
ar
X

iv
:1

60
2.

02
74

3v
1

 [
cs

.L
O

]
 7

 F
eb

 2
01

6

The IMP game: Learnability, approximability and adversarial

learning beyond Σ0
1

Michael Branda, David L. Dowea

aFaculty of IT (Clayton), Monash University, Clayton, VIC 3800, Australia

Abstract

We introduce a problem set-up we call the Iterated Matching Pennies (IMP) game and show
that it is a powerful framework for the study of three problems: adversarial learnability,
conventional (i.e., non-adversarial) learnability and approximability. Using it, we are able
to derive the following theorems. (1) It is possible to learn by example all of Σ0

1 ∪ Π0
1 as

well as some supersets; (2) in adversarial learning (which we describe as a pursuit-evasion
game), the pursuer has a winning strategy (in other words, Σ0

1 can be learned adversarially,
but Π0

1 not); (3) some languages in Π0
1 cannot be approximated by any language in Σ0

1.
We show corresponding results also for Σ0

i and Π0
i for arbitrary i.

Keywords: Turing machine, recursively enumerable, decidable, approximation, matching
pennies, halting, halting problem, elusive model paradox, red herring sequence,
learnability, Nash equilibrium, approximability, adversarial learning

1. Introduction

This paper deals with three widely-discussed topics: approximability, conventional
learnability and adversarial learnability, and introduces a unified framework in which all
three can be studied.

First, consider approximability. Turing’s seminal 1936 result [21] demonstrated that
some languages that can be accepted by Turing machines (TMs) are not decidable. Other-
wise stated, some R.E. languages are not recursive. Equivalently: some co-R.E. languages
are not R.E.; any R.E. language must differ from them by at least one word. However,
the diagonalisation process by which this result was originally derived makes no stronger
claim regarding the number of words differentiating a co-R.E. language and an R.E. one.
It merely shows one example of a word where a difference must exist.

We extend this original result by showing that some co-R.E. languages are, in some
sense, as different from any R.E. language as it is possible to be.

To formalise this statement, consider an arbitrary (computable) enumeration, w1, w2, . . .,
over the complete language (the language that includes all words over the chosen alpha-

Email addresses: michael.brand@monash.edu (Michael Brand), david.dowe@monash.edu (David L.
Dowe)

Preprint submitted to Elsevier September 22, 2018

http://arxiv.org/abs/1602.02743v1

bet). Over this enumeration, {wi}, we define a distance metric, dissimilarity, between
two languages, L1 and L2, as follows.

DisSim(L1, L2) ≡ lim sup
n→∞

|(L1△L2) ∩ {w1, . . . , wn}|
n

,

where L1△L2 is the symmetric difference. We note that the value of DisSim(L1, L2) de-
pends on the enumeration chosen, and therefore, technically, DisSim(·) = DisSim{wi}(·).
However, all results in this paper are true for all possible choices of the enumeration, for
which reason we omit the choice of enumeration, opting for this more simplified notation.

DisSim(L1, L2) ranges between 0 (the languages are essentially identical) and 1 (the
languages are completely dissimilar).

We prove:

Theorem 1. There is a co-R.E. language L̄ such that every R.E. language has a dissimi-
larity distance of 1 from L̄.

Consider now learnability. Learnability is an important concept in statistics, economet-
rics, machine learning, inductive inference, data mining and other fields. This has been
discussed by E. M. Gold and by L. G. Valiant in terms of language identification in the
limit [7, 22], and also in statistics via the notion of statistical consistency, also known as
“completeness” (converging arbitrarily closely in the limit to an underlying true model).

Following upon his convergence results in [17], Solomonoff writes [20, sec. 2 (Complete-
ness and Incomputability)]:

“It is notable that completeness and incomputability are complementary prop-
erties: It is easy to prove that any complete prediction method must be incom-
putable. Moreover, any computable prediction method can not be complete –
there will always be a large space of regularities for which its predictions are
catastrophically poor.”

In other words, in Solomonoff’s problem set-up it is impossible for a Turing machine
to learn every R.E. language: every computable learner is limited.

Nevertheless, in the somewhat different context within which we study learnability,
we are able to show that this tension does not exist: a Turing machine can learn any
computable language. Moreover, we will consider a set of languages that includes, as a
proper subset of it, the languages Σ0

1∪Π0
1 and will prove that while no deterministic learning

algorithm can learn every language in the set, a probabilistic one can (with probability 1),
and a mixed strategy involving several deterministic learning algorithms can approximate
this arbitrarily well.1

Lastly, consider adversarial learning [12, 11, 9]. This is different from the conventional
learning scenario described above in that while in conventional learning we attempt to

1Here and elsewhere we use the standard notations for language families in the arithmetical hierarchy
[15]: Σ0

1
is the set of recursively enumerable languages, Π0

1
is the set of co-R.E. languages.

2

converge to an underlying “true model” based on given observations, adversarial learning
is a multi-player process in which each participant can observe (to some extent) other
players’ predictions and adjust their own actions accordingly. This game-theoretic set-up
becomes of practical importance in many scenarios. For example, in online bidding bidders
use information available to them (e.g., whether they won a particular auction) to learn
the strategy used by competing bidders, so as to be able to optimise their own strategy
accordingly.

We consider, specifically, an adversarial learning scenario in which one player (the pur-
suer) attempts to copy a second player, while the second player (the evader) is attempting
to avoid being copied. Specifically, each player generates a bit (0 or 1) and the pursuer
wins if the two bits are equal while the evader wins if they are not. Though on the face of
it this scenario may seem symmetric, we show that the pursuer has a winning strategy.

To attain all these results (as well as their higher-Turing-degree equivalents), we in-
troduce a unified framework in which these questions and related ones can all be studied.
The set-up used is an adaptation of one initially introduced by Scriven [16] of a predictor
and a contrapredictive (or avoider) effectively playing what we might nowadays describe
as a game of iterated matching pennies. In Section 2, we give a formal description of this
problem set-up and briefly describe its historical evolution. In Section 3, we explain the
relevance of the set-up to the learnability and approximability problems and analyse, as
an example case, adversarial learning in the class of decidable languages. In Section 4, we
extend the analysis to adversarial learning in all other classes in the arithmetical hierarchy,
and in particular to Turing machines.

In Sections 5 and 6 we then return to conventional learnability and to approximability,
respectively, and prove the remaining results by use of the set-up developed, showing how
it can be adapted to these problems.

2. Matching Pennies

The matching pennies game is a zero-sum two-player game where each player is required
to output a bit. If the two bits are equal, this is a win for Player “=”; if they differ, this
is a win for Player “ 6=”. The game is a classic example used in teaching mixed strategies
[see, e.g. 6, pp. 283–284]: its only Nash equilibrium [14, 13] is a mixed strategy wherein
each player chooses each of the two options with probability 1/2.

Consider, now, an iterative version of this game, where at each round the players choose
a new bit with perfect information of all previous rounds. Here, too, the best strategy is to
choose at each round a new bit with probability 1/2 for each option, and with the added
caveat that each bit must be independent of all previous bits. In the iterative variation,
we define the payoff (of the entire game) to be

S = S 6= =

(

lim inf
N→∞

N
∑

n=1

δn
2N

)

+

(

lim sup
N→∞

N
∑

n=1

δn
2N

)

(1)

for Player “ 6=”, where δn is 0 if the bits output in the n’th round are equal and 1 if they

3

are different. The payoff for Player “=” is

S= = 1− S 6= =

(

lim inf
N→∞

N
∑

n=1

1− δn
2N

)

+

(

lim sup
N→∞

N
∑

n=1

1− δn
2N

)

(2)

These payoff functions were designed to satisfy the following criteria:

• They are always defined.

• The game is zero-sum and strategically symmetric, except for the essential distinction
between a player aiming to copy (Player “=”, the pursuer) and a player aiming for
dissimilarity (Player “ 6=”, the evader).

• The payoff is a function solely of the {δi} sequence. (This is important because in
the actual IMP game being constructed players will only have visibility into past δi,
not full information regarding the game’s evolution.)

• Where a limit exists (in the lim sense) to the percentage of rounds to be won by a
player, the payoff is this percentage.

In particular, note that when the payoff functions take the value 0 or 1, there exists a limit
(in the lim sense) to the percentage of rounds to be won by a player, and in this case the
payoff is this limit.

In the case of the strategy pair described above, for example, where bits are determined
by independent, uniform-distribution coin tosses, the limit exists and the payoff is 1/2
for both players, indicating that the game is not biased towards either. This is a Nash
equilibrium of the game: neither player can ensure a higher payoff for herself as long as
the other persists in the equilibrium strategy. The game has other Nash equilibria, but all
share the (1/2, 1/2) payoffs.

Above, we describe the players in the game as agents capable of randomisation: they
choose a random bit at each new round. However, the game can be played, with the same
strategies, also by deterministic agents. For this, consider every possible infinite bit-string
as a possible strategy for each of the players. In this case, the game’s Nash equilibrium
would be a strategy pair where each player allots a bit-string from a uniform distribution
among all options.

We formalise this deterministic outlook on the matching pennies game as follows.

Definition 1 (Iterative Matching Pennies game). An Iterative Matching Pennies game (or
IMP), denoted IMP(Σ=,Σ6=), is a two player game where each player chooses a language:
Player “=” chooses L= ∈ Σ= and Player “ 6=” chooses L6= ∈ Σ6=, where Σ= and Σ6= are two
collections of languages over the binary alphabet.

Where Σ= = Σ6= (= Σ), we denote the game IMP(Σ).
Define ∆0 to be the empty string and define, for every natural i,

δi
def
=

{

1 if ∆i−1 ∈ L=△L6=

0 if ∆i−1 6∈ L=△L6=

,

4

∆i
def
= ∆i−1δi,

Then the payoffs S= = S=(L=, L6=) and S 6= = S 6=(L=, L6=) are as defined in (2) and (1),
respectively. The notation “∆i−1δi” indicates string concatenation.

Player (mixed) strategies in this game are described as distributions, D= and D 6=, over
Σ= and Σ6=, respectively. In this case, we define

S=(D=, D 6=) = E(S=(L=, L6=)) L= ∼ D=, L6= ∼ D 6=.

S 6=(D=, D 6=) = E(S 6=(L=, L6=)) L= ∼ D=, L6= ∼ D 6=.

Note again that the game is zero sum: any pair of strategies, pure or mixed, satisfies

S=(D=, D 6=) + S 6=(D=, D 6=) = 1. (3)

To better illustrate the dynamics embodied by Definition 1, let us add two more defi-
nitions: let

O=(i)
def
=

{

1 if ∆i−1 ∈ L=

0 if ∆i−1 6∈ L=

(4)

and let

O 6=(i)
def
=

{

1 if ∆i−1 ∈ L6=

0 if ∆i−1 6∈ L6=

, (5)

noting that by Definition 1, δi = O=(i)⊕O 6=(i), where “⊕” denotes the exclusive or (“xor”)
function.

The scenario encapsulated by the IMP game is that of a competition between two
players, Player “=” and Player “ 6=”, where the strategy of the players is encoded in the
form of the languages L= and L6=, respectively (or distributions over these in the case of
mixed strategies).

After i rounds, each player has visibility to the set of results so far. This is encoded by
means of ∆i, a word composed of the characters δ1, . . . , δi, where each δk is 0 if the bits
that were output by the two players in round k are equal and 1 if they are not. It is based
on this history that the players now generate a new bit: Player “=” generates O=(i + 1)
and Player “ 6=” generates O 6=(i + 1). The players’ strategies are therefore functions from
a word (∆i) to a bit (O=(i + 1) for Player “=”, O 6=(i + 1) for Player “ 6=”). To encode
these strategies in the most general form, we use languages: L= and L6= are simply sets
containing all the words to which the response is “1”. Our choice of how weak or how
strong a player can be is then ultimately in the question of what language family, Σ, its
strategy is chosen from.

Once O=(i + 1) and O 6=(i + 1) are determined, δi+1 is simply their xor (1 if the bits
differ, 0 if they are the same), and in this way the definition generates the infinite list of
δi that is ultimately used to compute the game’s overall payoff for each player.

Were we to actually try and run a real-world IMP competition by directly implementing
the definitions above, and were we to try to implement the Nash equilibrium player strate-
gies, we would immediately run into two elements in the set-up that are incomputable:

5

first, the choice of a uniform infinitely-long bit-string, our chosen distribution among the
potential strategies, is incomputable (it is a choice among uncountably many elements);
second, for a deterministic player (an agent) to output all the bits of an arbitrary (i.e.,
general) bit-string, that player cannot be a Turing machine. There are only countably
many Turing machines, so only countably many bit-strings that can thus be output.

In this paper, we examine the IMP game with several choices for Σ= and Σ6=. The main
case studied is where Σ= = Σ6= = Σ0

1. In this case, we still allow player mixed strategies
to be incomputable distributions, but any L= and L6= are computable by TMs.

The set-up described here, where Iterated Matching Pennies is essentially described as
a pursuit-evasion game, was initially introduced informally by Scriven [16] in order to prove
that unpredictability is innate to humans. Lewis and Richardson [10], without explicitly
mentioning Turing machines or any (equivalent) models of computation, reinvestigated
the model and used it to refute Scriven’s claim, with a proof that hinges on the halting
problem, but references it only implicitly.

The set-up was redeveloped independently by Dowe, first in the context of the avoider
trying to choose the next number in an integer sequence to be larger (by one) than the
(otherwise) best inference that one might expect [1, sec. 0.2.7, p. 545, col. 2 and footnote
211], and then, as in [16], in the context of predicting bits in a sequence [2, p. 455][4, pp.
16–17]. Dowe was the first to introduce the terminology of TMs into the set-up. His aim
was to illicit a paradox, which he dubbed “the elusive model paradox”, whose resolution
relies on the undecidability of the halting problem. Thus, it would provide an alternative
to the method of [21] to prove this undecidability. Variants of the elusive model paradox
and of the “red herring sequence” (the optimal sequence to be used by an avoider) are
discussed in [3, sec. 7.5], with the paradox also mentioned in [5, sec. 2.2][8, footnote 9].

Yet a third independent incarnation of the model was by Solomonoff, who discussed
variants of the elusive model paradox and the red herring sequence in [19, Appendix B]
and [18, sec. 3].

We note that the more formal investigations of Dowe and of Solomonoff were in contexts
in which the “game” character of the set-up was not explored. Rather, the set-up was
effectively a one-player game, where regardless of the player’s choice of next bit, the red
herring sequence’s next bit was its reverse. We, on the other hand, return to the original
spirit of Scriven’s formulation, investigating the dynamics of the two player game, but do
so in a formal setting.

Specifically, we investigate the question of which of the two players (if either) has
an advantage in this game, and, in particular, we will be interested in the game’s Nash
equilibria, which are the pairs of strategies (D∗

=, D
∗
6=) for which

S=(D
∗
=, D

∗
6=) = sup

D=

S=(D=, D
∗
6=)

and
S 6=(D

∗
=, D

∗
6=) = sup

D 6=

S 6=(D
∗
=, D 6=).

6

We define
minmax(Σ=,Σ6=) = inf

D=

sup
D 6=

S(D=, D 6=)

and
maxmin(Σ=,Σ6=) = sup

D 6=

inf
D=

S(D=, D 6=),

where D= is a (potentially incomputable) distribution over Σ= and D 6= is a (potentially
incomputable) distribution over Σ6=. Where Σ= = Σ6= (= Σ), we will abbreviate this to
minmax(Σ) and maxmin(Σ).

A Nash equilibrium (D∗
=, D

∗
6=) must satisfy

S(D∗
=, D

∗
6=) = maxmin(Σ=,Σ6=) = minmax(Σ=,Σ6=), (6)

where, as before, S = S 6=.
We note that while it may seem, at first glance, that the introduction of game dynamics

into the problems of learnability and approximability inserts an unnecessary complication
into their analysis, in fact, we will show that the ability to learn and/or approximate
languages, when worded formally, involves a large number of interlocking “lim”, “sup”,
“inf”, “lim sup” and “lim inf” clauses that are most naturally expressed in terms of minmax
and maxmin solutions, Nash equilibria and mixed strategies.

3. Halting Turing machines

The IMP game serves as a natural platform for investigating adversarial learning: each
of the players has the opportunity to learn from all previous rounds, extrapolate from this
to the question of what algorithm their adversary is employing and then choose their own
course of action to best counteract the adversary’s methods.

Furthermore, where Σ= = Σ6= (= Σ), IMP serves as a natural arena to differentiate
between the learning of a language (e.g., one selected from R.E.) and its complement (e.g.,
a language selected from co-R.E.), because Player “=”, the copying player, is essentially
trying to learn a language from Σ, namely that chosen by Player “ 6=”, whereas Player “ 6=”
is attempting to learn a language from co-Σ, namely the complement to that chosen by
Player “=”. Any advantage to Player “=” can be attributed solely to the difficulty to learn
co-Σ by an algorithm from Σ, as opposed to the ability to learn Σ.

To exemplify IMP analysis, consider first the game where Σ = ∆0
1, the set of decidable

languages. Because decidable languages are a set known to be closed under complement,
we expect Player “ 6=” to be equally as successful as Player “=” in this variation. Consider,
therefore, what would be the Nash equilibria in this case.

Theorem 2. Let Σ be the set of decidable languages over {0, 1}∗. The game IMP(Σ) does
not have any Nash equilibria.

We remark here that most familiar and typically-studied games belong to a family of
games where the space of mixed strategies is compact and convex, such as those having

7

a finite number of pure strategies, and such games necessarily have at least one Nash
equilibrium. However, the same is not true for arbitrary games. (For example, the game
of “guess the highest number” does not have a Nash equilibrium.) IMP, specifically, does
not belong to a game family that guarantees the existence of Nash equilibria.

Proof. We begin by showing that for any (mixed) strategy D 6=,

sup
D=

S=(D=, D 6=) = 1. (7)

Let T0, T1, . . . be any (necessarily incomputable) enumeration over those Turing ma-
chines that halt on every input, and let L0, L1, . . . be the sequence of languages that is
accepted by them. The sequence {Li} enumerates (with repetitions) over all languages in
Σ = ∆0

1. Under this enumeration we have

lim
X→∞

Prob(∃x ≤ X , such that L6= = Lx) = 1; L6= ∼ D 6=.

For this reason, for any ǫ there exists an X such that

Prob(∃x ≤ X , such that L6= = Lx) ≥ 1− ǫ; L6= ∼ D 6=.

We devise a strategy, D=, to be used by Player =. This strategy will be pure: the
player will always choose language L=, which we will now describe. The language L= is
the one accepted by Algorithm 1.

Algorithm 1 Algorithm for learning a mixed strategy

1: function calculate bit(∆)
2: d← ‖∆‖1. ⊲ Number of prediction errors so far.
3: if d > X then
4: Accept.
5: else if ∆ ∈ Ld then
6: Accept.
7: else
8: Reject.
9: end if
10: end function

Note that while the enumeration T0, T1, . . . is not computable, Algorithm 1 only requires
T0, . . . , TX to be accessible to it, and this can be done because any such finite set of TMs
can be hard coded into Algorithm 1.

Consider the game, on the assumption that Player “ 6=”’s strategy is Lx for x ≤ X .
After at most x prediction errors, Algorithm 1 will begin mimicking a strategy equivalent
to Lx and will win every round from that point on.

8

We see, therefore, that for any x ∈ {0, . . . , X} we have S=(L=, Lx) = 1, from which
we conclude that S=(D=, D 6=) ≥ 1− ǫ (or, equivalently, S 6=(D=, D 6=) ≤ ǫ), in turn proving
that for any Nash equilibrium (D∗

=, D
∗
6=) we necessarily must have

maxmin(Σ) = 0. (8)

For exactly the symmetric reasons, when Σ = ∆0
1 we also have

minmax(Σ) = 1 : (9)

Player “ 6=” can follow a strategy identical to that described in Algorithm 1, except reversing
the condition in Step 5.

Because we now have that minmax(Σ) 6= maxmin(Σ), we know that Equation (6)
cannot be satisfied for any strategy pair. In particular, there are no Nash equilibria.

This result is not restricted to Σ = ∆0
1, the decidable languages, but also to any set of

languages that is powerful enough to encode Algorithm 1 and its complement. It is true,
for example, for ∆0

0 as well as for ∆0
1 with any set of Oracles, i.e., specifically, for any ∆0

i .

Definition 2. We say that a collection of languages Σ6= is adversarially learnable by a
collection of strategies Σ= if minmax(Σ=,Σ6=) = 0.

If a collection is adversarially learnable by Σ0
1, we simply say that it is adversarially

learnable.

Corollary 2.1. ∀i,∆0
i is not adversarially learnable by ∆0

i .

Proof. As was shown in the proof of Theorem 2, minmax(∆0
i ,∆

0
i) = 1.

We proceed, therefore, to the question of how well each player fares when Σ includes
non-decidable R.E. languages, and is therefore no longer closed under complement.

4. Adversarial learning

We claim that R.E. languages are adversarially learnable, and that it is therefore not
possible to learn the complement of R.E. languages in general, in the adversarial learning
scenario.

Theorem 3. The game IMP(Σ0
1) has a strategy, L=, for Player “=” that guarantees

S 6=(L=, L6=) = 0 for all L6= (and, consequently, also for all distributions among potential
L6= candidates).

In particular, Σ0
1 is adversarially learnable.

Proof. We describe L= explicitly by means of an algorithm accepting it. This is given in
Algorithm 2.

Note that Algorithm 2 does not have any “Accept” or “Reject” statements. It returns
a bit only if Td returns a bit and does not terminate if Td fails to terminate. To actually

9

Algorithm 2 Algorithm for learning an R.E. language

1: function calculate bit(∆)
2: Let T0, T1, . . . be an enumeration over all Turing machines.
3: d← ‖∆‖1. ⊲ Number of prediction errors so far.
4: Simulate Td
5: end function

simulate Td and to encode the enumeration T0, . . ., Algorithm 2 can simply use a universal
Turing machine, U , and define the enumeration in a way such that U accepts the input
“d#∆” if and only if Td accepts the input ∆.

To show that Algorithm 2 cannot be countered, consider any R.E. language to be
chosen by Player “ 6=”. This language, L6=, necessarily corresponds to the output of Tx
for some (finite) x. In total, Player “=” can lose at most x rounds. In every subsequent
round, its output will be identical to that of Tx, and therefore identical to the bit chosen
by Player “ 6=”.

We see, therefore, that the complement of Algorithm 2’s language cannot be learned by
any R.E. language. Player “ 6=” cannot hope to win more than a finite number of rounds.

Note that these results do not necessitate that Σ = Σ0
1, the R.E. languages. As long

as Σ is rich enough to allow implementing Algorithm 2, the results hold. This is true, for
example, for Σ sets that allow Oracle calls. In particular:

Corollary 3.1. For all i > 0, Σ0
i is adversarially learnable by Σ0

i but not by Π0
i ; Π0

i is
adversarially learnable by Π0

i but not by Σ0
i .

Proof. To show the learnability results, we use Algorithm 2. To show the non-learnability
results, we appeal to the symmetric nature of the game: if Player “=” has a winning
learning strategy, Player “ 6=” does not.

5. Conventional learnability

To adapt the IMP game for the study of conventional (i.e., non-adversarial) learning
and approximation, we introduce the notion of nonadaptive strategies.

Definition 3. A nonadaptive strategy is a language, L, over {0, 1}∗ such that

∀u, v, |u| = |v| ⇒ (u ∈ L⇔ v ∈ L),

where |u| is the bit length of u.
Respective to an arbitrarily chosen (computable) enumeration w1, w2, . . . over the com-

plete language, we define the function NA() such that, for any language L, NA(L) is the
language such that

x ∈ NA(L)⇔ w|x| ∈ L.

Furthermore, for any collection of languages, Σ, we define NA(Σ) = {NA(L)|L ∈ Σ}.
NA(Σ) is the nonadaptive application of Σ.

10

To elucidate this definition, consider once again a (computable) enumeration, w1, w2, . . .
over the complete language.

In previous sections, we have analysed the case where the two competing strategies
are adaptive (i.e., general). This was the case of adversarial learning. Modelling the
conventional learning problem is simply done by restricting Σ6= to nonadaptive strategies.
The question of whether a strategy L= (or D=) can learn L is the question of whether
it can learn adversarially NA(L). The reason this is so is because the bit output at any
round i by a nonadaptive strategy is independent of any response made by either player
at any previous round: at each round i, O 6=(i+ 1), the response of Player “ 6=”, as defined
in (5), is a function of ∆i, a word composed of exactly i bits. Definition 3 now adds to
this the restriction that the response must be invariant to the value of these i bits and
must depend only on the bit length, i, which is to say on the round number. Regardless of
what the strategy of Player “=” is, the sequence O 6=(1), O 6=(2), . . . output by Player “ 6=”
will always remain the same. Thus, a nonadaptive strategy for Player “ 6=” is one where
the player’s output is a predetermined, fixed string of bits, and it is this string that the
opposing strategy of Player “=” must learn to mimic.

Note, furthermore, that if ΣNA is the set of all nonadaptive languages, then for every
i > 0 we have

NA(Σ0
i) = Σ0

i ∩ ΣNA. (10)

The equality stems from the fact that calculating w|x| from x and vice versa (finding any
x that matches w|x|) is, by definition, recursive, so there is a reduction from any L to
NA(L) and back. If a language can be computed over the input w|x| by means of a certain
nonempty set of quantifiers, no additional unbounded quantifiers are needed to compute
it from x.

This leads us to Definition 4.

Definition 4. We say that a collection of languages Σ6= is (conventionally) learnable by
a collection of strategies Σ= if minmax (Σ=,NA(Σ6=)) = 0.

If a collection is learnable by Σ0
1, we simply say that it is learnable.

Corollary 3.2. For all i > 0, Σ0
i is learnable by Σ0

i . In particular, Σ0
1 is learnable.

Proof. We have already shown (Corollary 3.1) that Σ0
i is adversarially learnable by Σ0

i ,
and NA(Σ0

i) is a subset of Σ0
i , as demonstrated by (10).

Constraining Player “ 6=” to only be able to choose nonadaptive strategies can only
lower the minmax value. Because it is already at 0, it makes no change: we are weakening
the player that is already weaker. It is more rewarding to constrain Player “=” and to
consider the game IMP (NA(Σ0

i),Σ
0
i). Note, however, that this is equivalent to the game

IMP (Σ0
i ,NA(Π

0
i)) under role reversal.

Theorem 4. Π0
1 is learnable.

11

Proof. To begin, let us consider a simpler scenario than was discussed so far. Specifically,
we will consider a scenario in which the feedback available to the learning algorithm at
each point is not only ∆n, the information of which rounds it had “won” and which it had
“lost”, but also O=(n) and O 6=(n), what the bit output by each machine was, at every
step.2

In this scenario, Player “=” can calculate a co-R.E. function by calculating its comple-
ment in round n and then reading the result as the complement to O=(n), which is given
to it in all later rounds.

For example, at round n Player “=” may simulate a particular Turing machine, T , in
order to test whether it halts. If it does halt, the player halts and accepts the input, but
it may also continue indefinitely. The end effect is that if T halts then O=(n) = 1 and
otherwise it is 0. At round n + 1, Player “=” gets new inputs. (Recall that if one views
the player as a Turing machine, it is effectively restarted at each round.) The new input in
the real IMP game is ∆n, but for the moment we are assuming a simpler version where the
input is the pair of strings (O=(1) . . .O=(n), O 6=(1) . . .O 6=(n)). This being the case, though
whether T halts or not is in general not computable by a Σ0

1 player, once a simulation of
the type described here is run at round n, starting with round n+1 the answer is available
to the player in the form of O=(n), which forms part of its input.

More concretely, one algorithm employable by Player “=” against a known nonadaptive
language NA(L6=) is one that calculates “w2n+1 /∈ L6=?” (which is an R.E. function) in every
2n’th round, and then uses this information in the next round in order to make the correct
prediction. This guarantees S (L=,NA(L6=)) ≤ 1/2. However, it is possible to do better.

To demonstrate how, consider that Player “=” can determine the answer to the question
“|{wi, . . . , wj} \ L6=| ≥ k?” for any chosen i, j and k. The way to do this is to simulate
simultaneously all j + 1 − i Turing machine runs that calculate “wl /∈ L6=?” for each
i ≤ l ≤ j and to halt if k of them halt. As with the previous example, by performing this
algorithm at any stage n, the algorithm will then be able to read out the result as O=(n)
in all later rounds.

Consider, now, that this ability can be used to determine |{wi, . . . , wj} \ L6=| exactly
(rather than simply bounding it) by means of a binary search, starting with the question
“|{wi, . . . , wj} \ L6=| ≥ 2m−1?” in the first round, and proceeding to increasingly finer
determination of the actual set size on each later round. Player “=” can therefore determine
the number of “1” bits in a set of j + 1 − i = 2m − 1 outputs of a co-R.E. function in
this way in only m queries, after which the number will be written in binary form, from
most significant bit to least significant bit, in its O= input. Once this cardinality has
been determined, Player “=” can compute via a terminating computation the value of
each of “wl ∈ L6=?”: the player will simulate, in parallel, all j + 1 − i machines, and will
terminate the computation either when the desired bit value is found via a halting of the
corresponding machine, or until the full cardinality of halting machines has been reached,

2Because O=(n)⊕O6=(n)⊕ δn = 0, using any two of these as input to the TM is equivalent to using all
three, because the third can always be calculated from the others.

12

at which point, if the desired bit is not among the machines that halted, then the player
can safely conclude that its computation will never halt.

Let {mt} be an arbitrary (computable) sequence with limt→∞mt = ∞. If Player “=”
repeatedly uses mt bits (each time picking the next value in the sequence) of its own output
in order to determine Player “ 6=”’s next 2mt − 1 bits, the proportion of bits determined
correctly by this will approach 1.

However, the actual problem at hand is one where Player “=” does not have access to
its own output bits, (O=(1), . . . , O=(n)). Rather, it can only see (δ1, . . . , δn), the exclusive
or (xor) values of its bits and those of Player “ 6=”. To deal with this situation, we use a
variation over the strategy described above.

First, for convenience, assume that Player “=” knows the first m0 bits to be output by
Player “ 6=”. Knowing Player “ 6=”’s bits and having visibility as to whether they are the
same or different to Player “=”’s bits give, together, Player “=” access to its own past
bits.

Now, it can use these first m0 bits in order to encode, as before, the cardinality of the
next 2m0 − 1 bits, and by this also their individual values (as was demonstrated previously
with the calculation of “wl ∈ L6=?”). This now gives Player “=” the ability to win every one
of the next 2m0−1 rounds. However, instead of utilising this ability to the limit, Player “=”
will only choose to win the next 2m0 − 1 − m1, leaving the remaining m1 bits free to be
used for encoding the cardinality of the next 2m1 − 1. This strategy can be continued to
all mt. The full list of criteria required of the sequence {mt} for this construction to work
and to ultimately lead to S (L=,NA(L6=)) = 0 is:

1. limt→∞ mt =∞.

2. ∀t,mt+1 ≤ 2mt − 1.

3. limt→∞
mt+1

2mt
= 0.

A sequence satisfying all these criteria can easily be found, e.g. mt = t+ 2.
Two problems remain to be solved: (1) How to determine the value of the first m0 bits,

and (2) how to deal with the fact that L6= is not known.
We begin by tackling the second of these problems. Because L6= is not known, we

utilise a strategy of enumerating over the possible languages, similar to what is done
in Algorithm 2. That is to say, we begin by assuming that co-L6= = L0 and respond
accordingly. Then, if we detect that the responses from Player “ 6=” do not match those of
L0 we progress to assume that co-L6= = L1, etc.. We are not always in a position to tell
if our current hypothesis of L6= is correct, but we can verify that it matches at least the
first 2mt −mt+1− 1 bits of each 2mt − 1 set. If Player “=” makes any incorrect predictions
during any of these 2mt −mt+1−1 rounds, it can progress to the next hypothesis. We note
that it is true that Player “=” can remain mistaken about the identity of L6= forever, as
long as L6= is such that the first 2mt −mt+1 − 1 predictions of every 2mt − 1 are correct,
but because these correct predictions alone are enough to ensure S (L=,NA(L6=)) = 0, the
question of whether the correct L6= is ultimately found or not is moot.

To tackle the remaining problem, that of determiningm0 bits of L= in order to bootstrap
the process, we make use of mixed strategies.

13

Consider a mixed strategy involving probability 1/2m0 for each of 2m0 strategies, differ-
ing only by the m0 bits they assign as the first bits for each language in order to bootstrap
the learning process. If co-L6= = L0, of the 2m0 strategies one will make the correct guess
regarding the first m0 input bits, after which that strategy can ensure S (L=,NA(L6=)) = 0.
However, note that, if implemented as described so far, this is not the case for any other
Li. Suppose, for example, that co-L6= = L1. All 2

m0 strategies begin by assuming, falsely,
that co-L6= = L0, and all may discover later on that this assumption is incorrect, but they
may do so at different rounds. Because of this, a counter-strategy can be designed to fool
all 2m0 learner strategies.

To avoid this pitfall, all strategies must use the same bit positions in order to boot-
strap learning for each Li, so these bit positions must be pre-allocated. We will use bits
a2, . . . , a2 + m0 − 1 in order to bootstrap the i’th hypothesis, for some known a = a(i),
regardless of whether the hypothesis L= = Li is known to require checking before these
rounds, after, or not at all. The full set of rounds pre-allocated in this way still has only
density zero among the integers, so even without a win for Player “=” in any of these
rounds its final payoff remains 1.

Suppose, now, that Li is still not the assumption currently being verified (or falsified)
at rounds a2, . . . , a2+m0−1. The Hamming weight (number of “1”s) of which 2m0−1 bits
should be encoded by Player “=” in these rounds’ bits? To solve this, we will pre-allocate
to each hypothesis an infinite number of bit positions, which, altogether for all hypotheses,
still amount to a set of density 0 among the integers. The hypothesis will continuously
predict the values of this pre-allocated infinite sequence of bits until it becomes the “active”
assumption. If and when it does, it will expand its predictions to all remaining bit positions.

This combination of 2m0 strategies, of which one guarantees a payoff of 1, therefore
guarantees in total an expected payoff of at least 1/2m0. We want to show, however, that
minmax (Σ0

1,NA(Π
0
1)) = 0. To raise from 1/2m0 to 1, we describe a sequence of mixed

strategies for which the expected payoff for Player “=” converges to 1.
The k’th element in the sequence of mixed strategies will be composed of 2m0k equal

probability pure strategies. The strategies will follow the algorithm so far, but instead
of moving from the hypothesis co-L6= = Li to co-L6= = Li+1 after a single failed attempt
(which may be due to incorrect bootstrap bits), the algorithm will try each Li language k
times. In total, it will guess at most m0k bits for each language, which are the m0k bits
defining the strategy.

This strategy ensures a payoff of at least 1− (1−1/2m0)k, so converges to 1, as desired,
for an asymptotically large k.

The full algorithm is described in Algorithm 3. It uses the function triangle, defined as
follows: let

base(x) =

⌊⌊
√
8x+ 1⌋ − 1

2

⌋

and
triangle(x) = x− base(x)(base(x) + 1)/2. (11)

14

The value of triangle(x) for x = 0, 1, 2, . . . equals

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, . . . ,

describing a triangular walk through the nonnegative integers.
The algorithm is divided into two stages. In Step 1, the algorithm simulates its actions

in all previous rounds, but without simulating any (potentially non-halting) Turing machine
associated with any hypothesis. The purpose of this step is to determine which hypothesis
(choice of Turing machine and bootstrapping) is to be used for predicting the next bit.
Once the hypothesis is determined, Step 2 once again simulates all previous rounds, only
this time simulating the chosen hypothesis wherever it is the active hypothesis. In this
way, the next bit predicted by the hypothesis can be determined.

The specific {mt} sequence used in Algorithm 3 is mt = t + 2 (which was previously
mentioned as an example of a sequence satisfying all necessary criteria).

Some corollaries follow immediately.

Corollary 4.1. There exists a probabilistic Turing machine that is able to learn any lan-
guage in Π0

1 with probability 1.

Proof. Instead of using a mixed strategy, it is possible to use probabilistic Turing machines
in order to generate the m0 guessed bits that bootstrap each hypothesis. In this case, there
is neither a need for a mixed strategy nor a need to consider asymptotic limits: a single
probabilistic Turing machine can perform a triangular walk over the hypotheses for L6=,
investigating each option an unbounded number of times. The probability that for the
correct L6= at least one bootstrap guess will be correct in this way equals 1.

The method for doing this is essentially the same as was described before. The only
caveat is that because the probabilistic TM is re-initialised at each round and because it
needs, as part of the algorithm, to simulate its actions in all previous rounds, the TM must
have a way to store its random choices, so as to make them accessible in all later rounds.

The way to do this is to extend the hypothesis “bootstrap” phase from m0 bits to 2m0

bits. In each of the first m0 bits, the TM outputs a uniform random bit. The δn bit
available to it in all future rounds is then this random bit xor the output of Player “ 6=”.
δn is therefore also a uniform random bit. In this way, in all future rounds the TM has
access to these m0 consistent random bits. It can then use these in the second set of m0

bootstrap bits as was done with the j value in the deterministic set-up.

We note, as before, that the construction described continues to hold, and therefore the
results remain true, even if Oracles are allowed, that are accessible to both players, and,
in particular, the results hold for any Π0

i with i > 0:

Corollary 4.2. For all i > 0, Π0
i is learnable by Σ0

i .

Furthermore:

15

Algorithm 3 Algorithm for learning any co-R.E. language

1: ⊲ The strategy is a uniform mixture of 4k algorithms.
2: ⊲ We describe the j’th algorithm.
3: function calculate bit(∆)
4: n← length of ∆ ⊲ The round number. Let ∆ = δ1, . . . , δn.
5: ⊲ Step 1: Identify h, the current hypothesis.
6: NonActiveHypotheses← {}
7: PredPos← {} ⊲ A set managing which positions are predicted by which

hypothesis.
8: for i ∈ 0, . . . , n do
9: if ∃(h, S, S ′) ∈ PredPos such that i ∈ S then
10: Let h, S, S ′ be as above.
11: ⊲ h = hypothesis number.
12: ⊲ S = predicted positions.
13: ⊲ S ′ = next positions to be predicted.
14: Let m be such that 2m−1 − 1 = |S ′|. ⊲ We only construct S ′ that have such

an m.
15: else if ∃a, h such that a2 = i, h = triangle(a) and h /∈ NonActiveHypotheses

then
16: ⊲ First bootstrap bit for hypothesis h.
17: Let h be as above.
18: S ← {}
19: S ′ ← {i, i+ 1}
20: bootstrap(h)← i
21: m← 2
22: else if i = n then ⊲ Unusable bits.
23: Accept input. ⊲ Arbitrary choice.
24: else
25: Next i.
26: end if
27: e← |{x ∈ S|x > i}|
28: if e ≥ m then
29: ⊲ These bits are predicted accurately for the correct hypothesis.
30: if i < n and δi+1 = 1 then
31: ⊲ Incorrect prediction, so hypothesis is false.
32: NonActiveHypotheses← NonActiveHypotheses ∪ {h}
33: PredPos← {(h̃, S̃, S̃ ′) ∈ PredPos|h̃ 6= h}
34: end if
35: else if e = m− 1 then ⊲ Bits with e < m are used to encode next bit counts.
36: S̃ ← {} ⊲ New positions to predict on.
37: p← max(S ′)

16

38: while |S̃| < 2m − 1 do
39: p← p+ 1
40: if (∃a, b such that b ∈ {0, 1}, a2 + b = p and h = triangle(a)) or (h =

mex(NonActiveHypotheses) and ∄a, b, h̃ such that b ∈ {0, 1}, a2+b = p, h̃ = triangle(a),
h̃ /∈ NonActiveHypotheses) then

41: ⊲ “mex(T)” is the minimum nonnegative integer not appearing in T .
42: S̃ ← S̃ ∪ {p}
43: end if
44: end while
45: PredPos← PredPos ∪ (h, S ′, S̃)
46: end if
47: end for
48: ⊲ Step 2: Predict, assuming h.
49: i← bootstrap(h)
50: S ← {i, i+ 1}
51: M ← h div k ⊲ TM is the machine to be simulated. x div y

def
= ⌊x/y⌋.

52: try← h mod k ⊲ The try number of this machine.
53: Prediction(i)← (j div 4try) mod 2
54: Prediction(i+ 1)← (j div (2 · 4try)) mod 2
55: for i ∈ 0, . . . , n do
56: if ∃S, S ′, (h, S, S ′) ∈ PredPos and i ∈ S then
57: Let m be such that 2m − 1 = |S ′|.
58: e← |{x ∈ S|x > i}|
59: if e = m− 1 then
60: counter← 0 ⊲ Number of 1’s in S ′.
61: end if
62: if e ≥ m then
63: if i = n then
64: if Prediction(i) = 1 then
65: Accept input.
66: else
67: Reject input.
68: end if
69: end if
70: else if i = n then
71: Simulate TM simultaneously on all inputs in S ′ until counter + 2e are

accepted.
72: ⊲ If this simulation does not terminate, this is a rejection of the input.
73: Accept input.
74: else

17

75: if Prediction(i) 6= δi then ⊲ Previous simulation terminated.
76: counter← counter+ 2e ⊲ Binary search.
77: end if
78: if e = 0 then ⊲ counter holds the number of terminations in S ′.
79: Simulate TM simultaneously on all inputs in S ′ until counter are ac-

cepted. ⊲ Guaranteed to halt, if hypothesis is
correct.

80: Let Prediction(x) be 0 on all x ∈ S ′ that terminated, 1 otherwise.
81: end if
82: end if
83: end if
84: end for
85: end function

Corollary 4.3. For all i > 0, the collection of languages learnable by Σ0
i is a strict superset

of Σ0
i ∪Π0

i .

Proof. We have already shown that Σ0
i and Π0

i are both learnable by Σ0
i . Adding the Σ0

i

languages as additional hypotheses to Algorithm 3 we can see that the set Σ0
i ∪Π0

i is also
learnable.

To give one example of a family of languages beyond this set which is also learnable by
Σ0

i , consider the following. Let Σ
(c)
i , for a fixed c > 1, be the set of languages recognisable

by a ∆0
0 Turing machine which can make at most c calls to a Σ0

i Oracle.
This set contains Σ0

i and Π0
i , but it also contains, for example, the xor of any two

languages in Σ0
i , which is outside of Σ0

i ∪Π0
i , and therefore strictly beyond the i’th level of

the arithmetic hierarchy.
We will adapt Algorithm 3 to learn Σ

(c)
i . The core of Algorithm 3 is its ability to use m

bits of ∆n in order to predict 2m− 1 bits. We will, instead, use cm bits in order to predict
the same amount. Specifically, we will use the first m bits in order to predict the result of
the first Oracle call in each of the predicted 2m − 1 positions, the next m bits in order to
predict the second Oracle call in each of the predicted 2m − 1 positions, and so on.

In total, for this to work, all we need is to replace criterion 2 in our list of criteria for
the {mt} sequence with the new criterion

∀t, cmt+1 ≤ 2mt − 1.

An example of such a sequence is mt = t+max(c, 5).

In fact, Algorithm 3 can be extended even beyond what was described in the proof
to Corollary 4.3. For example, instead of using a constant c, it is possible to adapt the
algorithm to languages that use c(n) Oracle calls at the n’th round, for a sufficiently
low-complexity c(n) by similar methods.

Altogether, it seems that R.E. learning is significantly more powerful than being able
to learn merely the first level of the arithmetic hierarchy, but we do not know whether it

18

can learn every language in ∆0
2. Indeed, we have no theoretical result that implies R.E.

learning cannot be even more powerful than the second level of the arithmetic hierarchy.
A follow-up question which may be asked at this point is whether it was necessary to

use a mixed strategy, as was used in the proof of Theorem 4, or whether a pure strategy
could have been designed to do the same.

In fact, no pure strategy would have sufficed:

Lemma 4.1. For all i,
inf

L=∈Σ0
i

sup
L 6=∈NA(Π0

i
)

S(L=, L6=) = 1.

This result is most interesting in the context of Corollary 4.1, because it describes
a concrete task that is accomplishable by a probabilistic Turing machine but not by a
deterministic Turing machine.

Proof. We devise for each L= a specific L6= antidote. The main difficulty in doing this
is that we cannot choose, as before, L6= = co-L=, because L6= is now restricted to be
nonadaptive, whereas L= is general.

However, consider L6= such that its bit for round k is the complement of L=’s response
on ∆k−1 = 1k−1. This is a nonadaptive strategy, but it ensures that ∆k will be 1k for every
k. Effectively, L6= describes L=’s “red herring sequence”.

6. Approximability

When both players’ strategies are restricted to be nonadaptive, they have no means
of learning each other’s behaviours: determining whether their next output bit will be
0 or 1 is done solely based on the present round number, not on any previous outputs.
The output of the game is therefore solely determined by the dissimilarity of the two
independently-chosen output strings.

Definition 5. We say that a collection of languages Σ6= is approximable by a collection
of strategies Σ= if minmax (NA(Σ=),NA(Σ6=)) = 0.

If a collection is approximable by Σ0
1, we simply say that it is approximable.

In this context it is clear that for any Σ

sup
L 6=∈NA(Σ)

inf
L=∈NA(Σ)

S(L=, L6=) = 0,

because L= can always be chosen to equal L6=, but unlike in the case of adversarial learning,
here mixed strategies do make a difference.

Though we do not know exactly what the value of minmax (NA(Σ0
1)) is, we do know

the following.

19

Lemma 4.2. If D= and D 6= are mixed strategies from NA(Σ0
1), then

sup
D 6=

inf
D=

E

(

lim sup
N→∞

N
∑

n=1

δn
N

)

≥ 1

2
(12)

and

inf
D=

sup
D 6=

E

(

lim sup
N→∞

N
∑

n=1

δn
N

)

≥ 1

2
, (13)

where δn is as in the definition of the IMP game.

In other words, Player “ 6=” can always at the very least break even, from a lim sup
perspective.

Proof. Let D 6= be a mixture of the following two strategies: all zeros (L0), with probability
1/2; all ones (L1), with probability 1/2. By the triangle inequality, we have that for any
language L=,

E

(

lim sup
N→∞

N
∑

n=1

δn
N

)

=
DisSim(L=, L0) + DisSim(L=, L1)

2
≥ DisSim(L0, L1)

2
=

1

2
,

and because this is true for each L= in D=, it is also true in expectation over all D=. The
fact that D 6= is independent of D= in the construction means that this bound is applicable
for both (12) and (13).

Just as interesting (and with tighter results) is the investigation of lim inf. We show

Lemma 4.3.

inf
L=∈NA(Σ0

1
)

sup
L 6=∈NA(Σ0

1
)

lim inf
N→∞

N
∑

n=1

δn
N

= sup
L 6=∈NA(Σ0

1
)

inf
L=∈NA(Σ0

1
)
lim inf
N→∞

N
∑

n=1

δn
N

= 0, (14)

where δn is as in the definition of the IMP game.

Proof. Let triangle(x) be as in (11), and let caf(x) be the maximum integer, y, such that
y! ≤ x.

The language L= will be defined by

wi ∈ L= ⇔ wi ∈ Ltriangle(caf(i)),

where L0, L1, L2, . . . is an enumeration over all R.E. languages.
To prove that for any j, if L6= = Lj the claim holds, let us first join the rounds

into “super-rounds”, this being the partition of the rounds set according to the value of
y = caf(i). At each super-round, L= equals a specific Lx, and by the end of the super-
round, a total of (y − 1)/y of the total rounds will have been rounds in which L= equals
this Lx. Hence, the Hamming distance between the two (the number of differences) at
this time is at most 1/y of the string lengths. Because each choice of x repeats an infinite
number of times, the lim inf of this proportion is 0.

20

With this lemma, we can now prove Theorem 1.

Proof. The theorem is a direct corollary of the proof of Lemma 4.3, because the complement
of the language L= that was constructed in the proof to attain the infimum can be used
as L̄.

Combining Lemma 4.2 and 4.3 with the definition of the payoff function in (1), we get,
in total:

Corollary 4.4.
1/4 ≤ maxmin

(

NA(Σ0
1)
)

≤ 1/2

and
1/4 ≤ minmax

(

NA(Σ0
1)
)

≤ 1/2.

Though we have the exact value of neither maxmin nor minmax in this case, we do see
that the case is somewhat unusual in that neither player has a decisive advantage.

7. Conclusions and further research

We have introduced the IMP game as an arena within which to test the ability of
algorithms to learn and be learnt, and specifically investigated three scenarios:

Adversarial learning, where both algorithms are simultaneously trying to learn each
other by observations.

Non-adversarial (conventional) learning, where an algorithm is trying to learn a lan-
guage by examples.

Approximation, where languages (or language distributions) try to mimic each other
without having any visibility to their opponent’s actions.

In the case of adversarial learning, we have shown that Σ0
i can learn Σ0

i but not Π0
i .

In conventional learning, however, we have shown that Σi can learn Σ0
i , Π

0
i and beyond

into the (i+ 1)th level of the arithmetic hierarchy, but this learnability is yet to be upper-
bounded. Our conjecture is that the class of learnable languages is strictly a subset of ∆0

2.
If so, then this defines a new class of languages between the first and second levels of the
arithmetic hierarchy, and, indeed, between any consecutive levels of it.

Regarding approximability, we have shown that (unlike in the previous results) no side
has the absolute upper hand in the game, with the game value for Player “ 6=”, if it exists,
lying somewhere between 1/4 and 1/2. We do not know, however, whether the game is
completely unbiased or not.

An investigation of adversarial learning in the context of recursive languages was given
as a demonstration of the fact that in IMP it may be the case that no Nash equilibrium
exists at all, and pure-strategy learning was given as a concrete example of a task where
probabilistic Turing machines have a provable advantage over deterministic ones.

21

References

[1] D.L. Dowe. Foreword re C. S. Wallace. Computer Journal, 51(5):523–560, September
2008. Christopher Stewart WALLACE (1933-2004) memorial special issue.

[2] D.L. Dowe. Minimum Message Length and statistically consistent invariant (objec-
tive?) Bayesian probabilistic inference – from (medical) “evidence”. Social Epistemol-
ogy, 22(4):433–460, Oct–Dec 2008.

[3] D.L. Dowe. MML, hybrid Bayesian network graphical models, statistical consistency,
invariance and uniqueness. In Bandyopadhyay, P.S. and Forster, M.R., editor, Hand-
book of the Philosophy of Science – Volume 7: Philosophy of Statistics, pages 901–982.
Elsevier, 2011.

[4] D.L. Dowe. Introduction to Ray Solomonoff 85th Memorial Conference. In Proceed-
ings of Solomonoff 85th memorial conference – Lecture Notes in Artificial Intelligence
(LNAI), volume 7070, pages 1–36. Springer, 2013.

[5] D.L. Dowe, J. Hernández-Orallo, and P.K. Das. Compression and intelligence: So-
cial environments and communication. In AGI: 4th Conference on Artificial General
Intelligence – Lecture Notes in Artificial Intelligence (LNAI), pages 204–211, 2011.

[6] G.W. Flake. The Computational Beauty of Nature: Computer Explorations of Frac-
tals, Chaos, Complex Systems, and Adaptation. A Bradford book. Cambridge, Mas-
sachusetts, 1998.

[7] E.M. Gold. Language identification in the limit. Information and Control, 10(5):447–
474, 1967.

[8] J. Hernández-Orallo, D.L. Dowe, S. España-Cubillo, M.V. Hernández-Lloreda, and
J. Insa-Cabrera. On more realistic environment distributions for defining, evaluating
and developing intelligence. In AGI: 4th Conference on Artificial General Intelligence
– Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pages 82–91. Springer,
2011.

[9] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D.
Tygar. Adversarial machine learning. In Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence, AISec ’11, pages 43–58, New York, NY, USA,
2011. ACM.

[10] D.K. Lewis and J.S. Richardson. Scriven on human unpredictability. Philosophical
Studies: An International Journal for Philosophy in the Analytic Tradition, 17(5):69–
74, October 1966.

[11] Wei Liu and Sanjay Chawla. A Game Theoretical Model for Adversarial Learning.
In Saygin, Y and Yu, JX and Kargupta, H and Wang, W and Ranka, S and Yu,

22

PS and Wu, XD, editor, 2009 IEEE INTERNATIONAL CONFERENCE ON DATA
MINING WORKSHOPS (ICDMW 2009), pages 25–30. Knime; Mitre; CRC Press,
2009. 9th IEEE International Conference on Data Mining, Miami Beach, FL, DEC
06-09, 2009.

[12] Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data
Mining, KDD ’05, pages 641–647, New York, NY, USA, 2005. ACM.

[13] J. Nash. Non-cooperative Games. The Annals of Mathematics, 54(2):286–295, 1951.

[14] J.v. Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Prince-
ton University Press, Princeton, NJ, 1944.

[15] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT
Press, Cambridge, MA, second edition, 1987.

[16] M. Scriven. An essential unpredictability in human behavior. In B.B. Wolman and
E. Nagel, editors, Scientific Psychology: Principles and Approaches, pages 411–425.
Basic Books (Perseus Books), 1965.

[17] R.J. Solomonoff. Complexity-based induction systems: Comparisons and convergence
theorems. IEEE Transaction on Information Theory, IT-24(4):422–432, 1978.

[18] R.J. Solomonoff. Algorithmic probability: Theory and applications. In F. Emmert-
Streib and M. Dehmer, editors, Information Theory and Statistical Learning, Springer
Science and Business Media, pages 1–23. Springer, N.Y., U.S.A., 2009.

[19] R.J. Solomonoff. Algorithmic probability, heuristic programming and AGI. In Pro-
ceedings of the Third Conference on Artificial General Intelligence, AGI 2010, pages
251–257, Lugano, Switzerland, March 2010. IDSIA.

[20] R.J. Solomonoff. Algorithmic probability – its discovery – its properties and appli-
cation to strong AI. In H. Zenil, editor, Randomness Through Computation: Some
Answers, More Questions, pages 1–23. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 2011.

[21] A.M. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proc. London Math. Soc., 42:230–265, 1936.

[22] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

23

	1 Introduction
	2 Matching Pennies
	3 Halting Turing machines
	4 Adversarial learning
	5 Conventional learnability
	6 Approximability
	7 Conclusions and further research

