects (X, f1, U) and (Y, f2, V) are commutative
squares

X
h1 //

f1
��

Y

f2
��

ΓnU
Γnh2

// ΓnV

that is, pairs (h1, h2) where X h1−→ Y belongs to n (Set and U h2−→ V

to FRn and therefore ΓnU
Γnh2 // ΓnV also belongs to n(Set.

Those squares can be seen as chains of commutative cubes in n(Set.

To complete this Section we give two results connecting the syntactical struc-
ture here described with the semantics of numerical functions.

Proposition 24. The image of the objects Nk by the functor Γ are sets whose
elements have the form ΓNk = {stdkn/n ∈ N} where stdk : N −→ ΓNk is
defined by the scheme {

stdk0 = 0k

stdk(sn) = sk(stdkn)

with k = 0, 1, ..., n− 1.

Corollary 25. ΓNk = Nk for all k = 0, 1, ..., n− 1.

This Proposition and its Corollary indicate that the sets generated by the
functor Γ applied to the levels of the natural numbers in FRn behave as the
natural numbers themselves. This fact is a consequence of the use of the Freyd
Cover, where every arrow > −→ Nk has the form snk ◦ 0k for some n ∈ N.

19

7. Recursive functions in FRn

To show how hierarchies of subrecursive functions can be defined in FRn
we introduce a language containing n different species of variables, separated
by semicolons, which we will denote by the numbers 0, 1, ..., n− 1. We assign at
the same time a level to every function as is explained in the following:

• we say that a function f is of the type (ak, ak−1, ..., a0; am) if its arguments
belong to the species ak, ak−1, ..., a0 in its domain and its codomain belong
to the species am. We express this fact by

f
akak−1...a0;am

• we define the level of a function as the species of its codomain.

If a variable belongs to the n-th species then it also belongs to the (n+1)-th
species.

Now we need to make use of a new recursion scheme in FRn with n > 2
that will turn out to be a particular instance of SDR scheme.

Definition 26. We say that a morphism f : Nk+1 ⊗ X −→ Y in FRn with
n > 2 is defined by the parameterized safe ramified recursion scheme on the
level k if it is the unique such that for all g : X −→ Y and h : X ⊗ Y −→ Y
with Tk...T0Y isomorphic to > the following diagram

>⊗X
0k+1⊗X //

l

��

Nk+1 ⊗X
sk+1⊗X //

π1,f

��

Nk+1 ⊗X

f

��
X

id,g
// X ⊗ Y

h
// Y

commutes. We denote f by PSRRk(g, h).

Theorem 27. Every function defined using a PSRR scheme can also be defined
using a SDR scheme.

With this result we can argue that a doctrine which is closed under the SDR
scheme is also closed under the PSRR scheme.

We now define some functions:21

21They are functions belonging to the so-called Hyperoperation Sequence, which gives an
easy way to classify the functions into the Grzegorzcyk Hierarchy by its complexity.

20

• addition in FR1 denoted by
⊕
10;0

: N1 ⊗N0 −→ N0 is defined by SRR:

>⊗N0
01⊗N0 //

l

��

N1 ⊗N0
s1⊗N0 //

⊕
��

N1 ⊗N0

⊕
��

N0
id

// N0 s0
// N0

such that {⊕
(0, n) = n⊕
(sx, n) = s(

⊕
(x, n))

• multiplication in FR2 denoted by
⊗
11;0

: N1 ⊗ N1 −→ N0 is defined by

PSRR:

>⊗N1
01⊗N1 //

l

��

N1 ⊗N1
s1⊗N1 //

π1,
⊗

��

N1 ⊗N1

⊗
��

N1
id,0◦τN1

// N1 ⊗N0 ⊕ // N0

such that {⊗
(0, y) = 0⊗
(sx, y) =

⊕
(y,

⊗
(x, y))

• exponentiation in FR3 denoted by ↑
21;1

: N2 ⊗ N1 −→ N1 is defined by

PSRR:22

>⊗N1
02⊗N1 //

l

��

N2 ⊗N1
s2⊗N1 //

π1,↑
��

N2 ⊗N1

↑
��

N1
id,c1

// N1 ⊗N1
G0

⊗ // N1

such that {
↑ (0, y) = c1

↑ (sx, y) = G0

⊗
(y, ↑ (x, y))

22c1 is the constant function 1.

21

• tetration in FR4 denoted by �
32;1

: N3 ⊗N2 −→ N1 is defined by PSRR:

>⊗N2
03⊗N2 //

π1

��

N3 ⊗N2
s3⊗N2 //

π1,�

��

N3 ⊗N2

�

��
N2

id,η2N2

// N2 ⊗N1 ↑
// N1

such that {
� (0, y) = y

� (sx, y) =↑ (y,� (x, y))

8. Safe composition

Safe composition, as defined in the following Definition, has a representation
in FRn by means of diagrams associated to natural transformations in the form
T0...Tk−1ηk.

Definition 28. We say that a function f is defined by safe composition from
functions r0, ..., rn and h if

f(xn; ...;x0) = h(rn(xn;); rn−1(xn;xn−1); ...; r0(xn; ...;x0))

where the level of f is the level of h while the level of rn is less or equal than n
and that of r0 is 0.

For every ηk and f :
n−1⊗
j=0

N
αj
j −→ Nβ

m morphism in FRn we have commuta-

tive diagrams in the following form:

T0...Tk−1(
n−1⊗
j=k

N
αj
j)

T0...Tk−1f //

T0...Tk−1ηk(
n−1⊗
j=k

N
αj
j)

��

T0...Tk−1N
β
m

T0...Tk−1ηkN
β
m

��
T0...Tk(

n−1⊗
j=k

N
αj
j)

T0...Tkf
// T0...TkN

β
m

obtained by the action of T0...Tk−1ηk with k = 0, 1, ..., n− 2 over f .
In this diagram we have made use of the identities23

T0...Tk(

n−1⊗
j=0

N
αj
j) =

n−1⊗
j=k+1

N
αj
j

23Working up to isomorphisms l and r.

22

and the fact that the arrow

ηk(

n−1⊗
j=k

N
αj
j) :

n−1⊗
j=k

N
αj
j −→ Tk(

n−1⊗
j=k

N
αj
j)

is actually an arrow
n−1⊗
j=k

N
αj
j −→

n−1⊗
j=k+1

N
αj
j

for every k = 0, 1, ..., n − 3 with which we have an expression of f in terms of
coercions Tk due to the fact that they don’t change anything over an object in
the form Nβ

m for k ≤ m− 1.
This grabs the formulation of safe composition from Definition 28 because

we obtain an expression of each morphism in FRn in terms of other morphisms
whose variables belong, as maximum, to the same species of the former. There-
fore, the level n − 1 output does not depend on lower species inputs when we
are in FRn. In general, a s species output does not depend on lower species
inputs than s.

Theorem 29. For every function

h(xn; ...;xk+1; z, xk; ...;x0)

where 0 ≤ k < n there exists a function

f(xn; ...;xk+1, z;xk; ...;x0)

obtained by safe composition from h and projections such that

h(xn; ...;xk+1; z, xk; ...;x0) = f(xn; ...;xk+1, z;xk; ...;x0)

Proof. Take projection functions as r.

That is, every variable being in a species k position can be moved to a species
t > k position.

The function classes characterized by this setting will satisfy one of the main
features of the subrecursive hierarchies, that is, its growing behaviour: there
exist functions not belonging to any previous class in their ordering. Take for
exemple those of the Hyperoperation Sequence and its relation with the classes
in the Grzegorzcyk Hierarchy denoted by En for n ∈ N. Every (n+1)-level
function in the Hyperoperation Sequence belong to En+1 but not to En.

Concurrently, we can give in Ek a copy of each function in Ej for every k ≥ j
and we forbid in Ej any copy of a function generated in Ek. The former is done
by the action of a coercion functor Gm for k > m ≥ j and the latter by avoiding
the application of endofunctors Tm for k ≥ m > j over the arrows generated by
means of a recursion scheme in Ek. This is done to avoid the structure collapse
due to the fact that those coercion functors may reduce subindexes. In these

23

situations we must consider a subcategory SFRn of FRn which we describe in
Appendix 4.

9. Conclusions and future work

Symmetric Monoidal n-Comprehensions are proved to be useful for new
characterizations of subrecursive function classes, giving a wider point of view
of recursion in Category Theory.

This work can be extended, for instance, by considering other (partial) or-
ders as giving rise to a different concept of n-Comprehension to chase different
function classes (see [10] for this particular). Other investigation line to follow
starting from this paper could be a fibrational point of view of the results here
given.

References

[1] John Baez. Universal Algebra and Diagrammatic Reasoning. Lec-
tures at Geometry of Computation, 2006.

[2] S. Bellantoni, S. Cook. New recursion-theoretic characterization of
the polytime functions. Comput. Complexity 2, 1992, pp. 97–110.

[3] Stephen J. Bellantoni, Karl-Heinz Niggl. Ranking Primitive Recur-
sions: The Low Grzegorczyk Classes Revisited. SIAM J. Comput.
29(2), 1999, pp. 401-415.

[4] Robin Cockett, Joaquín Díaz, Johnathan Gallagher, Pavel Hrubes.
Timed Sets, Functional Complexity and Computability. Electronic
Notes in Theoretical Computer Science. Volume 286, September,
2012 Pages 117-137.

[5] Robin Cockett, Brian Redmond. A Categorical Setting for Lower
Complexity. Electronic Notes in Theoretical Computer Science.
Volume: 265, 2010, pp. 277-300.

[6] T. Fox. Coalgebras and cartesian categories. Communications in
Algebra. 01/1976, 4, 1976, pp. 665-667.

[7] G.M. Kelly. Elementary observations on 2-categorical limits. Bul-
letin of the Australian Mathematical Society. 39, 1989, pp. 301-317.

[8] J. Lambek, P.J. Scott. Introduction to Higher Order Categorical
Logic, CUP, 1986.

[9] Daniel Leivant. Ramified recurrence and computational complexity
I: Word algebras and polytime. In P. Clote and J Remmel, editors,
Feasible Mathematics II. Birkhause, 1994, pp. 320-343.

24

[10] J. Otto. Complexity Doctrines. Ph.D. thesis, McGill University,
Montreal, 1995.

[11] L. Roman. Cartesian Categories with Natural Numbers Object.
Journal of Pure and Applied Algebra. 58, 1989, pp. 267-278.

[12] L. Roman. Categories with finite limits and Natural Numbers
Object. Publicaciones preliminares del Instituto de Matemáticas.
UNAM, 1990.

[13] Robert Paré, Leopoldo Román: Monoidal categories with natural
numbers object. Studia Logica. 48(3), 1988, pp. 361– 376.

[14] M.-F. Thibault. Représentations des fonctions récursives dans les
catégories. Ph.D. thesis, McGill University, Montreal, 1977.

[15] Fernando Zalamea. Recursión en categorías. Revista Colombiana
de Matemáticas. Volumen 29, 1995, pp. 127-144.

Appendix 1

We will use some concepts of [7] to get the cotensor of two V-categories. For
that V will be in the sequel a monoidal category.

Definition 30. Let B be a V−category, B,C ∈ B and X ∈ V. If there exists
an object D in B and a V-natural isomorphism

B(B,D) ∼= [X,B(B,C)]

we say that D is the cotensor product of X and C in B and we will denote it
by X (C.

If it exists for all X and C then we say that the V−category B is cotensorial.
In this case we also have the isomorphism B(X ⊗ B,C) ∼= [X,B(B,C)] which
means that we have the isomorphism

B(X ⊗B,C) ∼= B(B,X (C)

whenever V is SM closed and its underlying V0 is complete.

Remark 31. Every SM closed category has tensor and cotensor products for
every pair of objects and the cotensor product is the hom-object formed by
those objects.

Example 32. Let C be a SM category. We take B = SM,V = Cat and the
2-functors

G : I −→ SM and F : I −→ Cat

where I is the unit V-category such that G determines a category D and F
determines n. Then for all C ∈ SM we have

25

SM(n⊗D, C) ∼= SM(D,n(C) ∼= [n,SM(D, C)]
and, by taking D = C,

SM(n⊗ C, C) ∼= SM(C,n(C) ∼= [n,SM(C, C)]

where the 2-category at right is isomorphic to SM(C, C)n.
This construction makes sense due to the fact that SM admits cotensor

objects with the category n whenever C ∈ SM, a fact that we spell out immedi-
ately below. SM can be seen itself as a V-category with V = Cat a SM closed
category, we can then say that the cotensor object is exactly the hom-object.
That is

n(C = [n, C]

It can be defined a symmetric monoidal structure for n (C when C is in
SM given by the following:

• as unit we take the following chain of n− 1 morphisms

> −→ > −→ . . . −→ >

• tensor product of the objects

Y0
y0 // · · ·

yn−2 // Yn−1

and

X0
x0 // · · ·

xn−2 // Xn−1

is defined by

Y0 ⊗X0
y0⊗x0 // · · ·

yn−2⊗xn−2 // Yn−1 ⊗Xn−1

• tensor product of an object

Y0
y0 // · · ·

yn−2 // Yn−1

and an arrow24

X0
x0 //

f0

��

· · ·
xn−2 // Xn−1

fn−1

��
X ′0

x′0 // · · ·
x′n−2 // X ′n−1

is defined by

24We will express squares like this simply as (f0, ..., fn−1).

26

Y0 ⊗X0
y0⊗x0 //

Y0⊗f0
��

· · ·
yn−2⊗xn−2 // Yn−1 ⊗Xn−1

Yn−1⊗fn−1

��
Y0 ⊗X ′0

y0⊗x′0 // · · ·
yn−2⊗x′n−2 // Yn−1 ⊗X ′n−1

• symmetries are

Y0 ⊗X0
y0⊗x0 //

sX0,Y0

��

· · ·
yn−2⊗xn−2 // Yn−1 ⊗Xn−1

sXn−1,Yn−1

��
X0 ⊗ Y0

x0⊗y0 // · · ·
xn−2⊗yn−2 // Xn−1 ⊗ Yn−1

and the rest of diagrams giving the SM structure where commutativity is sat-
isfied in every diagram because of the SM structure in C.

Appendix 2

Definition 33. Let C be a SM category. We denote by CC(C) the category
whose

• objects are cocommutative comonoids in C in the form (A, δA, τA)

• morphisms between cocommutative comonoids (A, δA, τA) and (B, δB , τB)
are morphisms f : A −→ B in C such that the following diagrams commute

A
f //

δA

��

B

δB

��
A⊗A

f⊗f
// B ⊗B

A

τA ��

f // B

τB��
>

Remark 34. CC(C) is cartesian (see [6]). That cartesian product in CC(C) is
given by the comonoid (A ⊗ B, δA⊗B , τA⊗B) for (A, δA, τA) and (B, δB , τB) in
CC(C) due to the fact that the following diagram commutes for all f : C −→ A
and g : C −→ B in CC(C)

C

(f⊗g)◦δC
��

f

ww

g

''
A A⊗B

r◦(A⊗τB)

oo
l◦(τB⊗B)

// B

where the definition of projections in a cartesian SM category (see the following)
are given implicitly.

Definition 35. A cartesian symmetric monoidal category (a cartesian SM cat-
egory in the sequel) is a symmetric monoidal category whose monoidal structure
is given by a cartesian product.

27

Remark 36. From this Definition we can argue that the unit of the tensor in
the case of a cartesian SM category is a terminal object in the category.

Every cartesian SM category is endowed with morphisms diagonal in the
form δC : C → C ⊗ C and eraser in the form τC : C → > for every object C.
We can think on the interpretation of morphisms δ and τ in terms of Computer
Science as the one that duplicates a datum and the one that deletes a datum
respectively. Those morphisms carry the structure of a cocommutative comonoid
over an object in the category. In fact, every object in a cartesian SM category
can be seen uniquely as a comonoid as seen in the following.

Theorem 37. Given a cartesian symmetric monoidal category C every object
is endowed with a cocommutative comonoid structure uniquely defined.

Proof. By being a cartesian symmetric monoidal category we know that the
unit > is a terminal object and therefore there exists for every object C in C a
unique arrow C −→ > that has to be τC for the comonoid structure.

On the other hand, by being cartesian we can construct a commutative
diagram in the form

C

h

��

id

##

id

{{
C C ⊗ C

π2

//
π1

oo C

where the unique h, denoted by 〈id, id〉, has to be the duplication arrow δC .

Appendix 3

Proof. [of Theorem 10] For an object D in C and arrows f1 : D −→ C1 and
f2 : D −→ C2 we can construct a diagram25

D

f1

��

δD //

(1)

D ⊗D
f1⊗f2 //

f1⊗f1
��

(2)

C1 ⊗ C2

C1⊗τC2

��
C1

δC1

// C1 ⊗ C1
C1⊗τC1

//

(3)

C1 ⊗>

r

dd

where (1) commutes for being δ a natural transformation and (3) by hypothesis
while the commutativity of diagram numbered (2) can be proved by considering

25And an analogous for C2.

28

it as
D ⊗D

D⊗f2 //

f1⊗D
��

(4)

D ⊗ C2

f1⊗C2

��
C1 ⊗D

C1⊗f2 //

C1⊗f1
��

(5)

C1 ⊗ C2

C1⊗τC2

��
C1 ⊗ C1

C1⊗τC1

// C1 ⊗>

where (4) commutes for bifunctoriality. Diagram (5) commutes by taking a
monoidal natural transformation C1 ⊗ τ giving, for f1 and f2 like above:

C1 ⊗ id(D)
C1⊗τD //

C1⊗id(f1)

��

C1 ⊗ t(D)

C1⊗t(f1)

��
C1 ⊗ id(C1)

C1⊗τC1

// C1 ⊗ t(C1)

C1 ⊗ id(D)
C1⊗τD //

C1⊗id(f2)

��

C1 ⊗ t(D)

C1⊗t(f2)

��
C1 ⊗ id(C2)

C1⊗τC2

// C1 ⊗ t(C2)

giving

C1 ⊗D
C1⊗τD //

C1⊗f1
��

C1 ⊗>

C1⊗>
��

C1 ⊗ C1
C1⊗τC1

// C1 ⊗>

C1 ⊗D
C1⊗τD //

C1⊗f2
��

C1 ⊗>

C1⊗>
��

C1 ⊗ C2
C1⊗τC2

// C1 ⊗>

both commuting for naturality.
Then the (1), (2), (3)-diagram (together with its analogous for C2) is a carte-

sian product diagram where projections are r ◦ (C1⊗ τC2) and l ◦ (τC1 ⊗C2) and
the uniqueness is obvious given f1 and f2.

Appendix 4

Let SFRn be a subcategory of FRn in which we avoid any application of T
over the objects and morphisms of FRn. We define some of the objects in SFRn
by means of G as happens in the case of FRn but will make use of endofunctors
T only for the introduction of a bounding condition in the recursion schemes
used in SFRn.

We introduce in the squares below the description of SFRn in the form of
a language for its objects and morphisms of SFRn. The rules into the squares
are subject to the following conventions:

• we have omitted defining symmetric monoidal category rules (identity,
associativity as well as coherence diagrams)

• X,Y, Z and W denote whatever object

• f and g denote whatever morphism

29

• a, l, σ denote the natural isomorphisms of the SM structure

• subindex k will range between 0 and n− 2 into the squares when no other
indication is given.26

1. Objects

(a) initial objects

>
>− object

Nk
Nk−object

(b) generation of objects

X Y
X ⊗ Y

⊗− object

2. Arrows

(a) initial arrows

X
idX : X → X

identity
0k : > → Nk

zero
sk : Nk → Nk

successor

X
τX : X → >

eraser
X

δX : X → X ⊗X
duplication

dk : Nk+1 → Nk
drop

(b) generation of arrows from arrows

f : X → Y g : Y → Z

g ◦ f : X → Z
composition

f : X → Y g : Z →W

g ⊗ f : X ⊗ Z → Y ⊗W
⊗− arrow

(c) generation of arrows from objects and natural isomorphisms

X
l : >⊗X → X

left
X Y

σ : X ⊗ Y → Y ⊗X
symmetry

X Y Z

a : (X ⊗ Y)⊗ Z → X ⊗ (Y ⊗ Z)
associativity

3. Flat Recursion

g : X → Y h : Nk ⊗X → Y

FRk(g, h) : Nk ⊗X → Y
FRk

where X and Y are in the form Nα
k

We now define some assignations which turn out to be, respectively, SM
endofunctors and SM natural transformations.

26Due to the syntactical behaviour of the definitions above, we should mention that dk
applied to 0k+1 gives 0k and, analogously, for every other natural number in a level k + 1 it
assigns the same number in level k.

30

1. Let be

TkX =

> if X = N0 and k = 0

Nk−1 if X = Nk and k 6= 0

TkY ⊗ TkZ if X = Y ⊗ Z
X otherwise

GkX =

Nk+1 if X = Nk
GkY ⊗GkZ if X = Y ⊗ Z
X otherwise

and

Tkf =

id> if f = 00 or s0
0k−1 if f = 0k and k 6= 0

sk−1 if f = sk and k 6= 0

τTkX if f = τX

idNk−1
if f = dk−1 and k 6= 0

τN1
if f = d0 and k = 0

δTkX if f = δX

dk−1 ◦ dk if f = dk and k 6= 0

Tkg ◦ Tkh if f = g ◦ h
Tkg ⊗ Tkh if f = g ⊗ h
f otherwise

Gkf =

0k+1 if f = 0k
sk+1 if f = sk
τGkX if f = τX

δGkX if f = δX

idNk+1
if f = dk

dk−1 ◦ dk if f = dk−1

Gkg ◦Gkh if f = g ◦ h
Tkg ⊗ Tkh if f = g ⊗ h
f otherwise

for f : X → Y and for each k = 0, 1, ..., n− 2.
2. We denote by εk : Gk =⇒ id and ηk : id =⇒ Tk some assignations27

εkX =

> if X = >
dk if X = Nk

εkY ⊗ εkZ if X = Y ⊗ Z
idX otherwise

ηkX =

> if X = >
dk−1 if X = Nk and k 6= 0

τN0
if X = N0 and k = 0

ηkY ⊗ ηkZ if X = Y ⊗ Z
idX otherwise

It easy to see that Tk and Gk are endofunctors and εk and ηk are natural
transformations in the free SM category defined by the rules above for each
k = 0, 1, ..., n− 2.

5. Raising arrows

f : X → Y

Gkf : GkX → GkY
Gk − arrow

6. Safe Recursion
g : X → Y h : Y → Y

SRRk(g, h) : Nk+1 ⊗X → Y
SRRk

where Tk...T0Y is isomorphic to >
7. Safe Dependent Recursion

g : X → Y h : (Nk+1 ⊗X)⊗ Y −→ Y

SDRk(g, h) : Nk+1 ⊗X → Y
SDRk

where Tk...T0Y is isomorphic to >

27They are useful to get morphisms between objects in different levels.

31

	1 Introduction
	2 Basic structures
	3 SM n-Comprehensions
	4 SM n-Comprehensions with Recursion
	5 The free SM n-Comprehension with Recursion
	6 The standard model
	7 Recursive functions in FRn
	8 Safe composition
	9 Conclusions and future work

