
A temporal dynamic deontic logic

FENGKUI JU, School of Philosophy, Beijing Normal University, Beijing, China.
Email: fengkui.ju@bnu.edu.cn

JAN VAN EIJCK, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
and Institute for Logic, Language and Computation, University of Amsterdam,
Amsterdam, The Netherlands.
Email: jve@cwi.nl

Abstract
This paper presents a formalization of refraining from actions and a deontic logic based on a process logic. The notion of
refraining is needed to handle obligated actions. To refrain to do an action is to do something else. The process logic used is
a mix of dynamic logic and temporal logic: actions in it are interpreted as sets of paths and temporal formulas describe the
process of performing actions. The deontic logic has a temporal propositional constant saying that a bad thing will be done
in the next moment. Normative properties of actions can be defined according to what happens in the process of performing
actions.

Keywords: To do something else, process logic, bad transitions, deontic logic.

1 Background

There is an old idea in deontic logic: an action is prohibited if doing it would bring about a morally
wrong state; it is permitted if performing it is possible without having this effect; it is obligated if
refraining to do it would bring about a morally wrong state. This idea is intuitive in some sense; the
point of it is that the three fundamental normative notions, prohibition, permission and obligation,
can be defined in terms of the consequences of doing actions. According to [8], this idea can
be traced back to Leibniz. In ethics, there are two opposing theories on moral properties of acts:
consequentialism and deontology. The former holds that acts are morally assessed by the effects that
they bring about. The latter claims that some acts cannot be justified by their effects no matter how
good they are. In some sense, emphasis on consequences of actions is closer to consequentialism,
emphasis on properties of actions is more closely related to deontology. But the system we will
present in this paper is compatible with both traditions in moral philosophy.

Anderson [1] and Kanger [11] independently develop the idea of determining the moral value of
actions by their consequences along similar lines. The resulting deontic logic has a modal operator �,
the classical alethic modality whose dual is ♦. It also has a propositional constant V which intuitively
means that what morality prescribes has been violated. The three normative notions are defined as
follows: �(φ → V) says that the proposition φ is prohibited, ♦(φ ∧¬V) says that φ is permitted and
�(¬φ → V) says that φ is obligated. This logic applies deontic operators to propositions and does
not really analyse actions. As mentioned in the literature, e.g. [12], this approach leads to quite a few
problems such as the good samaritan paradox and the paradox of epistemic obligation.

Propositional Dynamic Logic (PDL), introduced in [4], is a formal system for reasoning about
the input/output behaviour of programmes of computers. The featured formulas of PDL are [α]φ

Vol. 29, No. 2, © The Author(s) 2019. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
Published online 28 March 2018 doi:10.1093/logcom/exy008

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

266 A temporal dynamic deontic logic

and 〈α〉φ; the former expresses that no matter how the programme α is executed φ will be the case
afterwards; the latter says that there is a way to execute α s.t. φ will be the case afterwards. PDL
interprets programmes as binary relations. A binary tuple (w, u) of states in the interpretation of a
programme α means that the execution of α can cause the transition from w to u. Programmes can
also be viewed as actions of agents, therefore, PDL has potential application in other areas as well.

Based on a variant of PDL, [13] proposes a deontic logic following the ideas of [1] and [11].
This logic has a propositional constant V saying, again, that this is an undesirable state. The three
normative notions can be expressed as follows: [α]V meaning that α is prohibited, 〈α〉¬V indicating
that α is permitted and [α]V denoting that α is obligated. By α, [13] intends to express that to perform
α is to refrain from doing α. This work applies deontic operators to actions and many problems with
previous deontic logics are avoided this way. The study in [13] is a seminal paper that has given rise
to a class of dynamic deontic logics following this approach. Examples of this are [19] and [2].

There are two problems with [13]. The first one concerns the three normative notions. Whether an
action α is prohibited/permitted/obligated or not is completely determined by whether the output of
performing α is undesirable or not and has nothing to do with what happens during the performance
of α. As pointed out by [19], this is problematic. We remedy this by predicating ‘badness’ of actions
rather than of their results. The action of killing the president is bad. After having killed the president,
surrendering to the police is good. But this does not mean that first killing the president and then
surrendering to the police is good.

The second problem with [13] lies in how it technically deals with α. It presents a complicated
semantics for actions. In short, it firstly assigns each action a so-called s-trace-set; then it links each
s-trace-set to a binary relation. In this way each action is interpreted as a binary relation. Essentially,
this is like the standard semantics for actions in PDL. Under the semantics defined by [13], although
α is not the complement of α, still the behaviour of α is not quite in line with the intuition of
refraining from α. In this semantics, the intersection of the interpretations of α and α; β is not always
empty, which would mean that in some cases performing α; β is a way to refrain from α. Actually,
even the intersection of the interpretations of α and α is not always empty, which would mean that
in some states there may be ways to refrain from α while at the same time doing α. These outcomes
run counter to our intuition about refraining from an action. Indeed, [13] shows clear awareness of
the requirement that α and α; β should be disjoint. In fact, the correspondence between actions and
s-trace-sets was designed to achieve this, but unfortunately the assignment of binary relations to
s-trace-sets results in some crucial information loss.

Dynamic logics in the style of PDL interpret actions as binary relations and cannot deal with the
progressive behaviour of actions e.g. φ is true at some point during the performance of the action α.
To solve this problem, process logics are proposed which take the intermediate states of performing
actions into consideration and view actions as sets of sequences of states. There are a variety of
process logics including [15], [14], [7] and [21] and they are different from each other.

Observing that the first problem with [13] lies in that the internal structures of actions are absent in
semantics, [19] proposes a deontic logic based on a process logic from [15]. This deontic logic aims
to handle free-choice permission and lack-of-prohibition permission in one setting. The sentence
‘you can sleep on our couch or on our sofa’ involves the former permission and ‘(no doubt) you
can sleep on their couch or on their sofa’ involves the latter permission. The first sentence gives
the addressee the permission to use either place to sleep, but the second one does not. Imagine a
situation where the speaker of the second sentence is just reporting something, and he knows that
the owner of the couch and sofa allows the addressee to sleep on one of those but does not know
exactly which. Unlike [13], [19] does not introduce undesirable states but uses permitted transitions
instead. The resulting logic allows description of the states during execution of actions and avoids

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

A temporal dynamic deontic logic 267

the first problem with [13]. However, the focus is on permission only, and there is no attempt to deal
with refraining from an action or with obligation. Pucella and Weissman [16] extend the logic in [19]
by introducing two dynamic operators: one adds and another removes permitted transitions. The two
operators are used to model the dynamics of the so-called policies, which concern what is and what
is not permitted.

Realizing that the formalization of refraining from an action in [13] is problematic, [2] and [17]
present alternative proposals, both based on a relational semantics for actions. The motivation of [2]
is that the formalization in [13] cannot be easily generalized to encompass iteration and converse
of actions. Broersen [2] views α as a constrained complement of α: α is not the complement of α

w.r.t. the universal relation but the complement of α w.r.t. the set consisting of all the transitions
resulting from performing actions constructed without use of the operator . Under this treatment,
the intersection of the interpretations of α and α is always empty; however, the problem with the
intersection of the interpretations of α and α; β remains: the intersection might not be empty. The
motivation of [17] concerns a puzzle about the normative sentences ‘you are permitted either to eat
the dessert or not’ and ‘you are permitted either to kiss me or not’. In the free-choice permission
reading, the latter implies that the addressee may kiss the speaker but the former does not. However,
the two factual sentences embedded in the two normative sentences, ‘you eat the dessert or not’ and
‘you kiss me or not’, are tautologies and equivalent.

To remedy this, [17] interprets α in a so-called stratified way. Firstly, for every atomic action a with
the interpretation Ra, it defines Ra, the interpretation of a, in the following way: a transition (w, u)
is in Ra iff (w, u) is not in Ra but (w, x) is in Ra for some x; then by four inductive rules taken from
[22], it defines the interpretation of α for every compound action α. However, this approach suffers
from the same problem as [13]: neither the intersection of α and α; β nor the intersection of α and α

is always empty.
We try to take one further step along this dynamic direction of deontic logic. We do two things.

A new formalization for refraining from actions is proposed. We think that this formalization has
intuitive support. A new deontic logic based on a variant of the process logic from [14] is presented.
This process logic is a natural mix of PDL and Full Computation Tree Logic (CTL∗), introduced
in [3], and can be used to talk about what happens during the performance of actions. By use of
a temporal propositional constant saying that a bad behaviour will be made, this process logic can
express more normative properties of actions than previous works. This paper mainly consists of
two parts: Sections 2, 3 and 4 focus on refraining from an action, Sections 5, 6 and 7 on the deontic
logic.

As Peter Thomas Geach discusses in his classic paper [6], many of the so-called paradoxes of
deontic logic were caused by a shift from viewing obligatory and permitted as qualifications of
actions to viewing them as qualifications of result states of actions. The present paper is in the
tradition where this aberration is corrected, and as a result many of the paradoxes that were mentioned
by Geach have disappeared. Geach calls the step from qualifying actions to qualifying states a ‘fatal
false step’, and we agree.

Our framework deals with composite actions, so we can say things like after doing α, the agent is
obliged to do β. It does not matter whether α is good or bad. In case α is bad, talking about what is
obliged after it gets performed is talking about contrary to duty obligation. For if α is bad, the agent
has an obligation to avoid α. Still, if the agent, contrary to duty, performs α, we end up in a new
situation where new obligations may hold. So this is a kind of conditional obligation. Still, in our
framework alternative states of affairs are only accessible through action, so we cannot say things
like the world is φ, but if the world would be ¬φ (different from how it actually is), then the agent
would be obliged to do α. So in this sense, our framework does not handle conditional obligation.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

268 A temporal dynamic deontic logic

2 Models

Let �0 be a finite set of atomic actions and a range over �0. Define the set �PDL of actions as
follows:

α ::= a | 0 | id | (α; α) | (α ∪ α) | α∗

0 indicates the impossible action. Doing id means doing nothing. 0 and id are also called atomic
actions in the sequel. Define 1 as the action

(⋃
�0

)∪ 0 ∪ id; doing it means doing an atomic action.
Let �0 be a countable set of atomic propositions. A tuple M = (

W ,
{
Ra | a ∈ �0

}
, R0, Rid, B, V

)

is a model if

1. W is a nonempty set of states,
2. for every a ∈ �0, Ra ⊆ W × W ; for every distinct a, b ∈ �0, Ra ∩ Rb = ∅,
3. R0 = ∅,
4. Rid = {

(x, x) | x ∈ W
}
,

5. B ⊆ R: for every w, there is a u s.t. (w, u) ∈ R − B where R = (⋃ {
Ra | a ∈ �0

})∪ R0 ∪ Rid,
6. V is a function from �0 to 2W.

Atomic actions are pairwise disjoint; this special constraint guarantees that syntactically different
atomic actions are semantically different. Later we will see that this constraint serves for the
formalization of refraining from something. Rid is the identity relation. So the action id just leaves
states as they are. R is serial, as Rid is. At every state, there is always something to do. B is the set
of bad transitions and R − B the set of fine transitions. The extra constraint on B is called normative
seriality; it indicates that there is no state at which no fine transition can be made. The models defined
here are the same as the models for PDL and CTL∗ if we ignore bad transitions.1 Behind models, we
presuppose that there are a group of people and an agent. The agent doing an action at a state might
cause a transition to another state. Some transitions are bad and others fine for the group as a whole.

It is common in process logics that atomic actions are interpreted as arbitrary sets of sequences
of states. Here we treat atomic actions as binary relations. The difference between the two ways is
as follows. Interpreting atomic actions as binary relations indicates that reasoning is happening at
the lowest level. Interpreting atomic actions as sets of state sequences indicates that reasoning is
happening at a higher level and atomic actions are actually action schemas. However, as [21] argues,
even if atomic actions are viewed as schemas, they are still not arbitrary.

Note that to consider an action as atomic is not to deny that the action may have internal structure;
it simply means that this internal structure is supposed to be irrelevant. When we consider a traffic
accident to be an atomic action, this does not mean that it does not have internal structure, it just
means that the precise details of just how we wrecked our car do not matter.

Fix a model M = (
W ,

{
Ra | a ∈ �0

}
, R0, Rid, B, V

)
. A finite sequence w0 . . . wn of states is called

a path if w0R . . . Rwn. Specially, w is a path for every w ∈ W . A path represents a transition sequence
made by performing a series of basic actions. The special path w means doing nothing. Let T be the
set of paths. Define a partial binary function ext on T as follows: ext(u0 . . . un, v0 . . . vm) equals to
u0 . . . unv1 . . . vm if un = v0, otherwise it is undefined. Let S and T be two sets of paths. Define a
function ⊗ as follows: S ⊗ T = {

ext(κ , λ) | κ ∈ S & λ ∈ T
}
. Each action α is interpreted as a set Sα

of paths in the following way:

1. Sa = Ra
2. Sβ;γ = Sβ ⊗ Sγ

1Atomic actions are implicit in CTL∗.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

A temporal dynamic deontic logic 269

3. Sβ∪γ = Sβ ∪ Sγ

4. Sα∗ = W ∪ Sα ∪ Sα;α ∪

A path in the interpretation of an action means that performing this action can cause the series of
transitions represented by this path. This semantics for actions has the following feature: for every
atomic actions a1, . . . , an, all the paths in Sa1;...;an contain n + 1 states if Sa1;...;an is not empty.

Actions are interpreted as sets of paths; this makes it possible to talk about the process of
performing actions. By resorting to whether a bad transition is made in the process of performing
an action, we can define some normative properties of this action. This is what we do. But before
getting there, let us first deal with the notion of refraining from an action, because we think that
obligation is dependent on this notion.

3 Refraining from actions

We think that at every situation, all that the agent is able to do is just basic actions. To refrain from
an action is not an independent action; it is just an economical expression of to do something else. A
similar idea is also held by [2]. We think that to do something else meets the principle of symmetry:
if doing α is doing something else than β, then doing β is also doing something else than α. It is
reasonable to impose the principle of perfect tense: deeds that are done remain done forever. In other
words, for every action, if the agent has done it, then he will always have done it. Under the two
principles, we do not have many choices in analysing to do something else.

Let’s look at an example. Let a and b be two different actions. Fix a start point. When would we
say that the agent has done something else than a;b? Clearly, if the agent has done a, he has done
something else than b. By the principle of the perfect tense, if he has done a;b, he has done something
else than b. By the symmetry principle, if he has done b, he has done something else than a;b. We
cannot say that if the agent has done a, he has done something else than a;b. Why? Assume so. Then
by the principle of perfect tense, if he has done a;b, he has done something else than a;b, which is
strange. We must therefore conclude that doing b is doing something else than a;b, but doing a is not
doing something else than a;b. In what follows, for every α in �PDL, we specify a β in �PDL which
means to do something else than α in the above sense.

Each finite sequence of atomic actions is called a computation sequence, abbreviated as a seq. Seqs
are just strings of symbols. For example, aabb is a seq. The empty seq is denoted by ε and the set
of seqs denoted by �∗

0. Each nonempty seq corresponds to an action in a natural way. For example,
aabb corresponds to a;a;b;b. For all sets � and � of seqs, let �; � = {

γ δ | γ ∈ � & δ ∈ �
}
.

CS(α), the set of the seqs of α, is defined as follows:

1. CS(a) = {a}
2. CS(0) = ∅

3. CS(id) = {id}
4. CS(α; β) = CS(α); CS (β)

5. CS(α ∪ β) = CS(α) ∪ CS (β)

6. CS (α∗) = {ε} ∪ CS(α) ∪ CS(α; α) ∪

Each seq of α represents a way to perform α. α is called an empty action if CS(α) = ∅. In the
sequel, for every seq σ and set � of seqs, we use σ� to denote {στ | τ ∈ �}. For every model,
define Sε , the interpretation of ε in this model, as the whole universe. It can be shown that Sα =⋃ {

Sσ | σ ∈ CS(α)
}
.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

270 A temporal dynamic deontic logic

Atomic actions are interpreted as pairwise disjoint binary relations and compound actions are
interpreted as sets of paths. As a result, the following proposition holds:

PROPOSITION 3.1
For every α and β, if CS(α) ∩ CS (β) = ∅, then Sα ∩ Sβ = ∅.

PROOF. Assume Sα ∩ Sβ �= ∅. Let w0 . . . wn be a path in Sα ∩ Sβ . Then there is a seq a1 . . . an in
CS(α) and a seq b1 . . . bn in CS(β) s.t. w0 . . . wn is in Sa1;...;an and Sb1;...;bn . Then for every i s.t. 1 ≤
i ≤ n, wi−1wi is in Sai and Sbi . As atomic actions are pairwise disjoint, ai = bi for every i s.t. 1 ≤ i
≤ n. Then a1 . . . an = b1 . . . bn. This means CS(α) ∩ CS(β) �= ∅. �

This is a crucial fact for this work.
Let � denote the relation of initial segment and � the converse of it, called extension. In the

sequel, we use this relation in the contexts of seqs and also state sequences. Let σ and τ be two seqs.
Define σ ≈ τ iff σ � τ or τ � σ . Call ≈ the relation of mutual extension. Say that σ is x-different
from τ if σ �≈ τ .2 For example, ac is x-different from ab, but a is not x-different from ab, as a � ab.
cab is also x-different from ab, as ab �� cab and cab �� ab, although ab is a segment of cab.

Here are some basic facts about x-difference. As ε is an initial segment of every seq, no seq is
x-different from ε. x-difference is closed under extension: if σ �≈ τ and τ � τ ′, then σ �≈ τ ′. Mutual
extension is closed under initial segments: if σ ≈ τ and τ ′ � τ , then σ ≈ τ ′. If σ is x-different from
τ , then there is no way to extend σ s.t. the extension of σ is identical to τ , and there is also no way
to extend τ s.t. the extension of τ is identical to σ.

For all actions α and β, we say that α is x-different from β, α �≈ β, if for all seqs σ ∈ CS(α)

and τ ∈ CS (β), σ �≈ τ . The relation of x-difference for actions formalizes the word ‘else’ in the
imperatives such as ‘don’t watch cartoons anymore and do something else’. β is something else but
α if β is x-different from α.

Given an action α, there might be many actions each of which is something else than α. For
example, both b and c are something else for a. This means that the relation of x-difference itself is
not enough to handle the notion of to do something else, as the latter also involves a quantifier over
actions. Luckily, for every α, among the actions which all are something else, there is a greatest one
in the sense that the set of its seqs contains all the seqs of the others. This lets us deal with the notion
of to do something else without introducing any quantifier.

DEFINITION 3.2 (The function of opposite)
Let � be a set of seqs. �̃, the opposite of �, is defined as {τ | τ �≈ σ for every σ ∈ �}.

�̃ is always closed under extension; this is an important feature of it.
Opposite is different from complement: �̃ is always a subset of � but not vice versa. Here is

a counter-example: let � = {ab}; then a ∈ � but a /∈ �̃. Opposite has certain connection with
complement. Define �T as the set of the seqs which is x-equal to some seq in �. �T is called the
tree generated from �. It can be seen that �̃ = �T.

There is a different way to look at �T. Let �′ be the smallest set which contains � and is closed
under extension, and �′′ the smallest set which contains �′ and is closed under initial segments. It
can be verified that �′′ = �T. This result will be used later. Note that �T might not be closed under
extension.

The following proposition specifies some important properties of the function of opposite:

2The reason we use the name ‘x-difference’ is that we do not have a better name for this special notion of different.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

A temporal dynamic deontic logic 271

PROPOSITION 3.3

1. � ∩ �̃ = ∅

2. �̃ ∩ (�; �) = ∅

3. �̃ ∪ � = �̃ ∩ �̃

4. � ⊆ ˜̃�
5. �̃; � ⊆ �̃ ∪ (

�; �̃
)

if � �= ∅

6. �̃ ⊆ �̃; �.

PROOF.

1. Assume that there is a seq τ in � ∩ �̃. Then τ �≈ σ for any σ ∈ �. Then τ �≈ τ . We have a
contradiction.

2. By the sixth item of this proposition, �̃ ⊆ �̃; �. As �̃; � ⊆ �; �, �̃ ⊆ �; �. Then
�̃ ∩ (�; �) = ∅.

3. σ ∈ �̃ ∪ � ⇔ σ �≈ τ for every τ ∈ � ∪ � ⇔ σ �≈ τ for every τ ∈ � and σ �≈ τ for every
τ ∈ � ⇔ σ ∈ �̃ and σ ∈ �̃.

4. Let σ ∈ �. Assume σ /∈ ˜̃�. Then there is a τ ∈ �̃ s.t. σ ≈ τ. This is impossible.
5. Let σ ∈ �̃; �. Then σ �≈ τ for every τ ∈ �; �. Assume σ /∈ �̃. We want to show

σ ∈ (
�; �̃

)
. Then there is a κ ∈ � s.t. σ � κ or κ � σ . Assume σ � κ . Let x ∈ �,

as � �= ∅. Then κx ∈ �; �. As σ � κ , σ � κx. Then σ ≈ κx. This is impossible, as
σ ∈ �̃; �. Then κ � σ . Let σ = κλ. We want to show λ ∈ �̃. Assume not. Then there is
a τ ∈ � s.t. λ ≈ τ . Then κλ ≈ κτ . Then κτ ∈ �; �. Then κλ /∈ �̃; �. This is impossible.
Then λ ∈ �̃. Then κλ ∈ (

�; �̃
)
, i.e. σ ∈ (

�; �̃
)
.

6. Let σ ∈ �̃. Then σ �≈ τ for every τ ∈ �. Let τ ′ ∈ �; �. Then there is a τ ∈ � s.t. τ � τ ′.
As �≈ is closed under extension, σ �≈ τ ′. Then σ ∈ �̃; �. �

The converse of the fourth item does not hold. As for every �, ˜̃� is closed under extension, we
can get that for every �, if � is not closed under extension, then ˜̃� �⊆ �. Here is an example: let
�0 = {

a, b
}

and � = {
aa, ab

}
; then �̃ = b�∗

0 and ˜̃� = a�∗
0; then aaa ∈ ˜̃� but aaa /∈ �. To

simplify our statements, we do not consider the atomic actions id and 0 in this example. We will do
this again in some examples in the sequel. The converse of the fifth item does not hold either and the
reason is that

(
�; �̃

) ⊆ �̃; � might not hold. What follows is a counter-example: let �0 = {a, b},
� = {aa, a} and � = {ab}; then �̃ = b�∗

0 ∪ aa�∗
0; then aab ∈ �; �̃; as aab ∈ �; �, aab /∈ �̃; �.

The fifth item has a condition, i.e. � �= ∅. This item does not hold without this condition. For a
counter-example, let �0 = {

a, b
}

and � = {
ab

}
. Then �̃; � = �∗

0, as �; � = ∅. We see that
a /∈ �̃ and a /∈ �; �̃.

PROPOSITION 3.4
For every α ∈ �PDL, there is a β ∈ �PDL s.t. CS(β) = C̃S(α).

PROOF. As shown in the literature of automata theory, a set � of seqs is a so-called regular language

if and only if there is an α ∈ �PDL s.t. CS(α) = �.3 Therefore, it suffices to show that C̃S(α) is a

regular language. As mentioned in Section 3, C̃S(α) = CS(α)T where CS(α)T is the tree generated
from CS(α). Then it suffices to show that CS(α)T is a regular language. Let � be the smallest set

3Regular languages are defined in terms of finite deterministic automata. For details of this, we refer to [9].

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

272 A temporal dynamic deontic logic

which contains CS(α) and is closed under extension. It can be seen that CS(α; (a1 ∪ · · · ∪ an)
∗) = �

where �0 = {a1, . . . , an}. Then � is a regular language. Let �′ be the smallest set containing
� which is closed under initial segments. By [9], the closure of a regular language under initial
segments is also a regular language. Then �′ is a regular language. �′ equals to CS(α)T. Then
CS(α)T is a regular language. By [9], the complement of a regular language is also a regular
language. Then CS(α)T is a regular language. �

This β is called the opposite of α, denoted by α̃. Here is an example: let �0 = {
a, b, c

}
; then

ã = (
b ∪ c

)
;
(
a ∪ b ∪ c

)∗. It can be easily shown that CS
(
α̃
) = ⋃ {

CS(γ) | γ �≈ α
}
. Hence, α̃ is the

union of all the actions which are something else but α. To refrain to do α is to do something else;
to do anything else is to do α̃.

As mentioned before, it is reasonable to require that anything else but α has empty intersections
with α; β and with α. The following proposition states that this is indeed the case:

PROPOSITION 3.5
Sα̃ ∩ Sα;β = ∅ and Sα̃ ∩ Sα = ∅.

This result can be proved by use of Propositions 3.1 and 3.3.
In standard relational semantics, an action α is just interpreted as a binary relation Rα instead of

a set of paths. Then neither Rα̃ ∩ Rα = ∅ nor Rα̃ ∩ Rα;β = ∅ is the case even if atomic actions
are pairwise disjoint. Here is a counter-example for both. Let a, b and c be three atomic actions. Let
Ra = {

(w1, w2)
}
, Rb = {

(w2, w3)
}

and Rc = {
(w1, w3)

}
. We see that the three atomic actions are

pairwise disjoint. c is x-different from a, then Rc ⊆ R̃a. Rc ∩ Ra;b = {
(w1, w3)

}
, then R̃a ∩ Ra;b �= ∅.

As c is x-different from a;b, Rc ⊆ Rã;b. As Rc ∩ Ra;b = {
(w1, w3)

}
, Rã;b ∩ Ra;b �= ∅.

In reality, we always view doing nothing as a way to refrain from something. This is what we
introduce the special action id for.

Atomic actions in process logics are usually interpreted as arbitrary sets of state sequences. One
may wonder whether the above formalization of refraining still works if so. Actually, there is no
problem if we put as a constraint the generalized pairwise disjointness on atomic actions. Previously
we specify a relation x-different: two sets S and T of seqs are x-different if there is no σ ∈ S and
τ ∈ T s.t. one is an initial segment of another. Define it among sets of state sequences in a similar
way. Let α̃ be defined as above. It can be verified that Proposition 3.5 always holds once atomic
actions are x-different from each other.

An interesting thing can happen to the notion of refraining when infinity is involved. We look at a
special action a∗; b. To perform it is to perform a for finitely many times and then perform b once. It
can be verified that ã∗; b is an empty action. It can be seen that the infinite seq aaa . . . does not take
any seq of a∗; b as an initial segment. This means that if the agent keeps doing a forever, there will
never be a moment when we can say that he has done a∗; b and a moment when we can say that he
has done something else.

4 Concise actions

There is a special class of actions that we want to identify in the context of refraining. For an action
α, there might be another action β s.t. refraining from α is the same as refraining from β. So the
obligation to do α would be equivalent to the obligation to do β. For example, if a and b are the only

atomic actions, then ã = ˜
(
a; a ∪ a; b

) = b;
(
a ∪ b

)∗ and ã ∪ b = ã∗; b = 0. However, there is some
difference between ã and a;a ∪ a;b and between a ∪ b and a∗; b. a is simpler than a;a ∪ a;b in a

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

A temporal dynamic deontic logic 273

natural sense and there is no simpler action γ than a s.t. γ̃ = ã. a ∪ b is simpler than a∗; b and there
is no simpler action than it sharing the same refraining condition. This means that the obligation to
do a;a ∪ a;b is not concise but the obligation to do a is. This is also the case for the obligations to
do a∗; b and a ∪ b. In what follows, we formalize this type of conciseness and show that for every α,
there is a concise β having the same refraining condition as α. It is implied that if we consider only
obligations, we do not have to consider all the actions and only the concise actions are enough.

In the last section, for a set X of seqs, we use X T , called the tree generated from X , to denote{
τ | τ ≈ σ for some σ ∈ X

}
. Let � and � be two sets of seqs. We say that � and � are y-equivalent

if �T = �T.4 For example, if �0 = {
a, b

}
, � = {

a
}

and � = {
aa, ab

}
, then � and � are

y-equivalent. Note �̃ = �T . For every α and β, if CS(α) and CS (β) are y-equivalent, then refraining
from α is the same as refraining from β. Here are two basic facts about trees, which will be used
later:

PROPOSITION 4.1

1. �T = ⋃
σ∈�

{
σ
}T.

2. If �T = �T , then for every σ ∈ �, there is a τ ∈ � s.t. σ ≈ τ , and for every τ ∈ �, there
is a σ ∈ � s.t. σ ≈ τ .

Note that for all seqs σ and τ , if τ � σ , then
{
σ
}T ⊆ {

τ
}T.

DEFINITION 4.2 (Concise actions)
A set � of seqs is concise if for no σ ∈ � there is a σ ′ � σ s.t.

{
σ ′}T ⊆ �T. An action α is concise

if CS(α) is concise.

For example, {a} is concise but {aa, ab} is not, as a � aa and {a}T = {
aa, ab

}T = a
{
a, b

}∗.
The notion of conciseness can be understood in the following way. Assume that � contains a seq σ

s.t. there is a σ ′ � σ s.t.
{
σ ′}T ⊆ �T. By replacing σ by σ ′ in �, we get �′. By Proposition 4.1,

�T = �′T. �′ is simpler than � in the sense that σ ′ is shorter than σ .

PROPOSITION 4.3
For every set � of seqs, there is a unique set � of seqs which is concise and y-equivalent to �.

PROOF. Define a set � of seqs as follows: for every σ , σ ∈ � iff (i) σ � σ ′ for some σ ′ ∈ �, (ii)
{σ }T ⊆ �T and (iii) there is no σ ′′ � σ s.t.

{
σ ′′}T ⊆ �T. We claim that � is what we are looking

for.
Firstly, it can be seen that � is concise.
Secondly, we show �T = �T. By the first item of Proposition 4.1, �T = ⋃

σ∈�{σ }T. For every
σ ∈ �, {σ }T ⊆ �T , therefore, �T ⊆ �T. Let τ ∈ �T. Then there is a σ ∈ � s.t. τ ∈ {σ }T. Assume
that there is no σ ′ � σ s.t.

{
σ ′}T ⊆ �T. Then σ ∈ � and

{
σ
}T ⊆ �T. Then τ ∈ �T. Assume that

there is a σ ′ � σ s.t.
{
σ ′}T ⊆ �T. Then there is a σ ′′ s.t. σ ′′ � σ and σ ′′ ∈ �. As

{
σ
}T ⊆ {

σ ′′}T,

τ ∈ {
σ ′′}T. Then τ ∈ �T. This implies �T ⊆ �T.

Thirdly, we show the uniqueness of �. Let X be a concise set of seqs s.t. X T = �T. We want to
show X = �. As �T = �T , X T = �T. Let σ ∈ �. By the second item of Proposition 4.1, there is
a τ ∈ X s.t. σ � τ or τ � σ . Assume σ � τ . As σ ∈ �,

{
σ
}T ⊆ �T. Then

{
σ
}T ⊆ X T. Then X

4y does not have any meaning and is used just to create a name.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

274 A temporal dynamic deontic logic

is not concise and we get a contradiction. Then σ �� τ . In a similar way, we can get τ �� σ . Then
σ = τ . Then σ ∈ X . This implies � ⊆ X . Similarly, we know X ⊆ �. �

Such a � is called the core of �, denoted as �c. For example, if � = {aa, ab}, then �c = {a}.
LEMMA 4.4

1. �c = �c if �T = �T

2. �̃c = �̃.

Cores behave well:

PROPOSITION 4.5

1. �c = ˜̃�c
c

2. �̃c ∪ �c = �̃c ∩ �̃c

3. �̃c; �c = �̃c ∪ (
�c; �̃c

)
where � �= ∅.

PROOF.

1. By the first item of Lemma 4.4, it suffices to show �T = ˜̃�c
T
. By the second item of

Lemma 4.4, �̃c = �̃. Then ˜̃�c = ˜̃�. Then it suffices to show �T = ˜̃�
T
. By Proposition 3.3,

� ⊆ ˜̃�. Then �T ⊆ ˜̃�
T
. Let σ ∈ ˜̃�

T
. Then σ ≈ τ for some τ ∈ ˜̃�. Assume σ /∈ �T. Then

σ ∈ �T = �̃. Then τ �≈ σ . We get a contradiction. Then σ ∈ �T. This means ˜̃�
T ⊆ �T.

2. This is a special case of the third item in Proposition 3.3.
3. By the fifth item of Proposition 3.3, �̃c; �c ⊆ �̃c ∪ (

�c; �̃c
)
. Let σ ∈ �̃c. Then σ �≈ δ

for every δ ∈ �c. Assume σ /∈ �̃c; �c. Then there is a δ ∈ �c and a θ ∈ �c s.t. σ ≈ δθ .
Then σ ≈ δ. This is impossible. Let σ ∈ �c; �̃c. Then there is a δ ∈ �c and a τ ∈ �̃c s.t.
σ = δτ . Assume σ /∈ �̃c; �c. Then there is an x ∈ �c and a y ∈ �c s.t. δτ ≈ xy. Then
δτ ≈ x and δ ≈ x. Then δ � x or x � δ. As both δ and x are in �c, neither δ � x nor x � δ.
Then δ = x and τ ≈ y. As τ ∈ �̃c and y ∈ �c, we get a contradiction. Then σ ∈ �̃c; �c.

Then �̃c ∪ (
�c; �̃c

) ⊆ �̃c; �c. �
LEMMA 4.6
Let � be a set of seqs. Let min

(
�̃

) = {
σ ∈ �̃ | there is no σ ′ ∈ �̃ s.t. σ ′ � σ

}
. Then

(
�̃

)c =
min

(
�̃

)
.

PROOF. Let σ ∈ (
�̃

)c
. Assume σ /∈ �̃. Then there is a δ ∈ � s.t. σ ≈ δ. Then δ ∈ {

σ
}T. By the first

item of Proposition 4.1,
{
σ
}T ⊆ (

�̃
)cT

. As
(
�̃

)cT = �̃T ,
{
σ
}T ⊆ �̃T. Then δ ∈ �̃T. Then there is a

τ ∈ �̃ s.t. δ ≈ τ . This is impossible, as δ ∈ �. Then σ ∈ �̃. Assume σ /∈ min
(
�̃

)
. Then there is a

σ ′ ∈ �̃ s.t. σ ′ � σ . Since
{
σ ′}T ⊆ �̃T , σ /∈ (

�̃
)c

. We get a contradiction. Then σ ∈ min
(
�̃

)
.

Let σ ∈ min
(
�̃

)
. Then σ ∈ �̃. Assume σ /∈ (

�̃
)c

. Then there is a σ ′ � σ s.t.
{
σ ′}T ⊆ �̃T. Then

σ ′ /∈ �̃, as σ ∈ min
(
�̃

)
. Then σ ′ ≈ δ for some δ ∈ �. Then δ ∈ {

σ ′}T. Then δ ∈ �̃T. Then δ ≈ θ

for some θ ∈ �̃. This is impossible, as δ ∈ �. �
PROPOSITION 4.7
For every α ∈ �PDL, there is a β ∈ �PDL s.t. CS (β) = CS(α)c.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

A temporal dynamic deontic logic 275

PROOF. Define regular languages as in the proof of Proposition 3.4. It suffices to show that CS(α)c is

a regular language. By the proof of the first item of Proposition 4.5, CS(α)c = ˜
C̃S(α)

c

. By Lemma

4.6,
˜
C̃S(α)

c

= min(
˜
C̃S(α)). Then it suffices to show that min(

˜
C̃S(α)) is a regular language. As

CS(α) is a regular language, C̃S(α) is a regular language by Proposition 3.4. Then
˜
C̃S(α) is a regular

language as well. By a result in [9], min(
˜
C̃S(α)) is a regular language. �

Such a β is called the core of α, denoted by αc.
Proposition 3.3 states a few typical properties of the function of opposite. The fourth and fifth are

not good enough: the converses of the implications do not hold. Consequently, ˜̃α is not equivalent to
α and α̃; β not equivalent to α̃∪α; β̃. Considering that refraining is some type of negation, one might
wonder about this. In fact, when restricted to concise actions, we can have a notion of refraining
which behaves well. Let �c

PDL denote the set of concise actions of �PDL. For every α ∈ �c
PDL,

define �α = α̃c. By Proposition 4.5, what follows is the case: ��α ≡ α and �α; β ≡ �α ∪ α; �β where β is
a nonempty action.

5 Deontic logic based on a process logic

PDL handles the input/output behaviour of terminating actions well and CTL∗ is useful for reasoning
about progressive behaviour of nonterminating actions. Nishimura [14] proposes a process logic
which is a natural mix of PDL and CTL∗ and can deal with the progressive behaviour of terminating
actions. We present a deontic logic based on a variant of this process logic.

5.1 Syntax

Recall that �PDL is a set of actions and �0 a countable set of atomic propositions. Let α range over
�PDL and p over �0. Define a set �TDDL of formulas as follows:

φ ::= p
∣
∣ � ∣

∣ b
∣
∣ ¬φ

∣
∣ (

φ ∧ φ
) ∣

∣ Xφ
∣
∣ (

φUφ
) ∣

∣
�α�φ.

The reading of the featured formulas is as follows:

1. b: something bad will be done in the next moment.
2. Xφ: φ will be the case in the next moment.
3.

(
φUψ

)
: φ will be the case until ψ .

4. �α�φ: no matter how the agent will perform α, φ is the case now.

X and U are temporal operators and Xφ and
(
φUψ

)
are temporal formulas. b is a temporal

propositional constant. p and �α�φ are state formulas. Later we will see that temporal formulas are
essentially evaluated at states relative to paths and state formulas are evaluated at states not relative
to any specific paths.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

276 A temporal dynamic deontic logic

It seems weird to say that no matter how the agent will perform α, φ is the case now. In fact, this is
fine, as whether a temporal sentence is true or not now might be dependent on how the agent will act
in the future. For example, whether a student will pass an exam is dependent on how he will study.
In order to make a temporal sentence true now, the agent has to act in some way in the future.

The other routine propositional connectives and the falsity ⊥ are defined in the usual way. Here
are some special derivative expressions:

1. f := ¬b: something fine will be done in the next moment if there is a next moment.
2. Fφ := (�Uφ

)
: φ will be the case.

3. Gφ := ¬F¬φ: φ will always be the case.
4. Dφ := F

(¬X� ∧ φ
)
: φ will be the case at the end.

5.
(∣∣α

∣∣) := ¬�α�¬φ: the agent has a way to perform α s.t. φ is the case now.
6.

[
α
]
φ := �α�Dφ: no matter how the agent will perform α, φ will be the case after α is done.

This is the classical box modality.
7. 〈α〉φ := (∣∣α

∣∣)Dφ: the agent has a way to perform α s.t. φ will be the case after α is done.
This is the classical diamond modality.

f, Fφ, Gφ and Dφ are temporal formulas, and
(∣∣α

∣∣)φ,
[
α
]
φ and

〈
α
〉
φ are state formulas.

5.2 Semantics

M, w0 . . . wn � φ, the formula φ being true at the state w0 relative to the path w0 . . . wn in the model
M, is defined as follows:

1. M, w0 . . . wn � p ⇔ w0 ∈ V(p)

2. M, w0 . . . wn � � always holds
3. M, w0 . . . wn � b ⇔ 0 < n and (w0, w1) ∈ B
4. M, w0 . . . wn � ¬φ ⇔ not M, w0 . . . wn � φ

5. M, w0 . . . wn � (φ ∧ ψ) ⇔ M, w0 . . . wn � φ and M, w0 . . . wn � ψ

6. M, w0 . . . wn � Xφ ⇔ 0 < n and M, w1 . . . wn � φ

7. M, w0 . . . wn � (φUψ) ⇔ there is an i ≤ n s.t. M, wi . . . wn � ψ and M, wj . . . wn � φ for
every j < i

8. M, w0 . . . wn � �α�φ ⇔ for every path u0 . . . um in Sα starting at w0, M, u0 . . . um � φ.

The path w0 . . . wn in M, w0 . . . wn represents that the present state is w0 and it will evolve to w1
in the next moment and so on. We see that the operator �α� is a universal quantifier over the paths in
α starting at a state. �α� is called a path modality. It can be verified that what follows are the truth
conditions of the derivative expressions:

1. M, w0 . . . wn � f ⇔ (w0, w1) /∈ B if 0 < n
2. M, w0 . . . wn � Fφ ⇔ there is an i ≤ n s.t. M, wi . . . wn � φ

3. M, w0 . . . wn � Gφ ⇔ for every i ≤ n, M, wi . . . wn � φ

4. M, w0 . . . wn � Dφ ⇔ M, wn � φ

5. M, w0 . . . wn �
(∣∣α

∣∣)φ ⇔ there is a path u0 . . . um in Sα starting at w0 s.t. M, u0 . . . um � φ

6. M, w0 . . . wn �
[
α
]
φ ⇔ for every path u0 . . . um in Sα starting at w0, M, um � φ

7. M, w0 . . . wn �
〈
α
〉
φ ⇔ there is a path u0 . . . um in Sα starting at w0 s.t. M, um � φ.

Whether a state formula is true or not at a state relative to a path has nothing to do with that path;
therefore, state formulas are essentially evaluated at states. However, without being relative to a
specific path, we cannot say whether a temporal formula is true. Note that the propositional constant

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

A temporal dynamic deontic logic 277

b is a genuine temporal formula. A formula φ is valid if for every model M and path w0 . . . wn,
M, w0 . . . wn � φ. We use TDDL to denote the set of valid formulas.

We put aside the propositional constant b temporarily. The logic TDDL is a merge of PDL and
CTL∗: the path quantifier A of CTL∗ is replaced by �α� which refers to the action α, and temporal
formulas talk about what happens during the execution of α, instead of nonterminating computations.
TDDL is a minimal merge of PDL and CTL∗ in this sense: its models are just the models of PDL and
CTL∗; its dynamic factor is just the path modality �α� and its temporal factor is just the temporal
operators X and U. The main difference between TDDL and the process logic in [14] lies in that the
latter interprets atomic actions as arbitrary sets of sequences. For a comparison between the process
logic in [14] and other process logics, we refer to [7].

6 Normative properties of actions

TDDL is able to describe what happens during the performance of actions. The propositional
constant b says that a bad behaviour will be made. This makes it possible that TDDL can define some
normative properties of actions according to whether something bad happens and how it happens
during their performance.

The temporal formula Gf intuitively means that at every point in the future, if it is not the end,
something fine will be done in the next moment. F

(
X� ∧ f

)
indicates that at some point in the

future something fine will be done in the next moment. Note that Ff is always true but F
(
X� ∧ f

)
is

not; so they are different. By combining �α�,
(∣∣α

∣∣), Gf and F(X� ∧ f), we can have four notions of
permission:

1. PAα := (∣∣α
∣∣)Gf

2. PBα := �α�Gf

3. PCα := (∣∣α
∣∣)F(X� ∧ f)

4. PDα := �α�F(X� ∧ f).

By negating a permission we get a prohibition. A prohibition of refraining expresses an obligation.
We can get four notions of prohibition and obligation:

1. FX α := ¬PX α

2. OX α := FX α̃

where X ∈{A, B, C, D}.
Fix a model. We say that a path w0 . . . wn is legal if it contains no bad transition, and evil if it

contains no fine transition. Trivially, w is both legal and evil path. It can be seen that w0 . . . wn is
legal iff Gf is true at it, and evil iff G

(
X� → b

)
is true at it. The truth conditions of the four groups

of normative formulas can be stated by use of legal and evil paths:

1. M, w0 . . . wn � PAα ⇔ some path in Sα starting at w0 is legal.
2. M, w0 . . . wn � PBα ⇔ all the paths in Sα starting at w0 are legal.
3. M, w0 . . . wn � PCα ⇔ not all the paths in Sα starting at w0 are evil.
4. M, w0 . . . wn � PDα ⇔ no path in Sα starting at w0 is evil.
5. M, w0 . . . wn � OAα ⇔ no path in Sα̃ starting at w0 is legal.
6. M, w0 . . . wn � OBα ⇔ not all the paths in Sα̃ starting at w0 are legal.
7. M, w0 . . . wn � OCα ⇔ all the paths in Sα̃ starting at w0 are evil.
8. M, w0 . . . wn � ODα ⇔ some path in Sα̃ starting at w0 is evil.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

278 A temporal dynamic deontic logic

FIGURE 1. This figure shows the difference between the four notions of permission. Arrows represent
transitions; solid ones represent fine transitions; dotted ones mean that it does not matter whether they
are fine or not. The four formulas are true at the four w1s, respectively.

FX α is just the negation of PX α and its semantics is simply omitted. All the normative formulas
are state formulas. Figure 1 illustrates the difference among the four notions of permission. PAα is
the lack-of-prohibition permission and PBα the free-choice permission. As far as we know, neither
PCα nor PDα corresponds to a notion of permission in reality.

The following valid formulas tell some basic properties of the normative notions.

1. PX 1 where X ∈{A, C},
2.

〈
α
〉� → (

OX α → PX α
)

where X ∈{A, C}.
Recall that 1 is the union of all atomic actions. The first formula indicates that there is always

something allowed to do. The second formula means that if α is doable, then the obligation to do it
implies the permission to do it.

Here are some features of the four notions of permission which involve action constructors:

1. PA (α ∪ β) ↔ (
PAα ∨ PAβ

)

2. PA (α; β) → (
PAα ∧ 〈α〉PAβ

)

3. PB (α ∪ β) ↔ (
PBα ∧ PBβ

)

4. [α] 〈β〉 � → (
PB(α; β) ↔ (

PBα ∧ [α]PBβ
))

5. PC (α ∪ β) ↔ (
PCα ∨ PCβ

)

6. [α] 〈β〉 � → (
PC(α; β) ↔ (

PCα ∨ 〈α〉PCβ
))

7. PD (α ∪ β) ↔ (
PDα ∧ PDβ

)

8.
(
PDα ∨ [α]PDβ

) → PD (α; β).

The third formula shows that PB has the feature of free-choice permission.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

A temporal dynamic deontic logic 279

FIGURE 2. Assume that all the transitions are legal. Then the infinite legal path w . . . does not
initially pass by any path in Sa∗;b.

What follows are some valid formulas concerning obligation:

1. [α] 〈β〉 � → (
OA(α; β) ↔ (

OAα ∧ [α]OAβ
))

2. OB (α ∪ β) ↔ (
OBα ∧ OBβ

)

3. OBα → OB (α; β)

4. OC (α; β) → OCα

5. OD (α ∪ β) ↔ (
ODα ∧ ODβ

)

6. ODα → OD (α; β).

Note that none of the converses of the implications hold.
In Section 1 we mention a few inferences which are useful to test whether a deontic logic in the

dynamic approach considers intermediate states of performing actions.

1. Killing is prohibited; therefore, killing and then surrendering are also prohibited.
2. Smoking and then leaving are permitted; therefore, smoking is permitted.
3. Rescuing the injured and then calling an ambulance are obligatory; therefore, rescuing the

injured is obligatory.

These inferences are valid w.r.t. the first group of normative notions. Note that the prohibition of
killing does not imply the prohibition of surrendering after killing. Indeed, it can be verified that
FAk ∧ 〈

k
〉
PAs is satisfiable where k and s represent killing and surrendering, respectively.

Here is some comparison between TDDL and the deontic logic proposed by [19], which is
called Dynamic Logic of Permission (DLP). DLP interprets atomic actions as arbitrary sets of state
sequences. TDDL is different from DLP at this point. DLP makes a distinction between fine and bad
transitions. TDDL also does this. TDDL has temporal operators and can directly describe the process
of performing actions. Deontic operators are defined in TDDL. DLP does not have any temporal
operator. Instead, it has two primitive deontic operators ♦ and π which are for lack-of-prohibition
and free-choice permission, respectively. Generally speaking, we think that TDDL is more flexible
than DLP in dealing with normative properties of actions.

As mentioned previously, [19] focuses on permission only and does not handle refraining from
actions. However, at the end of it, a notion of obligation is briefly proposed. Actually, this notion
has some connection with our first notion of obligation. Previously, paths are always finite state
sequences. Assume that infinite paths are also allowed. We say that a legal path is maximal if it is not
a proper initial segment of any legal paths. A maximal legal path passes by a finite path if the finite
path is an initial segment of the maximal legal path. The notion of obligation that [19] proposes is
as follows: an action α is obligated at a state w iff all maximal legal paths starting at w initially
pass by a path in the interpretation of α. This intuitively says that α is obligatory iff no matter how
the agent will legally act, he will perform α. It can be verified that the direction from right to left
holds in TDDL. However, the other direction does not hold. Let α = a∗; b. As ã∗; b = 0, trivially

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

280 A temporal dynamic deontic logic

M, w � Oa∗; b for every M and w. But it is not the case that for any M and w, all maximal legal
paths starting at w initially pass by a path in Sa∗;b. A counter-example is illustrated by Figure 2. This
example raises an interesting thing that is similar with the one raised by the example at the end of
Section 3. Assume that the agent is at state w. There is no way for him to violate the obligation to
perform a∗; b, but there is a way for him to avoid it. It seems that there is something between meeting
an obligation and violating it, i.e. avoiding it.

7 Bisimulations

When defining models of TDDL, we put the constraint of pairwise disjointness on the interpretation
of atomic actions. In fact, this constraint does not make any difference in logic. This section shows
this result.

We say that a structure M = (W , {Ra | a ∈ �0} , R0, Rid,B, V) is a pre-model if it is like a model
except that pairwise disjointness of atomic actions might not hold. Note that models are always
pre-models but not vice versa.

DEFINITION 7.1 (P-bisimulations)
Let M = (

W ,
{
Ra

∣
∣ a ∈ �0

}
, R0, Rid, B, V

)
and M′ = (

W ′,
{
R′

a

∣
∣ a ∈ �0

}
, R′

0, R′
id, B′, V ′) be two

pre-models. Let �W be the set of paths of M and �W ′ the set of paths of M′. Z ⊆ �W × �W ′ is a
p-bisimulation between M and M′ if the following conditions are met:

1. if w0 . . . wnZw′
0 . . . w′

m, then n = m.
2. if w0 . . . wnZw′

0 . . . w′
n, then wi . . . wnZw′

i . . . w′
n for every i ≤ n.

3. if w0 . . . wnZw′
0 . . . w′

n, then w0 . . . wn and w′
0 . . . w′

n satisfy the same atomic propositions.
4. if w0 . . . wnZw′

0 . . . w′
n, then w0 . . . wn satisfies b iff w′

0 . . . w′
n satisfies b.

5. if w0 . . . wnZw′
0 . . . w′

n, u0 . . . um ∈ Sα and u0 = w0, then there is u′
0 . . . u′

m s.t. u′
0 = w′

0,
u′

0 . . . u′
m ∈ S′

α and u0 . . . umZu′
0 . . . u′

m.
6. if w0 . . . wnZw′

0 . . . w′
n, u′

0 . . . u′
m ∈ S′

α and u′
0 = w′

0, then there is u0 . . . um s.t. u0 = w0,
u0 . . . um ∈ Sα and u0 . . . umZu′

0 . . . u′
m.

Here ‘p’ is for ‘path’.

PROPOSITION 7.2
Let M and M′ be two pre-models and Z a p-bisimulation between them. If w0 . . . wnZw′

0 . . . w′
n,

then they satisfy the same formulas.

PROOF. We put an induction on φ. We consider only a few key cases.
Case φ = Xψ . M, w0 . . . wn � Xψ ⇔ M, w1 . . . wn � ψ ⇔ M′, w′

1 . . . w′
n � ψ ⇔

M′, w′
0 . . . w′

n � Xψ .
Case φ = ψUχ . Assume M, w0 . . . wn � ψUχ . Then there is an i ≤ n s.t. M, wi . . . wn � χ and

M, wj . . . wn � ψ for every j < i. By the inductive hypothesis, M′, w′
i . . . w′

n � χ and M′, w′
j . . . w′

n �
ψ for every j < i. Then M′, w′

0 . . . w′
n � ψUχ . The other direction is similar.

Case φ = (∣∣α
∣
∣)ψ . Assume M, w0 . . . wn �

(∣∣α
∣
∣)ψ . Then there is u0 . . . um in Sα starting at w0 s.t.

M, u0 . . . um � ψ . By the definition of p-bisimulations, there is u′
0 . . . u′

m s.t. u′
0 = w′

0, u′
0 . . . u′

m ∈ S′
α

and u0 . . . umZu′
0 . . . u′

m. By the inductive hypothesis, M′, u′
0 . . . u′

m � ψ . Then M′, w′
0 . . . w′

n �(∣∣α
∣
∣)ψ . The other direction is similar. �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

A temporal dynamic deontic logic 281

FIGURE 3. This figure shows that the respect requirement for c-bisimulations to imply equivalence
cannot be replaced by the forth and back conditions on bad transitions. Solid arrows indicate fine
transitions, dashed arrows bad transitions. All other information of the two models are identical.
W × W′ is a c-bisimulation meeting the forth and back conditions for bad transitions. However,
M, wu � b and not M′, w′u′ � b.

DEFINITION 7.3 (C-bisimulations)
Let M = (

W ,
{
Ra

∣
∣ a ∈ �0

}
, R0, Rid, B, V

)
and M′ = (

W ′,
{
R′

a | a ∈ �0
}

, R′
0, R′

id, B′, V ′) be two
pre-models. Z ⊆ W × W′ is a c-bisimulation between M and M′ if the following conditions are
met:

1. if wZw′, then they satisfy the same atomic propositions.
2. if wZw′ and Rawu, then there is u′ s.t. R′

aw′u′ and uZu′.
3. if wZw′ and R′

aw′u′, then there is u s.t. Rawu and uZu′.

Here ‘c’ is for “classical”. We say that a c-bisimulation Z respects b if what follows is the case:
if wZw′ and uZu′, then (w, u) ∈ B iff

(
w′, u′) ∈ B′. Each c-bisimulation respecting b induces a

p-bisimulation, as shown by the following proposition.

PROPOSITION 7.4
Let M and M′ be two pre-models and Z a c-bisimulation between them which respects b. Let �W
and �W ′ be as above. Define Z ⊆ �W × �W ′ as follows: w0 . . . wnZw′

0 . . . w′
n iff wiZw′

i for every i
≤ n. Then Z is a p-bisimulation between M and M′.

PROOF. We only verify that the fifth condition in Definition 7.1 is satisfied. We put an induction on
α. The case α = a is trivial.

Case α = β; γ . Assume w0 . . . wnZw′
0 . . . w′

n, u0 . . . um ∈ Sβ;γ and u0 = w0. Then there is
a k ≤ m s.t. u0 . . . uk ∈ Sβ and uk . . . um ∈ Sγ . By the inductive hypothesis, there is u′

0 . . . u′
k

s.t. u′
0 = w′

0, u′
0 . . . u′

k ∈ S′
β and u0 . . . ukZu′

0 . . . u′
k . By the definition of Z, we know ukZu′

k . By
the inductive hypothesis again, there is u′

k . . . u′
m s.t. u′

k . . . u′
m ∈ S′

γ and uk . . . umZu′
k . . . u′

m. Then
u′

0 . . . u′
m ∈ S′

β;γ . By the definition of Z, u0 . . . umZu′
0 . . . u′

m.

Case α = β ∪ γ . Assume w0 . . . wnZw′
0 . . . w′

n, u0 . . . um ∈ Sβ∪γ and u0 = w0. Then u0 . . . um ∈
Sβ or u0 . . . um ∈ Sγ . Assume the former. By the inductive hypothesis, there is u′

0 . . . u′
m s.t. u′

0 = w′
0,

u′
0 . . . u′

m ∈ S′
β and u0 . . . umZu′

0 . . . u′
m. Then u′

0 . . . u′
m ∈ S′

β∪γ . The arguments for the latter case is
similar.

Case α = β∗. The arguments for this case are the mix of the arguments for the cases α = β ∪ γ

and α = β; γ . �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

282 A temporal dynamic deontic logic

The respect condition for c-bisimulations is a strong requirement. Note that it cannot be replaced
by the usual forth and back conditions on B: if wZw′ and (w, u) ∈ B, then there is a u′ s.t.

(
w′, u′) ∈ B′

and uZu′; if wZw′ and
(
w′, u′) ∈ B′, then there is a u s.t. (w, u) ∈ B and uZu′. Figure 3 provides a

counter-example for this.

PROPOSITION 7.5
φ is satisfiable in a pre-model iff it is satisfiable in a model.

PROOF. The direction from right to left is trivial. To show the other direction, it suffices to show
that for every pre-model M, there is a model M′ and a surjective function Z from M′ to M s.t. Z
is a c-bisimulation respecting b. This can be done by the so-called copy method presented by [5] to
handle intersection of modalities. Ju and Hu [10] provide an improvement for this method. Here we
sketch the arguments where the focus is that the copy method actually has room for handling bad
transitions. For missing details, we refer to [10].

Let �0 = {a1, . . . , an}. Let M = (W , {Ra | a ∈ �0}, R0, Rid, B, V) be a pre-model. In
some way, we can define 2n structures M1 = (

W 1, {R1
a | a ∈ �0}, R1

0, R1
id, V 1

)
, . . ., M2n =(

W 2n
, {R2n

a | a ∈ �0}, R2n

0 , R2n

id , V 2n)
where W 1, . . . W 2n

are pairwise disjoint copies of W . In some
way, we can merge these structures into a structure M′ = (

W ′, {R′
a | a ∈ �0}, R′

0, R′
id, V ′) where

atomic actions are pairwise disjoint and the natural function Z from W′ to W is a c-bisimulation.
Define a set B′ on W′ in the following way: (s, t) ∈ B′ iff (Z(s), Z(t)) ∈ B. Then B′ is normatively
serial and Z respects b. �

8 Connections and future work

Theoretical aspects

The process logic PL presented by [7] strictly subsumes TDDL in expressivity if we ignore the
propositional constant b. Harel, Kozen and Parikh [7] show that PL is decidable and complete.
However, PL has an unnatural temporal operator f , called the first-moment operator, which is not
definable by other operators. TDDL is a natural merge of PDL and CTL∗ and we think that it is still
meaningful to find a decision procedure and a complete axiomatization for it.

Another way to formalize refraining

In order to handle to do something else, we put some constraints on actions: in syntax, there are only
finitely many atomic actions and there is a special action 0; in semantics, atomic actions are pairwise
disjoint. These constraints let �PDL express to do something else. This is an implicit way. There is a
different way to handle to do something else, i.e. explicitly introducing an action constructor for it.

Actions can be defined as before except that there is a new generation rule now: α̃ is an action if α

is. To do α̃ means to do something else than α. Models and paths are defined as before. Let T denote
the set of paths. Definition 3.2 specifies an opposite function˜on the set of sets of computation
sequences. Define it on the set of sets of paths in a similar way: for every set � of paths, let
�̃ = {

τ ∈ T | τ �� σ & σ �� τ for any σ ∈ �
}
. Actions are interpreted as sets of paths as

before except that α̃ is interpreted as S̃α where Sα is the interpretation of α. This way of dealing
with to do something else follows a similar idea with the previous way. Many results and discussions
made before, especially Proposition 3.5, can be easily transplanted here. Detailed comparison of the
two ways is needed.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

A temporal dynamic deontic logic 283

The CTL version

CTL is a restricted version of CTL∗ that is widely studied and applied. In CTL, temporal operators
have to be immediately preceded by path quantifiers. CTL has only state formulas and the temporal
formulas of CTL∗ are not well formed in it. In a similar way of how CTL∗ and PDL are mixed in this
work, we can get a natural mix of PDL and CTL. By introducing to this mixed logic a propositional
constant saying that this is a bad state, we can get a deontic logic. This logic might have better
computational properties than TDDL. It deserves a close look.

Betterness among actions

We in this work make a black and white distinction among transitions: bad and fine ones. It
is attractive to introduce a more fine-grained betterness relation among transitions and make
connections with preference-based deontic logics such as [18].

Legal relations

Since morality has to do with our interaction with others, another important step to take is from single
agent to multiple agent deontic logic. Even more realistic seems an approach where obligations
are relational, and where an obligation of some agent A to do something or to refrain from doing
something is always an obligation to some other agent B. A proposal for a formalization of this idea
in terms of PDL is given in [20]. One of the attractions of this is that it allows us to model conflicts of
duty, such as the conflicts between professional obligations and family obligations that we all know
so well.

Acknowledgements

F. Ju was supported by the National Social Science Foundation of China (No. 12CZX053),
the Fundamental Research Funds for the Central Universities (No. SKZZY201304) and China
Scholarship Council. We would like to thank the anonymous referees for their useful comments
and suggestions.

References

[1] A. R. Anderson. Some nasty problems in the formal logic of ethics. Noûs, 1, 345–360, 1967.
[2] J. Broersen. Action negation and alternative reductions for dynamic deontic logics. Journal of

Applied Logic, 2, 153–168, 2004.
[3] E. Emerson and J. Halpern. “Sometimes” and “not never” revisited: on branching versus linear

time temporal logic. Journal of the ACM , 33, 151–178, 1986.
[4] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of

Computer and System Sciences, 18, 194–211, 1979.
[5] G. Gargov and S. Passy. A note on boolean modal logic. In Mathematical Logic, P. P. Petkov

ed., pp. 311–321. 1990.
[6] P. T. Geach. Whatever happened to deontic logic? Philosophia, 11, 1–12, 1982.
[7] D. Harel, D. Kozen and R. Parikh. Process logic: expressiveness, decidability, completeness.

Journal of Computer and System Sciences, 25, 144–170, 1982.
[8] R. Hilpinen. Deontic logic. In The Blackwell Guide to Philosophical Logic, L. Goble ed.,

pp. 159–182. Blackwell Publishing, 2001.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

284 A temporal dynamic deontic logic

[9] J. Hopcroft, R. Motwani and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Pearson, 2006.

[10] F. Ju and X. Hu. On axiomatization of boolean modalities. Studies in Logic, 8, 23–36, 2015.
[11] S. Kanger. New foundations for ethical theory. In Deontic Logic: Introductory and Systematic

Readings, R. Hilpinen ed., pp. 36–58. Netherlands: Springer, 1971.
[12] P. McNamara. Deontic logic. In The Stanford Encyclopedia of Philosophy, E. N. Zalta ed.,

winter 2014 edn. 2014.
[13] J.-J. C. Meyer. A different approach to deontic logic: deontic logic viewed as a variant of

dynamic logic. Notre Dame Journal of Formal Logic, 29, 109–136, 1988.
[14] H. Nishimura. Descriptively complete process logic. Acta Informatica, 14, 359–369, 1980.
[15] V. Pratt. Process logic. In Proceedings of the 6th ACM Symposium on Principles of Program-

ming Languages, pp. 93–100. New York: ACM Press, 1979.
[16] R. Pucella and V. Weissman. Reasoning about dynamic policies. In Proceedings of the 7th

International Conference of Foundations of Software Science and Computation Structures,
I. Walukiewicz ed., pp. 453–467. Berlin: Springer-Verlag, 2004.

[17] X. Sun and H. Dong. Deontic logic based on a decidable PDL with action negation. 2015.
Manuscript.

[18] J. van Benthem, D. Grossi and F. Liu. Deontics = betterness + priority. In Proceedings of the
10th International Conference of Deontic Logic in Computer Science, G. Governatori and G.
Sartor, eds, pp. 50–65. Berlin: Springer-Verlag, 2010.

[19] R. van der Meyden. The dynamic logic of permission. Journal of Logic and Computation, 6,
465–479, 1996.

[20] J. van Eijck and F. Ju. Modelling legal relations. 2017. Under submission.
[21] M. Vardi and P. Wolper. Yet another process logic. In Logics of Programs, E. Clarke and D.

Kozen, eds, pp. 501–512. Vol. 164 of Lecture Notes in Computer Science, Berlin: Springer,
1984.

[22] H. Wansing. On the negation of action types: constructive concurrent PDL. In Proceedings
of the Twelfth International Congress of Logic, Methodology and Philosophy of Science, P.
Hájek, L. Valdes-Villanueva and D. Westerstahl, eds, pp. 207–225. London: King’s College
Publications, 2005.

Received 1 December 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/2/265/4954041 by guest on 18 June 2019

	A temporal dynamic deontic logic
	1 Background
	2 Models
	3 Refraining from actions
	4 Concise actions
	5 Deontic logic based on a process logic
	5.1 Syntax
	5.2 Semantics

	6 Normative properties of actions
	7 Bisimulations
	8 Connections and future work

