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Abstract

The discovery of ferroelectricity in HfO2-based thin films opens up new opportunities for using

this silicon-compatible ferroelectric to realize low-power logic circuits and high-density non-volatile

memories. The functional performances of ferroelectrics are intimately related to their dynamic

responses to external stimuli such as electric fields at finite temperatures. Molecular dynamics is

an ideal technique for investigating dynamical processes on large length and time scales, though its

applications to new materials is often hindered by the limited availability and accuracy of classical

force fields. Here we present a deep neural network-based interatomic force field of HfO2 learned

from ab initio data using a concurrent learning procedure. The model potential is able to predict

structural properties such as elastic constants, equation of states, phonon dispersion relationships,

and phase transition barriers of various hafnia polymorphs with accuracy comparable with den-

sity functional theory calculations. The validity of this model potential is further confirmed by

the reproduction of experimental sequences of temperature-driven ferroelectric-paraelectric phase

transitions of HfO2 with isobaric-isothermal ensemble molecular dynamics simulations. We suggest

a general approach to extend the model potential of HfO2 to related material systems including

dopants and defects.
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I. INTRODUCTIONS

Ferroelectrics characterized by the electric field-tunable polarization, fast switching speed,

low power consumption, and high endurance have been considered as excellent materials

to realize high-speed energy-efficient logic and nonvolatile memory devices1–3. However,

the poor compatibility of conventional perovskite ferroelectrics such as Pb(Zr, Ti)O3 with

the complementary metal-oxide-semiconductor (CMOS) technology has made it difficult to

down scale the ferroelectric memory to the sub-100 nm regime4. Though the first commercial

ferroelectric random-access memory (FeRAM) appeared in the early 1990s5, current state-of-

art technology node remains 130 nm6. In comparison, silicon-based memories such as DRAM

and NAND flash memory have already achieved the 10-nm technology node, delivering much

lower cost per bit than FeRAM7. Finding ferroelectrics with improved CMOS compatibility

thus becomes a key task for the development of ferroelectric memory technology7,8.

The discovery of robust nanoscale ferroelectricity in HfO2-based thin films by NamLab in

2011 opened up exciting opportunities for ferroelectric-based electronics9. Hafnium oxide,

being thermodynamically stable on silicon, has proved CMOS compatibility10 and is already

used as the high-permittivity gate insulator in silicon-based field effect transistors. Exper-

imentally, it was found that an ultrathin doped HfO2 film of just ≈1 nm can still support

switchable polarization11, free from the depolarization effect often presented in thin films of

perovskite ferroelectrics12–14. Moreover, current atomic layer deposition (ALD) technique is

capable of depositing hafnium oxides in high-aspect-ratio structures on silicon, allowing the

fabrication of high-quality 3D-stackable memory7,15.

The origin of ferroelectricity in HfO2-based thin films has been an active research topic

since its discovery. Despite the relatively simple chemical composition, HfO2 is known to

form many polymorphs. At room temperature, bulk HfO2 will crystallize in a monoclinic

phase (m-phase, space group P21/c), which evolves to a tetragonal phase (t-phase) of space

group P42/nmc and subsequently to a cubic phase of space group Fm3̄m with increasing

temperature. The phase transition of HfO2 at ambient temperature with increasing pres-

sure follows P21/c → Pbca → Pnma16. All these polymorphs have inversion symmetry

thus forbidding spontaneous polarization. Combined experimental and theoretical studies

eventually pinpointed the phase responsible for the ferroelectricity: an orthorhombic phase

in the space group of Pca21 (po-phase)17–21. However, a series of first-principles density
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functional theory (DFT) studies revealed that the po-phase has energy higher than the m-

phase18,19,21, whereas simply applying hydrostatic pressures or epitaxial strains is not enough

to make the po-phase favored over the m-phase19,22. The general consensus now is that the

thermodynamic stability of ferroelectric HfO2 results from combined effects of various fac-

tors such as doping23–27, mechanical stress22,28, oxygen vacancy29,30, surface/interface/grain

boundary energy17,21,31–34, electric fields22, and substrate orientations35. More recently, it

was pointed out that the flat polar phonon bands in HfO2 give rise to intrinsically localized

dipoles, responsible for the robust scale-free ferroelectricity36.

Like all other ferroelectrics, the functionalities of HfO2-based ferroelectrics depend on

various kinetic and dynamical processes that often span many scales in time and space.

Recent experiments suggest that the thermodynamic arguments are not enough to explain

the emergence of the metastable po-phase34,37. Park et al. found that the fraction of the

low-entropym-phase in Hf0.5Zr0.5O2 thin films increases with increasing temperature, contra-

dictory to the prediction of the thermodynamic model that a higher temperature will favor

high-entropy phases such as t-phase and po-phase34. The kinetic effect of phase transitions

during the annealing and cooling processes likely contribute to the formation of the polar

phase37,38. Polarization switching is another important dynamical process for a ferroelectric

as the switching speed and coercive field dictate the writing speed and power consumption,

respectively39,40. However, the atomistic mechanisms and characteristics of ferroelectric

switching in this fluorite-structure ferroelectric remain largely unexplored, while experimen-

tal measurements reported in literature seem to support different switching mechanisms41–43.

Therefore, it is desirable to have a tool to study the kinetic and dynamical properties of

HfO2-based ferroelectrics at the atomic level.

First-principles DFT calculations have played an important role in understanding the

structure-property relationship of ferroelectrics. Nevertheless, the study of finite-temperature

dynamical properties of ferroelectrics is still beyond the reaches of conventional DFT meth-

ods due to the expensive computational cost. Statistical methods such as molecular dynam-

ics (MD) simulations are ideal techniques for investigating dynamical processes on larger

length/time scales while providing atomistic details with femtosecond time-resolution. In

the case of HfO2, several force fields have already been developed44–47. However, none of

them considered the ferroelectric Pca21 phase during the parameterization, and it is not yet

clear whether those force fields can accurately describe the structural properties of the ferro-
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electric phase. Such situation also reveals the limitation of MD simulations: applications to

new materials systems are often hindered by the limited availability and accuracy of classical

force fields. Developing a force field is often a tedious process because of the many-body

nature of the potential energy. Most force fields approximate the interatomic interactions

with sets of relatively simple analytical functions in which the parameters are fitted to a

database of information including quantum mechanical calculations and/or experimental

thermodynamic properties. The “true” interatomic potential of complex materials is intrin-

sically a high-dimensional function, which can only be roughly approximated by analytical

functions of “ad hoc” forms with a limited number of parameters. Moreover, the transition

metal-oxygen bonds in ferroelectrics often possess a mixed ionic-covalent character48 due to

the p-d hybridization, making the force field development even more challenging49–51.

The application of machine learning (ML) to force field development offers an attractive

solution to the accuracy-efficiency dilemma by combining the strengths of DFT and classical

MD. Many ML-based force fields have been developed for systems of vastly different bond-

ing characters, ranging from organic molecules52,53, molecular and condensed water54–56, to

metals57–59 and alloys60–62, semiconductors such as silicon63–66 and GeTe67, and to inorganic

halide perovskites68. In general, there are two key ingredients in a ML-based force field: a

descriptor that represents the local atomic environment and a non-linear fitting function that

maps the descriptor to the local energy contribution. For example, Behler and Parrinello

(BP) proposed to use “symmetry functions” to describe the local geometric environment of

an atom, which were then used as inputs for an artificial neural network (NN) to evaluate the

atomic contribution to the total energy69. Bartok et al. developed a Gaussian approximation

potential (GAP) for silicon using the smooth overlap of atomic positions (SOAP) kernel70

that quantifies the similarity between atomic neighborhoods characterized by neighbor den-

sities66. More recently, the smooth edition of the Deep Potential (DP) scheme71,72 employed

a faithful and symmetry-preserving embedding network to parametrize the descriptors, by-

passing the need to fix hand-crafted descriptors and enabling an end-to-end procedure for

representing complex chemical environments in chemical reactions73, heterogeneous aqueous

interfaces74, and high-entropy alloys75.

In this work, we applied the Deep Potential Molecular Dynamics (DeePMD) method71,72

to construct an accurate and transferable force field for HfO2 by concurrently learning from

results of DFT calculations59,61. The resultant DP model reproduces the DFT results of a
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wide range of thermodynamic properties of various hafnia polymorphs, including the fer-

roelectric Pca21 phase. Notably, the temperature-driven ferroelectric-paraelectric phase

transition of HfO2 is well captured by MD simulations in the isobaric-isothermal (NPT ) en-

semble. The DP predictions of transition barriers between different phases of HfO2 (P21/c,

Pca21, Pbca, and P42/nmc) agree well with first-principles results. We believe current

DP model of HfO2 can be systematically improved and extended by adding new training

data representing new atomic environments, enabling atomistic modeling of various extrinsic

effects such as doping and defects.

II. COMPUTATIONAL METHODS

A. Deep potential molecular dynamics

We briefly discuss the key concepts in DeePMD method and refer interested readers to

the original papers71,72 for detailed discussions. The DP model assumes the total potential

energy (E) can be expressed as a sum of atomic energies (Ei), E =
∑

i E
i. Each atomic

energy Ei is parameterized with a deep neural network (DNN) function defined as Ei =

Eωαi (Ri), where R
i is the local environment of atom i in terms of Cartesian coordinates

relative to its neighbors within a cutoff radius rc, αi denotes the chemical species of ith

atom, and ωαi
is the DNN parameter set that eventually will be optimized by the training

procedure. It is noted that each sub-network of Ei consists of an embedding and a fitting

neural network. The embedding network maps Ri to a feature matrix D
i that preserves the

permutation, translation, and rotation symmetries of the system, while the fitting network

is a standard feedforward neural network that maps Di to the atomic energy Ei.

In this work, the smooth version of the DP model was employed72 and the DeePMD-kit

package76 was used for training. The cut-off radius is set to 6 Å, and the inverse distance 1/r

decays smoothly from 1 Å to 6 Å to remove the discontinuity introduced by the cut-off. The

embedding network of size (25, 50, 100) follows the ResNet-like architecture. The fitting

network is composed of three layers, each containing 240 nodes. As reported in ref71, the

loss function is defined as

L(pǫ, pf , pξ) = pǫ∆ǫ2 +
pf
3N

∑

i

|∆Fi|+
pξ
9
‖∆ξ‖2 (1)
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where ∆ denotes the difference between the DP prediction and the training data, N is the

number of atoms, ǫ is the energy per atom, Fi is the atomic force of atom i, and ξ is the

virial tensor divided by N . pǫ, pf , and pξ are tunable prefactors. Here we increase both pǫ

and pξ from 0.02 to 1. And pf decrease from 1000 to 1.

We note here that the additive structure E =
∑

iE
i is an ansatz of the DP model, and

of many other ML-based force fields. Such an ansatz ensures that the potential energy is

extensive, so that the same model can be used to describe systems with different number

of atoms. The introduction of the cutoff radius rc makes the interaction range finite and

potentially misses some long-range effect. On the other hand, in many cases, the finite-range

model indeed gives an accuracy of ∼ 1meV/atom in energy, which is comparable with the

intrinsic error of the functional approximation adopted in DFT, and is sufficient for most

properties of practical interest. This is indeed the case for the system we study here. The

incorporation of dopants and defects, as well as finite fields, may require a more delicate

treatment of the long-range interactions, which will be left to future investigations.

B. Deep potential generator

Since ab initio calculations are expensive, to develop a reliable ML-based potential, we

need a procedure that generates an optimal and minimal set of training data that covers a

wide range of relevant configurational space. Here we employ the Deep Potential generator

(DP-GEN) scheme61. DP-GEN is a concurrent learning procedure involving three steps,

exploration, labeling, and training, which form a closed loop (Fig. 1). Starting with an

ab initio database, an ensemble of DP models are trained with different initial values of

ωαi
. In the exploration step, one of these models is used for MD simulations to explore the

configuration space. For each newly sampled configuration from MD, the ensemble of DP

models will generate an ensemble of predictions (e.g., energies and atomic forces). Since the

ensemble of models only differ in the initialization of network parameters ωαi
, these models

will exhibit nearly identical predictive accuracy for configurations that are well represented

by the training data. Otherwise, they are expected to give scattered predictions with a

considerable variance. Therefore, the deviation of the model predictions can be used to

formulate the criterion for labeling: a sampled configuration giving rise to a large model

deviation will be labeled via DFT calculations and will be added to the training database
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for training in the next cycle.

In detail, the model deviation E is defined as the maximum standard deviation of the

predictions of the atomic forces Fi,

E = max
i

√

〈||Fi − 〈Fi〉 ||2〉 (2)

where 〈...〉 is the average taken over the ensemble of DP models. In practice, we introduce

two thresholds, Elo and Ehi. Only configurations satisfying Elo < E < Ehi are labeled for DFT

calculations, because a configuration with a small E < Elo is already well described by the

current DP model, whereas a configuration with a large model deviation E > Ehi is likely to

be highly distorted or unconverged in DFT calculations.

When all sampled configurations have E < Elo, the ensemble of DP models is considered

converged. Here we set Elo = 0.12 eV/Å and Ehi = 0.25 eV/Å. The described automatic and

iterative workflow was performed using DP-GEN package.

C. Initial training database and exploration protocol

The initial training database contains structures generated by randomly perturbing

ground-state structures of P21/c, Pbca, Pca21 and P42/nmc phases of HfO2. We use 2×2×2

supercells of 96 atoms for DFT calculations with the Vienna Ab initio Simulation (VASP)

package77,78. The projected augmented wave (PAW) method79,80 and the generalized gra-

dient approximation of Perdew-Burke-Ernzerhof (PBE)81 type for the exchange-correlation

functional are employed. An energy cutoff of 600 eV and 2×2×2 k-grid mesh are sufficient

to converge the energy and atomic force. At the exploration step, the configuration space

is sampled by running NPT simulations at various temperatures (from 100 to 3300 K) and

pressures (from −50 to 400 kBar). Because the training database will keep incorporating

new configurations generated and labeled on the fly during the exploration, we expect the

final converged DP model is not sensitive to the exact construction of the initial training

database.

D. MD simulations of phase transition

The optimized DPmodel of HfO2 is used to study phase transitions driven by temperature

by performing NPT MD simulations. We use a 8×8×8 supercell of 6144 atoms and a time
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step of 1 fs. The temperature is controlled via the Nosé-Hoover thermostat and the pressure

is maintained using the Parrinello-Rahman barostat as implemented in LAMMPS82. The final

configuration of the simulation at a lower temperature is used as the initial configuration

for the simulation at a higher temperature.

III. RESULTS AND DISCUSSIONS

A. Fitting performance of DP model

Figure 2 compares the energies and atomic forces predicted by DFT and DP for all

the structures in the final training database (21768 configurations) with insets showing

the distributions of absolute errors. We find an overall satisfactory agreement between DP

predictions and DFT results with a mean absolute error (MAE) of 1.6 meV/atom for energy.

This clearly demonstrates that the deep neural network-based potential model has excellent

representability, capable of learning complex and highly non-linear energy functional with

little human intervention. The whole DP-GEN process carried out 61 iterations during

which a total number of 41 million configurations were sampled with only 21768 (0.05%)

configurations selected for labeling. The usage of model deviation as an error indicator for

labeling substantially reduced the computational cost associated with DFT calculations.

B. Predictions of static properties of hafnia polymorphs

Table I compares the lattice parameters of different phases of HfO2 optimized with DFT

and DP at 0 K, demonstrating excellent agreement. Elastic constants and moduli are funda-

mental material properties as they reflect the strength of chemical bonds that are intimately

related to the second derivative of the potential energy. We use the DP model to calculate

the elastic properties for a few hafnia polymorphs, P21/c, Pbca, Pca21, P42/nmc, Fm3̄m,

P21212, Pbcn, and Pmn21, and compare the DP values with DFT results.

As illustrated in Fig. 3 and detailed in Table II, the elastic constants and moduli from

the DP model are comparable with the DFT values. Considering that the values of elastic

constants distribute over a wide range from −50 GPa to 600 GPa, the demonstrated agree-

ment between DP and DFT results highlight the accuracy of the optimized model. It is

noted that the training database does not contain any elastic property nor any structural
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information of P21212, Pbcn, and Pmn21 phases explicitly. The ability of the DP model to

predict reasonably well the elastic properties of phases not included in the training database

with quantum mechanical accuracy highlights its accuracy as well as transferability. DP and

DFT predictions of equations of states (EoSs) of selective hafnia polymorphs are reported in

Fig. 4. It is clear that DP well reproduce DFT EoSs as well as the order of phase stability:

E(P21/c) < E(Pbca) < E(Pca21) < E(P42/nmc) < E(Fm3̄m). It is remarkable that DP

is capable of capturing the small energy difference between Pbca and Pca21.

To further investigate the vibrational property predicted by the DP model, we report

in Fig. 5 the phonon spectra of P21/c, Pbca and Pca21 phases. An accurate prediction of

the phonon spectra requires a good description of the second-order derivative information

around local minima of different phases, which is not explicitly considered in the DP-GEN

process. We observe a fairly good agreement between DP and DFT results. Adding per-

turbed structures for calculating the phonon spectra to the training dataset should further

improve the DP prediction of this property.

C. Phase Transitions

The formation of ferroelectric po-phase in HfO2 thin films was suggested to have a strong

kinetic contribution that the transformation from the metastable t- and po-phases to the

most stable m-phase are suppressed by a kinetic barrier34,35,37. In order to use MD to study

phase transitions at finite temperatures, it is necessary for the force field to accurately predict

the solid-solid phase transition barriers. This is a challenging task as the intermediate struc-

tures during the transition are often strongly distorted relative to equilibrium structures.

Following a similar protocol established in a previous study35, we first used variable-cell

nudged elastic band (VC-NEB) technique to determine the minimum energy paths (MEPs)

connecting different phases of HfO2 using the USPEX code83–85. The ab initio calculations

of force and stress tensors were performed using PBE exchange-correlation functional, con-

sistent with the method used to label structures in the DP-GEN scheme. Specifically, five

solid-solid phase transitions relevant to the growth of ferroelectric HfO2 thin films were

studied: P21/c ↔ P42/nmc, P21/c ↔ Pca21, Pca21 ↔ P42/nmc, Pbca ↔ P42/nmc, and

Pca21 ↔ Pbca. The energies of structures of identified MEPs were then evaluated with the

DP model. Figure 6 compares the DP and DFT energies along the MEPs, showing excellent
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agreement between DP and DFT with a MAE of 2.2 meV/atom.

One major focus of this work is to enable MD simulations of the newly discovered ferro-

electric HfO2. We further simulate the temperature-driven phase transitions starting with

the ferroelectric Pca21 phase using the DP model and a 6144-atom supercell. The local

displacement of the oxygen atom relative to the center of its surrounding Hf4 tetrahedron

is used to gauge the local symmetry breaking (Fig. 7a) . Figure 7b shows the temperature

dependence of probability distributions of local oxygen displacements along Cartesian axes.

We find that at 600 K, the distributions along the [100] and [001] directions are symmetric,

whereas the distribution along [010] is asymmetric with one peak centered around zero and

another peak centered around 0.6 Å (Fig. 7b inset). This is consistent with the structural

origin of ferroelectricity in Pca21 HfO2 that only half of oxygen atoms are locally displaced

along the [010] direction (Fig. 7a). With increasing temperature, the positive peak of d[010]

distribution shifts toward a lower value, indicating a decrease of total polarization and a

displacive phase transition. In the high temperature paraelectric phase (2400 K), the d[010]

distribution becomes a single peak. Figure 7c shows the temperature dependence of lattice

constants and the average value of d[010], which clearly reveals a ferroelectric-to-paraelectric

phase transition with the tetragonal P42/nmc phase being the non-polar high-temperature

phase, agreeing with experimental observations.

It is well known that the phase transition temperature (Tc) predicted with MD will suffer

from the supercell size effect. The ferroelectric-paraelectric Tc for single-crystal ferroelectric

HfO2 obtained using a 96-atom supercell is ≈1200 K, comparable with previous ab inito MD

simulations using a supercell of the same size86,87. We confirm that simulations with 6144-

atom and 12000-atom supercells yield similar Tc of ≈2000 K. This highlights the importance

of using a large supercell to obtain the intrinsic Tc for ferroelectric HfO2.

D. Developing force field beyond pure HfO2

We make a few general comments here regarding the approach to systematically extend

the applicability of the DP model of HfO2. It is well known that the ML method works

essentially by interpolating the high-dimensional data contained in the training database.

Though it is the DP model with optimized network parameters that will be used in practice,

we suggest the associated training database is a more fundamental entity which can be used
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to re-train a new DP model with accuracy similar to the current one or any other ML-based

force field if needed. Since the training data is generated with expensive first-principle

calculations, making the training database available to the public will greatly facilitate

the development of new force fields through community efforts. In this work, we focus on

developing a DP model for pure HfO2. Given that extrinsic effects such as dopants and

defects can strongly affect the ferroelectric properties of HfO2, it is also desirable to have an

accurate and efficient model potential that accounts for these extrinsic effects. Thanks to

the ability of deep neural work to faithfully represent complex and highly nonlinear PES, it

is expected a DP model with improved transferability can be readily developed by (1) adding

new structures with dopants/defects of interests and (2) setting up appropriate exploration

runs to generate new structures with dopants/defects. In this spirit, we make our final

training database available through a public repository DP Library88.

IV. CONCLUSIONS

In summary, we applied Deep Potential Molecular Dynamics method to develop a force

field for HfO2 utilizing a concurrent learning scheme called DP-GEN. The force field is a

parameterized deep neural network that maps local atomic environment to atomic energy.

Using the model deviation of an ensemble of trained DP models as the indicator for fast

labeling not only alleviates the burden of human interventions but also significantly reduces

the total cost of first-principles calculations needed to obtain an accurate force field. The

accuracy and transferability of the force field are confirmed by comparing a wide range of

materials properties (e.g., elastic constants, EoSs, and phonon spetra) computed with the DP

model to ab initio results. The DP model can also predict accurately the intrinsic solid-solid

transition barriers between different polymorphs of hafnia and capture the main features of

temperature-driven phase transitions of the newly discovered ferroelectric phase. We expect

the developed DP model will be a useful tool to study the kinetic and dynamical properties

of ferroelectric HfO2. The development of a high-fidelity force field of HfO2 demonstrated

the ability of DPMD and DP-GEN to deal with materials systems consisted of complex

transition metal-oxygen bonds. Finally, we suggest that the training database is a more

fundamental entity and its easy access by the public will greatly facilitate the development

of ML-based force fields.
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TABLE I. Lattice parameters (a, b, c) at 0 K calculated by DP and DFT. DP vales in bold. All

phases are orthogonal, except for the P21/c phase, whose angle parameters are predicted to be

(α, β, γ) = (90.000◦, 99.678◦, 90.000◦) by both DP and DFT.

a (Å) b (Å) c (Å)

P21/c
5.138 5.190 5.322

5.146 5.154 5.352

Pbca
5.266 10.093 5.077

5.265 10.094 5.078

Pca21
5.266 5.047 5.077

5.265 5.047 5.078

P21212
5.162 5.181 4.920

5.153 5.230 4.956

Pbcn
4.850 5.833 16.032

4.824 5.839 16.032

Pmn21
3.434 5.179 3.795

3.456 5.254 3.632

P42/nmc
5.074 5.074 5.228

5.075 5.075 5.279

Fm3̄m
5.071 5.071 5.071

5.067 5.067 5.067

18



TABLE II. Elastic constants (C), bulk modulus (Bv), shear modulus (Gv), and Young’s modulus

(Ev) in GPa calculated by DP and DFT. DP vales in bold.

P21/c Pbca Pca21 P21212 Pbcn Pmn21 P42/nmc Fm3̄m

C11

337.59 341.01 341.78 212.55 255.83 371.37 366.52 566.83

371.63 340.64 340.63 273.39 214.19 340.66 366.00 571.17

C22

390.90 395.94 395.93 212.52 298.81 351.82 366.51 566.77

378.18 398.00 398.00 307.07 268.04 281.57 366.00 571.17

C33

289.95 390.88 390.98 335.16 358.22 338.51 283.58 566.86

369.25 373.00 372.99 357.91 344.82 335.12 241.33 571.17

C12

165.01 129.59 130.43 225.53 167.25 98.31 233.50 96.60

160.44 129.32 129.32 141.66 148.92 62.80 227.72 99.52

C13

104.46 95.06 95.38 166.47 152.60 252.60 60.08 96.60

131.64 81.23 81.23 157.19 141.12 285.71 59.18 99.52

C23

162.15 126.44 126.60 142.04 126.20 176.57 60.07 96.54

160.53 124.77 124.77 166.95 108.44 112.87 59.18 99.52

C44

81.51 86.31 86.40 -71.27 92.58 -0.39 7.87 72.26

104.31 88.65 88.65 -15.38 85.26 19.90 33.58 65.08

C55

94.55 -31.24 -31.17 -69.80 119.52 161.71 7.87 72.25

89.49 -29.56 -29.56 -64.77 110.51 182.11 33.58 65.08

C66

126.44 109.07 109.54 127.28 129.09 74.37 169.99 72.26

116.85 115.00 115.00 125.49 131.31 48.54 182.65 65.08

Bv

221.30 203.78 204.14 205.83 200.65 235.29 191.30 253.33

224.69 198.47 198.47 210.68 180.48 208.35 185.75 254.77

Gv

137.40 111.58 81.34 12.32 84.61 99.36 84.71 82.75

124.62 106.26 91.78 40.57 86.57 93.99 86.57 83.18

Ev

349.09 286.57 213.74 36.24 222.97 255.85 223.24 222.20

321.44 275.36 236.40 114.38 226.75 240.26 226.75 220.22
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FIG. 1. DP-GEN workflow. One cycle of DP-GEN contains three steps: exploration, labeling,

and training. Molecular dynamics simulations using a DP model are performed in the exploration

step to sample new configurations, among which candidate configurations are selected by the error

indicator. The labeling step undertakes ab initio calculations for the candidate configurations

obtained in the exploration step. An ensemble of new DP models are then re-trained using the

updated training database.
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FIG. 2. Comparison of (a) energies and (b-d) atomic forces predicted using the DP model with

reference DFT results for configurations in the final training database. The insets provide the

distribution of the absolute error.
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(a)
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FIG. 3. (a) Elastic constants and (b) various moduli (shear, bulk, and Young’s modulus) of different

HfO2 polymorphs.
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FIG. 4. Equation of states of different HfO2 polymorphs. Solid lines and cross points denote

DFT and DP results, respectively. The DP model predicts the correct sequence of phase stability:

E(P21/c) < E(Pbca) < E(Pca21) < E(P42/nmc) < E(Fm3̄m).
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FIG. 5. The phonon dispersion relations of three different phases of HfO2. The phonopy package89

was used to produce the results.
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FIG. 7. (a) Structure of ferroelectric HfO2 in the space group Pca21. Hafnium atoms are denoted

by golden balls. Oxygen atoms with zero and non-zero [010] displacements relative to the center

of their surrounding Hf4 tetrahedron are colored in pink and red, respectively. (b) Probability

distributions of atomic displacements (d[010]) of O atoms along [010] at various temperatures. The

inset shows the distributions of O atomic displacements along [100], [010], and [001], respectively,

at 600 K. Oxygen atoms have net displacements along [010]. (c) Temperature-dependent lattice

constants and average value of d[010] of oxygen atoms from DPMD simulations with a 6144-atom

supercell. The dashed organe line is obtained using a 96-atom supercell.
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