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Abstract

We carry out a proof theoretic analysis of the wellfoundedness of recur-
sive path orders in an abstract setting. We outline a very general termination
principle and extract from its wellfoundedness proof subrecursive bounds
on the size of derivation trees which can be defined in Gödel’s system T plus
bar recursion. We then carry out a complexity analysis of these terms, and
demonstrate how this can be applied to bound the derivational complexity
of term rewrite systems.

1 Introduction

The ability to deduce whether or not a program terminates is crucial in computer
science. Though termination is not a decidable property, a number of powerful
proof rules, or termination principles, have been developed, which set out general
conditions under which programs can be shown to terminate. Examples of
these include path orders for rewrite systems [5], size-change principles [13]
and more recently methods based on Ramsey’s theorem [16].

Any termination principle P gives rise to the following question: Given that
a program can be proven to terminate using P, can we infer an upper bound
on its complexity? This is in turn an instance of a much more general problem
captured by Kreisel in his famous quote: “What more do we know if we have proved
a theorem by restricted means than if we merely know the theorem is true?”.

In this article I focus on termination via path orders. This area already
contains a number of well known complexity results of the above kind. For
example, termination via the multiset path ordering implies primitive recursive
derivational complexity, while the lexicographic path ordering induces multi-
ple recursive derivation lengths. These bounds were initially established via
direct calculations in [10] and [24] respectively.

Here, I take an approach to complexity closer to the spirit of Kreisel by
addressing the following question: Given a proof that some abstract order is
wellfounded, can we extract from this proof a subrecursive program which
computes derivation sequences and thus provides a bound on their length?
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Broadly speaking, there are two ways of accomplishing this. We could
choose to concentrate on the proof, showing that it can be formalised in some
weak theory and then appealing to an appropriate logical metatheorem which
would guarantee that a realizing program in some corresponding system of
functionals exists. Alternatively, we could directly extract a realizing term by
hand and show that it can be defined in some subrecursive calculus. The latter
approach is chosen here: Exhibiting an explicit realizing term is not only more
illuminating, but we can appeal to mathematical properties of that term to
obtain more refined complexity results.

The starting point of this work is the elegant paper of Buchholz [4], who was
the first to apply proof theory in the style of Kreisel to termination principles.
More specifically, he rederived the aforementioned bounds on the multiset and
lexicographic orders by showing that wellfoundedness of these orders could
be formalised in weak fragments of Peano arithmetic, and then applying a pro-
gram extraction theorem to obtain the corresponding bounds on the length of
reduction sequences. Key to Buchholz’s method is to consider finitely branch-
ing variants of the usual path orders - an approach which will be essential to
us as well.

My second source of inspiration is the recent collection of papers (including
[2, 3, 8]), which study both size-change termination and techniques based on
Ramsey’s theorem from the perspective of proof theory. In particular, in [2],
an upper bound on the length of transition sequences is given as a term of
System T extended with bar recursion. It turns out that bar recursion - that is
recursion over wellfounded trees - is a form of recursion naturally well suited
to computing derivation trees of programs. Moreover, where complexity is
concerned, one can directly appeal to closure properties of bar recursion (see the
recent [15]) to establish upper bounds on the size of these trees.

In this paper, I study an abstract termination principle which subsumes the
majority of path orders encountered in the literature. It is closely related to the
first termination theorem considered by Goubaul-Larrecq in [9], though here
it is based on orderings which are assumed to be finitely branching. We give
a classical proof of the theorem, which we then analyse to show that given a
moduli which forms a computational analogue of the theorem’s main condition,
a function bounding the size of derivations can be defined using bar recursion
of lowest type. A number of initial complexity results can already be given by
appealing to [15] and related works.

I then consider a variant of the theorem in which a computationally stronger
realizer to the premise is given. In this case, more refined complexity results are
possible, which are set out in Corollary 3.14. I conclude by showing how the
well known upper bounds for the complexity of simplification orders follow
from this result, and illustrating how Buchholz’s finitely branching orders fit
in to our general computational framework.

My hope is that the results of this paper form a framework for complex-
ity which will can be developed further in the future, with potential for both
more general and more refined results. In addition, in the process of our proof
theoretic analysis we explore a number of deep mathematical concepts which

2



underlie path orders, including minimal-bad-sequence style constructions, re-
alizability and bar recursion, connections between the latter having been ex-
plored from a more general perspective in e.g. [18, 21]. I aim to demonstrate
how these concepts all come together to form a particularly elegant illustration
of the bridge between proofs and programs.

1.1 Related work

This article forms a considerable generalisation of the results presented in [14],
which is concerned exclusively with the multiset and lexicographic path orders.
An abstract termination principle is also studied in [19], but there no restrictions
to the logical complexity of the order are made, and the focus is on finding
equivalent formulations of the axiom of dependent choice in all finite types.

1.2 Prerequisites and notation

We assume that the reader is familiar with Gödel’s System T of primitive recur-
sive functionals in all finite type, which we will use as our base programming
language. We will actually use a fairly rich formulation of System T, which
includes both product type ρ × τ together with finite sequence types ρ∗. We
denote by Ti the fragment of System T which only permits recursion of type
level i. We will use the following notation:

• We denote by 0ρ the canonical zero element of type ρ, defined in the
obvious way (we set 0ρ∗ = [] for sequence types).

• |a| is the length of the sequence a ∈ ρ∗;

• if a = [a0, . . . , ak−1] then a ∗ x := [a0, . . . , ak−1, x] denotes the concatenation
of a with x, similarly x ∗ a := [x, a0, . . . , ak−1];

• ā := ak−1 denotes the last element of a (we just set ā = 0ρ if a = []);

• we write x ∈ a if x = ai for some i < |a|;

• for α :N→ ρ we have [α](n) := [α0, . . . , αn−1];

• for a ∈ ρ∗ we define â ∈N→ ρ by ân := an if n < |a| and ân := 0X otherwise.

At several points we will need to extend Twith constants Rec⊳,ρ for wellfounded
recursion of output type ρ over some decidable wellfounded relation ⊳ onN,
which will satisfy the defining axiom

Rec
⊳,ρ

f
(x) = f x(λy ⊳ x . Rec

⊳,ρ

f
(y))

where λy ⊳ x . g(y) is shorthand for ‘if y ⊳ x then g(y) else 0’. When defining
recursive functionals we typically use the convention, as above, of writing
parameters which don’t change in the defining equation as a subscript.
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2 Finitely branching relations

We start of in this section by introducing some basic facts and definitions
concerning finitely branching relations in general, and introduce the concept of
bar recursion.

Our basic object of study will be a binary relation ≻ on some set X. In the
context of termination analysis, X is typically a set of terms in some language.
A program P is then considered to be reducing with respect to ≻ if whenever

t0 {P t1 {P . . .{P tk

is a run on P, then ti ≻ ti+1 for all i < k. Thus wellfoundedness of ≻ implies that
the program terminates.

However, up until Section 4, everything will be carried out in an abstract
setting. For now, the only assumption we make about X is that it can be
arithmetized i.e. comes equipped with some bijective encoding p·q : X→N, and
similarly≻ is a primitive recursive relation i.e. there is some term r :N×N→N
definable in T0 such that x ≻ y iff r(pxq, pyq) = 0. For the sake of clarity, we
continue to refer to the set as X rather thanN, but it should be remembered that
for practical purposes ≻ is a relation on natural numbers, and this will indeed
be crucial when we come to our complexity results later.

In this paper we will primarily be concerned with relations which are finitely
branching.

Definition 2.1. We say that ≻ is finitely branching if

(∀x ∈ X)(∃a ∈ X∗)(∀y)(x ≻ y↔ y ∈ a).

In particular, the number of distinct elements y with x ≻ y is bounded above
by |a|.

We now need to give a precise definition of what we mean by wellfoundedness.
We will primarily be interested in the following formulation, which in [2] is
referred to as classical wellfoundedness:

Definition 2.2. We call a sequence α ∈ XN (classically) wellfounded and write
W(α) if

∃n(αn ⊁ αn+1)

where x ⊁ y denotes ¬(x ≻ y). Similarly, we say that an element x ∈ X is
wellfounded, and also write W(x), if

∀α(x = α0 →W(α)).

The relation ≻ is wellfounded if (∀x)W(x).

In the next Section we will consider an equivalent formulation of well-
foundedness which is classically equivalent to the above but computationally
stronger. We now make precise what we mean by the complexity of some object
in X.
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Definition 2.3 (Finite chain). We call a finite sequence a ∈ X∗ is a ≻-chain, and
write C≻(a), if ai ≻ ai+1 for all i < |a| − 1.

Definition 2.4 (Derivational complexity). Let x ∈ X and suppose that there exists
some k such that

C≻(x ∗ a)→ |a| ≤ k.

We call the minimal such k the derivational complexity of x and denote it by dc(x).
We say that the derivational complexity of some wellfounded ≻ is bounded by
some function f : X→N if dc(x) ≤ f (x) for all x ∈ X.

We now give a syntactic formulation of wellfoundedness which will be
crucial to us later, and which is adapted from Buchholz’s notion of a derivation
[4]. Here we work with a structure which encodes in a slightly more precise
way the derivation tree generated by some wellfounded x.

Definition 2.5 (Derivation tree). The predicate T(x, d) on X × X∗ is defined by
induction on the length of d as follows: If [y0, . . . , yk−1] is the unique sequence
consisting exactly of those elements y with x ≻ y, with yi < y j iff i < j, then
T(x, d) holds precisely when d = x ∗ d0 ∗ . . . ∗ dk−1 and T(yi, di) holds for all i < k.

Intuitively, T(x, d) holds iff d represents the flattening of the derivation tree
of x which would be obtained by a depth first search and ordering each child
node by its encoding. Take for example the order on {1, 2, . . . , 7} defined by

2 ≻ 4, 7 4 ≻ 1, 3, 6 3 ≻ 5 (1)

Then we would have T(2, d) iff d = [2, 4, 1, 3, 5, 6, 7]. Note that T(x, d) makes
sense even when x is not wellfounded: in that case T(x, d) would simply be
false for all d. However, when it holds for some d then this must be unique.

Lemma 2.6. If T(x, d) and T(x, e) then d = e.

Lemma 2.7. If T(x, d) then dc(x) ≤ |d|.

Proof. Induction on the length of d. Suppose that x ≻ x1 ≻ . . . ≻ xk. Then
we have T(x1, e) for some e contained in d, and assuming inductively that
k − 1 ≤ dc(x1) ≤ |e| < |d|we obtain k ≤ |d| and thus dc(x) ≤ |d|. �

Theorem 2.8. If ≻ is finitely branching then W(x) holds iff (∃d)T(x, d).

Proof. One direction follows immediately from Lemma 2.7. For the other,
(∀d)¬T(x, d) would imply that the derivation tree of x is infinite, and so by
König’s lemma this tree must have an infinite branch. But that would contra-
dict W(x). �

2.1 Computing derivation trees

The focus of this article will be on the construction of explicit functions Φ :
X → X∗ for wellfounded relations ≻ such that (∀x)T(x,Φ(x)). Such a Φ will be
called a derivation function for ≻. Whenever Φ is a derivation function for ≻, by
Lemma 2.7 in particular it follows that the mapλx.|Φ(x)|bounds the derivational
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complexity of ≻. Therefore, whenever we can guarantee that Φ can be defined
in some restricted class of functions, we can produce a subrecursive bound the
derivational complexity of ≻.

Note that for any finitely branching ≻, provided we know in advance that
x is wellfounded, its derivation tree can be easily computed by simply imple-
menting a depth first search. However, a much stronger result would be to
show that the computation of a derivation tree can be defined in some subre-
cursive calculus, which takes into account the strength of the system in which
W(x) can be proved.

In this section we give a short and simple result of this kind, where we
analyse the statement

if ≻ is finitely branching and wellfounded then (∀x)(∃d)T(x, d) (2)

The statement follows as in Theorem 2.8 from an application of König’s lemma.
We are interested in giving (2) a computational interpretation, namely a construc-
tion of a derivation function for ≻which takes as parameters some functionals
which give a computational interpretation to the premise of (2). This leads us
to the following key definitions:

Definition 2.9. (a) A branching modulus for ≻ is a function c : X→ X∗ satisfying

x ≻ y↔ y ∈ c(x)

for all x, y ∈ X. We assume w.l.o.g. that c(x) is ordered and contains no
repetitions.

(b) A modulus of wellfoundedness for ≻ is a function ω : XN → N satisfying

(∃i < ω(α))(αi ⊁ αi+1)

for all α ∈ XN.

Moduli of wellfoundedness are also been studied in [2] in the context of
the Podelski-Rybalchenko termination theorem, and we take our terminology
from them.

Given a branching modulus and x ∈ X, one can easily compute the deriva-
tion tree d for x by implementing a depth first search. We now show that
given, in addition, a modulus of wellfoundedness, we can give a subrecursive
definition of the derivation function in T plus bar recursion, where the latter
is a recursion scheme over wellfounded trees. There are numerous different
variants of bar recursion (see [17]), but here we will be primarily concerned
with the original version due to Spector [22].

Definition 2.10 (Bar recursion). The constant Bρ,τ of bar recursion of type ρ, τ is
characterised by the following defining equation (cf. Section 1.2 for notation):

B
ρ,τ

ω,g,h
(a) :=


g(a) if ω(â) < |a|

ha(λx.B
ρ,τ

ω,g,h
(a ∗ x)) otherwise

where a ∈ ρ∗ and the other parameters have types ω : ρN → N, g : ρ∗ → τ and
h : ρ∗ → (ρ→ τ)→ τ.
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Before we give our construction, we need some notation for some simple
recursive operations on sequences. We use the symbol© to denote iterated
list concatenation. So for a = [a0, . . . , ak−1] we have

©
x∈a

x := a0 ∗ . . . ∗ ak−1.

We abuse this symbol just like a summation symbol, so for example

©
x∈a

p(x) := p(a0) ∗ . . . ∗ p(ak−1)

and so on. Note that this operation is definable in T0 using recursion over the
length of |a|.

Lemma 2.11. Let x ∈ X and suppose that p : X → X∗ is a function satisfying
T(y, p(y)) for all y ≺ x. Then

d := x ∗©
y∈c(x)

p(y)

satisfies T(x, d) whenever c is a branching modulus for ≻.

Proof. Directly from the Definitions 2.5 and 2.9 (a). �

Theorem 2.12. In T0 + BR
X,X∗ we can define a function Ψc,ωX∗ → X∗ which takes

parameters c : X→ X∗ and ω : XN →N and satisfies

Ψc,ω(a) :=


[] if |a| = 0 or ω(â) < |a|

ā ∗©y∈c(ā)
Ψc,ω(a ∗ y) otherwise.

Moreover, if c resp. ω is a branching modulus resp. modulus of wellfoundedness for ≻,
then the function λx.Ψc,ω([x]) is a derivation function for ≻.

Proof. That Ψ is definable in T0 + BR
X,X∗ is a simple exercise, and we omit it

here (though definability results in later sections are included in full in the
appendix). For the verification proof, we first show that for any sequence
satisfying |a| > 0 and C≻(a) we have:

¬T(ā,Ψc,ω(a))→ (∃y ≺ a)¬T(y,Ψc,ω(a ∗ y)) (3)

To see this, note that C≻(a) implies that ω(â) ≥ |a|, else there would be some
i, i + 1 < |a| with ai ⊁ ai+1. Therefore by the contrapositive of Lemma 2.11 we
obtain (3).

Now, suppose that there exists some x such that ¬T(x,Ψc,ω([x])). Then
by dependent choice together with (3) there exists some infinite descending
sequenceα0 ≻ α1 ≻ . . ., contradicting wellfoundedness of≻. Thus T(x,Ψc,ω([x]))
holds for all x, and we’re done. �
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The above theorem is not deep it itself, but we included as a simple illustra-
tion of the results which will follow. Note the verification proof uses classical
logic together with dependent choice: We could convert this into an intuition-
istic proof which instead uses some variant of bar induction, as is typically
the case for program extraction theorems. However, in this paper we have no
deeper foundational goals which would require the verification of our extracted
terms to be formalisable in a weak intuitionistic theory, so we stick to classical
logic as it is usually more intuitive.

3 Abstract path orders

Path orders form one of the earliest proof rules for termination, and are a central
concept in the theory of term rewriting. Today, a huge variety of different path
orders have been developed, ranging from the general - such as the unified
ordering of [26] - which focus on the common structure shared by termination
orders, to the highly specialised - such as the polynomial path ordering of [1]
- which aim to capture a very precise class of terminating programs. We talk
about path orders in more detail in Section 4, but for now we give a simple
explanation which helps motivate the abstract principle studied here.

Very roughly, path orders capture ‘termination via minimal sequences’.
Consider the Ackermann-Péter function, which recursively defined by the rules

A(0, n) ≻ n + 1

A(m, 0) ≻ A(m − 1, 1)

A(m + 1, n + 1) ≻ A(m,A(m + 1, n))

Suppose that A(m, n) is not wellfounded i.e. triggers an infinite computation.
Then either A(m, n−1) is not wellfounded, or there is some k such that A(m−1, k)
is not wellfounded. In other words, there is some (m′, n′) lexicographically less
than (m, n) such that A(m′, n′) is not wellfounded. Thus non-wellfoundedness
of A(m, n) gives rise to an infinite sequence

A(m0, n0)≫ A(m1, n2)≫ A(m2, n2)≫ . . . (4)

where A(m, n) ≫ A(m′, n′) denotes that (m′, n′) is lexicographically smaller
than (m, n). Informally speaking, (4) plays the role of a minimal sequence, in
the sense that it represents instances of A whose arguments i.e. subterms are
wellfounded, but which are themselves non-wellfounded. Since the relation≫
is wellfounded, then we have proven totality of the Ackermann function.

On an abstract level, path orders are a proof rule which implement the idea
that termination of a program can be inferred from wellfoundedness of minimal
sequences.

Definition 3.1. Let ⊲ be a primitive recursive relation on X which is inductively
wellfounded, by which we mean that induction and recursion over⊲ is available.

Inductive wellfoundedness is equivalent to classical wellfoundedness as de-
fined in Section 2. However, from a computational point of view the two differ:
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Classical wellfoundedness is realized by some modulus of wellfoundedness of
type XN →N, while the computational analogue of inductive wellfoundedness
will be the recursor Rec⊲. Note that a modulus of wellfoundedness for ⊲ is eas-
ily computable in Rec⊲, but defining Rec⊲ in some modulus of wellfoundedness
for ⊲ would seem to require bar recursion in addition.

The reason that we choose to⊲ to be inductively wellfounded is that when X
is some set of terms, ⊲ usually represents the subterm relation, recursion over
which is trivially definable in T0. A key concept in our abstract termination
principle is the notion of a minimal sequence. The precise definition is as follows:

Definition 3.2 (Minimal sequence). An infinite sequence α ∈ XN is minimal if
W(y) for all y ⊳ αn and n ∈N.

In addition to ≻ and ⊲we consider some auxiliary order≫, which interacts
with the other relations in a specific way, which we call a decomposition after the
similar notion in [7].

Definition 3.3 (Decomposition). A primitive recursive relation≫ on X is called
a decomposition of ≻w.r.t ⊲ if it satisfies

(i) whenever x ≻ y then either x≫ y or there exists some z⊳x such that z � y;

(ii) whenever x≫ y and y ⊲ z then x ≻ z.

We are now ready to state and prove our main abstract termination principle,
which is closely related to Theorem 1 of [9].

Theorem 3.4 (Abstract termination principle). Suppose that≫ is a decomposition
of ≻ w.r.t. ⊲ which is classically wellfounded on the set of all minimal sequences. Then
≻ is wellfounded on X.

Proof. Defining A := {x ∈ X : (∀y ⊳ x)W(y)}, we claim that for any nonempty
sequence a ∈ A∗ satisfying C≫(a) we have:

¬W(ā)→ (∃y≪ ā)(¬W(y) ∧ y ∈ A). (5)

To see this, observe that ¬W(ā) implies that the set

Sā := {x ∈ X | x ≺ a ∧ ¬W(x)}

is nonempty. Thus by the minimum principle on ⊲, which follows classically
using induction on ⊲, Sā has some minimal element y. Now, it follows that
ā ≫ y, otherwise, by decomposition property (i) we would have ā ⊲ z � y for
some z, and since ā ∈ A this contradicts ¬W(y). But using property (ii) we can
therefore also show that y ∈ A: since ā ≫ y then for any z ⊳ y we have ā ≻ z,
and ¬W(z) would imply that z ∈ Sā, contradicting minimality of y. This proves
the claim.

For the main result, suppose that ¬W(x) holds for some x, and define α0 to
be the minimal such x w.r.t ⊲. Then we have α0 ∈ A, and C≫([α0]) trivially, and
by applying dependent choice together with (5) we obtain an infinite sequence
α0 ≫ α1 ≫ α2 ≫ . . . with αi ∈ A for all i. But the assumption that ≫ is
wellfounded on minimal sequences. �
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We now give a computational interpretation of Theorem 3.4, in the case
where both ≻ and ⊲ are finitely branching. Similarly to before this assumption
will be represented by a pair of branching moduli c≻ and c⊲. The computational
analogue of inductive wellfoundedness of ⊲ will be access to wellfounded
recursion over ⊲, so it remains to formulate our main assumption that ≫ is
classically wellfounded on the set of all minimal sequences.

Definition 3.5. The predicate T⊲(x, u) on X × X∗∗ is defined as follows:

T⊲(x, u) :≡ |u| = k ∧ (∀i < k)T(yi, ui)

where [y0, . . . , yk−1] = c⊲(x).

Continuing with our earlier example (1), suppose that x ⊲ y only when y is
a proper divisor of x. Then T⊲(6, [[1], [3, 5]]), since 1 and 3 are the only proper
subdivisors of 6 and both T(1, [1]) and T(3, [3, 5]).

Lemma 3.6. A sequence α ∈ XN is minimal iff there exists a sequence β ∈ (X∗∗)N

such that T⊲(αn, βn) holds for all n ∈N.

Proof. Directly from Theorem 2.8. �

This syntactic characterisation for finitely branching orders informs the fol-
lowing adaptation of the modulus of wellfoundedness:

Definition 3.7. A modulus of minimal wellfoundedness for ≻, ⊲ and ≫ is a
function ω : (X × X∗∗)N →N satisfying

(∀n)T⊲(αn, βn)→ (∃i < ω(α, β))(αi 4 αi+1)

where by for clarity we represent the two components of (X ×X∗∗)N separately
as α ∈ XN and β ∈ (X∗∗)N, and write e.g. ω(α, β) instead of ω(λi.〈αi, βi〉).

In the construction that follows we denote by
⊙

the usual map function
i.e. given a ∈ X∗ and p : X→ Y we have

⊙

x∈a

p(x) := [p(a0), . . . , p(ak−1)] ∈ Y∗

where a = [a0, . . . , ak−1]. In addition, given two lists a, a′ ∈ X∗ we denote by a∩a′

the ordered intersection of these lists. The following lemma follows directly
from the definitions:

Lemma 3.8. Let x ∈ X and suppose that q : X→ X∗ is a function satisfying T(y, q(y))
for all y ⊳ x. Then

u :=
⊙

y∈c⊲(x)

q(y)

satisfies T⊲(x, u) whenever c⊲ is a branching modulus for ⊲.
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Lemma 3.9. Let Y := X × X∗∗ and c≻, c⊲ : X→ X∗ are some fixed terms of T0 which
form branching moduli for ≻ and ⊲. Then there is a functional Ψ : (YN → N) →
Y∗ → X∗ definable in T0 + Rec

⊲,X∗ + BRY,X∗ which satisfies

Ψω(a, b) =


[] if |a| = 0 or ω(â, b) < |a|

ā ∗©y∈c≻(ā)
Ra,b(y) otherwise

where Ra,b : X→ X∗ in turn satisfies

Ra,b(y) :=


b̄i[y] if y � c⊲(ā)i for some i < |c⊲(ā)|

Ψω(a ∗ y, b ∗
⊙

z∈c⊲(y)
Ra,b(z)) otherwise

where in the first line, for d ∈ X∗ and y ∈ X, d[y] ⊂ d denotes some sequence contained
in d and satisfying T(y, d[y]) whenever it exists (and just [] otherwise).

Proof. Routine: See Appendix A for full details. �

For the purposes of our verification proof, we make a small assumption:
That 0 encodes some object of X which is minimal w.r.t. ⊳ i.e. contains no
subterms. In particular, we would have T⊲(0, 0X∗) since 0X∗ is assumed to be the
empty sequence. While not strictly necessary, this assumption allows us to use
the usual variant of bar recursion as above.

Theorem 3.10. Suppose that Ψ is defined as in Lemma 3.9, and define Φ : (YN →
N)→ X→ X∗ fromΨ over T0 + Rec

⊲,X∗ as

Φω(x) = Ψω([x], [
⊙

y∈c⊲(x)

Φω(y)]).

Then whenever ω is a modulus of minimal wellfoundedness for ≻, ⊲ and≫ then Φω is
a derivation function for ≻.

Proof. We first claim that for any nonempty 〈a, b〉 ∈ Y∗ such that T⊲(ai, bi) for all
i < |a| and C≫(a) then

¬T(ā,Ψω(a, b))→ (∃y≪ ā, u)(¬T(y,Ψω(a ∗ y, b ∗ u)) ∧ T⊲(y, u)). (6)

To prove the claim, we begin by observing that ω(â, b) ≥ |a|. To see this, observe

that â is a minimal sequence relative to b̂, by our assumption that T⊲(0, []) holds.

Thus ω(â, b) < |a| would imply that there exist i, i + 1 < |a| such that ai ≫ ai+1,
contradicting C≫(a).

ThereforeΨω(a, b) = ā ∗©y∈c⊲(ā)
Ra,b(y) and by Lemma 2.11 there exists some

y ≺ ā such that ¬T(y,Ra,b(y)) and so the set

Sa,b := {x ∈ X : x ≺ ā ∧ ¬T(x,Ra,b(x))}

is nonempty. By the minimum principle Sa,b contains some minimal y. Let
[z0, . . . , zk−1] := c⊲(ā). If u � zi ⊳ ā for some i < k, then since T⊲(ā, b̄) and
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thus T(zi, b̄i) we would have T(y, b̄i[y]) and thus T(y,Ra,b(y)), a contradiction.
Therefore as before y≪ ā by decomposition property (i). Now for z ∈ c⊲(y), by
property (ii) we have z ≺ ā and thus T(z,Ra,b(z)) by minimality of y. Therefore
by Lemma 3.8, u :=

⊙
z∈c⊲(y) Ra,b(z) satisfies T⊲(y, u) and from ¬T(y,Ra,b(y)) we

obtain ¬T(y,Ψω(a ∗ y, b ∗ u)). This proves the claim.
Now suppose the theorem is false and take some minimal x such that

¬T(x,Φω(x)). Then T⊲(x, v) and ¬T(x,Ψω([x], [v])) hold for v :=
⊙

y∈c⊲xΦω(y),

and by dependent choice in conjunction with (6) we obtain a pair of sequences
α, β such that T⊲(αn, βn) but αn ≫ αn+1 for all n, a contradiction. �

3.1 Primitive recursive bounds via closure results for bar recursion

Having extracted a bar recursive term which computes derivation trees for ≻,
we can already apply a variety of closure results in the literature to obtain crude
upper bounds on the derivational complexity of ≻. The termΨω in Lemma 3.9
is formally definable not just from bar recursion but from a single instance of

BR
X×X∗∗,X∗

ω,g,h
where g and h are definable in T0 + wRec

⊲,X∗ .

As a consequence, we can show that the derivational complexity of ≻ is
bounded by some Gödel primitive recursive function whenever the modulus
of minimal wellfoundedness is definable in System T. This follows directly from
Schwichtenberg’s classic result [20] that System T is closed under the rule of
bar recursion, whenever bar recursion has sequence type level 0 or 1. A more
fine grained analysis is the following:

Corollary 3.11. Suppose that≻ is a binary relation whose branching modulus for both
≻ and ⊲ is definable in T0, and that Rec⊲,X

∗

is also definable in T0.

(a) Whenever ≫ has a modulus of minimal wellfoundedness ω which is definable in
Ti, the derivational complexity of ≻ is bounded by some function in Ti+3.

(b) In the special case whereω is definable in T0, the derivational complexity is bounded
by some function in T1.

Proof. Since X is coded in the natural numbers, both the sequence type X × X∗∗

and the output type X∗ can also be encoded in N, and so the functional Ψω
is definable from a single instance BRω,g,h of bar recursion of lowest type. By
the recent analysis of Oliva and Steila [15], whenever the parameters g, h are
in T0 and ω is in Ti, the bar recursor BRω,g,h can be defined in Ti+3 (see [15,
Corollary 3.5]). But then Φω is also definable in Ti+3, and since a derivational
complexity function for≻ is given byλx.|Φω(x)|, this gives us (a). Part (b) follows
analogously using Howard’s more refined result for lower types [11]. �

Corollary 3.11 is by no means exhaustive. For example, Howard’s closure
theorem [11] is extended to fragments of the Grzegorzyk hierarchy by Kreuzer
[12], though it is unclear whether this would be applicable here, since these
fragments do not have access to the full recursor of lowest type. Note that it
could also be that a more carefully analysis of the particular form of bar recur-
sion we use could lead to a significantly improved version of Corollary 3.11.
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We conjecture that our bar recursive program is actually closed on fragments
of System T, although we leave this open for now.

However, all of this demonstrates how our approach of extracting concrete
programs and then appealing to computability theory of those programs leads
to extremely general complexity results. In the next section, we show that the
situation improves further if we strengthen our hypothesis by replacing the
modulus of minimal wellfoundedness by some explicit recursor.

3.2 Derivation functions for inductively wellfounded orders

We now demonstrate how Theorem 3.4 and the associated complexity bounds
can be improved if we take as a stronger premise that minimal sequences are
inductively wellfounded with respect to some concrete relation ◮ on X × X∗∗.

Lemma 3.12. Suppose that◮ is some inductively wellfounded relation on X×X∗∗, and
that Suppose that c≻, c⊲ : X → X∗ are some fixed terms of T0 which form branching
moduli for ≻ and ⊲. Then there is a functional Γ : X × X∗∗ → X∗ definable in
T0 + Rec

⊲,X∗ + Rec◮,X
∗

which satisfies

Γ(x, u) = x ∗ ©
y∈c≻(x)

R̃x,u(y)

where R̃x,u : X→ X∗ satisfies

Rx,u(y) :=



ui[y] if y � c⊲(x)i for some i < |c⊲(x)|

Γ(y, v) if (x, u) ◮ (y, v)

[] otherwise

for v :=
⊙

z∈c⊲(y)
Rx,u(z). Suppose that ◮ satisfies

T⊲(x, u) ∧ T⊲(y, v)∧ x≫ y→ (x, u) ◮ (y, v) (7)

for all (x, u), (y, v). Then for any x, u ∈ T⊲ we have

(∀a, b)(〈a, b〉 ∈ T⊲ ∧ C≫(a ∗ x)→ Ψω(a ∗ x, b ∗ u) = Γ(x, u)) (8)

wheneverω is a modulus of minimal wellfoundedness, whereΨω is defined as in Lemma
3.9.

Proof. That Γ is definable in T0 + Rec
⊲,X∗ + Rec◮,X

∗

is just a simple adaptation of
the proof of Lemma 3.9. We prove (8) by induction on ◮. Note that C≫(a ∗ x)

implies thatω( ̂a ∗ x, b ∗ u) < |a|+1 and thusΨω(a∗x, b∗u) = x∗©y∈c≻(x) Ra∗x,b∗u(y).

So we’re done if we can show that Ra∗x,b∗u(y) = R̃x,u(y) for all y ≺ x.
We do this by a side induction on⊲, so fix some y and assume that Ra∗x,b∗u(z) =

R̃x,u(z) for all z⊳ y. We only need to check the case x≫ y, where we must show
that (x, u) ◮ (y, v) for v :=

⊙
z∈c⊲(y) R̃x,u(z) =

⊙
z∈c⊲(y) Ra∗x,b∗u(z). But since T⊲(y, v)

this follows by (7) and thus

R̃x,u(y) = Γ(y, v) = Ψω(a ∗ x ∗ y, b ∗ u ∗ v) = Ra∗x,b∗u(y)

by the main induction hypothesis. �
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Corollary 3.13. Under the conditions of Lemma 3.12, the functional Φω in Theorem
3.4 is definable in T0 + Rec

⊲,X∗ + Rec◮,X
∗

for any modulus of minimal wellfoundedness
ω.

Proof. This follows from (8), setting |a| = 0 and using induction over ⊲. �

We can now give a more direct formulation of Corollary 3.11:

Corollary 3.14. Suppose that≻ is a binary relation whose branching modulus for both
≻ and⊲ is definable in T0, and that Rec⊲,X

∗

is also definable in T0. Under the conditions
of Lemma 3.12, whenever Rec◮,X

∗

is definable in Ti, the derivational complexity ≻ is
bounded by some function also in Ti. In particular:

(a) For i = 0, the derivational complexity is bounded by a primitive recursive function;

(b) For i = 1, the derivational complexity is bounded by a multiple recursive function.

4 Application: Path orders and term rewriting

We conclude by sketching how our abstract results can be applied in the special
case where X denotes a set of terms in some programming language, which
we take here to be a simple term rewrite system. In this we show how the
formalization of Buchholtz [4] can be incorporated into our setting. The dif-
ference here is that we directly construct derivation functions in fragments
of System T, rather than formalizing wellfoundedness proofs in fragments of
Peano arithmetic.

4.1 (X,⊲) as a term structure

Let X now be instantiated as the set of terms ranging over some countable set of
variables and some finite signature { f1, . . . , fk}, where we assume for simplicity
that each fi has a fixed arity (note that this latter restriction is not essential: see
[4, Section 3]). Clearly X can be arithmetized, and as in [4], we can assign each
term a size as follows:

(i) |xi| := i;

(ii) | f j(t1, . . . , tn)| := max{n, |t1|, . . . , |tn|} + 1.

and assume w.l.o.g. exists some monotone function h such that |t| ≤ t <
h(|t|) for all t. Let ⊲ denote the immediate subterm relation: in other words,
f (t1, . . . , tn)⊲ti for all i = 1, . . . , n. Clearly, s⊳t implies |s| < |t|, and so the recursion
over ⊲ is definable from the usual Gödel recursor over >. In particular, Rec⊲,X

∗

is definable in T0.
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4.2 Approximations to recursive path orders

In general, recursive path order on terms can be characterized in the abstract
as follows: We set t = f (t1, . . . , tn) ≻ s if either

(a) ti � s for some i = 1, . . . , n;

(b) t ≻0 s and t ≻ si for all subterms si of s,

where typically ≻0 is recursively defined in terms of ≻ itself. Note that by (a),
≻ contains the subterm relation, which means that it is a simplification order.
Condition (b) is closely related to the notion of a lifting as studies in e.g. [7]. In
any case, such an order is clearly a decomposition in the sense of our Definition
3.3 relative to≫, where t≫ s denotes the second case above.

Recursive path orders of this kind are fundamental tools in the theory of
term rewriting, as they provide us with a criterion for checking if finitely defined
term rewrite systemR is terminating. Here we would work with orders≻which
are closed under contexts and substitutions, and then whenever the rules l→ r
of R satisfy l ≻ r, then R guaranteed to be terminating. The main challenge is
always to show that ≻ itself is wellfounded.

When it comes to computing complexity bounds, the first issue is that in
general, recursive path orders are not finitely branching, and as a result proofs
of wellfoundedness tend to use rather heavy proof theoretic machinery such
as Kruskal’s theorem. However, this is overcome in [4] by considering finitary
variants of the usual path orders, whose wellfoundedness can be proven in low
fragments of arithmetic.

One can describe Buchholz’ idea in a slightly more general form as fol-
lows: for some primitive recursive function b : N → N define the bounded
b-approximation ≻b of ≻ by t = f (t1, . . . , tn) ≻b s if b(|t|) ≥ |s| and either of the
following hold:

(a) ti �b s for some i = 1, . . . , n;

(b) t≫b s and t ≻b si for all subterms si of s,

where now ≫b is recursively defined in terms of ≻b. Not only is ≻b now
by definition finitely branching, but assuming that ≻b is a primitive recursive
relation, as it invariably is, then ≻b is computably finitely branching: Because
t ≻b s only if b(|t|) ≥ |s| and hence h(b(|t|)) ≥ h(|s|) > s, and we can therefore
take the branching function c≻(t) ∈ X∗ to be the primitive recursively definable
sequence consisting of exactly those terms s ≤ h(b(|t|)) satisfying s ≺b t.

The crux of the idea is the following: Suppose that for anyR reducing under
≻, there is some b such that R is reducing under ≻b, in other words, for any fixed
Rwe can find a finitely branching approximation ≻b of ≻ sufficient for proving
wellfoundedness of R. Then the derivational complexity of R is bounded by
the derivational complexity of ≻b.

Thus our complexity results in Corollaries 3.11 and 3.14 provide us with
a means of bounding the derivational complexity of rewrite systems, and the
generality of our results suggest that they are applicable to a wide range of
different path orders. We finish by sketching a simple example.
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4.3 Example: the multiset path order

We now show how the well known primitive recursive bound on the complexity
of rewrite systems terminating under the multiset path order can be reobtained
in our setting. A simple variant of the path order is obtained by instantiating
≫ as f (t1, . . . , tn)≫ s if

• s = g(s1, . . . , sm) and f >F g, or

• s = f (s1, . . . , sn) and ti ≻ si for some i = 1, . . . , n and s j = t j for all j , i.

where >F is some wellfounded relation on function symbols. It turns out that
any rewrite system reducing under the multiset path order is also reducing
under the approximate order ≻k in which the bounding function b is simply
b(n) = n + k, and k is some sufficiently large number which can be effectively
computed from the rules of the rewrite system.

Given in full, then, the approximate multiset path order ≻k is defined as
follows: t = f (t1, . . . , tn) ≻k s iff k + |t| ≥ |s| and either

(a) ti �k s for some i = 1, . . . , n;

(b) f (t1, . . . , tn)≫k s

where f (t1, . . . , tn)≫k s iff

(i) s = g(s1, . . . , sm) with f >F g and t ≻k si for all i;

(ii) s = f (s1, . . . , sn) and t ≻k si for all i and ti ≻k si for some i and s j = t j for all
j , i.

Now, define the relation ◮k on X × X∗∗ as follows: 〈 f (t1, . . . , tn), u〉 ◮k

〈g(s1, . . . , sm), v〉 iff

f >F g or f = g ∧ (∃i)(ui ⊃ vi ∧ (∀ j , i)(u j ⊇ v j)).

It is easy to see that if T⊲(t, u) ∧ T⊲(s, v) ∧ t ≫k s then 〈t, u〉 ◮k 〈s, v〉: In the
case that (i) holds then f >T g so this is clearly true, while if (ii) holds there is
some i such that ti ≻k si but t j = s j otherwise. But T⊲(t, u) implies that T(ti, ui),
and analogously T⊲(s, v) implies T(si, vi), and so ti ≻k si implies that vi is a
subsequence of ui. Similarly, we must have u j = v j otherwise.

Not only is ◮k clearly primitive recursive, but it is not difficult to show
that Rec◮k ,X

∗

is definable in T0: This is just a bounded recursion in the first
component, while in the second component we can find an encoding of T∗∗ into
N such that (∃i)(ui ⊃ vi ∧ (∀ j , i)(u j ⊇ v j)) implies that u > v.

Therefore by Corollary 3.14, the derivational complexity of ≻k is bounded
by a primitive recursive function, and therefore the same is true for any rewrite
system R reducing under ≻.

Both the multiset and lexicographic path orders are studied in more de-
tail by the author together with Georg Moser in [14], where a more detailed
construction of the derivational complexity functions is given than our brief
sketch here, although the main results of this paper constitute a considerable
generalisation of [14].
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5 Conclusion

The main result of this paper was a constructive analysis of the wellfounded-
ness of abstract path orders, which in particular subsumes the usual recursive
path orders encountered in the term rewriting literature. A such, the paper is
a contribution to the proof theoretic analysis of termination, which has seen a
number of recent developments [2, 3, 8, 14]. As a side product of our theoret-
ical work, we provide a series of metatheorems which allow us to relate the
complexity of a wellfounded order to some subrecurive system of functionals.
While we only sketched an illustration of this in Section 4, we believe that
the formal extraction of programs from termination proofs has a great deal of
potential in providing upper bounds on the complexity of programs, and in
this article hope to have provided a promising first step in this direction. We
conclude with a collection of open problems.

An obvious direction for future research is to use the techniques presented
here to obtain new bounds and metatheorems for the complexity of concrete
termination orders. While we mentioned the well-known recursive path orders
as a simple example of where Corollary 3.14 could be applied, of particular
interest would be the analysis of termination orders for which an upper bound
on the induced derivational complexity is not known.

Most termination orders in the literature work on sets of first order terms.
However, up to the very final section we do not assume anything about the
structure of X, and it would be interesting to find our whether our termina-
tion arguments can be applied to more interesting structures. In particular,
Goubault-Larrecq [9] considers wellfounded orders on graphs, automata and
higher-order functionals, and it would be intriguing to see whether any of
these are subsumed by our abstract principle, and whether any meaningful
complexity results could be obtained.

In our approach, we establish complexity bounds by extracting higher-order
recursive programs in some subrecursive calculus of functionals, and looking
at the type 1 functions definable in these calculi. A number of similar proof
theoretic investigations of path orders and abstract notions of termination exist
in the literature, notably those due to Weiermann [23, 25] which are based on
an intricate ordinal analysis. It would be instructive to make more precise how
our framework based on variants of bar recursion compares to his.

Finally, as briefly mentioned in Section 3.1, it would be interesting to for-
mally establish a set of closure properties along the lines of [6, 15, 20] for finitely
branching bar recursion, which would give a direct correspondence between
the subrecursive strength of bar recursors and the derivational complexity of
abstract orders.
Acknowledgements. I am indebted to Georg Moser for suggesting a proof
theoretic study of termination principles, and in particular for pointing out that
the results of [4] can be viewed in a more abstract way. This work was partially
supported by the Austrian Science Fund (FWF) project P 25781-N15.
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A Appendix

Proof of Lemma 3.9. We define functions g : Y∗ → X∗ and h : Y∗ → (Y → X∗) →
X∗ by

g(a, b) := []

h(a, b)(p) :=


[] if |a| = 0

ā ∗©y∈c≻(ā)
Rec

⊲

fā,b̄,p
(y) otherwise

where f : X→ X∗∗ → (Y→ X∗)→ X→ (X→ X∗)→ X∗ is defined by

fx,u,p(y)(q) :=


ui[y] if y � c⊲(x)i for some i < |c⊲(x)|

p(y,
⊙

z∈c⊲(y) q(z)) otherwise

and d[y] is defined as in the statement of the lemma. Now, it is not difficult
to see that since ≻ is primitive recursive and c≻ a branching modulus then
T(y, d) is primitive recursive, and thus so is d[y] since this can be computed
via a bounded search. Moreover, the case distinction in the definition of f
is primitive recursively decidable, and so the functional as a whole is clearly
definable in T0. It is obvious then that f is definable in T0 + Rec

⊲,X∗ and so

Ψω := BRY,X∗

ω,g,h

is definable in T0 + Rec
⊲,X∗ + BRY,X∗ . To see that it satisfies the relevant equations

is just a matter of unwinding definitions: We have Ψω(a, b) = h(a, b)(. . .) = [] is

|a| = 0 andΨω(a, b) = g(a, b) = [] if ω( ˆa, b) < |a|, and otherwise

Ψω(a, b) = ā ∗©
y∈c≻(ā)

Rω,a,b(y)

for Rω,a,b := Rec⊲
fā,b̄,p

and p := λx, u.Ψω(a ∗ x, b ∗ u). But then

Rω,a,b(y) = fā,b̄,p(y)(λz ⊳ y . Rω,a,b(z))

=


b̄i[y] if y � c⊲(ā)i for some i < |c⊲(x)|

p(y,
⊙

z∈c⊲(y)
Rω,a,b(z)) otherwise

and in the second line

p(y,
⊙

z∈c⊲(y)

Rω,a,b(z)) = Ψω(a ∗ y, b ∗
⊙

z∈c⊲(y)

Rω,a,b(z))

which completes the proof. �
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