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BCC transition metals (TMs) exhibit complex temperature and strain-rate dependent plastic deformation be-
haviour controlled by individual crystal lattice defects. Classical empirical and semi-empirical interatomic
potentials have limited capability in modelling defect properties such as the screw dislocation core structures
and Peierls barriers in the BCC structure. Machine learning (ML) potentials, trained on DFT-based datasets,
have shown some successes in reproducing dislocation core properties. However, in group VB TMs, the
most widely-used DFT functionals produce erroneous shear moduli C44 which are undesirably transferred to
machine-learning interatomic potentials, leaving current ML approaches unsuitable for this important class of
metals and alloys. Here, we develop two interatomic potentials for BCC vanadium (V) based on (i) an extension
of the partial electron density and screening parameter in the classical semi-empirical modified embedded-atom
method (XMEAM-V) and (ii) a recent hybrid descriptor in the ML Deep Potential framework (DP-HYB-V).
We describe distinct features in these two disparate approaches, including their dataset generation, training pro-
cedure, weakness and strength in modelling lattice and defect properties in BCC V. Both XMEAM-V and DP-
HYB-V reproduce a broad range of defect properties (vacancy, self-interstitials, surface, dislocation) relevant
to plastic deformation and fracture. In particular, XMEAM-V reproduces nearly all mechanical and thermody-
namic properties at DFT accuracies and with C44 near experimental value. XMEAM-V also naturally exhibits
the anomalous slip at 77 K widely observed in group VB and VIB TMs and outperforms all existing, publically
available interatomic potentials for V. The XMEAM thus provides a practical path to developing accurate and
efficient interatomic potentials for nonmagnetic BCC TMs and possibly multi-principal element TM alloys.

I. INTRODUCTION

BCC transition metals (TMs) and alloys are an impor-
tant class of structural materials for high temperature, high
strength, radiation or corrosion-resistance applications [1].
Their plastic deformation and fracture behaviour are critical
for flaw tolerance and structure integrity [2]. Controlling plas-
ticity and fracture is thus essential but challenging, since both
are governed by crystal lattice defect generation, interaction
and evolution spanning multiple time and length scales [3].
For example, point defects such as self-interstitials are gener-
ated at individual atomic sites within a few femtoseconds dur-
ing ion irradiation but their diffusion can occur across multiple
grains and over the entire service life of the components [3].
The challenge is further amplified in the BCC TM family
with plenty of surprises seen in experiments [4]. It is now
well-established that BCC TMs exhibit strong temperature
and strain-rate dependent yield [2, 5], non-Schmid/anomalous
slip [6], parabolic hardening [5] and planar slip at low temper-
atures [7], as well as a ductile-to-brittle transition (DBT [2, 8])
below some characteristic temperatures, all of which are dis-
tinctly different from the behaviour in FCC metals.

At low temperatures, dislocation plasticity is governed by
the glide of individual 〈111〉/2 screw dislocations, which have
a high lattice friction (or Peierls barrier, e.g., in W [9]) and re-
quire thermally activated, double-kink nucleation and prop-
agation [10]. The controlling mechanism for the DBT is,
arguably related to the dislocation mobility and nucleation

at crack tips, which in turn are influenced by the high lat-
tice friction of the screw/mixed dislocations in the crack near
field [8, 11]. Nevertheless, the sharp transition temperature
suggests that DBT may be related to a switch of defect prop-
erties or deformation mechanism at the DBT temperature.
Among the individual BCC elements, subtle differences have
also been reported in their defect properties and deforma-
tion behaviour, including ground-state self-interstitial struc-
tures [12], solute hardening/softening response [13, 14], acti-
vation of twinning, and dominant dislocation slip planes [15].

The complexity in the BCC TMs has root in the partially-
filled d-bands, non-close-packed crystal structure and asso-
ciated defect properties. First-principles density functional
theory (DFT) calculations have thus been employed exten-
sively to provide quantitative information on fundamental de-
fect properties, such as the generalized stacking fault en-
ergy, dislocation core structure and Peierls barrier. In par-
ticular, DFT calculations have unequivocally determined the
non-degenerate (ND) core structure of the 〈111〉/2 screw
dislocations (e.g., Ta [16, 17], Mo [16–18], W [19], and
Fe [18, 20, 21]) and its 2D Peierls potential for all 7 BCC
TMs [22]. These DFT calculations played an instrumental
role in advancing fundamental plasticity theory of BCC struc-
ture materials. However, DFT calculations are computation-
ally expensive and typically limited to a few hundred atoms
(or a few thousand valence electrons) and several hundred
time steps/femtoseconds. They can not provide the necessary
length and time scales required to study dislocation interac-

ar
X

iv
:2

20
9.

12
32

2v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  2
1 

Se
p 

20
22



2

tions, evolutions and their temperature-dependent behaviour.
Classical interatomic potentials (e.g., embedded-atom

method [23], modified embedded-atom method [24, 25],
bond-order [26–28], etc.) have been developed to approxi-
mate interatomic interactions using empirical but more effi-
cient functions since at least early 1980s. With these classi-
cal interatomic potentials, molecular dynamics/statics simu-
lations were performed to study defect dynamics in statisti-
cally meaningful ensembles at much larger scales, reaching
∼100 nanometers and ∼10 nanoseconds. For BCC TMs, in-
teratomic potential-based studies have thus been actively pur-
sued over the last few decades, with well over a dozen po-
tentials developed for Fe alone [29]. Those potentials, par-
ticularly the most widely used EAM and MEAM ones, had
mixed receptions; their physical relevance is often scrutinised
against DFT calculations. In particular, nearly 1/3 out of
72 interatomic potentials examined exhibit a degenerate (D)
core structure, in stark contrast to the ND core predicted by
DFT [29]. The D-core is thus often considered as an artefact
of such interatomic potentials. Among those possessing the
correct ND core, about half have the single-hump Peierls en-
ergy profile as that predicted by DFT, and only a few of them
have quantitative accuracy in the Peierls barrier (e.g., Fe [30]).

The deficiencies are well recognized in interatomic poten-
tials for BCC TMs. Emerging machine-learning (ML) inter-
atomic potentials have been developed to address some of
these issues. ML potentials generally use extensible func-
tions (such as neural networks [31–33], gaussian approxima-
tion [34], rotation-invariant linear model [35]) to map atomic
environments to total energies, forces and sometimes the virial
stresses of a large set of atomic configurations computed by
DFT calculations. For example, many ML potentials have
been fit and reported, including Gaussian approximation po-
tentials (GAP [34, 36, 37]) for Fe [30], V/Nb/Ta/W/Mo [38],
moment-tensor potentials (MTP [39]) for Fe [40], spectral
neighbor analysis potential (SNAP) for NbMoTaW [41], and
deep potential (DP [42, 43]) for W [44]. These ML potentials
have demonstrated good accuracy and transferability with re-
spect to DFT calculations. For example, the GAP-Fe [30],
ANN-Fe [45] and DP-W [44] are shown to exhibit the ND
core and Peierls barrier in quantitative agreement with DFT
predictions for the first time.

The successes of the ML potentials are remarkable in re-
solving long-standing issues of modeling dislocations in BCC
TMs. Since ML potentials are fit to atomistic datasets com-
puted by DFT, they are considered to be robust and reliable,
provided that current exchange-correlation functionals are ex-
act and can predict material properties accurately. This is of-
ten an implicit and valid assumption in material modelings,
as demonstrated in previous DFT calculations [46, 47]. How-
ever, most widely-used DFT methods exhibit deficiencies in
predicting some fundamental properties of BCC TMs. For
Group VB TMs (V and Nb), DFT with generalized gradient
approximation (GGA)-Perdew–Burke–Ernzerhof (PBE [48])
and other functionals severely underestimates the shear mod-
ulus C44 of V and Nb [49] (on the order of 50% from their
respective experimental values, see Fig. 1). Not surprisingly,
ML potentials apparently inherit this deficiency (Fig. 1). On

the other hand, many EAM/MEAM potentials [50], ML GAP-
W [38] and DP-W [44] have accurate C44. Reproducing the
elastic constants of BCC structures thus does not seem to be
a gruelling task. The shortcomings of current ML potentials
do not arise from their energy function formalism or learning
strategy; these ML potentials faithfully learnt all information
produced by DFT.
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Figure 1. Relative errors of elastic constants of BCC structures pre-
dicted by DFT and machine learning interatomic potentials with re-
spect to the experimental values. The errors δC = |Cmodel

ij /Cexp
ij − 1|

are calculated based on values of DFT-1 [38] and GAP poten-
tials [38] for V/Nb/Ta/Mo/W, DFT-2 [41] and SNAP potentials [41]
for Nb/Ta/Mo/W (see Table IX). The machine learning potentials
faithfully reproduce the erroneous elastic constants from DFT. The
empty symbols are C11 and C12, and the filled symbols are C44.

For BCC V in particular, at least 7 interatomic potentials
have been developed and made publically available. Table I
shows a brief survey of their properties. Two classical po-
tentials (EAM3 [51] and MEAM2 [52]) and the GAP po-
tential [38] have the ND screw dislocation core structure as
predicted by DFT, while the rest have the D/unstable screw
core. EAM3 and MEAM2 have a double-hump Peierls poten-
tial profile, contradicting DFT predictions [22, 53]. Only the
recent GAP-V [38] has a single-hump Peierls potential pro-
file, but yields a Peierls barrier ∆EPB = 66.9 meV/b, ∼2.6
times the DFT values (24.4 [53]-25.7 [22] meV/b) and about
80% of that of DFT-W [22, 54]. GAP-V thus underestimates
C44 by 50% and very likely overestimated ∆EPB. Consider-
ing these issues, all current interatomic potentials have limited
capability for modelling crystal lattice defects in BCC V.

To address the above problems, at least two approaches
can be attempted and may lead to more accurate interatomic
potentials suitable for modelling general plastic and fracture
phenomena in BCC V. One is to increase the fitting flexi-
bility of the classical MEAM by expanding its energy func-
tions, while the other is to train ML potentials with corrected
datasets and incorporate core structure information from DFT.
Since the spline-MEAM potentials for Mo [60] and Nb [61]
give accurate screw dislocation core structures and Peierls bar-
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Table I. Comparisons of key properties obtained from extant interatomic potentials, DFT calculations and experiment measurements for V. The
properties include the BCC lattice parameter a (Å), cohesive energy Ec (eV/atom), elastic constant C44 (GPa), FCC-BCC structural energy
difference ∆EFCC-BCC (eV/atom), the 〈111〉/2 screw core structure, Peierls energy profile and Peierls barrier ∆EPB (meV/b). The Peierls
energy profile and barrier are only calculated for potentials with the non-degenerate (ND) core structure.

Property EAM1 [55] EAM2 [56] EAM3 [51] EAM4 [57] MEAM1 [50] MEAM2 [52] GAP-V [38] DFT/Exp.
a 3.00 3.04 3.03 3.03 3.03 3.00 3.00 3.00 a/3.03 [58]
Ec -5.29 -5.31 -5.02 -5.31 -5.30 -5.30 -5.38 -5.38 a/-5.31 [58]
C44 32550 43.5 42.0 46.0 46.0 50.1 23.7 23.6 a/46.0 [59]

∆EFCC-BCC 0.157 0.123 0.214 0.138 0.084 0.244 0.242 0.243 a

Core structure b us D ND D D ND ND ND [22, 53]
PE profile c - - DH - - DH SH SH [22, 53]

∆EPB - - - - - - 66.9 24.4 [53], 25.7 [22]
a DFT in this work.
b us: the core structure is unstable; D: Degenerate core structure; ND: Non-degenerate core structure.
c DH for double hump and SH for single hump in the Peierls energy profile.

rier profiles, it seems feasible to use spline-MEAM for BCC
TMs. The analytical functions of the electron density terms
can also be extended to higher order terms or use spline-based
forms, similar to the multi-state MEAM [62]. Separately, a
new three-body embedding descriptor has recently been hy-
bridized to the DP framework (DP-HYB [44]). Based on
the DP-HYB, a new potential for W has been developed and
shown to yield accurate properties (point defects, core struc-
ture and Peierls barrier) relavant to its mechanical behaviour.

In this work, we explore both approaches to examine
their respective strengths and weaknesses in developing in-
teratomic potentials for an important class of materials and
in particular BCC V. In the classical potential path, we ex-
tend the original MEAM formulation by including additional
angular electron density terms and use different screening pa-
rameters for the embedding function and pair interaction func-
tion, similar to the multi-state MEAM [62]. We denote this
extension of MEAM as XMEAM. In the XMEAM, we pre-
serve the analytical functions of all electron density terms and
the embedding energy function, which retains the physical in-
terpretation of the classical MEAM. The XMEAM is shown
to give more flexibility compared to MEAM in reproducing
many material properties such as the energies of BCC and
FCC structures. For the ML approach, we use the latest DP-
HYB due to its enhanced representation and generalization
properties [44]. We provide detailed analysis of the XMEAM
and DP-HYB in the fitting procedure, accuracies on individual
properties and computational efficiency. Both the XMEAM
and DP-HYB yield interatomic potentials for V (XMEAM-V
and DP-HYB-V) significantly more accurate than all existing
ones. Nevertheless, DP-HYB-V inherits some of the deficien-
cies of current DFT calculations (discussed above). Further
optimization may be possible via the use of higher order or
otherwise enhanced DFT to produce the DP training dataset.
On the other hand, XMEAM-V reproduces an extensive range
of properties, making it the better choice of interatomic po-
tential for modelling plastic and fracture behaviour of V at
present. XMEAM-V is then applied to study lattice defect
properties and reveals several unique features of dislocation
behaviour in V for the first time. The simulation results are
also compared with previous experimental studies. Like the

DP approach, XMEAM is general and can be applied to other
nonmagnetic BCC TMs as well.

In the following, we first introduce the general methods and
simulation cells used in the DFT calculations and molecu-
lar dynamics (MD) simulations, followed by the details on
the development of XMEAM-V and DP-HYB-V, as well
as the calculation models for individual defects. In Sec-
tion III, we present a comprehensive comparison between the
resulting classical XMEAM-V and ML potentials DP-HYB-V
(and GAP-V) on their thermodynamic and mechanical prop-
erties, including point defects, dislocations and their finite-
temperature behaviour. We also perform a quantitative bench-
mark on the computational speed of these three interatomic
potentials. Section IV discusses the strengths and weaknesses
of the classical and ML approaches based on the current re-
sults. We particularly focus on the broad implications on de-
veloping accurate interatomic potentials for crystal defects of
structure materials. Section V summarizes the key conclu-
sions and provides an outlook for future works related to in-
teratomic potentials for the BCC TM family.

II. METHODOLOGY AND COMPUTATIONAL MODELS

We first describe the general methods and parameter set-
tings employed in the current work. These parameters apply
to all the calculations unless otherwise mentioned in the re-
spective models.

A. DFT calculations

The DFT calculations are performed using the Vienna
Ab initio Simulation Package (VASP [63–65]). We em-
ploy the generalized gradient approximation (GGA) with the
Perdew–Burke–Ernzerhof (PBE [48]) exchange-correlation
functional. The outer 13 electrons (3s23p63d44s1) of V are
treated as valence electrons and the rest as core electrons re-
placed by the projector-augmented-wave (PAW [66]) pseu-
dopotential (V_sv). The plane-wave expansion cutoff en-
ergy is set to 650 eV. We use the Monkhorst–Pack Mesh



4

method [67] to sample the Brillouin zone with a k-points
grid spacing of 0.1 Å−1. The first-order Methfessel–Paxton
method [68] with a smearing width of 0.22 eV is used for
integration in the Brilliouin zone. During atomic structure op-
timization, convergence is assumed when the energy variation
between two electronic self-consistent steps is below 10−6 eV,
and all forces after ionic steps are below 0.01 eV/Å.

The generalized stacking fault γ-lines are calculated for the
{110}, {112}, and {123} planes of the BCC structure. We use
the slab-vacuum supercell and the standard method [69] where
atoms are only allowed to move in the direction perpendicular
to the slip plane. In all the cases, the vacuum layer thickness
is ∼20 Å. The supercells contain 12, 20, and 20 atom layers
for the {110}, {112}, and {123} planes, respectively. In the
equation of state (EOS) calculations, spin-polarized DFT is
used to include the influence of magnetic moment on the total
energy at large atom separations.

DFT calculations are performed to determine the forma-
tion energy of the monvacancy and self-interstitials in BCC V
(Fig. 6). For these point defects, we use a supercell of 4×4×4
cubic unit cells with 128 atoms and the k-points grid spac-
ing is 0.2 Å−1. The monovacancy/self-interstitials are created
by removing/inserting an atom at appropriate positions. The
defect structures are optimised using two methods: (i) fixed
supercell (FSC) where supercell vectors are fixed at ideal lat-
tice values and (ii) optimised supercell (OSC) where supercell
vectors are optimised to achieve minimum stresses. Atoms
are free to move in both methods. The former is commonly
employed in previous studies [70], while the latter allows ad-
ditional affine deformation and should give a lower formation
energy. Neither of the two methods reproduces the conditions
expected in bulk materials, but they should yield consistent
results for sufficiently large supercells.

B. Molecular dynamics/statics simulations

All molecular dynamics and statics calculations are per-
formed using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS [71]). Atomic structure opti-
mization is performed with the conjugate gradient method.
In the calculations of surface energy, point defects and
γ-surfaces, convergence is assumed when forces on all
atoms drop below 10−12 eV/Å in XMEAM-V. The conver-
gence criterion is relaxed to 10−10 eV/Å for DP-HYB-V and
10−6 eV/Å for GAP-V due to their higher computational cost
and slower convergence. The calculations of specific disloca-
tion structures are described in Section II E below.

C. EXtended modified embedded-atom method (XMEAM)

The modified embedded-atom method (MEAM) was built
upon the original embedded-atom method (EAM [23]) by
Baskes et al. [24, 25] to describe bond-bending effects by
including angular dependent terms in the formulation. In

MEAM, the total energy of a system of N atoms is

E =

N∑

i


Fi (ρ̄i) +

1

2

∑

j 6=i

φij (rij)Sij


 , (1)

where Fi, φij , Sij are the embedding function, pair interac-
tion function and screening function. The embedding function
usually takes the following form

Fi (ρ̄i) = AiE
0
i ρ̄iln (ρ̄i) +Biρ̄i, (2)

where ρ̄i is the total background electron density at atomic site
i due to all surrounding atoms and Ai, E

0
i , Bi are element-

dependent parameters. The contributions to ρ̄i in the original
MEAM formulation include a spherically symmetric electron
density term ρ̄

(0)
i and angular-dependent terms ρ̄(k)i . In the

implementation of the LAMMPS [71]), ρ̄i is expressed as

ρ̄i =
ρ̄
(0)
i

ρ0i
Gi




3∑

k=1

t
(k)
i

(
ρ̄
(k)
i

ρ̄
(0)
i

)2

 (3)

where Gi computes the electron density and has several
forms [72], ρ0i is the composition-dependent electron density
scaling, t(k)i are average weighting factors and k are truncated
at 3. The partial electron densities ρ̄(k)i and average weighting
factors t(k)i are parametrized by element-dependent β(k)

i and
t
(k)
0,j respectively (see Ref. [72]). Both are further multiplied

by the screening function Sij

Sij =
∏

k 6=i,j

Sikj(Cmin, Cmax)fc

(
rc − rij

∆r

)
(4)

where Cmin and Cmax are the screening function parameters,
fc is the radial cutoff function, rc is the cutoff distance and
∆r the smoothing distance (see Refs. [72, 73] for details).

In the classical MEAM, the angular-dependent electron
density in Eq. 3 is truncated at k = 3 and only the first nearest-
neighbor (1nn) interactions are explicitly treated. The 1nn-
MEAM exhibits difficulties in reproducing the ground state
BCC/HCP structure and surface energy ordering of many ele-
ments. Lee et al. thus modified the 1nn-MEAM to explicitly
include the second nearest-neighbor (2nn) interactions [73],
which successfully addressed these intrinsic issues in 1nn-
MEAM. The 1nn-MEAM/2nn-MEAM has been widely used
to develop interatomic potentials for metals and semiconduc-
tors. They have been shown to reproduce many properties of
FCC [74], BCC [50] and HCP [75, 76] metals. Despite its
broad success, the 1nn/2nn-MEAM faces challenges in repro-
ducing properties for multiple structures and their transition
paths. Multi-state MEAM (MS-MEAM [77]) was then intro-
duced to address this shortcoming. Specifically, MS-MEAM
uses DFT-based multiple reference structures and transforma-
tion paths to determine all the functions/parameters in Eq. 1.
The MS-MEAM was further expanded to include additional
angular-dependent electron density functions (k = 1, 2, 3, 5)
and was shown to well describe general properties of Ti in the
HCP, BCC and liquid phases [62].
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The MS-MEAM is particularly appealing for BCC TMs as
it can include multiple reference structures (e.g., BCC, FCC
and their transformation path). Reproducing the relative en-
ergetics and their transition paths are critical for dislocation
and twinning properties in BCC TMs. We recently discov-
ered that the 〈111〉/2 screw dislocation core structure (ND vs
D), its Peierls barrier ∆EPB and nucleation barrier γus are all
related to the energy difference ∆EFCC-BCC bewteen the FCC
and BCC structures [29]. However, given the current defi-
ciencies of DFT functionals in predicting some properties of
V, it is possible that MS-MEAM will also inherit these defi-
ciencies. Here, we choose a new path by combining recent
advances in MS-MEAM and the flexibility in the classical
MEAM in choosing the target properties. Specifically, the
XMEAM in this work includes the angular electron density
functions for k = 1, 2, 3, 4, 5, which adds four parameters
β4, β5, t4, t5 related to partial electron density functions. In
addition, the XMEAM uses independent screening parameters
(C rho

min, C
rho
max) in the electron density function and (Cpair

min , C
pair
max)

in the pair interaction function. The XMEAM thus has 6
more parameters in total, in addition to the 18 parameters in
the classical MEAM. The XMEAM retains all the analytical
functional forms and physical interpretations of the classical
MEAM, and can be easily applied to a broad range of materi-
als. We have also developed the XMEAM based on the orig-
inal implementation of MEAM in LAMMPS [71]. For the
details of analytical expressions in XMEAM, we refer read-
ers to earlier references [62, 72, 73, 77] and the source code
available online [78]. Here we focus on the fitting procedures
of the XMEAM potential for V and its properties.

The datasets used for fitting potentials are critical for the
accuracy and relevance of the resulting potentials. For mod-
elling the mechanical behaviour of V, we focus on the fun-
damental thermodynamic and mechanical properties of BCC
V. In particular, we use its BCC bulk properties (lattice pa-
rameter, cohesive energy, and elastic constants), vacancy and
self-interstitial formation energies, equation of state (EOS),
{110} surface decohesion energies and γ-lines of the {110},
{112}, and {123} planes. In addition, we also include the co-
hesive energy and lattice parameter of the FCC phase in the
fitting datasets, given its importance in governing dislocation
properties [29]. We use the experimental values of the BCC
lattice parameter, cohesive energy and elastic constants, with
the remainder from DFT as described in Section II A.

There are 24 adjustable parameters in an XMEAM potential
for a pure element. It is difficult to determine these parameters
manually and yet achieve optimal properties. We thus employ
the particle swarm optimization (PSO [79, 80]) algorithm to
optimize these parameters. In the PSO algorithm, each can-
didate potential is a particle in a 24-dimensional space. The
potential parameters are thus the coordinates x of the particle.
The properties of the candidate potential pi are functions of
this 24-parameter vector, i.e., pi = f(x).

In practice, we assign an objective function

fobj(x) =

n∑

i

wi

[
pi − ti
ti

]2
(5)

where ti and wi are the target value and weight assigned to

property i. The weights are chosen based on relative impor-
tances of properties; high weightage is assigned to critical
properties such as the surface energies of individual planes. A
large number of candidate potentials/particles are generated
with their positions randomly chosen within a specified do-
main in the 24-dimensional space. In the PSO process, all the
particles evolve based on their current positions, local opti-
mal position and global optimal position (see Ref. [80]). The
PSO process stops when the objective function fobj falls be-
low a threshold value or the number of iterations reaches a
pre-defined limit. We emphasize that a potential can rarely
achieve perfect agreement with all target DFT/experimental
values. The PSO process thus yields an optimized potential
within the fitting parameter space. Table II shows the param-
eter space/fitting range used for XMEAM-V.

D. Deep potential hybridized (DP-HYB)

The procedure to develop ML potentials is quite differ-
ent from that of the classical potentials. For DP-HYB-V, we
use the general Deep Potential Generator (DP-GEN) scheme
with the new hybrid descriptor [44] and a “specialization”
strategy [81] to generate the training datasets. The new hy-
brid descriptor includes two- and three-body functions mod-
elled by embedding neural networks of sizes (20, 40, 80) and
(4, 8, 16), respectively. The fitting neural network size is
(240, 240, 240). The cutoff radii for the two- and three-body
embedding neural networks are 6 and 4 Å, respectively. In all
the training stages, four models are trained on the same train-
ing datasets with the same neural network sizes but starting
from different random seeds.

We first perform DFT calculations to determine the lattice
parameters of the BCC, FCC and HCP structures of V (Sec-
tion II A). Based on these lattice parameters, we construct
three supercells of 2× 2× 2 BCC, FCC, and HCP structures
containing 16, 32 and 16 atoms respectively. These supercells
are affinely scaled by s from -4% to 6% with a step size of
2%, resulting in 6 configurations for each phase. These scaled
supercells are then perturbed 3 times by adding some random
vectors δ = 3% to each of the supercell vectors ci and 0.01
Å to atom positions Ri, which creates some distorted super-
cells. Ab initio MD (AIMD) simulations are then performed
for 2 steps for each configuration. In AIMD, the NVT en-
semble is employed with the temperature maintained at 100
K using the Nosé-Hoover thermostat. At the end of AIMD
steps, a total of 104 configurations from the converged ionic
steps are prepared with atomistic information including the
total energy, atom coordinates Ri, atomic forces fi and virial
tensors. To enhance the description of the BCC structure near
equilibrium, we create 20 more perturbations from each uni-
formly scaled BCC supercells and perform 5 AIMD steps, re-
sulting in an additional 600 training datasets to represent the
BCC V.

The above ab initio configurations provide the initial train-
ing datasets to initialize the DP-GEN loop. In the DP-GEN
loop, 4 DP models are first generated randomly and trained us-
ing the initial datasets. In each model, the learning rate starts
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Table II. Parameter fitting ranges and optimized values of the XMEAM-V developed in this work.

Parameter α β0 β1 β2 β3 β4 β5 A
Lower limit 4.55 4.00 3.00 4.00 2.00 4.00 2.00 0.25

Optimized value 4.6230 4.9371 3.8737 4.5265 3.6661 5.9816 2.6531 0.2965
Upper limit 4.65 6.00 5.00 6.00 4.00 6.00 4.00 0.35
Parameter B t1 t2 t3 t4 t5 rc ∆r
Lower limit -0.10 -10.00 0.00 -25.00 -15.00 -5.00 6.50 3.00

Optimized value 0.0442 -3.2282 5.1961 -19.1000 -8.6960 0.9093 7.6192 4.3217
Upper limit 0.10 0.00 10.00 -15.00 0.00 5.00 8.00 5.00
Parameter Ec alat dattrac drepuls C rho

min Cpair
min C rho

max Cpair
max

Lower limit 5.28 2.98 -0.10 -0.10 0.00 0.30 2.60 2.60
Optimized value 5.3000 0.2965 0.0119 -0.0045 0.0454 0.4218 2.8616 2.9547

Upper limit 5.31 3.02 0.10 0.10 0.50 0.70 3.00 3.00

at 1× 10−3 and decays exponentially to 5× 10−8. In the DP-
GEN iteration, the training step is 4× 105 and the pre-factors
of the energy, atomic force, and virial tensor in the loss func-
tions are pstart

e = 0.02, plimit
e = 2, pstart

f = 1000, plimit
e = 1,

pstart
v = 0, and plimit

v = 0, respectively.
In the exploration step of the DP-GEN loop, one DP model

is selected to explore different bulk and surface structures us-
ing DP-based MD (DPMD) interfaced with the LAMMPS
package. We use fully periodic supercells of 2× 2× 2 BCC,
FCC and HCP structures and applied perturbations δ. The
bulk configurations are explored using the NPT ensemble with
fixed box shape. The temperature and pressure are controlled
using the Nosé-Hoover thermostat and barostat [71, 82]. For
the bulk structures, DPMD explores 4 temperature range sets
from 50 K to 1.9 Tm (Tm = 2183 K [83]):

(a) 50 K, [0.1, 0.2, 0.3, 0.4]Tm;

(b) [0.5, 0.6, 0.7, 0.8, 0.9]Tm;

(c) [1.0, 1.1, 1.2, 1.3, 1.4]Tm;

(d) [1.5, 1.6, 1.7, 1.8, 1.9]Tm.

(6)

In each temperature, DPMD are performed under 8 pressures
[0.001, 0.01, 0.1, 1, 5, 10, 20, 50] kBar.

The exploration step provides a set of configurations based
on the selected model. The other 3 models are then used to
calculate atomic force fi in these configurations, resulting in 4
sets of fi. The standard deviations σ(fi) is calculated and used
as an indicator of the accuracy of the models. If the maximum
deviation of atomic forces max[σ(fi)] is within [σlow, σhigh],
the configuration is considered a candidate and sent to DFT
calculations. σlow and σhigh are lower and upper bounds set as
[0.10, 0.25] for region (a), [0.15, 0.30] for regions (b) and (c),
[0.20, 0.35] for region (d) in Eq. 6. All candidate configura-
tions are computed with DFT and added to the initial datesets,
forming a broad training datesets for the next DP-GEN loop.
The DP-GEN loop with bulk structures is iterated 32 times.

The DP-GEN loop, with the surface structures, follows the
bulk structures exploration. For surface structures, the initial
supercells are constructed for the {100}, {110}, and {111}
surfaces in the BCC and FCC structures, and the {0001} and
{101̄0} surfaces in the HCP structure. The surface structures
are then uniformly scaled by s and perturbed by δ. The sur-
face configurations are explored within the NVT ensemble

from 50 K to 0.9 Tm (temperature regions (a) and (b) in Eq. 6).
For exploring the surface structures, σlow and σhigh are 0.20
and 0.35 in the entire temperature range. The DP-GEN loop
with surface structure is iterated 8 times.

In addition to the bulk and surface structure datasets, we
also include configurations with point defects in the BCC
structure, which are important for diffusion, vacancy and in-
terstitial clustering. We include 6 types of self-interstitials
(Fig. 6). Specifically, we compute the 〈111〉, 〈110〉 and 〈100〉
dumbbells, 〈111〉 crowdion, tetrahedral, and octahedral inter-
stitial structures in a 3 × 3 × 3 supercell (55 atoms) using
DFT. For each self-interstitial, a set of configurations are ob-
tained via ionic structure optimization. These configurations
are used as initial configurations for DPMD exploration us-
ing one selected DP model, in the temperature range of 50
to 600 K and the NVT ensemble. The other 3 DP models
are then used to calculate the atomic forces in these DPMD
configurations. The configurations with max[σ(fi)] within
[0.2, 0.35] are selected as candidates and sent for DFT cal-
culations. These point-defect related ab initio configurations
are added to the training datasets. The DP-GEN loop with
self-interstitial structures is iterated 8 times.

Finally, we include configurations with atoms at small sep-
arations in the BCC and FCC structures. We create 2× 2× 2
BCC and FCC cubic supercells and uniformly scale the su-
percell vectors from 0.86 to 0.94 with a step size of 0.02.
These supercells are further distorted by adding δ to its super-
cell vectors and atomic positions. The distorted supercells are
used as initial configurations for DPMD with one selected DP
model. DPMD is then performed with the NVT ensemble at
50 to 600 K for exploration at high atomic density/small atom
separations. Similar to the earlier DP-GEN loop, the forces
are computed in the DPMD configurations with the other 3 DP
models. The DPMD configurations with max[σ(fi)] within
[0.2, 0.35] are selected as candidates and sent for DFT calcu-
lations. The resulting configuration from DFT are added to the
training datesets. The DP-GEN loop with high density atomic
structures is iterated 4 times.

The above DP-GEN loops explore configurations in the
bulks, at the surfaces, with point defects and at high densities.
They provide a broad set of atomic configurations/training
datasets relevant to mechanical properties of V. Table III sum-
marizes the training datasets generated in the DP-GEN Loop.
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We refer readers to Refs. [42, 81] for more details of the DP-
GEN scheme.

Based on the above DP-GEN loop, the 4 DP models
can reproduce many properties of BCC V. However, their
generalized stacking fault energies (γ-lines) are not suffi-
ciently accurate with respect to DFT results. Special train-
ing datasets are thus generated with configurations describ-
ing shear displacement along the 〈111〉 direction on the
{110}, {112}, and{123} planes in the BCC structure. In ad-
dition, “special” training sets are generated on the EOS curve
of BCC V (Fig. 2) for a wide range of lattice parameters
a/a0 = 0.75, 1.2, 1.3, ..., 2.0 (a0 is the equilibrium lattice pa-
rameter) and for a monovacancy configuration in a supercell
of 3×3×3 BCC V. For each configuration, DFT is employed
to compute the total energy and atomic forces, which form the
special datasets and are added to the earlier training datasets.
The final training datasets include those from the initial, DP-
GEN loop and special steps (Table III). Four new DP-HYB
models are trained with 8×106 steps using all the training sets
in Table III (except the high-density FCC structures and cohe-
sive energy datasets) with a focus on the properties of BCC
structures near equilibrium. Subsequently, the best perform-
ing DP-HYB model is further trained with all the training sets
in Table III for 4× 106 steps with the initial and final learning
rates at 1×10−4 and 5×10−8, respectively. The pre-factors in
both training processes are pstart

e = 10, plimit
e = 10, pstart

f = 1,
plimit

f = 1, pstart
v = 10, and plimit

v = 10, respectively. Table III
summarizes the individual weights assigned to the respective
datasets for the final training for DP-HYB-V.

Finally, the energy of DP-HYB-V is adjusted with respect
to the energy of an isolated V atom in vacuum, in order to re-
produce its cohesive energy of BCC V (−5.31 eV/atom [58])
measured in the experiment. This adjustment was also applied
in DP-Ti developed earlier [81].

E. Calculation of lattice properties and defects

A wide range of lattice and defect properties are calculated
using the developed XMEAM-V and DP-HYB-V. The point
defects are calculated using the same setup as that in DFT II A.
We describe the details of the calculations which are sensitive
to the simulation conditions below.

We use a periodic array of dislocations (PAD [84]) con-
figuration to investigate all dislocation core properties in this
work. In the PAD configuration, the slip plane is placed in the
x− y plane and normal to the z-direction. Periodic boundary
conditions are imposed in the x and y directions, while the top
and bottom z surfaces are treated as traction-controlled/free
surfaces. For the pure edge and screw dislocations, the Burg-
ers vector b is aligned in the x direction. For mixed disloca-
tions, the screw component of b (i.e., |b · ξ| ξ, where ξ is the
dislocation line direction) is always aligned in the x direction.
Shear stresses are applied by adding forces to atoms at the top
and bottom layers within 12 Å (∼ 2× rc, where rc is the cut-
off distance of the interatomic potential) from the surfaces in
the ±z-directions.

We first construct the respective supercells with the appro-

priate crystal orientations and dimensions, as shown in Ta-
ble IV. Dislocations are then introduced at the center of the su-
percell by applying the displacement field of the correspond-
ing Volterra dislocation using the atomsk package [85]. For
dislocations with a nonzero screw component, a homogeneous
shear strain of εyx = b · ξ/2 is applied to correct the plastic
shear strain created by the screw component. The constructed
cores are then optimized using the conjugate gradient algo-
rithm with a force convergence criterion of 10−4 eV/Å.

In the calculations of the Peierls stress, we use a load-
optimize sequence to estimate the critical stress to drive the
dislocation at 0 K. In each case, some trial runs are firstly
carried out to estimate τP, where τP is the final stress when
the dislocation starts to glide continuously. In the actual mea-
surement of the Peierls stresses, we first apply a shear stress
τstep of about 5%τP. Structure optimization is then carried out
with the applied stresses/forces fixed. Upon reaching conver-
gence/equilibrium, the shear stress is increased by τstep, fol-
lowed by structure optimization. The load-optimize sequence
is repeated until the dislocation starts to glide continuously.
When the system nearly approaches the final τP, τstep is re-
duced to less than 1%τP. The Peierls energy profile for the
〈111〉/2 screw dislocation is calculated using the nudged elas-
tic band (NEB [86]) method with the force convergence crite-
rion set at 10−6 eV/Å.

For the 〈111〉/2 screw dislocation, the measured τP is
weakly influenced by the simulation supercell sizes. For ex-
ample, τP of a screw dislocation of length 2 |b| in XMEAM-V
is measured as 1148 MPa, 1210 MPa and 1217 MPa in su-
percells of sizes (200 Å, 80 Å), (300 Å, 140 Å) and (400 Å,
200 Å). The core structures and Peierls barriers are almost
identical in the different supercell sizes. Consequently, we use
the smaller supercell of (200 Å, 80 Å) to calculate the Peierls
barrier and related screw core energetics, and (400 Å, 200 Å)
to calculate the Peierls stress for the screw dislocation and
other types of dislocations. The supercell sizes are summa-
rized in Table IV.

The temperatures-dependent lattice parameters a(T ) or
elastic constants Cij(T ) are calculated by time-averaging the
supercell sizes using an NPT ensemble or time-averaging the
measured stresses using the NVT ensemble equilibrated with
a Nosé-Hoover thermostat in LAMMPS. Specifically, fully
periodic supercells are used for the calculations. The super-
cell sizes are 24 × 24 × 24 for XMEAM-V, while a smaller
supercell of 12× 12× 12 are used for GAP-V and DP-HYB-
V due to their higher computational cost. For the calculation
of a(T ), the supercell is first equilibrated for 40000 fs (40000
time steps) under stress-free conditions and at the target tem-
perature with an isothermal-isobaric NPT ensemble. The su-
percell size is then measured and averaged for 4000 steps. The
final supercell size is averaged for 10 measurements.

For the calculation of Cij(T ), the supercell is first equi-
librated at target temperatures using an NPT ensemble for
16000 time steps. A ±1% strain in one of the strain com-
ponents (ε11, ε22, ε33, ε12, ε13, ε23) is applied and the config-
uration is then equilibrated for another 16000 steps using the
canonical NVT ensemble. After the equilibration, the result-
ing stresses are measured and averaged for every 4000 times
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Table III. Summary of the training datasets for DP-HYB-V.

Dataset type Number of datasets Weightage
Initialization datasets around equilibrium 704 1

DP-GEN bulk 3393 1
DP-GEN surface 991 1

DP-GEN interstitial 705 1
DP-GEN high-density BCC 1052 1
DP-GEN high-density FCC 1846 1

γ-line datasets from specialization 63 100
Cohesive energy datasets from specialization 10 100

Vacancy datasets from specialization 22 10
Total 8786

Table IV. Supercell orientations and sizes used to calculate Peierls stresses of different dislocations.

Slip system Supercell orientation Size Number of atoms
b,n (c1, c2, c3) (|c1| , |c2| , |c3|)

1/2〈111〉 screw ([111], [112̄], [11̄0]) (
√

3a0, 54
√

6a0, 47
√

2a0) 30456
1/2〈111〉{110}70.5◦ mixed ([111], [112̄], [11̄0]) (

√
3a0, 54

√
6a0, 47

√
2a0) 30456

1/2〈111〉{110} edge ([111], [112̄], [11̄0]) (154
√

3/2a0,
√

6a0, 47
√

2a0) 43428
〈100〉{110} edge ([100], [011], [011̄]) (133a0,

√
2a0, 46

√
2a0) 24472

steps. The final stresses are taken as the average of 4 measure-
ments. For DP-HYB-V,C44 based on the smaller 12×12×12
supercell exhibits large fluctuations at high temperatures. We
therefore perform additional calculations using a 24×24×24
supercell for temperatures above 1100 K. The elastic con-
stants are calculated by dividing the measured stresses with
the applied strains.

We use PHONOPY [87] and phonoLAMMPS [88] to cal-
culate the phonon spectra of the BCC structure at 0 K. The
supercell size is 8[100] × 8[010] × 8[001], containing 1024
atoms in total. Specifically, phonoLAMMPS is first used to
compute the 3N × 3N force matrix and PHONOPY is used
to calculate the phonon spectra based on the force matrix.

The melting temperatures is determined by the solid-liquid
two-phase co-existence method. We employ a fully periodic
supercell of 92Å× 46Å× 46Å and examine the volume frac-
tion of the liquid and BCC phases in the supercell as a function
of temperature in the NPT ensemble. The melting point is de-
termined to be the temperature above which the BCC phase
grows and below which the BCC phase shrinks. Separately,
we also estimate the melting temperature in the calculations
of elastic constantsCij(T ) when the shear modulusC44 drops
to zero, as shown below.

III. RESULTS

Table II shows the final optimized parameters of XMEAM-
V. The potential files in the LAMMPS format are also avail-
able in the Supplementary Materials. DP-HYB-V and all the
training datasets are available at dplib [89]. Both XMEAM-
V and DP-HYB-V are compatible with LAMMPS and can be
employed immediately.

In this section, we provide a comprehensive study of the
classical (XMEAM-V) and ML (DP-HYB-V) potentials on

their thermodynamic and mechanical properties. We perform
extensive benchmarks using GAP-V, DFT and experimental
results of V available in the literature.

A. Bulk properties

Table V shows the basic properties of BCC and FCC V cal-
culated by DFT, XMEAM-V, DP-HYB-V and GAP-V, as well
as the experimental data of BCC V. For the BCC structure, all
computational models accurately reproduce the lattice param-
eter, cohesive energy, surface energies and elastic constants
C11 and C12. Nevertheless, DFT predicts C44 as 23.6 GPa,
about 50% of the experimental value of 46.0 GPa and consis-
tent with most ealier DFT calculations for V [38, 41]. ML DP-
HYB-V and GAP-V faithfully reproduce this value from DFT.
We attempted to manually correct theC44 value by scaling the
virial tensor relevant to C44 in the DP-HYB training datasets.
However, this strategy leads to degradation of other proper-
ties like the dislocation core structures. Manually adjusting
C44 perhaps generates some inconsistencies among the train-
ing datasets, and this turns out to be not as straightforward as
anticipated. On the contrary, XMEAM-V reproduces all the
elastic constants within 15% from their respective experimen-
tal values.

For the FCC phase, V is not stable at 0 K as predicted by
DFT. Its C11 and C44 are nearly 0 and C11 < C12, which
violates the Born stability criterion for cubic structures [92].
No FCC phase appears in the low pressure regions of the
equilibrium phase diagram of V, further suggesting the in-
stability of FCC-V. The two ML potentials also show excel-
lent reproducibility of the FCC elastic constants from DFT,
while the XMEAM-V shows appreciable discrepancies. DFT
also predicts that the FCC phase has a higher cohesive en-
ergy relative to the BCC phase, ∆EFCC-BCC = 0.243 eV/atom.



9

Table V. Properties of V from DFT, experiments, XMEAM-V, DP-HYB-V and GAP-V. The properties include lattice parameter a (Å),
cohesive energy Ec (eV), elastic constants (GPa) in BCC and FCC phases, and surface energies σ (J/m2) of low index planes in BCC phase.
DFT calculations are performed in this work.

Structure Property Experiment DFT XMEAM-V DP-HYB-V GAP-V [38]

BCC

a0 3.03 (300 K) [58] 3.00 3.03 3.00 3.00
Ec -5.31 [58] -5.38 -5.323 −5.308 -5.384

C11 232.4 (0 K a) [59] 268.6 (15.6%) 261.4 (12.5%) 271.9 (17.0%) 271.0 (16.6%)
Cij C12 119.4 [59] 140.0 (17.3%) 104.2 (12.7%) 141.6 (18.6%) 145.0 (21.4%)

C44 46.0 [59] 23.6 (48.7%) 41.3 (10.2%) 25.3 (45.0%) 23.7 (48.5%)
{100}

2.62b [90],2.55b[91]

2.39 2.66 2.60 2.38
{110} 2.41 2.36 2.35 2.40

σ {112} 2.71 2.72 2.63 2.69
{123} 2.64 2.66 2.60 2.64

FCC

a 3.82 3.85 3.82 3.82
Ec -5.14 -5.145 -5.064 -5.142

∆EFCC-BCC(χ) 0.243 0.178 (0.74) 0.244 (1.00) 0.242 (1.00)
C11 4.7 97.3 8.1 16.9

Cij C12 262.4 180.8 276.1 265.9
C44 5.4 44.5 1.2 9.2

a Experimental elastic constants at 0 K are extrapolated from a series of measurements at low temperatures.
b Experimental surface energies are obtained from surface tension measurements and do not represent the property of a specific

surface.

The two ML potentials accurately reproduce this quantity,
while XMEAM-V has ∆EFCC-BCC = 0.178 eV/atom or
χ = ∆EXMEAM-V

FCC-BCC /∆EDFT
FCC-BCC = 0.74. Further increase of

∆EFCC-BCC in XMEAM-V is feasible, but at a cost of re-
duced accuracy in other properties such as the γ-lines. The
current XMEAM-V is thus selected with an overall balance
on all properties considered. Comparing the two approaches,
ML potentials demonstrate excellent capability in reproduc-
ing multi-phase/state properties while the classical approach
exhibits some limitations here.

B. Equation of state

Figure 2 shows the BCC cohesive energy as the function of
the lattice parameter (i.e., equation of state, EOS) predicted
by DFT and the interatomic potentials. All three potentials
accurately reproduce the DFT values near the equilibrium lat-
tice parameter in the range (0.8a0, 1.2a0). XMEAM-V and
DP-HYB-V have smooth energy variations in the entire range
(0.7a0, 3.0a0), while GAP-V shows a rapid energy increase
near and beyond 1.4a0. This rapid change in cohesive energy
is perhaps due to its relatively short cutoff distance of 4.7 Å
employed in the potential, as seen in many other MEAM-type
interatomic potentials [93]. While the physical implication
of the rapid energy variation at large atom separations is not
completely clear, it does affect other fundamental properties
such as the traction-decohesion behaviour of some low-index
planes, as shown below.
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Figure 2. The cohesive energy as a function of lattice parameter of
the BCC phase of V predicted by DFT and three interatomic poten-
tials (XMEAM-V, DP-HYB-V and GAP-V [38]).

C. Surface energy and decohesion

All computational models accurately capture the surface
energies of BCC V when compared to values measured by the
surface tension method [90, 91]. DFT predicts that the {100}
plane has the lowest surface energy, followed by the {110},
{123} and {112} planes. GAP-V reproduces all surface en-
ergies and their ordering from DFT, while XMEAM-V and
DP-HYB-V show that the {110} plane has the lowest energy,
followed by the {100}, {123} and {112} planes. We note that
for all other BCC TMs, the close-packed {110} plane has the
lowest energy and V is the only exception [38]. Nevertheless,
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the energy differences among the different planes are rather
small and the largest discrepancies are 11.3% and 8.8% on
the {110} plane in XMEAM-V and DP-HYB-V. All models
predicts the {100} and {110} planes as the primary cleavage
planes in BCC V [94].

BCC V tends to be brittle and exhibits cleavage fracture at
low temperatures [95]. The cleavage process is governed by
the surface traction-separation relations. We compute the sur-
face decohesion energy by rigidly separating two blocks of
materials across a specified crystallographic plane. Figure 3
shows the results obtained from DFT and the three interatomic
potentials. For XMEAM-V, the DFT data of the {110} plane
is included in the fitting datasets, while the DP-HYB-V and
GAP-V do not explicitly include these data. All 4 low-index
planes are included for comparisons. Both XMEAM-V and
DP-HYB-V capture the decohesion energy variations, gradi-
ents and peak values from DFT, while GAP-V exhibits undu-
lating decohesion stresses at large planar separations. These
undulations occur at planar separation approaching 2 Å where
atoms move outside their interaction distance in GAP-V, as
that in the EOS curves in Fig. 2.

D. Generalized stacking fault energy

The generalized stacking fault energy (γ-surface) describes
the periodic energy variations during shear displacement be-
tween two crystallographic planes. The γ-surface has funda-
mental importance in governing dislocation nucleation, dis-
sociation, core structure, energy and glide behaviour. The
minimum energy path bewteen two absolute minima on the
γ-surface is the γ-line and is the fundamental slip step dur-
ing plastic deformation. Along the γ-line, the maxima is the
unstable stacking fault energy γusf and dictates the dislocation
nucleation barrier at stress concentrations such as crack-tips,
while the metastable point γsf determines the dislocation core
dissociation.

Figure 4 shows the γ-surfaces of the {110}, {112} and
{123} planes in the BCC structure predicted by XMEAM-V,
DP-HYB-V and GAP-V. These three planes are the common
active slip planes in BCC metals. In all the cases, the mini-
mum energy path is along the 〈111〉 direction. No metastable
point exists in any of the cases, which is consistent with the
γ-surfaces of other BCC metals computed by DFT [19, 29].
All 〈111〉/2 dislocations (screw, edge and mixed) are thus
expected to have non-dissociated core structures. Despite
the completely different potential energy functions and fitting
methods, all three models exhibit similar γ-surface profiles
with some differences near the peak energies. The γ-surfaces
are perhaps strongly dictated by crystal geometry which is
easily represented in all models.

Figure 5 shows the γ-lines along the 〈111〉/2 direction on
the three planes calculated by DFT and the respective inter-
atomic potentials. These γ-lines are included in the fitting
datasets of XMEAM-V, DP-HYB-V and GAP-V. The {110}
plane is the close-packed plane and has the largest interpla-
nar separation, followed by the {112} and {123} planes. The
DFT-based unstable stacking fault energies exhibit a simi-

lar trend, i.e., γ{110}us < γ
{112}
us ≈ γ

{123}
us . All interatomic

potentials accurately reproduce the γ-line profiles and their
peaks; the largest discrepancy is 11% of GAP-V on the {112}
plane. Overall, XMEAM-V possesses accurate elastic con-
stants, surface-decohesion lines and γ-lines. It is thus promis-
ing to be used to study general plastic and fracture behaviour
of BCC V.

E. Point defects

BCC TMs are often employed in high temperature and ir-
radiative environments. Point defects can be generated fre-
quently, and accumulate to high densities and form various
defect clusters, which in turn directly affect their macro-
scopic mechanical properties. We consider the monovacancy
and 6 self-interstitials in BCC V : 〈111〉 dumbbell, 〈110〉
dumbbell, 〈100〉 dumbbell, 〈111〉 crowdion, tetrahedral, and
octahedral interstitials (Fig. 6). These defects can interact
with themselves, dislocations, grain/interface boundaries, and
crack-tips. Table VI summarizes the point defect energies of
DFT, XMEAM-V, DP-HYB-V, GAP-V and experiments. In
DFT, all formation energies with the OSC method are gener-
ally ∼0.2 eV lower than previous DFT values with the FSC
method [12]. These energy differences may also arise from
the different DFT parameters (cutoff energy, k-point densi-
ties) employed. However, the lower formation energy is ex-
pected in the OSC method, and is also seen in calculations
with the interatomic potentials.

For the monovacancy, all three potentials give formation
and migration energies comparable to DFT and experimen-
tal values. For self-interstitials, all configurations are at least
meta-stable in both the OSC and FSC methods in DFT, while
some relax to lower energy configurations in calculations us-
ing the interatomic potentials (Fig. 6). The 〈111〉 dumbbell is
predicted as the ground state configuration by DFT and all the
three potentials, followed by the 〈111〉 crowdion configuration
at 5 meV higher in the OSC method in DFT. The 〈111〉 crow-
dion is not stable and relax to the 〈111〉 dumbbell using the
interatomic potentials and the OSC method. The 〈110〉 and
〈100〉 dumbbell configurations have the third and fourth high-
est energies and are meta-stable in XMEAM-V, while DP-
HYB-V and GAP-V predict that the 〈110〉 and 〈100〉 dumb-
bells are not stable using the OSC method and show only the
〈100〉 dumbbell is meta-stable in the FSC method. All other
self-interstitials are not stable using the OSC method and the
interatomic potentials. For the stable/metastable configura-
tions, quantitative differences on atomic positions at point de-
fects exist among the different computational models. Never-
theless, all potentials generally reproduce the stable and meta-
stable self-interstitial energetics and structures in good agree-
ment with DFT (Fig. 6).

F. Phonon and temperature-dependent lattice properties

Figure 7 shows the phonon spectra of BCC V at 0 K based
on XMEAM-V, DP-HYB-V, GAP-V, DFT [97] and experi-
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Figure 3. Surface decohesion energy curves (solid) and their gradients/stresses (dashed) of the {100}, {110}, {112}, and {123} planes
predicted by DFT and three potentials. Note that the decohesion energies are divided by 2 and thus the energy at large distance is the unrelaxed
surface energy.

Table VI. The formation and migration energies (eV) of the monovacancy and formation energies of self-interstitials of BCC V based on
experiments, DFT, XMEAM-V, DP-HYB-V and GAP-V. In MD simulations with the relaxation on atomic positions and supercell vectors,
some self-interstitial configurations are unstable and relax to lower energy states. The numbers in the parenthesis are energies obtained under
fixed supercell constraint.

Defect Energy DFT/Experiment XMEAM-V DP-HYB-V GAP-V [38]

monovacancy formation energy 2.34, 2.6 [55] (2.61 [70]) /
2.1-2.1 [96]

2.55 (2.56) 2.40 (2.41) 2.56 (2.58)

migration energy 0.65 [70] / 0.5 [96] 0.56 0.56 0.39
〈111〉 dumbbell 2.71 (2.91 [12]) 2.83 (2.87) 2.83 (2.93) 2.76 (2.89)
〈110〉 dumbbell 3.01 (3.16 [12]) 2.98 (3.05) us a(us a) us a(us a)
〈100〉 dumbbell formation 3.20 (3.38 [12]) 3.21 (3.25) us a(3.85) us a(3.42)
〈111〉 crowdion energy 2.71 (2.91 [12]) us a(2.87) us a(2.96) us a(2.89)

tetrahedral 3.23 (3.42 [12]) us b(3.34) us a(us a) us a(us a)
octahedral 3.27 (3.44 [12]) us b(3.35) us a(3.84) us a(3.49)

a The structure relaxes to the 〈111〉 dumbbell configuration.
b The structure relaxes to the 〈110〉 dumbbell configuration.

ments [98]. At low to medium frequencies, all interatomic
potentials and DFT agree well with experimental data. In par-
ticular, XMEAM-V has slightly better agreement with exper-
iment around the Γ point, which reflects its accurate elastic
constants of the BCC structure. However, at higher frequen-

cies in the N , H , and P directions, the two ML potentials
are more accurate than XMEAM-V. The XMEAM-V poten-
tial does not qualitatively reproduce the basic symmetry of the
phonon spectrum at the H- and P -points. GAP-V is particu-
larly close to the DFT and experiment data, and is expected
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Figure 4. Generalized stacking fault energy surfaces (γ-surfaces) of the {110}, {112}, and {123} planes calculated by XMEAM-V, DP-
HYB-V and GAP-V. The white dashed arrows denote the shortest lattice translation vector 1/2〈111〉 on the respective planes.

0.0 0.2 0.4 0.6 0.8 1.0
Slip system 1/2〈111〉{110}

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

ck
in

g
fa

ul
te

ne
rg

y
γ

(J
/m

2
) DFT

XMEAM-V
DP-HYB-V
GAP-V

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Slip system 1/2〈111〉{112}

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

ck
in

g
fa

ul
te

ne
rg

y
γ

(J
/m

2
)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Slip system 1/2〈111〉{123}

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

ck
in

g
fa

ul
te

ne
rg

y
γ

(J
/m

2
)

(c)

Figure 5. Generalized stacking fault energy lines (γ-lines) along the 〈111〉 direction on the {110}, {112}, and {123} planes predicted by
DFT, XMEAM-V, DP-HYB-V and GAP-V.

to be more accurate in reproducing properties such as ther-
mal conductivity and diffusivity, while XMEAM-V is per-
haps more accurate in describing mechanical properties such
as crack-tip dislocation nucleation given its promising shear

modulus in a wide range of temperatures (see below).

Figure 8 shows the BCC lattice parameter a(T ) and elas-
tic constants Cij(T ) as a function of temperature calcu-
lated by the three interatomic potentials and from experi-
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Figure 6. Self-interstitials in the BCC structure of V predicted by DFT, XMEAM-V, DP-HYB-V and GAP-V. (a) 〈111〉 dumbbell. (b) 〈100〉
dumbbell. (c) 〈110〉 dumbbell. (d) 〈111〉 crowdion. (e) tetrahedral. (f) octahedral. All structures are the optimised configurations under the
fixed supercell constraint. All models have similar self-interstitial structures while quantitative differences still exist in atom positions. The
self-interstitial atom is shown in dark color.
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Figure 7. The phonon spectra of BCC phase from DFT, XMEAM,
GAP, DP, and experiment. The DFT and experimental results are
from Refs. [97, 98].

ments [99, 100]. All three potentials yield variations of lat-

tice parameter with temperature in excellent agreement with
experiment over the entire temperature range. In particular,
XMEAM-V has accurate lattice parameters with discrepan-
cies less than 0.01 Å while the two ML potentials underesti-
mate the lattice parameter by ∼0.03 Å. The offsets of a(T )
of the ML potentials are likely inherited from DFT which ex-
hibits a similar offset at 0 K. The linear coefficient of ther-
mal expansion (α(T ) = 1/a(∂a/∂T )) are 7.02× 10−6 K−1,
7.49×10−6 K−1, and 10.31×10−6 K−1 for XMEAM-V, DP-
HYB-V, and GAP-V at 300 K respectively, which are close to
the experimental value of 8.71× 10−6 K−1. Near 2200-2300
K, the slope of a(T ) changes in all potentials, indicating a
phase transition at this temperature.

For the finite-temperature elastic constants, GAP-V and
DP-HYB-V exhibit continuous decrease of C11(T ) and
C12(T ) in the entire temperature range, while XMEAM-V has
C11(T ) decreasing continuously up to 2100 K and C12(T ) al-
most independent of temperature. The temperature insensitiv-
ity ofC12(T ) agrees well with the experimental data up to 300
K. For the shear modulus C44(T ), XMEAM-V agrees well
with experiments in both its magnitude and slope. DP-HYB-
V has C44(T ) nearly independent of T at low temperatures
and then increasing slowly with T at high temperatures, while
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Figure 8. Lattice parameter a and elastic constants of BCC V at finite temperatures. The experimental data of lattice parameters and elastic
constants are from Refs. [99] and [100], respectively. Dashed black lines in (a) and (d) mark the experimental melting temperature of V at
2183K [83]. The melting temperatures obtained from the solid-liquid two phase method are shown in (d).

C44(T ) of GAP-V decreases rapidly at low temperatures and
gradually increases with increasing temperatures. We suspect
that the pathologies in C44(T ) of the ML potentials are asso-
ciated with the inaccuracies of DFT for the shear constant of
V at T = 0. Nevertheless, their slopes of C44(T ) are unusual
with respect to experimental results. In the intermediate tem-
perature range, discrepancies of the shear modulus C44(T ) is
further enlarged in GAP-V.

All of the elastic constants drop precipitously at a tempera-
ture close to the experimental solid-liquid transition tempera-
ture. In particular, the shear modulus C44(T ) of XMEAM-V
drops to 0 at 2200 K, suggesting the BCC phase transforms
to the liquid phase, in agreement with the experimental melt-
ing temperature of 2183 K [83]. The two ML potentials have
their C44(T ) reaching 0 at about 2500 K. The shear modulus
dataC44(T ) give some approximations of the melting temper-
atures of the respective potentials. In the solid-liquid coexis-
tence method, the obtained melting temperatures are consis-
tently lower than these approximations (Fig. 8d). Specifically,
the melting temperatures of XMEAM-V and DP-HYB-V are

determined to be 1875± 25 K and 2025± 25 K, respectively,
while GAP-V has Tm reported as 2130 K [38]. Melting tem-
peratures from C44 are the upper limits, since the configura-
tions used are ideal BCC structures in fully periodic supercells
and homogeneous nucleation of liquid phases requires some
barriers to be overcome and occurs at some higher tempera-
tures. Nevertheless, all potentials have melting temperature
around 2000 K close to experimental values.

Overall, XMEAM-V has better lattice and elastic properties
at finite temperatures than the two ML potentials, despite the
fact that finite-temperature properties are not included explic-
itly in the fitting of XMEAM-V. For the two ML potentials
(Table III and Ref. [38]), the training datasets include AIMD
configurations and yet their C44 values vary considerably in
the intermediate temperature range and rise at high tempera-
tures, indicating that additional datasets may be needed to re-
produce the shear modulus at finite temperatures in ML frame-
works.
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G. Dislocation core structures

Dislocations are the primary plastic strain carriers in most
metals at low to moderate temperatures. In BCC V, plastic slip
occurs via the motion of dislocations with a 〈111〉/2 Burgers
vector. In BCC TMs, the 〈111〉/2 screw dislocation has high
lattice friction, carries most plastic strain and thus dictates
stress responses at low temperatures. The screw dislocation
exhibits a wide range of intriguing behaviours which originate
from its core structures and associated properties. Given its
importance, the screw dislocation has been extensively stud-
ied in simulations using DFT or interatomic potentials. As
mentioned in the Introduction, existing interatomic potentials
of V have limited capabilities in reproducing the screw dislo-
cation properties and current understanding is largely derived
from DFT calculations which are often limited to small super-
cell sizes and 0 K temperature, in addition to its inaccuracy in
the shear elastic modulus C44.

We examine the structures of 4 different dislocations in
BCC V using XMEAM-V, DP-HYB-V and GAP-V and dis-
cuss the results with reference to earlier DFT calculations of
core properties in BCC TMs. Figure 9 shows the core struc-
tures of the 〈111〉/2 screw, edge, 70.5◦ mixed and 〈100〉
dislocation predicted by the interatomic potentials at 0 K.
The 〈100〉 edge dislocation was previously observed in BCC
Mo [101] while the mixed dislocation may exhibit high lattice
friction as proposed in an earlier study [102]. For the screw
dislocation (Fig. 9a), all potentials produce the ND core, con-
sistent with previous DFT calculations [103] and the predic-
tion based on a new material index χ [29]. All potentials also
predict a non-dissociated core of the 〈111〉/2 edge dislocation
on the {110} plane (Fig. 9b), consistent with the γ-surfaces of
the {110} plane (Fig. 4) where no meta-stable stacking fault
exists.

Figure 9c shows the core structures of the mixed disloca-
tion. XMEAM-V and GAP-V produce a bond-centered (BC)
structure while DP-HYB-V gives the atom-centered (AC)
structure. The BC core is seen in BCC TMs (Nb, Ta, Fe, Mo,
W) in DFT calculations and the AC core is observed in some
interatomic potentials [11]. Since DFT suggests that the BC
core is prevalent in other BCC TMs, XMEAM-V and GAP-V
are likely producing the correct ground state core structure of
the mixed dislocation in V. Finally, for the 〈100〉 edge disloca-
tion on the {110} plane (Fig. 9d), XMEAM-V shows a com-
pact core structure, similar to the core in Fe from DFT [104].
In contrast, both DP-HYB-V and GAP-V predict a relatively
open structure, which is also seen in GAP-Fe. Since DFT sug-
gests Fe adopts the compact structure and GAP-Fe produced
the open structure, it is likely that the open structure in GAP-
V/DP-HYB-V is not the ground state core structure. Based on
all of the above cores and available DFT results, XMEAM-V
perhaps correctly produces all the ground state core structures.

H. Dislocation Peierls stresses

We further calculate the Peierls stresses τP of the disloca-
tions shown in Fig 9. Table VII shows the computed results

and DFT/Experimental data. For all the dislocations and in
all models, the 〈111〉/2 screw dislocation has the highest τP,
in agreement with TEM study where screw dislocations have
low mobilities and are often observed as long straight lines
(e.g. Nb at 50 K [105], Ta [106] and W [107]). Specifically,
XMEAM predicts τP-screw as 1217 MPa, in agreement with the
DFT calculation of 1000-1200 MPa [22], while DP-HYB-V
and GAP-V have higher τP-screw of 1961 and 1971MPa, re-
spectively. For the edge dislocation, all models predict low
τP, negligible compared to that of the screw core. For the
70.5◦ mixed dislocation, XMEAM-V and GAP-V have the
same BC core structure and similar τP at 30 and 79 MPa,
while DP-HYB-V adopts the AC core with a much higher
τP. Low τP of non-screw cores by XMEAM-V and GAP-
V is consistent with (i) recent DFT calculations [11] where
the mixed core has nearly zero Peierls barriers and stresss
and (ii) internal friction (IF) experiments where the two low-
temperature peaks in IF spectra almost coincide [11] in Group
VB elements (Nb and Ta) [108]. DP-HYB-V thus likely over-
estimates the Peierls stress of these non-screw dislocations,
as in other earlier interatomic potentials [102]. For the 〈100〉
edge dislocation on the {110} plane, XMEAM-V predicts its
Peierls stress of 198 MPa, while DP-HYB-V and GAP-V have
high Peierls stresses at 1102 MPa and 503 MPa. For the mixed
and edge cores, the discrepancies among the interatomic po-
tentials seem to lie in their different core structures (Fig. 9),
which adds further complexities in modelling and understand-
ing dislocation and plastic deformation in BCC TMs. All
three interatomic potentials have exactly the same relative or-
dering of the Peierls stresses of all the dislocations. Neverthe-
less, based on the available DFT and experimental results in
the BCC TM family, XMEAM-V appears the preferred choice
for modelling core structures and Peierls stresses.

I. The 〈111〉/2 screw core Peierls barriers and energetics

At finite temperatures, the glide of the 〈111〉/2 screw dislo-
cation is governed by the transition path and associated energy
variation between two adjacent ground state core positions
(Peierls valley). This energy variation is known as the Peierls
potential. We study the Peierls potential using the nudged
elastic band (NEB) method. Figure 10a shows the schematics
of the transition path and critical core positions viewed along
the 〈111〉 direction. In particular, the easy, hard, split and sad-
dle cores are highly related to the Peierls potential [22]. The
easy and hard cores are at the centers of the triangles formed
by three columns of atoms. The relative positions of these
three columns of atoms along the Burgers vector direction de-
termine whether the structure is an easy or hard core. Previous
DFT calculations have shown that the ND core always adopts
the easy core position, while hard and split cores are the max-
imum energy states in BCC TMs [22]. The split core center
is at the vicinity of one atomic column. It is often metastable
in some EAM/MEAM potentials [51, 52], which results in a
double-hump Peierls energy profile.

Figure 10b shows the Peierls energy profiles of XMEAM-
V, DP-HYB-V and GAP-V calculated by the NEB method
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Figure 9. Core structures of 〈111〉/2 and 〈100〉 dislocations in BCC V. (a-b) The non-degenerate 〈111〉/2 screw core and the 〈111〉/2 edge
core on the {110} plane predicted by XMEAM-V, DP-HYB-V and GAP-V. (c) The bond-centered and atom-centered 1/2〈111〉{110} 70.5◦

mixed core on the {110} plane predicted by XMEAM-V/GAP-V and DP-HYB-V, respectively. (d) The 〈100〉{110} edge core on the {110}
plane predicted by XMEAM-V and GAP-V/DP-HYB-V. All cores are visualized with the differential displacement map. For the edge and
mixed cores, edge components are plotted on the relaxed configurations. For the screw core, screw components are plotted on the ideal BCC
lattice.

Table VII. Peierls stress τP (MPa) of the screw, mixed and edge dislocations in BCC V.

Model 1/2〈111〉 screw 1/2〈111〉{110}70.5◦ mixed 1/2〈111〉{110} edge 〈100〉{110} edge
XMEAM-V 1217 30 8 198
DP-HYB-V 1961 620 57 1102
GAP-V [38] 1971 79 20 503

DFT 1000-1200 [22] - - -
Experiment 360 [109] - - -
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Figure 10. Critical screw cores in 2D Peierls potential. (a) The schematic diagram of core positions (easy, hard, split and saddle cores) in the
2D Peierls potential. (b) Peierls energy of the screw dislocation calculated by the NEB method with interatomic potentials. DFT results are
collected from Ref. [22]. (c) Screw core migration process obtained from the NEB method with XMEAM-V. Rc denotes Reaction coordinate
in the NEB calculations. Only the first half migration is shown as the process is symmetric. (d) Saddle core structures obtained by interatomic
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visualized with the DD map and core centers are highlighted with orange arrows.



18

and previous DFT results [22]. In all the cases, the energy
profile is symmetric about the middle point of the transition
path (Fig. 10c) and has a single peak corresponding to the
saddle core (Fig. 10d) energy. The Peierls barrier ∆EPB is
thus determined by the energy difference between the saddle
and easy cores and is the energy barrier per unit length that
must be overcome for dislocation glide at 0 K. All potentials
exhibit similar saddle core structures with some minor differ-
ences on the magnitudes of the DD between the atom pair be-
low the core center. GAP-V predicts a Peierls barrier of 66.9
meV/b, close to that of W at 81.8 meV/b [22] and much higher
than the DFT values of 24.4 meV/b [53] and 25.7 meV/b [22].
XMEAM-V and DP-HYB-V predict ∆EPB slightly above the
DFT value, which itself may be underestimated in DFT (see
below). Table VIII summarizes the saddle, split and hard core
energies relative to their respective easy cores predicted by the
three potentials and DFT. GAP-V has core energies at least
50% higher than the corresponding DFT values, resulting in
much higher Peierls barrier ∆EPB.

Table VIII. The energies of the saddle, split and hard cores relative to
their respective easy cores predicted by DFT, XMEAM-V, DP-HYB-
V and GAP-V. The energies are in the unit meV/b.

Model ∆Esaddle-easy ∆Esplit-easy ∆Ehard-easy

XMEAM-V 38.2 56.4 74.5
DP-HYB-V 35.1 67.6 77.3
GAP-V [38] 66.9 136.0 108.7

DFT 25.7 [22], 24.4 [53] 51.3 [22] 52.5 [22]

Previous DFT calculations show that the elastic constant
C44 and Peierls barrier ∆EPB in V depend strongly on the
number of valence electrons employed. Specifically, C44 and
∆EPB are predicted to be 10.8 GPa and 14.6 meV/b with 5 va-
lence electrons and increase to 22.0 GPa and 24.4 meV/b with
11 valence electrons [53]. As the experimental value of C44

is 46.0 GPa and nearly 2 times the DFT value, it is reasonable
to expect the true ∆EPB is higher than the DFT value. Linear
extrapolations based on the shear modulus [53] and valence
electron number to all electrons will land ∆EPB at 51 meV/b
and 44 meV/b. These extrapolations are not expected to be
quantitatively accurate, or well founded since inner electrons
have less influence than outer electrons. In any case, ∆EPB of
XMEAM-V/DP-HYB-V are perhaps reasonable at this stage.

J. Gliding of a long screw dislocation at finite temperatures

The screw dislocation is believed to glide via a double-kink
nucleation and propagation mechanism at low to moderate
temperatures. We study its glide behaviour explicitly under a
shear stress of 1 GPa at 77 K in MD simulations. The applied
stress is higher than the Peierls stresses in experiments (360
MPa [109]), but enables quick examination of the elementary
core migration step at relatively short timescales (e.g., 30 ps).
Since only the XMEAM-V gives accurate shear modulus, we
focus on the finite temperature glide using XMEAM-V here.
Figure 11 shows the atomic configuration during the core mi-

gration from one Peierls valley (easy core) to the next one
(easy core) (a complete animation is available in the Supple-
mentary Materials). In the simulation, the screw core glides
via the double-kink nucleation and migration mechanism. In
particular, the screw core is stationary at the easy core position
for most of the time. A double kink of opposite signs is occa-
tionally nucleated at a short segment of the dislocation line on
the maximum resolved shear stress plane (MRSSP, the (1̄01)
horizontal plane in Fig. 11a-b), followed by the kink propaga-
tion in the opposite directions along the dislocation line. The
two kinks annihilate each other after they cross the periodic
boundary and meet again, which completes the one-step mi-
gration of the entire screw dislocation.

In addition to the double-kink nucleation and migration
along the MRSSP, a double-kink could occationally nucle-
ate on the (01̄1) plane with a lower resolved shear stress
(Fig. 11e-g). The Schmid factor of the anomalous system
[111](01̄1) is only one half of that of the primary system
[111](1̄01) [6]. This non-Schmid behaviour is surprising, but
is consistent with the anomalous slip observed in high-purity
V and more broadly in group VB and VIB TMs deformed at
low temperatures [6]. In V in particular and with decreasing
temperatures (e.g., 77 K), the tendency of slip on crystallo-
graphic {110} planes increases with frequent anomalous slips
on lightly stresses {110} planes [110–112] and branching on
concurrent {110} planes [113]. This anomalous slip is also
widely observed in Nb [105, 114–118] and Ta [119] and group
VIB TM family (see Ref. [6]). XMEAM-V thus demonstrates
its capability in modeling fundamental dislocation glide be-
haviour for BCC V, including the unexpected anomalous slip
which seems to be an intrinsic property of the screw core.

K. Computational speed

Finally, we compare the computational speeds of XMEAM-
V, DP-HYB-V and GAP-V. All benchmarks are performed
through the LAMMPS interfaces on a 32-CPU-core node and
on a V100 GPU (only for DP). DP-HYB-V supports two mod-
els: the original and compressed models. The former pre-
serves the exact information of the embedding neural network
while the latter accelerates the computational speed via tab-
ulating the embedding network [120]. The benchmark mea-
sures the time elapsed for 10000 MD timesteps for supercells
of perfect BCC structure at 100 K. Figure 12 shows the speed
(ns/day) as a function of total number of atoms in the super-
cells. Overall, all interatomic potentials exhibit near-linear
scaling with increasing number of atoms, which is of utmost
importance and a key attribute in stark contrast with first-
principles DFT calculations. For the largest system with more
than 30000 atoms, XMEAM-V is slightly faster (20%) than
DP-HYB-V compression model, 13.3 times of DP-HYB-V
original model, and 31.6 times of GAP-V on CPU. The com-
pression model accelerates DP-HYB-V by about a factor of
10 on CPU and 6 on GPU. The above benchmark provides
a general comparison among the different interatomic poten-
tial formalisms and are only for references to estimate their
respective computing costs. Further code optimizations are
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Figure 11. The gliding process of the long screw dislocation (30 b) under a shear stress τzx of 1 GPa at 77 K. Atoms are colored by their
local structures identified by the common neighbor analysis: BCC-blue and white-others. (a-d) Double-kink nucleation and propagation along
the (1̄01) MSSRP. (e-g) Double-kink nucleation and propagation along the lightly stressed (01̄1) plane. (h) Schematics of the slip planes and
the applied stress τzx.

certainly possible in the various models.

IV. DISCUSSION

Interatomic potentials provide a bridge between material
properties at lattice scales and defect properties at microme-
chanics scales. This upscaling is achieved by approximat-
ing the potential energy landscape of the system with an-
alytical, numerical/spline-curve, Gaussian basis, or neural-
network functions. GAP does not have fixed functional
form and can be systematically improved, so does DP which
employs variable-size embedding and fitting neural-network
functions. Both GAP and DP have well-established train-
ing frameworks [38, 121] which allows systematic develop-
ment of new interatomic potentials. For V, both DP-HYB-V
and GAP-V are trained with a broad range of datasets gener-
ated from first-principles calculations. GAP-V is trained with
BCC structures (elastically distorted, high temperatures, va-
cancy, self-interstitials, surface, γ-surfaces), elastically dis-
torted FCC, HCP, simple cubic, diamond, A15 and C15, as
well as liquids and dimers. DP-HYB-V is trained with a sim-
ilar datasets covering a smaller range of structures (mainly
BCC and FCC). Both these ML-type potentials accurately re-
produce V properties from DFT. In particular, both poten-
tials possess the ND core structure and single-hump Peierls
energy profile of the 〈111〉/2 screw dislocation, which has
been a challenging task for interatomic potentials over several
decades. This success, however, has its origin in the crystal
geometry at the screw core center. We recently discovered
that the screw dislocation core structure is governed by the
cohesive energy difference ∆EFCC-BCC bewteen the FCC and
BCC structures [29]. Since DP-HYB-V and GAP-V are fit to
both BCC and FCC structures and reproduce their cohesive
energies accurately (Table V), they naturally produce the ND
core.

The capability of DP and GAP to fit to multi-structure/state
is an inherent advantage in ML type of interatomic poten-
tials, since they use extensible functions and allow continu-
ous improvements. Training with multi-structure has further
profound impacts on the transferability of interatomic poten-
tials in general. For example, recent DFT calculations show
that the 〈111〉/2 screw dislocation Peierls barrier and nucle-
ation barrier scale linearly with ∆EFCC-BCC in BCC TMs [29].
Previous first-principles calculations show that the tetragonal
shear constant C ′ = (C11 − C12)/2 is also determined by
∆EFCC-BCC and the Bain path [122]. While all these are ul-
timately related to band-filling or valance electron concentra-
tions [29], these interatomic potentials do not contain elec-
trons explicitly. Therefore, it is likely that electronic struc-
tures/quantum mechanics information is transferred to ML
potentials more robustly via structures of different phases.
Nevertheless, such transfer is not always straightforward or
automatic in ML frameworks, nor guarantees accurate repro-
duction of any particular properties. For example, GAP-V
has its screw dislocation saddle, split and hard core energies
100% higher than the corresponding DFT values, while the
Peierls potential can only be accurately reproduced with the
new DP-HYB containing a three-body descriptor in the DP
framework, despite their accuracies with respect to DFT in
many other properties including the unstable FCC phase and
the erroneous elastic constant C44. Of course, such ML po-
tentials can be no better than the datasets upon which they are
trained. In the present case, the datasets come from DFT in
the GGA approximation. At this level of electronic structure
calculations, it is well-known that DFT does poorly for Group
VB elements and especially so for V. This has variously been
attributed to orbital localization and delocalization error in el-
ements with strongly localized and correlated valence elec-
trons [49]. Hence, Group VB V should be viewed as a worst
case scenario. The resulting problem is poor reproduction of
the elastic constant C44. Recent semi-empirical DFT+J for-
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Figure 12. Speed comparison of the XMEAM-V, GAP-V, DP-HYP-
V original, and DP-HYB-V compression model. (a) On a CPU ma-
chine. (b) DP-HYB-V original and compression models on a GPU
machine. The computational speed (ns/day) is directly read from the
log files of LAMMPS.

malisms correct such a problem [49], leading to more accu-
rate C44 of V. Hence, the accuracies of ML potentials may be
improved by retraining the entire potential using the DFT+J
approach.

MEAM/XMEAM uses the classical formalism with analyt-
ical functions for its electron density and embedding func-
tions, and a spline curve for its pair-interaction function. It is
semi-empirical with its total energy expression conceptually
related to the tight-binding theory, has fixed functional form
and contains 18/24 fitting parameters. The MEAM/XMEAM
also has the flexibility to be trained using any combination
of datasets from DFT and experiments. Compared with the
ML potentials, the classical semi-empirical MEAM/XMEAM
contains considerably fewer parameters and can be trained
on small datasets compared with those used for ML poten-
tials. Nevertheless, the selection of the datasets requires a
priori knowledge about the material system (ML frameworks
also require some of it). The original MEAM faces consider-
able difficulty in reproducing properties of multiple structures,
which is crucial for many defect properties and phase trans-

formations. The new XMEAM extends the MEAM capability
for multi-structure, as seen in earlier similar works [62, 77].
Nevertheless, it also has limitations. For example, the cur-
rent XMEAM-V cannot reproduce the ∆EFCC-BCC of V at the
DFT value; raising ∆EFCC-BCC leads to deterioration of other
properties. However, preliminary results of an XMEAM po-
tential for W suggest it is possible to reproduce ∆EFCC-BCC of
W with reasonable overall properties.

While XMEAM-V is the first potential developed under this
extended MEAM framework, further refinements are possible,
such as through the selection of fitting datasets, procedures,
parameter space and weights. ML potential frameworks, such
as the GAP and DP, are also evolving towards more accurate
material and alloy properties and increased efficiency (e.g.,
DP on GPUs and tabulated GAP [123]). However, their accu-
racy for group VB TMs will continue to be limited by the cur-
rent functionals in DFT calculations until a practical improve-
ment/replacement is found and validated (e.g., DFT+J). Nev-
ertheless, the improvements in DFT, at almost no additional
computational cost, is tempting for ML potentials given their
natural flexibility. A broad survey on existing interatomic po-
tentials show that very few interatomic potentials (include ML
ones) can simultaneously give the correct ND screw disloca-
tion core structure and accurate Peierls energy profile. The
issues shown in Table I are thus not unique for V but general
for all BCC TMs. Given the current state-of-the-art, XMEAM
offers a reasonable path applicable to all nonmagnetic BCC
TMs. The datasets and fitting procedures introduced here can
be easily applied to Nb and Ta, and perhaps to Mo and W
as well. Compared to the current DP-HYB-V and GAP-V,
XMEAM-V reproduces nearly all properties relevant to point
defect, dislocation and fracture properties. It offers a balance
between accuracy and efficiency and thus can be used broadly
to study plastic deformation at different loading conditions,
temperatures, and likely with high fidelity. In particular, the
anomalous slip, dislocation mobility as a function of disloca-
tion character (edge, mixed, screw), twinning, crack-tip be-
haviours should be examined more carefully than the simula-
tions in the current work with a main purpose of introducing
the new potentials. Such specific studies will provide new in-
sights and guidance on realistic plasticity modellings at higher
scales such as in dislocation dynamics and crystal plasticity fi-
nite element analysis.

V. CONCLUSION

In summary, we developed two new interatomic potentials
for BCC V, using an extended form of the classical, semi-
empirical MEAM (XMEAM) and the machine-learning DP-
HYB framework. Both new potentials exhibit superior accu-
racy for mechanical properties relative to all existing inter-
atomic potentials. We performed comprehensive comparisons
among the XMEAM and two ML potentials (DP and GAP)
on the thermodynamic and mechanical properties of V. The
two ML potentials inherit the erroneous properties of V from
current DFT calculations. On the other hand, the classical
XMEAM potential, trained using a selection of experimental
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and DFT data, gives accurate properties relevant for plastic
and fracture phenomena at both 0 K and finite temperatures.
In particular, XMEAM-V reproduces all screw, edge, mixed
dislocation core structures, Peierls stress at 0 K and anoma-
lous slip at 77 K, enabling large-scale atomistic simulations in
BCC V. XMEAM expands the capability of classical poten-
tials for multi-structure and provides a practical path to devel-
oping interatomic potentials for other BCC TMs, and in par-
ticular the group VB TMs where the most widely used DFT
functionals have limited accuracy. Since XMEAM retains the
essential features of MEAM, XMEAM interatomic potentials
fit for pure elements may be used as a foundation for develop-
ing potentials for multi-principal element alloys, particularly
the refractory class NbTaMoW alloys and its derivatives.
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VII. APPENDIX

Table IX shows the elastic constants predicted by DFT and
machine learning interatomic potentials trained based on the
DFT-computed datasets. These values are used to compute
the relative errors shown in Fig. 1.
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