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Thermal transport phenomena are ubiquitous and play a critical role in the performance of various
microelectronic and energy-conversion devices. Binary rocksalt and zinc blende compounds, despite their
rather simple crystal structures, exhibit an extraordinary range of lattice thermal conductivity (κL) spanning
over 3 orders of magnitude. A comprehensive understanding of the underlying heat transfer mechanism
through the development of microscopic theories is therefore of fundamental importance, yet it remains
elusive because of the challenges arising from explicitly treating higher-order anharmonicity. Recent
theoretical and experimental advances have revealed the essential role of quartic anharmonicity in suppressing
heat transfer in zinc blende boron arsenide (BAs) with ultrahigh κL. However, critical questions concerning
the general effects of higher-order anharmonicity in the broad classes and chemistries of binary solids are still
unanswered. Using our recently developed high-throughput phonon framework based on first-principles
density functional theory calculations, we systematically investigate the lattice dynamics and thermal
transport properties of 37 binary compounds with rocksalt and zinc blende structures at room temperature,
with a particular focus on unraveling the impacts of quartic anharmonicity on κL. Our advanced theoretical
model for computing κL embraces current state-of-the-art methods, featuring a complete treatment of quartic
anharmonicity for both phonon frequencies and lifetimes at finite temperatures, as well as contributions from
off-diagonal terms in the heat-flux operator. We find the impacts of quartic anharmonicity on κL to be
strikingly different in rocksalt and zinc blende compounds, owing to the countervailing effects on finite-
temperature-induced shifts in phonon frequencies and scattering rates. By correlating κL with the phonon
scattering phase space, we outline a qualitative but efficient route to assess the importance of four-phonon
scattering from harmonic phonon calculations. Among notable examples, in zinc blende HgTe, we identify an
unprecedented sixfold reduction in κL due to four-phonon scattering, which dominates over the three-phonon
scattering in the acoustic region at room temperature. We also demonstrate a possible breakdown of the
phonon gas model in rocksalt AgCl, wherein the phonon states are significantly broadened due to strong
intrinsic anharmonicity, inducing off-diagonal contributions to κL comparable to the diagonal ones. The deep
physical insights gained in this work can be used to guide the rational design of thermal management
materials.
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I. INTRODUCTION

Thermal conductivity, heat conduction under a finite-
temperature gradient, is of vital importance in various
modern technologies, including transistors, photovoltaics,

and thermoelectric devices [1,2]. In particular, increasing
power density in microprocessors demands efficient ther-
mal management, where high thermal conductivity is
desired to remove heat away from the “hot spots” [3].
On the other hand, irreversible heat transfer needs to be
minimized in order to achieve optimal energy conversion
efficiency in the application of thermoelectric materials [4].
Therefore, semiconducting materials of particular interest
are those exhibiting extreme thermal conductivities, with
either very high or very low lattice thermal conductivities
(κL). Surprisingly, these rather extreme material properties
have been discovered in simple binary cubic compounds
with rocksalt and zinc blende structures (hereinafter
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referred to as binary rocksalts and zinc blendes), which
have κL spanning more than 3 orders of magnitude [3].
Prominent examples include lead chalcogenides
(PbS=Se=Te), which are known for their superior thermo-
electric properties with very low κL [5], and boron arsenide
(BAs) with ultrahigh κL, second only to that of diamond
among bulk compounds comprised of naturally occurring
elements [6–8].
Despite the structural simplicity of binary rocksalts and

zinc blendes, comprehensive experimental characterization
of the thermal transport properties and theoretical under-
standing of the lattice dynamics in these compounds are
still quite challenging. Theoretically, extensive lattice
dynamics theories were formulated decades ago [9–13].
Their application in modeling κL of real materials in a first-
principles manner has only been brought to life recently,
thanks to the development of density functional theory
(DFT) [14,15] and high-performance computing. Widely
used modeling approaches are based either on molecular
dynamics (MD) or anharmonic lattice dynamics (ALD).
MD-based methods are, in principle, more general because
of the inclusion of all anharmonic terms and the existence
of a universal expression for κL in the Green-Kubo
framework [16,17]. However, their applications in model-
ing κL for a large number of compounds are still impeded
by the lack of computationally efficient and accurate
force fields, the latter of which are usually specific to a
given system, not to mention the challenge arising from
fully incorporating the quantum effects [18–20]. These
challenges can be partially overcome by an alternative
theoretical framework that combines ALD and the Peierls-
Boltzmann transport equation (PBTE) [21–27], wherein
phonon states carrying heat are treated as quasiparticles
with well-defined energies and finite lifetimes, in the spirit
of the phonon gas model (PGM) [28]. Recently, the ALD-
PBTE approach has been widely adopted to model and
analyze κL in a variety of crystalline compounds, success-
fully unraveling the microscopic mechanism underlying
both very high κL [29–31] and very low κL [32–40].
The application of the ALD-PBTE approach has led to

the prediction of an anomalously large κL in zinc blende
BAs with a value higher than diamond above room
temperature. The microscopic origin has been attributed
to the weak three-phonon (3ph) interactions [30]. However,
a significantly lower κL (but still high) was reported by
experiments [41,42], which was initially attributed to the
presence of extrinsic phonon scattering from defects and
grain boundaries [43]. Recent theoretical advances in ALD
calculations have demonstrated that higher-than-third-order
anharmonicity, or specifically, four-phonon (4ph) scatter-
ing, is responsible for a roughly 40% reduction in the κL of
BAs compared to that predicted considering only 3ph
scattering [44]. Nevertheless, κL of naturally occurring
BAs still reaches over 1000 W=ðm · KÞ [44] at room
temperature. This improved theoretical prediction was

subsequently confirmed by a combination of (i) advanced
experimental synthesis of high-quality single-crystal BAs
samples and (ii) thermal conductivity measurements based
on time-domain thermoreflectance or frequency-domain
thermoreflectance [6–8]. In addition, most recent first-
principles studies have revealed the importance of thermal
expansion, anharmonic phonon renormalization (APRN),
4ph scattering, and the interplay between them to accu-
rately estimate κL. Explicit examples have been demon-
strated by the nontrivial temperature dependence of κL in
strongly anharmonic PbTe [45] and the anomalously weak
temperature dependence of phonon frequency in NaCl [46].
In fact, it has been found that in some cases, the agreement
between κL obtained from calculations considering only
3ph scattering and experiments is likely due to cancellation
of errors [45].
Given the complex interplay of various factors contrib-

uting to κL, despite years of research into simple binary
rocksalts and zinc blendes, there are still a plethora of
unexplored avenues and critical unanswered questions
regarding their transport properties. One of the outstanding
challenges is to achieve a comprehensive understanding of
the effects of higher-order (e.g., quartic) anharmonicity on
lattice heat transport. It is worth mentioning that the
theoretical formalism for explicitly treating higher-order
anharmonicity was developed about a half century ago
[10,47–50]. However, due to formidable computational
cost and theoretical complexity, quartic anharmonicity has
rarely been incorporated in first-principles calculations of
κL within the framework of ALD and PBTE, and it is
limited to only a few case-by-case studies [44–46,51–59].
Specifically, the following fundamental questions remain
unexplored:

(i) How does quartic anharmonicity generally affect κL,
and does the inclusion of quartic anharmonicity
always reduce κL?

(ii) When is quartic anharmonicity important? Is there a
way to assess the significance of 4ph scattering
using only harmonic calculations?

(iii) Will quartic anharmonicity be critical enough to cause
a breakdown of the phonon gas model and modify the
microscopic thermal transport mechanism?

Question (i) arises from the complex role of 4ph inter-
actions in that they not only lead to additional phonon
scattering rates but also induce shifts in phonon frequen-
cies at finite temperature; the net change in κL caused by
4ph interactions is thus nontrivial. (For conceptual clarity,
we adopt a convention in this study that “4ph inter-
actions” refer to both frequency shifts and scattering
rates, while “4ph scattering” refers to scattering rates
only.) Question (ii) could be answered by a practical
approach to assess the effects of 4ph interactions effi-
ciently, presumably from relatively cheaper harmonic
calculations. Question (iii) addresses the validity of the
phonon quasiparticle picture adopted in PGM and other
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possible thermal transport mechanisms beyond PGM,
including the off-diagonal terms from a more general
expression of the heat-flux operator.
To shed light on these questions, we systematically

investigate the impacts of quartic anharmonicity on the
lattice dynamics and thermal transport properties of 19
binary rocksalts and 18 binary zinc blendes (see Table I) by
means of our recently developed high-throughput frame-
work for modeling material properties at finite temperatures
[60]. This first-principles-based framework embraces state-
of-the-art theoretical models and techniques, featuring
(i) efficient and accurate construction of high-order
anharmonic interatomic force constants (IFCs) using com-
pressive sensing lattice dynamics (CSLD) [61–63],
(ii) advanced anharmonic lattice dynamics with full treat-
ment of quartic anharmonicity, accounting for both phonon
frequency shifts and scattering rates [51,52], and (iii) a
unified lattice thermal transport model including both
diagonal and off-diagonal contributions to κL from the
heat-flux operator [64,65].
We study the impacts of quartic anharmonicity on κL in

37 selected binary rocksalts and zinc blendes at room
temperature, along a ladder [see Fig. 2(a)] of approxima-
tions for modeling κL, as described in Sec. II A. Our work
shows that the impact of quartic anharmonicity in rocksalts
differs significantly, both qualitatively and quantitatively,
from that in zinc blendes: Quartic anharmonicity on top of
the cubic anharmonicity always reduces κL in binary zinc
blendes to varying degrees, while it results in either reduced
or increased κL in binary rocksalts. We find that this
surprising finding can systematically and significantly
reduce discrepancies between theoretically predicted and
experimentally measured κL. Furthermore, we demonstrate

a clear correlation between the relative change in κL and
3ph/4ph scattering phase space, which can be obtained from
cheap harmonic calculations. We also discover unprece-
dentedly strong 4ph scattering in zinc blende HgSe=Te,
whose 4ph scattering rates unexpectedly dominate over 3ph
scattering rates in the acoustic region. Contrary to a general
consensus that PGM is valid in simple and ordered com-
pounds at low temperatures, we show, in a case study of
rocksalt AgCl, the possible breakdown of PGM at room
temperature, even in the context of anharmonically renor-
malized phonons. The strong phonon broadening due to
intrinsic anharmonicity gives rise to off-diagonal contribu-
tions to κL as important as those from diagonal terms in the
heat-flux operator. Finally, we discuss the limitations of our
method and possible future directions.

II. METHODS

A. Lattice thermal transport from the
Peierls-Boltzmann approach and beyond

The hierarchy of our theoretical model is built upon the
Peierls-Boltzmann approach, wherein the contribution of
phonons towards heat transfer is modeled [21]. The
resulting κL has a straightforward expression under the
single-mode relaxation time approximation (SMRTA):

κL ¼ ℏ2

kBT2ΞN

X
λ

nλðnλ þ 1Þω2
λvλ ⊗ vλτλ; ð1Þ

where ℏ, kB, T, Ξ, and N are, respectively, the reduced
Planck constant, Boltzmann’s constant, absolute temper-
ature, volume of the primitive cell, and the number of
sampled wave vectors. The phonon mode-resolved

TABLE I. Calculated lattice thermal conductivities in units of W=ðm · KÞ using various levels of theory, namely, κHA3ph, κ
SCPH
3ph , and

κSCPH3;4ph , for selected binary compounds in rocksalt and zinc blende structures compared with experimental values. All theoretical values
are calculated at 300 K using the PBE functional, except those values in parentheses for PbTe, AgCl, and HgTe, which are calculated
using the PBEsol functional. Thermal expansion is also included (using experimental lattice parameters at 300 K) in the case of LiH,
PbTe, and AgCl, as they display much larger thermal expansion than that of HgTe. The absence of κHA3ph for AgCl is due to the presence of
imaginary frequencies in harmonic phonons. Note that the ground-state structures of HgS and CdSe are not zinc blende, and hence no
experimental κL is available. We include hypothetical zinc blende HgS and CdSe to compare the trend across S=Se=Te compounds.

Rocksalts MgO CaO SrO BaO LiH LiF NaF NaCl NaBr NaI KF KCl KBr KI RbCl PbS PbSe PbTe AgCl

κHA3ph 52.1 21.3 9.0 2.8 22.9 (15.6) 11.3 20.6 7.2 2.9 1.7 5.9 6.6 2.2 1.3 1.7 1.3 1.1 1.6 (2.1) (N/A)

κSCPH3ph 58.7 25.1 11.0 4.4 33.1 (24.5) 15.4 26.4 9.7 3.6 2.5 7.1 8.9 3.0 2.0 2.2 2.2 2.0 2.7 (3.4) (0.55)

κSCPH3;4ph 50.1 22.2 9.9 3.3 25.8 (18.3) 11.4 14.9 5.4 2.6 1.6 5.0 4.5 2.0 1.4 1.7 1.5 1.5 1.7 (2.3) (0.41)

κexpL 52 30 10 3 14.7 16.1 18.5 7.2 2.9 1.9 7.8 7.2 3.4 2.8 2.9 2.5 1.6 2.2 1.1
Reference [66] [66] [66] [66] [67] [68] [69] [70] [71] [70] [72] [73] [73] [73] [73] [74] [74] [75] [76]

Zinc blendes AlAs AlSb BN BP BAs CdSe CdTe GaP GaSb InP InAs InSb ZnS ZnSe ZnTe HgS HgSe HgTe
κHA3ph 93.1 88.8 776.7 415.6 2155.6 13.5 7.6 118.8 33.2 90.9 28.5 16.8 42.1 19.2 21.4 4.5 4.6 8.1 (12.8)

κSCPH3ph 88.9 84.3 774.0 413.8 1997.4 13.1 7.5 117.3 31.8 87.3 27.3 15.7 41.5 18.8 21.3 5.3 5.6 8.7 (14.2)

κSCPH3;4ph 67.2 41.2 764.2 397.7 1093.9 7.4 5.0 84.1 22.5 51.0 19.4 11.1 29,6 14.9 15.7 1.8 1.7 1.8 (2.3)

κexpL 91 46=56 740 400=460 1300=1000 N/A 7.5 76=100 37.8 67 27.3 16.6 27 19 18 N/A 1.7 1.9=2.6
Reference [77] [78]/[79] [80] [81]/[82] [6]/[7] N/A [83] [79]/[67] [78] [78] [78] [78] [83] [83] [83] N/A [83] [83]/[84]
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properties, namely, nλ, ωλ, vλ, and τλ, are the population,
frequency, group velocity, and lifetime of mode λ
(composite index for the wave vector q and branch s),
respectively. Normally, all phonon properties except τλ can
be obtained from the harmonic approximation (HA) by the
diagonalizing dynamical matrix constructed from harmonic
interatomic force constants (IFCs). The calculation of τλ
requires information beyond the HA and must account for
at least 3ph scattering processes, which is usually per-
formed by treating cubic anharmonicity as a perturbation to
the HA [10,11,85].
These approximations provide the basis for computing

κL in the framework of ALD and PBTE, representing the
lowest or first level of theory, hereinafter abbreviated as
HAþ 3ph and κHA3ph for the resultant κL. The inclusion of
quartic anharmonicity will affect both ωλ and τλ. The
HAþ 3ph model can be improved by taking into account
the phonon frequency shifts at finite temperature owing to
APRN [13]. Among various existing formalisms for APRN
[51,86–89], we choose the self-consistent phonon (SCPH)
approximation, which comprises the first-order correction
from quartic anharmonicity [90–93]. The resultant phonon
frequencies, in principle, better represent the energies
of phonon quasiparticles, particularly in the presence of
severe anharmonicity and lattice instability [40,51,94]. We
label this improved model the second level of theory,
abbreviated as SCPHþ 3ph and κSCPH3ph . Finally, additional
phonon scattering rates from 4ph scattering processes can
be added on top of the 3ph scattering rates [52], constituting
the highest or third level of theory used in this study,
namely, SCPHþ 3; 4ph and κSCPH3;4ph . A schematic showing
the ladder of approximations is depicted in Fig. 2(a),
wherein the additional phonon scattering due to natu-
rally occurring isotopes [95–97] is implicitly included in
every ladder of approximations. We note that while it is
not immediately obvious where phonon frequency shifts
and scattering due to quartic anharmonicity should lie on
our ladder of approximations, the order adopted here is
based on the fact that scattering rates depend on
frequencies, so better estimations of phonon frequencies
should lead to more accurate scattering rates. It is worth
noting that although the HAþ 3ph scheme is now
commonplace, a partial consideration of quartic anhar-
monicity for either frequency shifts or scattering rates is
limited to a few studies [40,44,51–53,57,94,98,99], and
full consideration of quartic anharmonicity is rarely
reported [45,46,54,56,100–104].
However, the above thermal transport models only

capture the diagonal terms of the heat-flux operator [64],
consistent with PGM. In fact, even in the harmonic part of
the heat flux, there are off-diagonal terms that contribute
additional heat transport, although their magnitude com-
pared to the diagonal part (κdiagonalL ) is usually deemed
negligible in simple crystalline compounds [64,105]. The

theoretical formalism for estimating the off-diagonal
contributions (κoff-diagonalL ) has been derived [106–108]
and is often used to explain the glasslike κL in amorphous
compounds [109]. Recently, a unified thermal transport
model incorporating both diagonal and off-diagonal
contributions considering anharmonic phonon-phonon
interactions has been developed [65,110]. In this work,
we adopt the formalism derived by Simoncelli, Marzari,
and Mauri [65] to estimate κoff-diagonalL on top of the
SCPHþ 3; 4ph theory:

κoff-diagonalL ¼ ℏ2

kBT2ΞN

X
q

X
s≠s0

ωs
q þ ωs0

q

2
vs;s

0
q ⊗ vs

0;s
q

×
ωs
qnsqðnsq þ 1Þ þ ωs0

qns
0
q ðns0q þ 1Þ

4ðωs0
q − ωs

qÞ2 þ ðΓs
q þ Γs0

q Þ2
ðΓs

q þ Γs0
q Þ:

ð2Þ

Note that the phonon lifetime τλ is replaced with the
scattering rate Γs

q ¼ 1=τλ. In addition, the group velocity is

generalized to the off-diagonal form vs;s
0

q [see Eq. (30) in
Ref. [65] and Eq. (4) in Ref. [111] ].
We have adopted a full solution of PBTE using an

iterative scheme [112,113] beyond the SMRTA to treat the
nonresistive normal scattering processes when only 3ph
scattering is considered, taking advantage of the existing
implementations within the ShengBTE package [114]. The
evaluation of the SCPH equation, 4ph scattering rates, and
the off-diagonal part of κL were performed using an in-
house implementation of these schemes. As a compromise
between computational cost and accuracy, we calculated
4ph scattering rates under SMRTA and added them to
the iteratively solved 3ph scattering rates following
Matthiessen’s rule, as adopted in an earlier study [45].
This treatment certainly has limitations and tends to
potentially underestimate κL, which will be discussed in
Sec. III C. Phonon wave vectors were sampled with a
uniform 16 × 16 × 16 q-point mesh for both Eqs. (1)
and (2), and with a sparser 8 × 8 × 8 q-point mesh for
SCPH calculations. These choices were made based on
rigorous convergence tests, consistent with the parameters
used in earlier studies [44,45,54,57,115]. We refer the
readers to the appendices for more details on solving the
SCPH equation (Appendix A), numerical evaluation of
phonon scattering rates (Appendix B), and construction of
high-order IFCs using CSLD (Appendix C).

B. Density functional theory calculations

All DFT calculations were performed using the Vienna
Ab initio/ Simulation Package (VASP) [116–119], which
employs the projector-augmented wave (PAW) [120]
method in conjunction with the Perdew-Burke-Ernzerhof
(PBE) [121] version of the generalized gradient
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approximation (GGA) [122] for the exchange-correlation
functional [14], unless otherwise noted. We used Gamma-
centered k-point meshes with the smallest allowed spacing
of 0.15 Å−1 between k points, a plane-wave cutoff energy
at least 30% higher than the “ENMAX” values specified in
the recommended PAW pseudopotentials by VASP. Atomic
and cell degrees of freedom were taken into account in all
structural relaxations, with the convergence thresholds of
10−3 eV=Å for force components and 10−8 eV for total
energy, respectively. Born effective charges and macro-
scopic static dielectric constants used for a nonanalytic
correction of phonon dispersions [123] near the Gamma
point were computed using the density function perturba-
tion theory (DFPT) implementation in VASP [124,125]. All
calculations, including structural relaxation and symmet-
rization of a primitive cell, construction of supercells, and
self-consistent force calculations of the supercells with
displaced atoms (for extracting IFCs), were performed
using our recently implemented high-throughput phonons
framework within the Open Quantum Materials Database
(OQMD) [126,127]. A full account of this framework will
be given in a separate publication [60].

III. RESULTS AND DISCUSSIONS

A. Lattice thermal conductivity

We start our discussion of the κL of the 37 binary
compounds listed in Table I by analyzing κL, which is
obtained using the lowest level of theory, namely,
HAþ 3ph. Since the κL values span about 3 orders of
magnitude, we show the ratio of κHA3ph to κ

exp
L as a function of

κexpL (all at 300 K) in Fig. 1 to better present a comparison
with experiments. We observe several interesting features:
(i) κHA3ph of rocksalts generally underestimates κL, while κHA3ph
of zinc blendes, on the contrary, tends to overestimate κL,
and (ii) several compounds, e.g., HgSe=Te, BAs, PbS, and
KI, in both rocksalt and zinc blende families deviate
significantly from experiments. Our observation (i) is
consistent with an earlier study by Seko et al. [128], albeit
the focus therein was on predicting low-κL systems using
Bayesian optimization and not on the analysis of the
differences between theory and experiment. The discrep-
ancies may be attributed to several sources such as
uncertainties in experimental sample preparation and
measurement, the fundamental limitations of DFT (e.g.,
approximations to the exchange correlation functional), the
theoretical model adopted in computing κL, and so on.
However, the contrasting behaviors (systematic underesti-
mation vs overestimation) in rocksalts and zinc blendes are
unlikely to be attributable to either experimental uncer-
tainties or the approximations used in DFT calculations. If
the discrepancies were due to either of these, the uncer-
tainties associated with both cases would likely be sys-
tematic across these compounds. For example, if the PBE
functional adopted in this study tends to underestimate

binding energies and thereby bond strength, the calculated
κL of rocksalts and zinc blendes, both extended solids,
using the PBE functional should be underestimated. On the
other hand, experimentally measured κL of polycrystalline
compounds would exhibit consistently lower κL than those
from single crystals. A critical question then arises: Can
such discrepancies be systematically reduced by improving
the theoretical model for computing κL?
We proceed to answer this question by examining the

role of quartic anharmonicity in determining κL. We
progressively climb our ladder of approximations, refining
the HAþ 3ph model by accounting for phonon frequency
shifts and scattering rates from quartic anharmonicity into
two improved models, namely, SCPHþ 3ph and
SCPHþ 3; 4ph. We show the calculated κSCPH3ph and

κSCPH3;4ph , both divided by κHA3ph, to better illustrate the relative
change in κL in Figs. 2(b) and 2(c) for rocksalts and zinc
blendes, respectively. From the calculated ratio κSCPH3ph =κHA3ph,
it is evident that the effects of APRN on κL are quite
different for these two classes of materials: While APRN
tends to increase κL in rocksalts, it has a much weaker
impact (a very slight reduction) on κL in zinc blendes, and
exceptions are only found for HgS=Se=Te whose κL are
slightly enhanced. The increase in κL in some rocksalts is
quite significant, e.g., in BaO, NaI, KI, and PbS=Se=Te,
revealing the importance of APRN due to finite-temper-
ature effects. With additional 4ph scattering, as indicated by
the ratio κSCPH3;4ph =κ

HA
3ph, the κL for all compounds is reduced,

by various amounts, due to shortened phonon lifetimes. By

FIG. 1. Comparison of theoretically calculated (κHA3ph) and
experimentally measured (κexpL ) lattice thermal conductivities in
selected binary rocksalts (red disks) and zinc blendes (blue disks)
at 300 K. The theoretical values are calculated at the level of
HAþ 3ph, namely, phonon dispersion from the HA and phonon
scattering rates from 3ph scattering processes. The ratio of
κHA3ph=κ

exp
L is calculated by dividing the theoretical value by the

higher end of the experimental values, both listed in Table I.
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comparing κHA3ph and κ
SCPH
3;4ph , we notice a significant reduction

of κL in BAs and AlSb, consistent with earlier findings
[44,57]. In addition, we identify several previously unre-
ported cases where the reduction due to 4ph scattering is
striking—CdSe, InP, and HgS=Se=Te.
The net effect of quartic anharmonicity, including both

APRN and 4ph scattering, is highly nontrivial: 4ph inter-
actions always suppress κL in zinc blendes but can either
increase or decrease κL in rocksalts depending on the
system. In addition, some chemical trends emerge: In
Mg=Ca=Sr=BaO, NaF=Cl=Br=I, and KCl=Br=I, the ratio
κSCPH3;4ph =κ

HA
3ph tends to increasewith the size of the cation/anion.

In the BN/P series, both APRN and 4ph scattering have little
effect, in striking contrast to BAs. We note that although
using a different exchange-correlation functional is expected
to affect the absolute values of κHA3ph, κ

SCPH
3ph , and κSCPH3;4ph , the

presented ratios κSCPH3 =κHA3ph and κSCPH3;4ph =κ
HA
3ph are expected to

be qualitatively robust due to cancellation of errors.

B. Phonon frequency shifts

Following the contrasting impact of APRN on κL in
rocksalts and zinc blendes, we investigate the shifts in
phonon frequencies and their effect on the calculated κL.
Figure 3(a) shows the comparison of the Frobenius norm
of the shifts in phonon frequencies jjΔωjjF in rocksalts
and zinc blendes as a function of the Frobenius norm of
the phonon frequencies jjωjjF. Both jjΔωjjF and jjωjjF are
calculated using the phonon modes associated with an
8 × 8 × 8 q-mesh and normalized by the total number of

phonon modes. We notice that (i) the relative frequency
shift (jjΔωjjF=jjωjjF) decreases with increasing jjωjjF,
and (ii) the relative frequency shifts in rocksalts are
almost 1 order of magnitude larger than those in zinc
blendes. Observation (i) is consistent with the fact that
compounds with higher harmonic phonon frequencies
generally have weaker anharmonicity and thus smaller
frequency shifts from APRN. Observation (ii) helps
explain the distinct behaviors of rocksalts and zinc
blendes in terms of the difference between κSCPH3ph and

κHA3ph, observed in Sec. III A and seen in Fig. 2. In other
words, relatively small frequency shifts only change κL
slightly in zinc blendes (corresponding to κSCPH3ph =κHA3ph ≈ 1),
while the much larger frequency shifts in rocksalts (an
order of magnitude higher than in zinc blendes) lead to a
significant change in κL. An outlier among the zinc
blendes is the HgS=Se=Te family, which has the largest
frequency shifts and correspondingly large enhancement
in κL upon including APRN. The increasing trend in
κSCPH3ph =κHA3ph among Mg=Ca=Sr=BaO can also be under-
stood to result almost entirely from the relative shifts in
phonon frequencies. In addition, we find that the fre-
quency shifts in rocksalts are mostly positive, while they
are slightly negative in zinc blendes, except HgS=Se=Te
[Fig. 3(a) only shows magnitudes due to the usage of
Frobenius norm], consistent with the slightly decreased
κL of the latter.
To better illustrate the different behaviors exhibited in

rocksalts and zinc blendes, we present a detailed study

FIG. 2. Comparison of lattice thermal conductivity calculated using various levels of theories for selected binary rocksalts and zinc
blendes at 300 K. (a) Schematic showing the ladder of approximations employed in computing κL based on the phonon gas model,
namely, HAþ 3ph, SCPHþ 3ph, and SCPHþ 3; 4ph, denoting the level of theory from low to high. HA and SCPH, respectively,
denote the harmonic approximation (without anharmonic renormalization) and self-consistent phonon approximation (with anharmonic
renormalization from quartic anharmonicity) used for computing phonon frequencies, and 3ph and 4ph indicate three-phonon and four-
phonon scattering rates, respectively. The resulting lattice thermal conductivities are denoted as κHA3ph, κ

SCPH
3ph , and κSCPH3;4ph , respectively.

(b,c) Calculated ratio of κSCPH3ph =κHA3ph (purple bars) and κSCPH3;4ph =κ
HA
3ph (yellow bars), respectively. The absolute values of κHA3ph, κ

SCPH
3ph , and

κSCPH3;4ph are listed in Table I.

YI XIA et al. PHYS. REV. X 10, 041029 (2020)

041029-6



of rocksalt PbTe and zinc blende HgTe as representative
cases—they have similar atomic masses and charge states,
and are both promising for thermoelectric applications
[129,130]. The calculated phonon dispersions with and
without APRN for the two compounds are shown in
Fig. 3(b). We find that the phonon dispersion of HgTe
changes little after including APRN, but there is a sub-
stantial change in that of PbTe, particularly for the TO
phonon modes. We note that the significant hardening of
the zone-center TO mode from about 4 meV to 6 meV
at 300 K in PbTe has been reported in several earlier
studies that take into account finite-temperature effects
[36,45,131,132], consistent with our SCPH calculations in
this work. It should be emphasized that a direct comparison
of the calculated dispersion with experimental measure-
ment should be done with caution, as phonon frequencies
are also affected by other phonon softening mechanisms
such as thermal expansion. We did not include thermal
expansion universally in this work because we find that,
for example, in the cases of PbTe of HgTe, the GGA-PBE
functional already predicts underestimated phonon
frequencies of optical modes [133,134], and including
additional thermal expansion further softens phonons,
which is expected to result in a large deviation from
experimental measurements. Moreover, second-order

effects from 3ph interactions, which are not considered
in this study and probably can be neglected in high-
symmetry cubic phases [87], will lead to additional
frequency shifts that are fully frequency dependent
[12,13]. The large phonon frequency shifts due to anhar-
monic phonon-phonon interactions (as in the case of binary
rocksalts) imply a qualitative breakdown of the quasihar-
monic approximation (QHA) because it only accounts for
volume dependence of the phonon frequencies.
To reveal the microscopic origin of the strikingly differ-

ent shifts in phonon frequencies in PbTe and HgTe, we
show in Fig. 3(c) the 4ph interaction matrix element (Iλλ1 ;
see Appendix A) associated with the zone-center TO mode
in the SCPH formalism. Physically, the net shift in
frequency of the zone-center TO mode (λ) is a cumulative
effect of its interactions with all the other phonon modes
(λ1), which could either soften or harden the TO mode
depending on the coupling coefficients, as indicated by the
widely distributed dots with both positive and negative
values in Fig. 3(c). What makes PbTe different from HgTe
is that the distribution of Iλλ1 in PbTe is quite asymmetric
around zero values and exhibits mostly positive values, thus
leading to an appreciable net-positive shift frequency.
On the contrary, the distribution of Iλλ1 in HgTe is quite
symmetric, which results in nearly a vanishing net shift in

FIG. 3. Phonon frequency shifts when including quartic anharmonicity in selected binary rocksalts (red disks) and zinc blendes (blue
disks). (a) Ratio of the Frobenius norm of the shifts in phonon frequencies jjΔωjjF to the Frobenius norm of the phonon frequencies
jjωjjF as a function of jjωjjF. The self-consistent phonon calculations including quartic anharmonicity are performed at 300 K.
(b) Phonon dispersions of rocksalt PbTe (upper panel) and zinc blende HgTe (lower panel). The dashed gray lines denote the phonon
dispersion from the harmonic approximation, and the colored solid lines denote the phonon dispersion including APRN at 300 K.
(c) Strength of the four-phonon interaction matrix elements (Iλλ1 ) associated with the zone-center transverse optical (TO) phonon mode
in the self-consistent phonon formalism (definition in Appendix A) as a function of phonon frequency for PbTe (red dots) and HgTe
(blue dots). The black arrow points to the largest value of Iλλ1 in PbTe, with both λ and λ1 denoting the TO phonon mode. The insets
show the PES of the zone-center TO mode for PbTe (upper) and HgTe (lower), respectively. The DFT computed energies are denoted by
disks, while the fitted PES using polynomials up to second and fourth order are denoted by red and blue dashed lines, respectively.
(d) Ratio of the shift in the frequency of the zone-center TO phonon mode (ΔωTO) to the harmonic value (ωTO) as a function of the ratio
of quartic on-site interatomic force constants (IFCs) to harmonic IFCs along the x axis. The insets show the atomic displacement vectors
associated with the zone-center TO mode for rocksalts (upper) and zinc blendes (lower), respectively.

HIGH-THROUGHPUT STUDY OF LATTICE THERMAL … PHYS. REV. X 10, 041029 (2020)

041029-7



frequency. It is noteworthy that the largest Iλλ1 in PbTe
among all pairwise interactions of phonon modes λ and λ1,
as pointed out by the arrow in Fig. 3(c), is the one in which
the zone-center TO mode interacts with itself; the corre-
sponding interaction in HgTe is vanishingly small.
Physically, when λ equals λ1, Iλλ1 can be interpreted in
the frozen phonon picture of the zone-center TO mode.
Therefore, large Iλλ indicates a strong quartic contribution
to the PES when atoms move in accordance with the
displacement pattern of the zone-center TO mode.
This interpretation in terms of the zone-center TO mode

is confirmed by the PES of the mode in PbTe and HgTe [the
insets of Fig. 3(c)]—there is a strong effect of the quartic
terms in PbTe, while the quadratic term dominates in HgTe.
An intuitive interpretation of phonon hardening is that
atoms at higher temperatures experience large displace-
ments and explore the higher-order PES, which repels them
and thus enhances the effective phonon frequency. Note
that we have transformed the understanding of the fre-
quency shift in reciprocal space to the shape of PES in real
space. This approach encourages us to examine the
correlation between the frequency shift of the zone-center
TO mode and the strength of quartic anharmonicity relative
to the harmonic IFCs [i.e.,Φð4Þ=Φð2Þ; shown in Fig. 3(d)]. It
is clear that the ratio Φð4Þ=Φð2Þ in zinc blendes is, overall,
much smaller than that in rocksalts, well correlated with the
relative frequency shift of the zone-center TO mode. The
much larger Φð4Þ=Φð2Þ in rocksalts when compared to zinc
blendes may be directly attributed to the different co-
ordination environments (octahedral vs tetrahedral, respec-
tively) in their crystal structures. We propose that the
octahedral coordination, in general, allows for larger atomic
displacements than a tetrahedral coordination environment.
Thus, (i) for small displacements, the atoms feel relatively
weak repelling forces from the harmonic PES, but (ii) for
vibrations further away from the equilibrium position, the
atoms feel strong repelling forces from the quartic PES,
somewhat resembling the behavior of rattling atoms in a
cagelike structure. To partially confirm this conjecture, we
calculate the PES of the zone-center TO mode of PbTe in a
hypothetical zinc blende structure and find the PES
resembles that of HgTe and shows a significantly reduced
quartic contribution. This conjecture may be further tested
in other systems containing these two distinctive co-
ordination environments.

C. Phonon scattering phase space

To illustrate the correlation between the phonon fre-
quency shifts and the resulting changes in κL, we show the
κSCPH3ph =κHA3ph as a function of jjΔωjjF=jjωjjF in Fig. 4(a). It
can be seen that there is a strong positive correlation
between κSCPH3ph =κHA3ph and jjΔωjjF=jjωjjF. The zinc blendes
are well separated from the rocksalts because of small
values of jjΔωjjF=jjωjjF and κSCPH3ph =κHA3ph approaching unity,

except HgS=Se=Te. For the rocksalts, aside from Mg/Ca/
SrO, all the others have values of jjΔωjjF=jjωjjF within a
range of 5% to 9%, giving rise to a roughly 40% increase in
κSCPH3ph compared to κHA3ph. The large spread of κSCPH3ph =κHA3ph for
a given value of jjΔωjjF=jjωjjF may be traced back to the
subtle impact of a mode-wise frequency shift on κL among
different compounds, which are smeared out by using the
Frobenius norms of Δω and ω. Improvements may be
achieved by further accounting for the weights from mode-
wise group velocity and heat capacity. Nevertheless, such a
strong correlation unambiguously reveals the importance
of APRN and the rather different behaviors in rocksalts
and zinc blendes. Additionally, by separately examining the
impacts of group velocity and heat capacity on κL, we find
the increment in κL is mostly attributable to the reduction in
phonon scattering rates.
Here, we evaluate 3ph and 4ph scattering rates in a brute-

force manner for all studied compounds, but for much more
complex systems or large-scale calculations [135–138], the
computational cost would be formidable even for 3ph
scattering, not to mention the 4ph scattering, of which
the computational cost is extremely large. Then, a key
question arises as to whether we can achieve a qualitative
estimate via much cheaper calculations within the harmonic
approximation. Earlier studies of the phonon scattering
phase space (Θ; see Appendix B)—one of the key
quantities that determine phonon scattering rates—showed
promise as an effective indicator for the strength of phonon
scattering [139]. We are thus motivated to investigate the
correlation between κL and Θ; the latter accounts for all the
other factors, except 3ph/4ph interaction matrix elements in
evaluating scattering rates, and it is readily accessible from
the harmonic phonon dispersion. Figure 4(b) plots
κSCPH3ph =κHA3ph as a function of ΘSCPH

3ph =ΘHA
3ph, which displays

clear negative correlation. The sizable spread of points
around the approximated linear relation might be attribut-
able to (i) the anisotropy of frequency shifts in reciprocal
space and (ii) the intricate role of 3ph/4ph matrix elements,
both of which may adjust the weight of a mode-wise
contribution to κL. Meanwhile, a remarkable assessment
of the strength of 4ph scattering is revealed by the
relation between κSCPH3;4ph =κ

SCPH
3ph and ΘSCPH

4ph =ΘSCPH
3ph , as shown

in Fig. 4(c). The strong negative correlation between
κSCPH3;4ph =κ

SCPH
3ph and ΘSCPH

4ph =ΘSCPH
3ph can explain (i) the vastly

different impacts of 4ph scattering on κL among BN=P=As
and (ii) the giant 4ph scattering in HgS=Se=Te. This
observation is encouraging because explicit evaluation of
4ph scattering rates is much more expensive than 3ph
scattering (about 103 to 104 more CPU hours). With this
established negative correlation, we may be able to better
estimate κL by calculating only 3ph scattering rates and 4ph
scattering phase space, without resorting to the cumber-
some fourth-order IFCs at all. Moreover, the qualitative
impact of 4ph scattering relative to 3ph scattering might be
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estimated by calculating only the scattering phase space
using the harmonic phonon dispersion. Training a multi-
fidelity machine-learning model to go from the harmonic
3ph approximation to the anharmonic 3,4ph approximation
accuracy for many compounds might also be feasible by
taking advantage of the existing phonon databases
[135,140]. We note that, as adopted throughout this study,
correlating the relative change in both κL and Θ instead of
their absolute values has the advantage of eliminating the
system-dependent effects, such as the absolute magnitudes
of phonon frequencies and κL.
We compare the calculated κL with a full treatment of

quartic anharmonicity to the experimental κL in Fig. 4(d).
In contrast to the results presented in Fig. 1, we find that the
discrepancy between the theoretical κL and the experimen-
tal κL is significantly reduced, with the root-mean-square
error of their ratios (κHA3ph=κ

exp
L vs κSCPH3;4ph =κ

exp
L ) relative to 1

decreasing from 0.55 to 0.29. Moreover, we see that

κSCPH3;4ph =κ
exp
L of most compounds is now near or below 1

and has a mean value of 0.81. Therefore, it is convincing
that employing high-level theory can improve the predicted
κL by reducing both deviation and variation, revealing the
essential role of quartic anharmonicity. For the peculiar
case of LiH whose κSCPH3;4ph =κ

exp
L stays way above 1, we find

that including thermal expansion reduces κSCPH3;4ph =κ
exp
L ,

making it closer to 1 (see Table I), which is consistent
with the report in the literature that thermal expansion is
rather important in LiH [141]. The relatively small over-
estimation of our theoretical value might be attributed to the
absence of extrinsic phonon scatterings arising from defects
and grain boundaries in our theoretical model. The effect of
thermal expansion, which usually softens phonons, but is
only considered here for several representative cases
including LiH, PbTe, and AgCl, may lead to an additional
decrease in calculated κL, albeit to what extent varies

FIG. 4. Correlation between the lattice thermal conductivity and the phonon scattering phase space for the selected binary
rocksalts (red disks) and zinc blendes (blue disks). (a) Ratio of κSCPH3ph to κHA3ph plotted as a function of the ratio jjΔωjjF=jjωjjF.
(b) Ratio of κSCPH3ph to κHA3ph plotted as a function of the ratio of ΘSCPH

3ph to ΘHA
3ph, wherein Θ denotes phonon scattering space (see

Appendix B for the definition). (c) Ratio of κSCPH3;4ph to κSCPH3ph plotted as a function of the ratio of ΘSCPH
4ph to ΘSCPH

3ph . (d) Ratio of κSCPH3;4ph to

κexpL plotted as a function of experimental lattice thermal conductivity κexpL . The ratio κSCPH3;4ph =κ
exp
L is obtained by dividing the

theoretical value by the highest experimental value, both listed in Table I. The gray dashed lines in panels (a)–(c) represent the linear
fit of the data, in line with the coordinate system, while in panel (d), the line denotes equal values between theory and experiment.
All calculations are performed at 300 K.
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among compounds. Concerning the systematic underesti-
mation of κL, there are several possible factors. First, the
exchange correlation functional used in this study is
approximated at the level of GGA-PBE, which is shown
to typically underestimate bulk moduli and phonon
frequencies [134], consistent with the systematically under-
estimated κL. To partially confirm this suspicion, we
perform additional calculations for PbTe and HgTe using
the PBEsol functional [142], which is specially designed
for an improved description of solids [142]. As shown in
Table I, the resulting κSCPH3;4ph of PbTe and HgTe are
significantly increased and agree much better with experi-
ments than those obtained with the PBE functional. A full
account of the impact of an exchange correlation functional
on κL should be explored in a future study. Second, we have
solved the PBTE under SMRTA for the 4ph scattering.
Such an approximation results in a potential underestima-
tion of κL, particularly when Umklapp scattering is not
dominant over Normal scattering. This result is reflected in
the case of BAs, which is known to attain a large portion of
Normal scattering, and thus explains our calculated value of
κL, which is smaller than earlier studies that employed
either an approximated or a rigorous iterative solution of
the PBTE, including both 3ph and 4ph scattering [8,44].
When Umklapp processes dominate the 4ph scattering
[57], our approximation seems to be reasonable. Lastly,
although the phonon frequencies (or second-order IFCs)
are anharmonically renormalized at finite temperatures, the
third- and fourth-order IFCs used in the evaluation of 3ph/
4ph scattering rates are those obtained at 0 K without
renormalization. An improvement might be achieved by
performing an ensemble average of these IFCs at finite
temperature [143,144], which may be realized by means of
the stochastic self-consistent harmonic approximation
[145] or the temperature-dependent effective potential
method [146].

D. Dominant four-phonon scattering in HgTe

Contrary to the common belief that high-order phonon-
phonon scattering is only relevant at high temperatures, our
results reveal that 4ph scattering is crucial even at room
temperature in most of the studied compounds, whose κL
could range from ultrahigh to very low. Furthermore, the
calculated κL of rocksalts using levels of theory from low
(HAþ 3ph) to high (SCPHþ 3; 4ph) implies a general
existence of cancellation of errors if neither phonon
frequency shifts nor scattering rates due to quartic anhar-
monicity are considered. Despite such cancellation of
errors, which might result in accidentally good agreement
in κL between theory and experiment, the correct physics is
not recovered in the lower level theory, potentially leading
to an erroneous assessment of the mode-wise contribution
to κL. Compared to rocksalts, the effect of quartic anhar-
monicity on κL of zinc blendes is largely attributable to the
4ph scattering, due to the rather weak APRN. Among the

studied zinc blendes, the HgS=Se=Te family is of particular
interest because they exhibit the strongest reduction of κL
due to 4ph scattering among all the currently known or
calculated compounds at 300 K.
To gain a better understanding of their lattice dynamics

and thermal transport properties, we proceed to discuss in
detail the representative case HgTe. We use both the PBE
and the PBEsol functionals to compute phonon dispersions
and compare them to experimental measurements. We find
that an overall better agreement is achieved by the PBEsol
functional, particularly for the high-lying optical phonon
modes, as shown in Fig. 5(a). The better performance of
PBEsol over PBE is also evident in the predicted κL:
PBEsol predicts a higher value [κSCPH3;4ph ¼ 2.3 W=ðm · KÞ]
than PBE [κSCPH3;4ph ¼ 1.8 W=ðm · KÞ], and the former agrees
better with the experimental range of 1.9–2.6 W=ðm · KÞ
[83,84]. Therefore, our following analysis and discussion
will be based on the results obtained from the PBEsol
functional. The energy cumulative κL in Fig. 5(b) shows
that the majority of lattice heat conduction in HgTe is
carried by acoustic phonons with frequencies less than
10 meV. In addition, acoustic phonons with frequencies
less than 5 meV contribute much more to κL than those with
higher frequencies. The calculated κL considering only 3ph
scattering has a value of 14.2 W=ðm · KÞ at 300 K
[12:8 W=ðm · KÞ without APRN, see Table I], consistent
with an earlier study [147]. Remarkably, the 4ph scattering
is able to significantly suppress the heat conduction
contributed by those acoustic modes, reducing κL from
14.2W=ðm·KÞ to 2.3 W=ðm · KÞ at 300 K, a more than
sixfold reduction. To the best of our knowledge, such a
dramatic reduction due to 4ph scattering is the largest one
ever reported at room temperature, highlighting the unique
behavior of anharmonic lattice dynamics in HgTe. The
mean free path (MFP) cumulative κL, as shown in Fig. 5(c),
shows that 4ph scattering reduces the largest MFP down to
103 nm and strongly suppresses heat transfer from thermal
carriers with MFP larger than 50 nm. As a rough estima-
tion, creating nanostructures with sizes of about 100 nm is
expected to further reduce κL, but it would still be
challenging to achieve a value of less than 1.0 W=ðm · KÞ.
We compare the 4ph scattering rates with the 3ph

scattering rates in Fig. 5(d). Surprisingly, we see that
4ph scattering dominates over 3ph scattering for a large
portion of phonon modes. In contrast to recent studies that
show that acoustic modes are less affected by 4ph scattering
than optical modes [44,57], scattering rates of the acoustic
modes in HgTe from 4ph interactions are much larger than
those from 3ph interactions, especially for those acoustic
modes with energy less than 5 meVor between 7.5 meVand
10 meV. Since these modes give major contributions to heat
conduction in the 3ph scattering picture, it then comes as no
surprise that κL is heavily suppressed when 4ph scattering
is considered. To explore more details about the scattering
processes, we decompose the total 4ph scattering rates into
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those coming from three individual processes, namely,
splitting (λ→ λ1þλ2þλ3), redistribution (λþλ1→ λ2þλ3),
and combination (λþ λ1 þ λ2 → λ3) processes, respec-
tively, as shown in Fig. 5(e). We find that the redistribution
process dominates over the other two, which can be
understood in terms of their associated scattering phase
space. Considering the constraint enforced by the con-
servation of phonon energies in scattering processes, it is
expected that combination processes are largely associated
with phonon modes with low energies while the splitting
processes are more relevant for high-lying phonon modes.
The redistribution processes, which are more flexible in
satisfying the energy conservation, are found to contribute
many more 4ph scattering events, thus dominating both
scattering phase space and scattering rates [54].
The dominant role of the 4ph scattering in HgTe suggests

that the 3ph scattering is relatively weaker. A similar
picture has also been identified in BAs. As proposed in
Ref. [30], the predicted very high κL based on HAþ 3ph in

BAs is attributable to the weak 3ph scattering of acoustic
modes, resulting from (i) the large phonon band gap (a-o
gap) between acoustic and optical modes, which effectively
impedes acoustic modes scattering with optical modes, and
(ii) the bunching of three acoustic branches, which sup-
presses the phase space for scattering among acoustic
modes only. As a consequence, the 4ph scattering becomes
important in BAs, being responsible for about a 40%
reduction in κL. It is intriguing to notice that the phonon
dispersions of HgTe do not share these features. In contrast,
HgTe has a much smaller a-o gap and a well-separated
longitudinal acoustic (LA) phonon branch away from the
transverse acoustic (TA) branches, which suggests new
features that could potentially support relatively strong 4ph
scattering. We have further examined the effects of the size
of the a-o gap and the bunching of acoustic branches on κL
in HgTe via manually scaling the energy of the LA branch
as well as the group velocities with different constants. As
shown in the inset of Fig. 5(f), increasing or decreasing the

FIG. 5. Phonon dispersion, scattering rates, and lattice thermal conductivity of HgTe. (a) Calculated phonon dispersions using the PBE
functional (solid blue lines) and the PBEsol functional (solid orange lines) compared with experimental measurements (gray disks)
[148,149]. (b) Cumulative (solid lines) and differential (dashed lines) κL calculated with (blue) and without (pink) 4ph scattering.
(c) MFP cumulative κL with (blue) and without (pink) 4ph scattering. (d) Comparison of 3ph scattering rates (empty red squares) and
4ph scattering rates (empty blue circles). The solid black line indicates that the scattering rate equals phonon frequency. (e) Decomposed
4ph scattering rates into the splitting (λ → λ1 þ λ2 þ λ3), redistribution (λþ λ1 → λ2 þ λ3), and combination (λþ λ1 þ λ2 → λ3)
processes, which are denoted as green circles, magneta squares, and brown triangles, respectively. (f) Calculated ratio of κSCPH3;4ph to κSCPH3ph

as a function of the gap between acoustic and optical phonons (a-o gap). The insets show the phonon dispersions with longitudinal
acoustic phonon branch manually scaled by three different constants, in accordance with the three values of a-o gap at the X point. All
calculations are performed at 300 K.
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energy of the LA branch simultaneously decreases or
increases both the a-o gap and the acoustic bunching.
The resulting values of κSCPH3;4ph =κ

SCPH
3ph show that the largest

relative reduction in κL due to 4ph scattering is not
associated with the largest a-o gap and acoustic bunching.
This observation indicates that 4ph scattering could be
important even without a large a-o gap and acoustic
bunching. The fact that the largest reduction associated
with the unadjusted case, as shown in Fig. 5(f), reveals the
nontrivial role of the shape of the LA branch in determining
the strength of 4ph scattering relative to 3ph scattering,
and therefore, an even smaller value of κSCPH3;4ph =κ

SCPH
3ph may

still exist.

E. Nondiagonal contribution to lattice thermal
conductivity beyond the phonon gas model

The critical assumption adopted in our models is the
quasiparticle nature of phonons; i.e., there exists a well-
defined dispersion relation for phonons, and the broadening
of phonon states is relatively weak. However, as pointed out
by Allen and Feldman [109], the PBTE approach is
accurate only when each phonon mode has either a long

enough mean free path to define its wave vector or a
lifetime long enough to define its frequency. It is thus
expected that the PBTE approach only works well for
weakly anharmonic systems with high κL, but it fails for
strongly anharmonic systems with low κL. Moreover,
strong broadening of phonon states would create an addi-
tional heat transport channel through the coupling of
vibrational modes arising from off-diagonal terms in the
heat-flux operator [64,65], beyond the diagonal terms
described by PGM/PBTE. Here, we examine the off-
diagonal contribution to κL in these rocksalts and zinc
blendes, which, when compared to the diagonal part,
offers useful guidance on the validity of the phonon
quasiparticle picture. The calculated ratio of the off-
diagonal part κoff-diagonalL to the diagonal part κdiagonalL as a
function of κdiagonalL is shown in Fig. 6(a). The rapidly
decreasing trend confirms the minor contribution to the
total κL from the off-diagonal part in compounds with high
κL, such as BN=P=As. The off-diagonal part becomes
increasingly important for low-κL compounds, and it
contributes up to about 10% in HgS=Se=Te. Specifically
for HgTe, the off-diagonal contribution increases κL from

FIG. 6. (a) The ratio of lattice thermal conductivity from the off-diagonal terms (κoff-diagonalL ) to the diagonal terms (κdiagonalL ) in the heat-
flux operator as a function of κdiagonalL for selected rocksalts (red disks) and zinc blendes (blue disks). (b) Comparison of 3ph and 4ph
scattering rates in AgCl. (c) Same as panel (b), but for RbCl. The solid black lines in panels (b) and (c) denote the scattering rate with the
same value of the phonon frequency. (d) Contour plots of the off-diagonal contribution to lattice thermal conductivity associated with
various pairs of phonon frequencies (ωs and ωs0 ) for AgCl. (e) Same as panel (d), but for RbCl. All calculations are performed at 300 K.
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2.3 W=ðm · KÞ to 2.4 W=ðm · KÞ at 300 K, making our
theoretical prediction closer to the higher end of the
experimental value of 2.6 W=ðm · KÞ. We also notice that
this additional thermal transport channel may further
mitigate the systematic underestimation of κL using the
phonon gas model shown in Fig. 4(d), particularly for those
compounds with low κL and strong phonon scattering.
Although the off-diagonal part is no longer negligible in

low-κL systems, it is still much smaller than the diagonal
part in almost all the selected binary compounds because
enhancing the off-diagonal part requires significant broad-
ening of phonon modes in order to promote wavelike
tunneling and loss of coherence between vibrational eigen-
states belonging to different branches. This condition is
rather difficult to achieve in simple binary compounds due
to their well-separated phonon branches. Nevertheless, a
possible exception still exists, as indicated by a recent study
[150] showing that the calculated κHA3ph’s of rocksalt AgCl
and AgBr have an ultralow value of about 0.2 W=ðm · KÞ at
300 K, only about one-fifth of the experimental value of
1.1 W=ðm · KÞ [76]. These ultralow values of κL predicted
based on PBTE suggest significant phonon broadening and
the possible breakdown of the PGM in AgCl and AgBr at
room temperature. To partially verify this proposal, we
compute the diagonal and the off-diagonal components
of κL in AgCl using the PBEsol functional. As shown in
Fig. 6(a), the diagonal and the off-diagonal parts of κL in
AgCl are of comparable importance, with the value of
κoff-diagonalL =κdiagonalL approaching 0.5. Specifically, our
results show that the off-diagonal contribution has a
value of about 0.2 W=ðm · KÞ, leading to a total κL of
0.6 W=ðm · KÞ at 300 K, which brings the calculated κL
closer to the experimental value. It is worth noting that
despite the simple structure of AgCl, the value of its off-
diagonal contribution is comparable to that of CsPbBr3
[0.3 W=ðm · KÞ at 300 K], which has a complex structure
containing 20 atoms per primitive cell [65].
As expected, the calculated phonon scattering rates in

AgCl shown in Fig. 6(b) are exceptionally large for both
3ph and 4ph scattering. For a comparison, the phonon
scattering rates in RbCl shown in Fig. 6(c) are, overall,
much smaller, despite the fact that the two compounds have
the same structure and similar formula mass. It is worth
noting that the anharmonicity-induced phonon-phonon
scattering is so strong in AgCl that most of the scattering
rates are even larger than the frequencies of phonon modes
themselves. This result provides concrete evidence for the
possible breakdown of the phonon quasiparticle picture
and the failure of PBTE for modeling κL in AgCl. As a
result, the significant broadening of phonon modes in
AgCl induces wavelike tunneling among different phonon
modes with the same wave vector, thus a large κoff-diagonalL .
Figures 6(d) and 6(e) show the off-diagonal coupling of
vibrational eigenstates in AgCl and RbCl, respectively. It
can be seen that the strong phonon broadening in AgCl is

able to couple phonon modes with large differences in
frequencies, whereas in RbCl, such coupling is much
weaker and happens only among phonon modes with close
energies.

F. General remarks

Before closing, we comment on the limitations of our
theoretical framework and possible future directions.
Despite being able to predict more accurate phonon
frequencies and lifetimes by incorporating higher-order
anharmonicity, we must bear in mind that our approach to
compute κL still heavily relies on a fundamental proposal
that those heat-carrying phonon states are well-behaved
quasiparticles. Note that such an assumption applies to both
the diagonal and the off-diagonal contributions to κL if they
are formulated in terms of phonons. In reality, there are a
plethora of scenarios that would lead to a partial or
complete breakdown of the phonon quasiparticle picture,
for instance, in the presence of strong disorder and
anharmonicity [109,151,152]. Investigations into validat-
ing these fundamental assumptions will not only improve
the accuracy of theoretical prediction but also provide
insights into the microscopic mechanism of thermal trans-
port, which may further guide experimentalists to favorably
engineer heat transfer in functional materials. The large
variations in the magnitude of κL and the strength of
anharmonicity exhibited in the binary rocksalts and zinc
blendes, as well as the structural simplicity, offer an
excellent playground for the development, benchmarking,
and improvement of theoretical models, which employ
high-level theories beyond the state of the art. As a
systematic way to lift the limitations imposed by the
phonon quasiparticle picture, full frequency-dependent
self-energies derived by the Green’s function technique
might be incorporated in modeling the phonon spectrum, as
well as computing lattice thermal conductivity using the
more general Kubo correlation-function formula [17,153].
Also, going beyond the perturbative evaluation of phonon
self-energies might be necessary, as demonstrated by recent
theoretical studies using stochastic approaches [40,89,145].
Our results, which show the necessity of going beyond

the three-phonon picture by including quartic anharmonic-
ity, indicate that even higher-order anharmonicity might be
important, especially in the presence of severe anharmo-
nicity or at high temperatures. To overcome the limitation
of anharmonic lattice dynamics calculations based on
perturbation theory, one might resort to molecular dynam-
ics simulations that naturally incorporate full anharmonic-
ity. Though these molecular dynamics simulations can be
expensive, the efficiency and accuracy might be signifi-
cantly improved by taking advantage of high-quality
empirical potentials including machine-learning potentials
[154–157] and the modified embedded atom method
(MEAM) potentials [158,159]. Another notable limitation
for the current implementation of the Peierls-Boltzmann
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approach, as envisioned by Hardy [64] but rarely examined
in practical calculations, is the lack of high-order terms of
the energy flux, which may have important contributions to
κL [160]. In addition, fully temperature-dependent thermal
expansion calculated on top of the renormalized phonons
might be included to simulate lattice dynamics and thermal
transport properties, especially with an improved estima-
tion of lattice parameters, for example, using the PBEsol
functional [142,161].
Concerning the application of the theoretical framework

developed in this study, materials of particular interest
might be those featuring rattling phonon modes, which
have been demonstrated to display strong phonon harden-
ing due to quartic anharmonicity at finite temperatures
[53,59,162]. Another interesting class of compounds are
perovskites, as they are known to exhibit phonon insta-
bilities, and anharmonic phonon renormalization is indis-
pensable for constructing physically sound phonon
frequencies [51,98,163]. We expect future studies will be
devoted to incorporating these advanced formalisms in
first-principles simulations of anharmonic lattice dynamics
and thermal transport properties of many other technically
important materials.

IV. CONCLUSIONS

In summary, we have systematically investigated the
impact of quartic anharmonicity on room-temperature
lattice dynamics and thermal transport properties of 19
binary rocksalt compounds (MgO, CaO, SrO, BaO,LiH,
LiF, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, PbS,
PbSe, PbTe, AgCl) and 18 binary zinc blende compounds
(AlAs, AlSb, BN, BP, BAs, CdSe, CdTe, GaP, GaSb, InP,
InAs, InSb, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe). This is
achieved by means of first-principles implementations
of state-of-the-art thermal transport models based on the
Peierls-Boltzmann approach, including anharmonic pho-
non renormalization and multiphonon scattering processes
within a high-throughput phonon framework built on top of
the OQMD.
We have performed detailed analyses of the lattice

thermal conductivities calculated by progressively incor-
porating the effects of phonon frequency shifts and four-
phonon scattering rates, which reveals strikingly distinctive
effects of quartic anharmonicity on lattice thermal conduc-
tivity between binary rocksalts and zinc blendes.
Specifically, strong anharmonic phonon renormalization
due to quartic anharmonicity is observed in rocksalts, while
in zinc blendes, it is rather weak, which in turn enhances the
calculated lattice thermal conductivity for the former but
leads to a negligible change in thermal conductivity for the
latter. Four-phonon scattering rates, which are found to be
generally important for most of the studied compounds,
counteract the frequency shifts, resulting in an overall
reduction in thermal conductivity of zinc blendes, but either
enhanced or reduced thermal conductivity of rocksalts.

The calculated lattice thermal conductivities with full
consideration of phonon frequency shifts and four-phonon
scattering rates show noticeably improved agreement with
experimental measurements with reduced deviation and
variation. By correlating the lattice thermal conductivity
and phonon scattering phase space, we have demonstrated
that the importance of four-phonon scattering relative to
the three-phonon scattering may be qualitatively assessed
from the ratio of four-phonon to three-phonon scattering
phase space, which is accessible from harmonic phonon
dispersions.
We have identified strong four-phonon scattering in

several compounds, including those already reported
(e.g., BAs, PbTe, AlSb, NaCl) and unreported (e.g.,
NaF, InP, CdSe, ZnS), among which the HgS=Se=Te
family exhibits unprecedented and up to about sixfold
reduction in thermal conductivity due to four-phonon
scattering. Detailed analysis of the phonon scattering rates
in HgTe reveals the dominant role of the four-phonon
scattering processes over the three-phonon scattering proc-
esses even in the acoustic region at room temperature.
The case of HgTe unambiguously reveals that strong four-
phonon scattering could be expected for compounds
beyond those with large acoustic-optical phonon band gaps
and bunching of acoustic modes.
We have examined the additional contribution to lattice

thermal conductivity from off-diagonal terms in the heat-
flux operator by going beyond the phonon gas model,
which only considers diagonal terms. It is found that the
off-diagonal contribution is generally much smaller than
the diagonal contribution when lattice thermal conductivity
is high and the phonon quasiparticle picture is valid. For
compounds with low lattice thermal conductivities, the off-
diagonal contribution could comprise about 10% of the
total lattice thermal conductivity (e.g., zinc blende HgTe).
We have also identified an exceptional case, rocksalt

AgCl, which exhibits an anomalous off-diagonal contri-
bution comparable to the diagonal contribution. This highly
unusual behavior, especially when considering the rather
simple crystal and well-separated phonon branches, arises
from the intrinsically very strong anharmonic multiphonon
scattering, which broadens phonon states and induces
wavelike tunneling between different phonon states.
These findings—which highlight the importance of

high-order phonon-phonon interactions, a route for pre-
dicting which compounds would benefit from four-phonon
interactions based on harmonic calculations, and a possible
breakdown of the conventional phonon gas model—
provide deep insights into the microscopic mechanism
underlying the heat transport in simple crystalline com-
pounds. The first-principles framework developed in this
study, which embraces advanced lattice dynamics simu-
lations, is universal, and the application of such a frame-
work in large-scale phonon calculations in conjunction
with machine-learning algorithms may provide valuable

YI XIA et al. PHYS. REV. X 10, 041029 (2020)

041029-14



guidance for the rational design of new thermal manage-
ment materials.

VASP (DFT calculations) is available at [164]; the
ShengBTE code (thermal conductivity calculations based
on three-phonon scattering) is available at [165]; CSLD
(construction of higher-order force constants) is available at
[166]. The custom codes (self-consistent phonon and four-
phonon scattering calculations) in this work are available
from the corresponding authors upon reasonable request.
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Note added.—Recently, we became aware of a related study
by another group [104]. They investigated lattice thermal
conductivity in 17 zinc blende compounds, including both
three- and four-phonon interactions. Percentagewise, their
reported reduction in lattice thermal conductivity due to
four-phonon scattering is comparable to ours, although a
different exchange correlation functional was used in their
density functional theory calculations.

APPENDIX A: SELF-CONSISTENT
PHONON THEORY

The anharmonic phonon renormalization of phonon
frequency from quartic anharmonicity at finite temper-
atures is calculated using SCPH theory [90–93]. When
formulated in the reciprocal space accounting for the first-
order correction from quartic anharmonicity in the diagonal
form [51,87], the resulting SCPH equation reads

Ω2
λ ¼ ω2

λ þ 2Ωλ

X
λ1

Iλλ1 ; ðA1Þ

where ωλ is the bare frequency of phonon mode λ
calculated from the harmonic approximation and Ωλ is

the renormalized frequency including temperature effects.
The quantity Iλλ1 is defined as

Iλλ1 ¼
ℏ
8N

Vð4Þðλ;−λ; λ1;−λ1Þ
ΩλΩλ1

½1þ 2nðΩλ1Þ�; ðA2Þ

where N, ℏ, n, and Vð4Þðλ;−λ; λ1;−λ1Þ are, respectively,
the number of sampled wave vectors, the reduced Planck
constant, phonon population, and the reciprocal repre-
sentation of the fourth-order interatomic force constants
(see detailed expression in the next section). The temper-
ature effects in the formalism of SCPH are captured by the
phonon population n that obeys the Bose-Einstein sta-
tistics. Because of the mutual dependence between Ωλ and
Iλλ1 , the SCPH equation (A1) can be solved in an iterative
manner until a reasonable convergence is reached. It is
worth mentioning that Iλλ1 can be interpreted as the
contribution from mode λ1 to the anharmonic renormal-
ization of λ. When λ1 and λ indicate the same phonon
mode, SCPH can be viewed as the renormalization
performed in the frozen phonon picture of mode λ,
including a quartic contribution to the potential energy
surface. We note that, in this study, we do not consider the
cubic-anharmonicity-induced frequency shift, which is a
second-order effect and has full frequency dependence.
In addition, anharmonic phonon renormalization is per-
formed using the DFT fully relaxed structure without
considering thermal expansion, unless stated otherwise. It
is worth noting that a more advanced SCPH scheme,
including off-diagonal terms that enable updating phonon
eigenvectors (polarization mixing), has recently been
developed, which is implemented in the publicly available
ALAMODE package [51,167].

APPENDIX B: PHONON SCATTERING RATES

The key ingredients entering the phonon Boltzmann
transport equation are the phonon scattering rates arising
from both multiphonon interactions and phonon-isotope
scattering. For the intrinsic phonon-phonon scattering, we
consider 3ph and 4ph scattering processes. The phonon
self-energy arising from both 3ph and 4ph interactions has
been derived by many authors [10,47–50,153] using
Green’s function technique. Recently, Feng and Ruan have
derived 3ph and 4ph scattering rates by treating the cubic
and quartic anharmonic terms as perturbations using
Fermi’s golden rule of time-dependent perturbation theory
[52]. In this study, we adopt their formulas for both 3ph and
4ph scattering rates, which, under SMRTA, read

τ−13ph;λ ¼
X
λ1λ2

�
1

2
ð1þ nλ1 þ nλ2Þζ− þ ðnλ1 − nλ2Þζþ

�
;

ðB1Þ
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τ−14ph;λ ¼
X
λ1λ2λ3

�
nλ1nλ2nλ3

6nλ
ζ−− þ ð1þ nλ1Þnλ2nλ3

2nλ
ζþ−

þ ð1þ nλ1Þð1þ nλ2Þnλ3
2nλ

ζþþ

�
; ðB2Þ

where λ is a composite index for a phonon mode with wave
vector q and branch s, and n is the phonon population
following Bose-Einstein statistics, with

ζ� ¼ πℏ
4N

jVð3Þðλ;�λ1;−λ2Þj2 �
δðωλ � ωλ1 − ωλ2Þ

ωλωλ1ωλ2

ðB3Þ

and

ζ�� ¼ πℏ2

8N2
jVð4Þðλ;�λ1;�λ2;−λ3Þj2

× Δ��
δðωλ � ωλ1 � ωλ2 − ωλ3Þ

ωλωλ1ωλ2ωλ3

; ðB4Þ

where Vð3Þðλ;�λ1;−λ2Þ and Vð4Þðλ;�λ1;�λ2;−λ3Þ are

Vð3Þðλ;�λ1;−λ2Þ ¼
X

b;l1b1;l2b2

X
αα1α2

Φαα1α2
0b;l1b1;l2b2

×
eλαbe

�λ1
α1b1

e−λ2α2b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimbmb1mb2
p e�iq1·rl1−iq2·rl2 ðB5Þ

and

Vð4Þðλ;�λ1;�λ2;−λ3Þ
¼

X
b;l1b1;l2b2;l3b3

X
αα1α2α3

Φαα1α2α3
0b;l1b1;l2b2;l3b3

×
eλαbe

�λ1
α1b1

e�λ2
α2b2

e−λ3α3b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimbmb1mb2mb3
p e�iq1·rl1�iq2·rl2−iq3·rl3 ; ðB6Þ

where l, b, and α index the primitive cell, basis atom, and
Cartesian coordinate, respectively. Atomic mass and the
lattice vector of primitive cells are denoted, respectively,
by m and r. The phonon frequency and eigenvector are
denoted, respectively, by ωλ and eλ, and Φαα1α2

0b;l1b1;l2b2
and

Φαα1α2α3
0b;l1b1;l2b2;l3b3

are the third- and fourth-order interatomic
force constants (IFCs), respectively. For both three- and
four-phonon scattering processes, the momentum conser-
vation is strictly enforced by δ functions, namely, Δ� ≡
δðq� q1 − q2Þ and Δ�� ≡ δðq� q1 � q2 − q3Þ; thus,
energy conservation is approximated by adaptive
[114,168] and regular Gaussian smearing in evaluating
τ−13ph;λ and τ−14ph;λ, respectively. The 3ph and 4ph scattering
phases used in the main text are defined as Θ3ph ¼P

λ Θ3ph;λ and Θ4ph ¼
P

λ Θ4ph;λ, respectively, wherein

the evaluation of Θ3ph;λ and Θ4ph;λ resembles that of
τ−13ph;λ and τ−14ph;λ except that ζ� and ζ�� are replaced with

ζ0� ¼ Δ�
δðωλ � ωλ1 − ωλ2Þ

ωλωλ1ωλ2

ðB7Þ

and

ζ0�� ¼ Δ��
δðωλ � ωλ1 � ωλ2 − ωλ3Þ

ωλωλ1ωλ2ωλ3

; ðB8Þ

respectively.
Additional phonon scattering also comes from naturally

occurring isotopes [95–97], denoted as τ−1isotope;λ, which has
been implemented in the ShengBTE package [114] and reads

τ−1isotope;λ ¼
πω2

λ

2N

X
b

gbjeλ�b · eλ1b j2δðωλ − ωλ1Þ; ðB9Þ

where gb ¼
P

i x
i
bð1 −mi

b=m̄bÞ2 is the Pearson deviation
coefficient of the masses mi

b of isotopes i of atom b found
with probability 0 < xib ≤ 1 and m̄b ¼

P
i x

i
bm

i
b.

APPENDIX C: INTERATOMIC FORCE
CONSTANTS

The key elements entering the SCPH and phonon
scattering rates are the IFCs. In this study, we used
CSLD [61–63] to extract both harmonic and anharmonic
IFCs. In brief, CSLD utilizes the compressive sensing
technique [125,169] to select the physically important IFCs
from the force-displacement data generated from displaced
atomic configurations under the constraints enforced by
space group symmetry. It has been demonstrated that
CSLD is particularly powerful for exacting high-order
IFCs and requires much less supercell calculations than
the regular small-displacement method wherein only a few
atoms relevant to a specific IFC are displaced [114,170]. A
specific example has been given for clathrates compounds
with complex structures, and it shows that only 20 supercell
structures are required for CSLD to extract third-order IFCs
that lead to lattice thermal conductivity comparable to those
from the small-displacement method, which requires more
than 500 supercells [62]. We refer readers to Ref. [62] for
more details. It is worth mentioning that the reliability of
CSLD has been examined and confirmed in many studies
[51,53,171–173]. In this work, we adopt convergence
criteria for CSLD-extracted IFCs following our recent
work on PbTe [45] and GeTe [54], which has been carefully
examined and will be detailed below for both rocksalt
and zinc blende compounds. First, we construct 4 × 4 × 4
supercells from the fully relaxed supercell and generate
random small displacements in the range from 0.01 Å to
0.04 Å. Then, the cumulative harmonic IFCs were
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constructed by CSLD considering all pair interactions
within the supercell. Second, we generate physically
relevant atomic displacements at 300 K using the quantum
covariance matrix of atomic displacement [45] calculated
from the harmonic IFCs and extract the third-order and
fourth-order IFCs using the force-displacement data that
exclude the harmonic contribution. Note that these atomic
displacements are usually much larger and system depen-
dent, which, in principle, capture the strength of high-
order IFCs better. The cutoff distances for the third- and
fourth-order IFCs are limited up to the fifth and second
nearest neighbors, respectively, in line with our conver-
gence test for PbTe/GeTe [45,54] and other studies [57].
Owing to the advanced algorithm implemented by CSLD
and the highly symmetric structure of binary rocksalts and
zinc blendes, usage of 30 4 × 4 × 4 supercells for each
compound already achieves good convergence, and the
resulting lattice thermal conductivity mostly varies within
about 5% compared to those obtained using significantly
more supercells.

[1] L. E. Bell, Cooling, Heating, Generating Power, and
Recovering Waste Heat with Thermoelectric Systems,
Science 321, 1457 (2008).

[2] A. Mills, Heat and Mass Transfer, Irwin Graphics Series
(Taylor & Francis, London, 1995).

[3] S. L. Shinde and J. Goela, High Thermal Conductivity
Materials (Springer, New York, 2006).

[4] R. R. Heikes and R.W. Ure, Thermoelectricity: Science
and Engineering (Interscience, New York, 1961).

[5] D. Khokhlov, Lead Chalcogenides: Physics and Applica-
tions, Optoelectronic Properties of Semiconductors and
Superlattices (Taylor & Francis, London, 2002).

[6] J. S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu,
Experimental Observation of High Thermal Conductivity
in Boron Arsenide, Science 361, 575 (2018).

[7] S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang, P. Y. Huang, D. G.
Cahill, and B. Lv, High Thermal Conductivity in Cubic
Boron Arsenide Crystals, Science 361, 579 (2018).

[8] F. Tian et al., Unusual High Thermal Conductivity in
Boron Arsenide Bulk Crystals, Science 361, 582 (2018).

[9] M. Born and K. Huang, Dynamical Theory of Crystal
Lattices, International Series of Monographs on Physics
(Clarendon, Oxford, 1988).

[10] A. A. Maradudin and A. E. Fein, Scattering of Neutrons by
an Anharmonic Crystal, Phys. Rev. 128, 2589 (1962).

[11] R. A. Cowley, Anharmonic Crystals, Rep. Prog. Phys. 31,
123 (1968).

[12] G. P. Srivastava, The Physics of Phonons (Taylor &
Francis, London, 1990).

[13] D. C. Wallace, Thermodynamics of Crystals, Dover Books
on Physics (Dover, New York, 1998).

[14] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas,
Phys. Rev. 136, B864 (1964).

[15] W. Kohn and L. J. Sham, Self-Consistent Equations
Including Exchange and Correlation Effects, Phys. Rev.
140, A1133 (1965).

[16] M. Toda, R. Kubo, R. Kubo, M. Toda, N. Saito, N.
Hashitsume, and N. Hashitsume, Statistical Physics II:
Nonequilibrium Statistical Mechanics, Springer Series in
Solid-State Sciences (Springer, Berlin, Heidelberg, 2012).

[17] G. D. Mahan, Many-Particle Physics, Physics of Solids
and Liquids (Springer, New York, 2000).

[18] J.-S. Wang, Quantum Thermal Transport from Classical
Molecular Dynamics, Phys. Rev. Lett. 99, 160601 (2007).

[19] J. E. Turney, E. S. Landry, A. J. H. McGaughey, and C. H.
Amon, Predicting Phonon Properties and Thermal Con-
ductivity from Anharmonic Lattice Dynamics Calculations
and Molecular Dynamics Simulations, Phys. Rev. B 79,
064301 (2009).

[20] N. Shulumba, O. Hellman, and A. J. Minnich, Lattice
Thermal Conductivity of Polyethylene Molecular Crystals
from First-Principles Including Nuclear Quantum Effects,
Phys. Rev. Lett. 119, 185901 (2017).

[21] R. E. Peierls, Quantum Theory of Solids, International
Series of Monographs on Physics (Clarendon, Oxford,
1996).

[22] D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A.
Stewart, Intrinsic Lattice Thermal Conductivity of Semi-
conductors from First Principles, Appl. Phys. Lett. 91,
231922 (2007).

[23] J. Garg, N. Bonini, B. Kozinsky, and N. Marzari, Role of
Disorder and Anharmonicity in the Thermal Conductivity
of Silicon-Germanium Alloys: A First-Principles Study,
Phys. Rev. Lett. 106, 045901 (2011).

[24] K. Esfarjani, G. Chen, and H. T. Stokes, Heat Transport in
Silicon from First-Principles Calculations, Phys. Rev. B
84, 085204 (2011).

[25] L. Chaput, Direct Solution to the Linearized Phonon
Boltzmann Equation, Phys. Rev. Lett. 110, 265506 (2013).

[26] G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Ab Initio
Variational Approach for Evaluating Lattice Thermal
Conductivity, Phys. Rev. B 88, 045430 (2013).

[27] A. Cepellotti and N. Marzari, Thermal Transport in
Crystals as a Kinetic Theory of Relaxons, Phys. Rev. X
6, 041013 (2016).

[28] J. S. Reid, Phonon Gas, Phys. Educ. 11, 348 (1976).
[29] A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer,

Ab initio, Phys. Rev. B 80, 125203 (2009).
[30] L. Lindsay, D. A. Broido, and T. L. Reinecke, First-

Principles Determination of Ultrahigh Thermal Conduc-
tivity of Boron Arsenide: A Competitor for Diamond?,
Phys. Rev. Lett. 111, 025901 (2013).

[31] A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F.
Mauri, and N. Marzari, Phonon Hydrodynamics in Two-
Dimensional Materials, Nat. Commun. 6, 6400 (2015).

[32] Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G.
Chen, Phonon Conduction in PbSe, PbTe, and PbTe1−xSex
from First-Principles Calculations, Phys. Rev. B 85,
184303 (2012).

[33] J. Shiomi, K. Esfarjani, and G. Chen, Thermal Conduc-
tivity of Half-Heusler Compounds from First-Principles
Calculations, Phys. Rev. B 84, 104302 (2011).

HIGH-THROUGHPUT STUDY OF LATTICE THERMAL … PHYS. REV. X 10, 041029 (2020)

041029-17

https://doi.org/10.1126/science.1158899
https://doi.org/10.1126/science.aat5522
https://doi.org/10.1126/science.aat8982
https://doi.org/10.1126/science.aat7932
https://doi.org/10.1103/PhysRev.128.2589
https://doi.org/10.1088/0034-4885/31/1/303
https://doi.org/10.1088/0034-4885/31/1/303
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevLett.99.160601
https://doi.org/10.1103/PhysRevB.79.064301
https://doi.org/10.1103/PhysRevB.79.064301
https://doi.org/10.1103/PhysRevLett.119.185901
https://doi.org/10.1063/1.2822891
https://doi.org/10.1063/1.2822891
https://doi.org/10.1103/PhysRevLett.106.045901
https://doi.org/10.1103/PhysRevB.84.085204
https://doi.org/10.1103/PhysRevB.84.085204
https://doi.org/10.1103/PhysRevLett.110.265506
https://doi.org/10.1103/PhysRevB.88.045430
https://doi.org/10.1103/PhysRevX.6.041013
https://doi.org/10.1103/PhysRevX.6.041013
https://doi.org/10.1088/0031-9120/11/5/007
https://doi.org/10.1103/PhysRevB.80.125203
https://doi.org/10.1103/PhysRevLett.111.025901
https://doi.org/10.1038/ncomms7400
https://doi.org/10.1103/PhysRevB.85.184303
https://doi.org/10.1103/PhysRevB.85.184303
https://doi.org/10.1103/PhysRevB.84.104302


[34] W. Li and N. Mingo, Thermal Conductivity of Fully Filled
Skutterudites: Role of the Filler, Phys. Rev. B 89, 184304
(2014).

[35] W. Li and N. Mingo, Ultralow Lattice Thermal Conduc-
tivity of the Fully Filled Skutterudite YbFe4Sb12 Due to the
Flat Avoided-Crossing Filler Modes, Phys. Rev. B 91,
144304 (2015).

[36] A. H. Romero, E. K. U. Gross, M. J. Verstraete, and O.
Hellman, Thermal Conductivity in PbTe from First Prin-
ciples, Phys. Rev. B 91, 214310 (2015).

[37] T. Tadano, Y. Gohda, and S. Tsuneyuki, Impact of Rattlers
on Thermal Conductivity of a Thermoelectric Clathrate: A
First-Principles Study, Phys. Rev. Lett. 114, 095501
(2015).

[38] J. Carrete, N. Mingo, and S. Curtarolo, Low Thermal
Conductivity and Triaxial Phononic Anisotropy of SnSe,
Appl. Phys. Lett. 105, 101907 (2014).

[39] J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, and A.
Walsh, Thermal Physics of the Lead Chalcogenides PbS,
PbSe, and PbTe from First Principles, Phys. Rev. B 89,
205203 (2014).

[40] U. Aseginolaza, R. Bianco, L. Monacelli, L. Paulatto, M.
Calandra, F. Mauri, A. Bergara, and I. Errea, Phonon
Collapse and Second-Order Phase Transition in Thermo-
electric SnSe, Phys. Rev. Lett. 122, 075901 (2019).

[41] B. Lv, Y. Lan, X. Wang, Q. Zhang, Y. Hu, A. J. Jacobson,
D. Broido, G. Chen, Z. Ren, and C.-W. Chu, Experimental
Study of the Proposed Super-Thermal-Conductor: BAs,
Appl. Phys. Lett. 106, 074105 (2015).

[42] J. Kim, D. A. Evans, D. P. Sellan, O. M. Williams, E. Ou,
A. H. Cowley, and L. Shi, Thermal and Thermoelectric
Transport Measurements of an Individual Boron Arsenide
Microstructure, Appl. Phys. Lett. 108, 201905 (2016).

[43] Q. Zheng, C. A. Polanco, M.-H. Du, L. R. Lindsay, M. Chi,
J. Yan, and B. C. Sales, Antisite Pairs Suppress the
Thermal Conductivity of BAs, Phys. Rev. Lett. 121,
105901 (2018).

[44] T. Feng, L. Lindsay, and X. Ruan, Four-Phonon Scattering
Significantly Reduces Intrinsic Thermal Conductivity of
Solids, Phys. Rev. B 96, 161201 (2017).

[45] Y. Xia, Revisiting Lattice Thermal Transport in PbTe: The
Crucial Role of Quartic Anharmonicity, Appl. Phys. Lett.
113, 073901 (2018).

[46] N. K. Ravichandran and D. Broido, Unified First-
Principles Theory of Thermal Properties of Insulators,
Phys. Rev. B 98, 085205 (2018).

[47] D.W. Jepsen and R. F. Wallis, Effect of Quartic Anhar-
monicity on the Infrared Absorption of Alkali Halide
Crystals, Phys. Rev. 125, 1496 (1962).

[48] I. P. Ipatova, A. A. Maradudin, and R. F. Wallis, Temper-
ature Dependence of the Width of the Fundamental
Lattice-Vibration Absorption Peak in Ionic Crystals. II.
Approximate Numerical Results, Phys. Rev. 155, 882
(1967).

[49] R. S. Tripathi and K. N. Pathak, Self-Energy of Phonons in
an Anharmonic Crystal to O(4), Nuovo Cimento Soc. Ital.
Fis. B 21, 289 (1974).

[50] M. Balkanski, R. F. Wallis, and E. Haro, Anharmonic
Effects in Light Scattering Due to Optical Phonons in
Silicon, Phys. Rev. B 28, 1928 (1983).

[51] T. Tadano and S. Tsuneyuki, Self-Consistent Phonon
Calculations of Lattice Dynamical Properties in Cubic
SrTiO3 with First-Principles Anharmonic Force Con-
stants, Phys. Rev. B 92, 054301 (2015).

[52] T. Feng and X. Ruan, Quantum Mechanical Prediction
of Four-Phonon Scattering Rates and Reduced
Thermal Conductivity of Solids, Phys. Rev. B 93,
045202 (2016).

[53] T. Tadano and S. Tsuneyuki, Quartic Anharmonicity of
Rattlers and Its Effect on Lattice Thermal Conductivity of
Clathrates from First Principles, Phys. Rev. Lett. 120,
105901 (2018).

[54] Y. Xia and M. K. Y. Chan, Anharmonic Stabilization and
Lattice Heat Transport in Rocksalt–GeTe, Appl. Phys.
Lett. 113, 193902 (2018).

[55] T. Feng and X. Ruan, Four-Phonon Scattering Reduces
Intrinsic Thermal Conductivity of Graphene and the
Contributions from Flexural Phonons, Phys. Rev. B 97,
045202 (2018).

[56] X. Gu, Z. Fan, H. Bao, and C. Y. Zhao, Revisiting Phonon-
Phonon Scattering in Single-Layer Graphene, Phys. Rev.
B 100, 064306 (2019).

[57] X. Yang, T. Feng, J. Li, and X. Ruan, Stronger Role of
Four-Phonon Scattering Than Three-Phonon Scattering in
Thermal Conductivity of III-V Semiconductors at Room
Temperature, Phys. Rev. B 100, 245203 (2019).

[58] M. Puligheddu, Y. Xia, M. Chan, and G. Galli, Computa-
tional Prediction of Lattice Thermal Conductivity: A
Comparison of Molecular Dynamics and Boltzmann
Transport Approaches, Phys. Rev. Mater. 3, 085401
(2019).

[59] Y. Xia and V. Ozoliņš, Impact of Temperature-Dependent
Rattling Phonons on Lattice Thermal Transport in
Ag6Ge10P12, arXiv:1903.08800.

[60] Y. Xia, V. Hegde, K. Pal, D. Gaines, J. He, M. Aykol, and
C. Wolverton, High-Throughput Finite-Temperature Ma-
terials Properties Including Higher-Order Anharmonicity
(unpublished).

[61] F. Zhou, W. Nielson, Y. Xia, and V. Ozoliņš, Lattice
Anharmonicity and Thermal Conductivity from Compres-
sive Sensing of First-Principles Calculations, Phys. Rev.
Lett. 113, 185501 (2014).

[62] F. Zhou, W. Nielson, Y. Xia, and V. Ozoliņš, Compressive
Sensing Lattice Dynamics. I. General Formalism, Phys.
Rev. B 100, 184308 (2019).

[63] F. Zhou, B. Sadigh, D. Åberg, Y. Xia, and V. Ozoliņš,
Compressive Sensing Lattice Dynamics. II. Efficient Pho-
non Calculations and Long-Range Interactions, Phys. Rev.
B 100, 184309 (2019).

[64] R. J. Hardy, Energy-Flux Operator for a Lattice, Phys.
Rev. 132, 168 (1963).

[65] M. Simoncelli, N. Marzari, and F. Mauri,Unified Theory of
Thermal Transport in Crystals and Glasses, Nat. Phys. 15,
809 (2019).

[66] II-VI and I-VII Compounds: Semimagnetic Compounds, in
Landolt-Bornstein—Group III Condensed Matter, edited
by O. Madelung, U. Rossler, and M. Schulz (Springer-
Verlag, Berlin, Heidelberg, 1999), Vol. 41B.

[67] G. A. Slack, Nonmetallic Crystals with High Thermal
Conductivity, J. Phys. Chem. Solids 34, 321 (1973).

YI XIA et al. PHYS. REV. X 10, 041029 (2020)

041029-18

https://doi.org/10.1103/PhysRevB.89.184304
https://doi.org/10.1103/PhysRevB.89.184304
https://doi.org/10.1103/PhysRevB.91.144304
https://doi.org/10.1103/PhysRevB.91.144304
https://doi.org/10.1103/PhysRevB.91.214310
https://doi.org/10.1103/PhysRevLett.114.095501
https://doi.org/10.1103/PhysRevLett.114.095501
https://doi.org/10.1063/1.4895770
https://doi.org/10.1103/PhysRevB.89.205203
https://doi.org/10.1103/PhysRevB.89.205203
https://doi.org/10.1103/PhysRevLett.122.075901
https://doi.org/10.1063/1.4913441
https://doi.org/10.1063/1.4950970
https://doi.org/10.1103/PhysRevLett.121.105901
https://doi.org/10.1103/PhysRevLett.121.105901
https://doi.org/10.1103/PhysRevB.96.161201
https://doi.org/10.1063/1.5040887
https://doi.org/10.1063/1.5040887
https://doi.org/10.1103/PhysRevB.98.085205
https://doi.org/10.1103/PhysRev.125.1496
https://doi.org/10.1103/PhysRev.155.882
https://doi.org/10.1103/PhysRev.155.882
https://doi.org/10.1007/BF02737485
https://doi.org/10.1007/BF02737485
https://doi.org/10.1103/PhysRevB.28.1928
https://doi.org/10.1103/PhysRevB.92.054301
https://doi.org/10.1103/PhysRevB.93.045202
https://doi.org/10.1103/PhysRevB.93.045202
https://doi.org/10.1103/PhysRevLett.120.105901
https://doi.org/10.1103/PhysRevLett.120.105901
https://doi.org/10.1063/1.5048814
https://doi.org/10.1063/1.5048814
https://doi.org/10.1103/PhysRevB.97.045202
https://doi.org/10.1103/PhysRevB.97.045202
https://doi.org/10.1103/PhysRevB.100.064306
https://doi.org/10.1103/PhysRevB.100.064306
https://doi.org/10.1103/PhysRevB.100.245203
https://doi.org/10.1103/PhysRevMaterials.3.085401
https://doi.org/10.1103/PhysRevMaterials.3.085401
https://arXiv.org/abs/1903.08800
https://doi.org/10.1103/PhysRevLett.113.185501
https://doi.org/10.1103/PhysRevLett.113.185501
https://doi.org/10.1103/PhysRevB.100.184308
https://doi.org/10.1103/PhysRevB.100.184308
https://doi.org/10.1103/PhysRevB.100.184309
https://doi.org/10.1103/PhysRevB.100.184309
https://doi.org/10.1103/PhysRev.132.168
https://doi.org/10.1103/PhysRev.132.168
https://doi.org/10.1038/s41567-019-0520-x
https://doi.org/10.1038/s41567-019-0520-x
https://doi.org/10.1016/0022-3697(73)90092-9


[68] S. Andersson and G. Backstrom, Thermal Conductivity
and Heat Capacity of Single-Crystal LiF and CaF2 under
Hydrostatic Pressure, J. Phys. C 20, 5951 (1987).

[69] B. Håkansson and R. G. Ross, Thermal Conductivity of
Solid NaF under High Pressure, Int. J. Thermophys. 6,
353 (1985).

[70] B. Håkansson and P. Andersson, Thermal Conductivity
and Heat Capacity of Solid NaCl and NaI under Pressure,
J. Phys. Chem. Solids 47, 355 (1986).

[71] I. Sigalas, B. Håkanson, and P. Andersson, Thermal
Conductivity and Heat Capacity of Solid NaBr under
Pressure, Int. J. Thermophys. 6, 177 (1985).

[72] R. J. Gummow and I. Sigalas, The Thermal Conductivity
and Thermal Diffusivity of KF as a Function of Pressure
between 0 and 3.8 GPa, J. Phys. C 20, L61 (1987).

[73] S. Pettersson, The Minimum Thermal Conductivity of
Alkali Halides, J. Phys. Condens. Matter 1, 361 (1989).

[74] A. A. El-Sharkawy, A. M. Abou El-Azm, M. I. Kenawy,
A. S. Hillal, and H.M. Abu-Basha, Thermophysical Prop-
erties of Polycrystalline PbS, PbSe, and PbTe in the
Temperature Range 300–700 K, Int. J. Thermophys. 4,
261 (1983).

[75] G. A. Akhmedova and D. S. Abdinov, Effect of Thallium
Doping on the Thermal Conductivity of PbTe Single
Crystals, Inorg. Mater. 45, 854 (2009).

[76] R. G. Ross, P. Andersson, and G. Bäckström, Thermal
Conductivity and Heat Capacity of Solid AgCl under
Pressure, Int. J. Thermophys. 2, 289 (1981).

[77] M. A. Afromowitz, Thermal Conductivity of Ga1xAlx As
Alloys, J. Appl. Phys. 44, 1292 (1973).

[78] E. F. Steigmeier and I. Kudman, Thermal Conductivity of
III-V Compounds at High Temperatures, Phys. Rev. 132,
508 (1963).

[79] E. F. Steigmeier and I. Kudman, Acoustical-Optical Pho-
non Scattering in Ge, Si, and III-V Compounds, Phys. Rev.
141, 767 (1966).

[80] Q. Zheng, Sh. Li, C. Li, Y. Lv, X. Liu, P. Y. Huang, D. A.
Broido, B. Lv, and D. G. Cahill, High Thermal Conduc-
tivity in Isotopically Enriched Cubic Boron Phosphide,
Adv. Funct. Mater. 28, 1805116 (2018).

[81] Y. Kumashiro, T. Mitsuhashi, S. Okaya, F. Muta, T.
Koshiro, Y. Takahashi, and M. Mirabayashi, Thermal
Conductivity of a Boron Phosphide Single Crystal Wafer
up to High Temperature, J. Appl. Phys. 65, 2147 (1989).

[82] J. S. Kang, H. Wu, and Y. Hu, Thermal Properties and
Phonon Spectral Characterization of Synthetic Boron
Phosphide for High Thermal Conductivity Applications,
Nano Lett. 17, 7507 (2017).

[83] G. A. Slack, Thermal Conductivity of II-VI Compounds
and Phonon Scattering by Fe2þ Impurities, Phys. Rev. B 6,
3791 (1972).

[84] C. R. Whitsett and D. A. Nelson, Lattice Thermal Con-
ductivity of p-Type Mercury Telluride, Phys. Rev. B 5,
3125 (1972).

[85] A. Debernardi, S. Baroni, and E. Molinari, Anharmonic
Phonon Lifetimes in Semiconductors from Density-
Functional Perturbation Theory, Phys. Rev. Lett. 75,
1819 (1995).

[86] P. Souvatzis, O. Eriksson, M. I. Katsnelson, and S. P.
Rudin, Entropy Driven Stabilization of Energetically

Unstable Crystal Structures Explained from First Princi-
ples Theory, Phys. Rev. Lett. 100, 095901 (2008).

[87] I. Errea, Bruno Rousseau, and Aitor Bergara, Anharmonic
Stabilization of the High-Pressure Simple Cubic Phase of
Calcium, Phys. Rev. Lett. 106, 165501 (2011).

[88] O. Hellman, I. A. Abrikosov, and S. I. Simak, Lattice
Dynamics of Anharmonic Solids from First Principles,
Phys. Rev. B 84, 180301 (2011).

[89] I. Errea, M. Calandra, and F. Mauri, Anharmonic Free
Energies and Phonon Dispersions from the Stochastic
Self-Consistent Harmonic Approximation: Application to
Platinum and Palladium Hydrides, Phys. Rev. B 89,
064302 (2014).

[90] D. J. Hooton, LI. A New Treatment of Anharmonicity in
Lattice, London, Edinburgh Dublin Philos. Mag. J. Sci. 46,
422 (1955).

[91] T. R. Koehler, Theory of the Self-Consistent Harmonic
Approximation with Application to Solid Neon, Phys. Rev.
Lett. 17, 89 (1966).

[92] N. R. Werthamer, Self-Consistent Phonon Formulation of
Anharmonic Lattice Dynamics, Phys. Rev. B 1, 572
(1970).

[93] M. L. Klein and G. K. Horton, The Rise of Self-Consistent
Phonon Theory, J. Low Temp. Phys. 9, 151 (1972).

[94] A. van Roekeghem, J. Carrete, and N. Mingo, Anomalous
Thermal Conductivity and Suppression of Negative Ther-
mal Expansion in ScF3, Phys. Rev. B 94, 020303 (2016).

[95] B. Abeles, Lattice Thermal Conductivity of Disordered
Semiconductor Alloys at High Temperatures, Phys. Rev.
131, 1906 (1963).

[96] S.-i. Tamura, Isotope Scattering of Dispersive Phonons in
Ge, Phys. Rev. B 27, 858 (1983).

[97] S.-i. Tamura, Isotope Scattering of Large-Wave-Vector
Phonons in GaAs and InSb: Deformation-Dipole and
Overlap-Shell Models, Phys. Rev. B 30, 849 (1984).

[98] J. Klarbring, O. Hellman, I. A. Abrikosov, and S. I. Simak,
Anharmonicity and Ultralow Thermal Conductivity in
Lead-Free Halide Double Perovskites, Phys. Rev. Lett.
125, 045701 (2020).

[99] X. Yang, T. Feng, J. S. Kang, Y. Hu, J. Li, and X. Ruan,
Observation of Strong Higher-Order Lattice Anharmonic-
ity in Raman and Infrared Spectra, Phys. Rev. B 101,
161202 (2020).

[100] N. K. Ravichandran and D. Broido, Non-monotonic Pres-
sure Dependence of the Thermal Conductivity of Boron
Arsenide, Nat. Commun. 10, 827 (2019).

[101] Y. Xia, K. Pal, J. He, V. Ozoliņš, and C. Wolverton,
Particlelike Phonon Propagation Dominates Ultralow
Lattice Thermal Conductivity in Crystalline Tl3VSe4,
Phys. Rev. Lett. 124, 065901 (2020).

[102] Z. Tong, X. Yang, T. Feng, H. Bao, and X. Ruan, First-
Principles Predictions of Temperature-Dependent Infra-
red Dielectric Function of Polar Materials by Including
Four-Phonon Scattering and Phonon Frequency Shift,
Phys. Rev. B 101, 125416 (2020).

[103] X. Gu, S. Li, and H. Bao, Thermal Conductivity of Silicon
at Elevated Temperature: Role of Four-Phonon Scattering
and Electronic Heat Conduction, Int. J. Heat Mass Trans-
fer 160, 120165 (2020).

HIGH-THROUGHPUT STUDY OF LATTICE THERMAL … PHYS. REV. X 10, 041029 (2020)

041029-19

https://doi.org/10.1088/0022-3719/20/35/011
https://doi.org/10.1007/BF00500268
https://doi.org/10.1007/BF00500268
https://doi.org/10.1016/0022-3697(86)90025-9
https://doi.org/10.1007/BF00500030
https://doi.org/10.1088/0022-3719/20/5/001
https://doi.org/10.1088/0953-8984/1/2/004
https://doi.org/10.1007/BF00502357
https://doi.org/10.1007/BF00502357
https://doi.org/10.1134/S0020168509080056
https://doi.org/10.1007/BF00504190
https://doi.org/10.1063/1.1662342
https://doi.org/10.1103/PhysRev.132.508
https://doi.org/10.1103/PhysRev.132.508
https://doi.org/10.1103/PhysRev.141.767
https://doi.org/10.1103/PhysRev.141.767
https://doi.org/10.1002/adfm.201805116
https://doi.org/10.1063/1.342867
https://doi.org/10.1021/acs.nanolett.7b03437
https://doi.org/10.1103/PhysRevB.6.3791
https://doi.org/10.1103/PhysRevB.6.3791
https://doi.org/10.1103/PhysRevB.5.3125
https://doi.org/10.1103/PhysRevB.5.3125
https://doi.org/10.1103/PhysRevLett.75.1819
https://doi.org/10.1103/PhysRevLett.75.1819
https://doi.org/10.1103/PhysRevLett.100.095901
https://doi.org/10.1103/PhysRevLett.106.165501
https://doi.org/10.1103/PhysRevB.84.180301
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1080/14786440408520575
https://doi.org/10.1080/14786440408520575
https://doi.org/10.1103/PhysRevLett.17.89
https://doi.org/10.1103/PhysRevLett.17.89
https://doi.org/10.1103/PhysRevB.1.572
https://doi.org/10.1103/PhysRevB.1.572
https://doi.org/10.1007/BF00654839
https://doi.org/10.1103/PhysRevB.94.020303
https://doi.org/10.1103/PhysRev.131.1906
https://doi.org/10.1103/PhysRev.131.1906
https://doi.org/10.1103/PhysRevB.27.858
https://doi.org/10.1103/PhysRevB.30.849
https://doi.org/10.1103/PhysRevLett.125.045701
https://doi.org/10.1103/PhysRevLett.125.045701
https://doi.org/10.1103/PhysRevB.101.161202
https://doi.org/10.1103/PhysRevB.101.161202
https://doi.org/10.1038/s41467-019-08713-0
https://doi.org/10.1103/PhysRevLett.124.065901
https://doi.org/10.1103/PhysRevB.101.125416
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120165
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120165


[104] N. K. Ravichandran and D. Broido, Phonon-Phonon
Interactions in Strongly Bonded Solids: Selection Rules
and Higher-Order Processes, Phys. Rev. X 10, 021063
(2020).

[105] G. P. Srivastava, Phonon Conductivity Due to Nondiagonal
Energy-Flux Operator, J. Phys. (Paris), Colloq. 42, C6 (1981),
https://hal.archives-ouvertes.fr/jpa-00221609/document.

[106] B. S. Semwal and P. K. Sharma, Thermal Conductivity of
an Anharmonic Crystal, Phys. Rev. B 5, 3909 (1972).

[107] D. C. Knauss and R. S. Wilson, Theory of Thermal
Conductivity of Anharmonic Crystals: Nondiagonal
Peierls Contribution, Phys. Rev. B 10, 4383 (1974).

[108] G. P. Srivastava and M. Prasad, Diagonal and Nondiag-
onal Peierls Contribution to the Thermal Conductivity of
Anharmonic Crystals, Phys. Rev. B 23, 4273 (1981).

[109] P. B. Allen and J. L. Feldman, Thermal Conductivity of
Disordered Harmonic Solids, Phys. Rev. B 48, 12581
(1993).

[110] L. Isaeva, G. Barbalinardo, D. Donadio, and S. Baroni,
Modeling Heat Transport in Crystals and Glasses from a
Unified Lattice-Dynamical Approach, Nat. Commun. 10,
3853 (2019).

[111] A. Auerbach and P. B. Allen, Universal High-Temperature
Saturation in Phonon and Electron Transport, Phys. Rev.
B 29, 2884 (1984).

[112] M. Omini and A. Sparavigna, An Iterative Approach to the
Phonon Boltzmann Equation in the Theory of Thermal
Conductivity, Physica B (Amsterdam) 212, 101 (1995).

[113] M. Omini and A. Sparavigna, Beyond the Isotropic-Model
Approximation in the Theory of Thermal Conductivity,
Phys. Rev. B 53, 9064 (1996).

[114] W. Li, J. Carrete, N. A. Katcho, and N. Mingo, ShengBTE: A
Solver of the Boltzmann Transport Equation for Phonons,
Comput. Phys. Commun. 185, 1747 (2014).

[115] Y. Xia, J. M. Hodges, M. G. Kanatzidis, and M. K. Y.
Chan, Lattice Thermal Transport in Group II-Alloyed
PbTe, Appl. Phys. Lett. 112, 181906 (2018).

[116] G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for
Liquid Metals, Phys. Rev. B 47, 558 (1993).

[117] G. Kresse and J. Hafner, Ab Initio Molecular-Dynamics
Simulation of the Liquid-Metal–Amorphous-Semiconductor
Transition in Germanium, Phys. Rev. B 49, 14251 (1994).

[118] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15
(1996).

[119] G. Kresse and J. Furthmüller, Efficient Iterative Schemes
for Ab Initio Total-Energy Calculations Using a Plane-
Wave Basis Set, Phys. Rev. B 54, 11169 (1996).

[120] P. E. Blöchl, Projector Augmented-Wave Method, Phys.
Rev. B 50, 17953 (1994).

[121] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
Gradient Approximation Made Simple, Phys. Rev. Lett.
77, 3865 (1996).

[122] J. P. Perdew, K. Burke, and Y.Wang,Generalized Gradient
Approximation for the Exchange-Correlation Hole of a
Many-Electron System, Phys. Rev. B 54, 16533 (1996).

[123] Y. Wang, J. J. Wang, W. Y. Wang, Z. G. Mei, S. L. Shang,
L. Q. Chen, and Z. K. Liu, A Mixed-Space Approach to
First-Principles Calculations of Phonon Frequencies for
Polar Materials, J. Phys. Condens. Matter 22, 202201
(2010).

[124] S. Baroni and R. Resta, Ab Initio, Phys. Rev. B 33, 7017
(1986).

[125] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F.
Bechstedt, Linear Optical Properties in the Projector-
Augmented Wave Methodology, Phys. Rev. B 73, 045112
(2006).

[126] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C.
Wolverton, Materials Design and Discovery with
High-Throughput Density Functional Theory: The Open
Quantum Materials Database (OQMD), JOM 65, 1501
(2013).

[127] S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W.
Doak, M. Aykol, S. Rühl, and C. Wolverton, The Open
Quantum Materials Database (OQMD): Assessing the
Accuracy of DFT Formation Energies, NPJ Comput.
Mater. 1, 15010 (2015).

[128] A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput,
and I. Tanaka, Prediction of Low-Thermal-Conductivity
Compounds with First-Principles Anharmonic Lattice-
Dynamics Calculations and Bayesian Optimization, Phys.
Rev. Lett. 115, 205901 (2015).

[129] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J.
Snyder, Convergence of Electronic Bands for High Per-
formance Bulk Thermoelectrics, Nature (London) 473, 66
(2011).

[130] M. Markov, X. Hu, H.-C. Liu, N. Liu, S. J. Poon, K.
Esfarjani, and M. Zebarjadi, Semi-Metals as Potential
Thermoelectric Materials, Sci. Rep. 8, 9876 (2018).

[131] C. W. Li, O. Hellman, J. Ma, A. F. May, H. B. Cao, X.
Chen, A. D. Christianson, G. Ehlers, D. J. Singh, B. C.
Sales, and O. Delaire, Phonon Self-Energy and Origin of
Anomalous Neutron Scattering Spectra in SnTe and PbTe
Thermoelectrics, Phys. Rev. Lett. 112, 175501 (2014).

[132] G. A. S. Ribeiro, L. Paulatto, R. Bianco, I. Errea, F. Mauri,
and M. Calandra, Strong Anharmonicity in the Phonon
Spectra of PbTe and SnTe from First Principles, Phys.
Rev. B 97, 014306 (2018).

[133] T. Shiga, J. Shiomi, J. Ma, O. Delaire, T. Radzynski, A.
Lusakowski, K. Esfarjani, and G. Chen, Microscopic
Mechanism of Low Thermal Conductivity in Lead Tellu-
ride, Phys. Rev. B 85, 155203 (2012).

[134] G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. T.
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