
PHYSICAL REVIEW MATERIALS 4, 103601 (2020)

Machine learning for metallurgy I. A neural-network potential for Al-Cu
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High-strength metal alloys achieve their performance via careful control of precipitates and solutes. The
nucleation, growth, and kinetics of precipitation, and the resulting mechanical properties, are inherently atomic
scale phenomena, particularly during early-stage nucleation and growth. Atomistic modeling using interatomic
potentials is a desirable tool for understanding the detailed phenomena involved in precipitation and strength-
ening, which requires length and timescales far larger than those accessible by first-principles methods. Current
interatomic potentials for alloys are not, however, sufficiently accurate for such studies. Here a family of
neural-network potentials (NNPs) for the Al-Cu system are presented as a first example of a machine learning
potential that can achieve near-first-principles accuracy for many different metallurgically important aspects of
this alloy. High-fidelity predictions of intermetallic compounds, elastic constants, dilute solid-solution energetics,
precipitate-matrix interfaces, generalized stacking fault energies and surfaces for slip in matrix and precipitates,
antisite defect energies, and other quantities, are shown. The NNPs also captures the subtle entropically induced
transition between θ ′ and θ at temperatures around 600 K. Many comparisons are made with the state-of-the-art
angular-dependent potential for Al-Cu, demonstrating the significant quantitative benefit of a machine learning
approach. A preliminary kinetic Monte Carlo study shows the NNP to predict the emergence of GP zones in
Al-4at%Cu at T = 300 K in agreement with experiments. These studies show that the NNP has significant
transferability to defects and properties outside the structures used to train the NNP but also shows some
errors highlighting that the use of any interatomic potential requires careful validation in application to specific
metallurgical problems of interest.
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I. INTRODUCTION

The mechanical properties of metals are related to the
underlying behavior of defects in the crystalline lattice. The
atomic structures of dislocations, grain boundaries, inter-
faces, precipitates, crack tips, and vacancies and their motion,
evolution, and/or interactions all determine the plastic flow,
fracture toughness, creep, fatigue, radiation resistance, and
other essential macroscopic performance measures. Under-
standing, and ultimately controlling, the behavior of these
defects is crucial for optimizing application conditions and
designing new higher-performance alloys. This, in turn, re-
quires atomic-scale simulations, but the relevant structures
are often too large to accessible by first-principles methods,
such as density-functional theory (DFT). One solution is thus
the development of semiempirical interatomic potentials that
accurately capture the structures, energies, and motion of the
various defects.

Potentials for metals, mainly within the embedded-atom
or modified embedded-atom (EAM and MEAM, respec-
tively) frameworks, are widespread and generally perform
well against experimental or first-principles benchmarks to
which they are fit. However, potentials can be very inaccurate
for certain properties, e.g., unstable stacking fault energies,
or can predict unphysical behavior for a given defect, e.g.,
a sharp crack tip. Potentials for alloys generally have even
more limited capabilities due to the underlying assumptions

of the embedded atom framework. Alloy potentials are thus
only reasonably quantitative for a few properties and are not
accurate enough for complex defects and defect interactions.
The shortcomings of existing potentials stem in part from
the relatively rigid functional forms of the EAM and MEAM
frameworks, especially limiting for multielement interactions
except in a few rare cases (cf. Ref. [1]). Hence, a different
approach is needed so that the power of atomistic compu-
tations can be used to understand, predict, and design the
performance of technologically valuable metal alloys.

Machine learning (ML) offers a new approach to fit the
potential energy surface (PES) of a metal without imposing
a highly restricted functional form [2–6]. The construction
of an ML potential consists of (i) developing a training set
or database of energies and forces of atomic structures, (ii)
choosing suitable descriptors for the local atomic environ-
ments across the training dataset [7–10], and (iii) applying
a selected regression algorithm (e.g., neural network, kernel
ridge regression) to optimize the parameters in the ML frame-
work so as to best match the training data. Since the number of
descriptors and parameters is unlimited in principle, the ML
approaches provide a “parameter-rich” space to fit the many
configurations in the PES to the training dataset. However,
ML potentials usually fail to extrapolate to regions of phase
space outside the training set. Furthermore, the choices of
atomic descriptors, ML framework, and extent of the training
data all affect the final potential.
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It should be recognized, however, that the above caveats
regarding ML potentials are present with traditional inter-
atomic potentials as well. That is, the fixed functional form
of an EAM or MEAM potential with limited parameters
intrinsically limits the ability to fit many properties accu-
rately. Therefore, they still require user-imposed decisions
about which properties are most significant and which are not.
The perceived advantages of the traditional potentials are that
(i) the concept of embedding is well founded in the underlying
quantum mechanics of the problem, and (ii) specific desired
behavior (e.g., very strong short-range atomic repulsions) can
be easily enforced at the outset. However, traditional poten-
tials also have many hidden parameters, e.g., the complex
spline fits of the “electron density” of an atom and the arbi-
trary form of the added pair potential, that are used to best-fit
the training data. The choice of traditional (e.g., EAM or
MEAM) versus ML potentials can be reduced to a choice
between either:

(i) EAM or MEAM, where the potential is built from
physically derived smooth functions and so less likely to have
egregious extrapolation errors but is still highly fitted and
unable to capture many necessary materials properties

or
(ii) ML, where the potential is purely a regression on the

training set and, being parameter-rich, can fit many desired
properties but may exhibit unphysical behaviors in regions of
extrapolation.

To minimize issues with ML potentials, curation of the
training dataset is essential. Ideally, an exhaustive dataset
of possible atomic environments with their energies and
forces from electronic structure calculations is needed to
ensure transferability. Generating the training dataset starts
with defining the physical properties that the potential should
reproduce and the associated atomic configurations. Repre-
sentative atomic environments are then selected for the actual
training dataset (see Fe [11] and W [12] within the GAP
framework, for instance). Protocols to circumvent the tedious
task of curating an exhaustive training dataset have been
developed. One method, active learning, has used random
perturbations of bulk crystalline structures to sample con-
figuration space in an Al-Mg alloy [13]. A second method,
self-guided learning, has explored the phase space using ran-
domized unit cells paired with a selection diverse structures
with application to C, Si, and Ti [14]. A third method, on-the-
fly learning, has combined density-functional-theory (DFT)
calculations with ML to evaluate melting points for Al, Si,
Ge, Sn, and MgO [15]. This approach circumvents expensive
DFT calculations of 99% of structures because only struc-
tures with an estimated error larger than a defined bound
are recalculated via DFT and then added to improve the ML
force field. A hybrid approach, called the physically informed
neural-network (PINN) method, combines an analytical bond
order potential (BOP) with a neural network that adjusts the
BOP parametrization as a function of the specific environment
[5]. Such a potential retains some physical bounds when ex-
trapolated to new atomic environments.

A limiting aspect of nearly all of the ML potentials gen-
erated to date is that the training data, and fitness of the
potential, are mainly demonstrated on fundamental properties

of the bulk crystalline material. Few material defects are con-
sidered. For example, there has been extensive work in the
literature to create ML models to capture the entire periodic
table [16–18]; however, these studies were restricted to bulk
configurations and typically have absolute energy errors of
70–80 meV/atom, much higher than the 10 meV/atom typ-
ical of a Behler-Parinello (B-P) potential [3]. Structures in
the training set are associated with the equilibrium geom-
etry, elastic response of the bulk, vibrational modes, single
vacancies, selected surfaces, and sometimes liquid-state infor-
mation. These features are absolutely necessary but far from
sufficient for performing metallurgically useful studies of the
behavior of defects in metals.

A few efforts have extended beyond basic properties. The
GAP potentials for Fe [11] and W [12] included baseline
data needed for describing dislocations, and the GAP Fe po-
tential was used to study the double-kink nucleation process
that controls plastic flow in BCC metals [19]. Kobayashi
et al. [4] developed a neural-network potential (NNP) for
the ternary Al-Mg-Si system including a wide range of
intermetallics, solute-solute interactions, and interfaces and
showed good predictions for edge and screw dislocation struc-
tures, solute-dislocation interactions, and in situ precipitates;
further development was shown by Imbalzano et al. [20].
The PINN method [5] showed application to an FCC edge
dislocation. Many of these properties are difficult to compute
with ab initio methods and are still only the next step toward
realistic metallurgical studies (e.g., dislocations interacting
with precipitates or fracture in an alloy).

In this work, we focus on Al-Cu as a case study for
atomic modeling of alloys with a ML potential. The Al-Cu
alloys are well studied [21] and are crucial to the automotive
and aerospace industries [22]. Al alloy production is one
of the great energy consumers of the planet [23], providing
further motivations for both enhancing performance and un-
derstanding chemistry to facilitate recycling. A good Al-Cu
potential needs to capture many structures and energies: e.g.,
solute clusters, bulk and interface stability of precipitates,
generalized stacking fault energies (GSFEs) of precipitates
and matrix, and vacancy and antisite formation energies.
Furthermore, Al-Cu has a subtle entropically driven θ ′ → θ

transformation [24] that should be reproduced by any suitable
potential.

Apostol and Mishin created an angular-dependent potential
(ADP) for Al-Cu [25], which is an extension of the EAM
formalism to include angular terms. The potential was de-
signed to predict certain formation energies, lattice constants,
elastic constants, surface energies, and generalized stacking
fault energies. This potential has now been used in numerous
studies of mechanical behavior of precipitates and in studying
solute and precipitate strengthening [26–28]. In spite of these
applications, the Al-Cu ADP has not been examined across a
full range of properties or configurations necessary for broad
metallurgical studies. Given the general acceptance of EAM
and MEAM potentials and the high concern about ML po-
tentials as being purely fitted without underlying physics, the
Al-Cu ADP serves as an excellent benchmark against which
to compare any new ML potential in this alloy. Here, while
we will show many deficiencies of the Al-Cu ADP potential,
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this is not done as a means of discrediting this or any other
traditional potential. Rather, our point is to highlight the fact
that even the best traditional potentials for alloys perform
far worse than an ML potential that is developed using a
broad training dataset. The general rule is that all potentials,
traditional or ML, must be carefully and widely validated
to the best level possible prior to their application to any
metallurgical problem.

With the above background, our goal in this work is con-
struct a neural-network machine learning potential (NNP)
for the Al-Cu system that can set the state of the art for
metallurgical modeling in a metal alloy. We carefully and sys-
tematically examine many atomic-level properties relevant,
with a particular emphasis on solutes and precipitates. We then
show that the NNP is broadly successful in capturing defects
and metallurgical phenomena that are not within the training
dataset and that this performance is far better than that of the
ADP potential. While executed here for only one binary alloy,
we believe this example provides a significant driving force
for the development of such machine learning potentials for
metal alloys more broadly. Such new ML potentials will then
greatly enhance the quantitative quality of atomistic model-
ing of alloys, enabling better mechanistic understanding of
performance-controlling atomistic processes and so helping
to accelerate improvements to existing and emerging alloys.

The remainder of this paper is structured as follows. In
Sec. II, we present the methodology and details of the metal-
lurgical dataset. In Sec. III, we assess the ability of the NNPs
to represent the training dataset and properties associated with
data derived from the dataset. In Sec. IV, the NNPs are then
examined with respect to many metallurgical issues, including
precipitation, interfaces, dislocations and stacking faults, and
fracture. In Sec. V we summarize our findings and provide
some perspective.

II. METHODOLOGY

In this section, we describe all of the atomic structures
used here for modeling metallurgical phenomena in Al-Cu.
The associated energies and forces as computed using density-
functional theory serve as a database for the application of any
machine learning method to develop an interatomic poten-
tial. The details of the first-principles DFT methodology are
then presented, including our development of general work-
flows within the framework of the AiiDA infrastructure [29].
We then describe the neural-network approach adopted here,
which is that proposed by Behler and Parinello [7].

A. Atomic structures

We wish to develop a comprehensive set of atomic struc-
tures to train a machine learning potential that is broadly
useful for modeling precipitation, plasticity, and fracture be-
havior in Al-Cu alloys. While we include structures related to
pure Cu and Al in Cu, our main goal is a potential for Al-Cu
in the range of dilute Cu that is relevant for technological
applications of these alloys. To this end, we created 4857
structures within the following categories:

(i) All Al-Cu intermetallic structures from the Open Quan-
tum Material Database (OQMD) [30]. θ and θ ′′ structures
were also added.

(ii) (111), (110), and (100) surfaces for pure Al and Cu.
(iii) Stable and unstable stacking faults for pure Al and

Cu.
(iv) Additional Al, Cu, θ , θ ′, and θ ′′ structures at high

pressures.
(v) Binary solute-solute and solute-vacancy pairs at vary-

ing distances in both Al and Cu matrices.
(vi) Solutes at stacking faults in Al and Cu.
(v) Thirty-two atom FCC supercells with random concen-

trations of Al, Cu, and vacancies.
(vi) Coherent and semicoherent interfaces between Al and

θ ′′ and θ ′ precipitates,
(vii) Generalized stacking fault (GSF) (011) surface for

the θ precipitate.
(viii) Supercells of all OQMD structures with small dis-

placements suitable for phonon calculations
Specifically, we fully relaxed the cell shape and atomic

positions of 60 OQMD structures plus θ and θ ′′ phases using
the methodology described in Sec. II B. 45 of the relaxed
structures maintained the initial symmetry group and were
considered “stable” (many structures in the OQMD relaxed
into the same structure, e.g., pure non-FCC Al and Cu struc-
tures would often relax into the FCC phase). For each of the
stable structures, further structures were generated by apply-
ing strains of magnitudes −0.01, −0.005, 0.005, and 0.01 in
each of the ε1..6 strain directions (Voigt notation) and reduced
to a set of unique independent strains using Pymatgen [31]
(e.g., for FCC the necessary independent strains are only ε1

and ε4). Surfaces and stacking fault structures in pure Al and
Cu were generated using the Atomic Simulation Environment
(ASE) software package.

Binary Cu-Cu, Cu-vac, and vac-vac pairs embedded in
an Al matrix were generated up to seventh nearest-neighbor
distances in a 256 atom supercell. Binary Al-Al, Al-vac, and
vac-vac pairs embedded in a Cu matrix were generated up
to fourth nearest-neighbor distances in a 108 atom supercell.
Thirty-two atom FCC supercells spanning all Al-Cu con-
centrations ratios in increments of 10%, as well as vacancy
concentrations of 5% and 10%, were generated for a total of
990 structures (30 for each concentration). For each generated
structure the lattice constant was fixed to be a concentration-
weighted average between Al (4.07 Å) and Cu (3.68 Å) where
the large Al lattice constant was selected to better-simulate
high temperatures. For each atomic position the occupying
atom was selected randomly according to a probability equal
to the concentration and was also shifted from its lattice site
using by a small random vector with amplitude selected from
a Gaussian probability distribution with a standard deviation
0.15 Å.

Solute or stacking fault structures in Al and Cu were gen-
erated by first creating a stacking fault structure and then
placing a single solute at an atomic position in the first atomic
plane adjacent to the fault plane. Four Al-matrix–precipitate
interfaces structures were created: semicoherent θ ′′, coherent
θ ′′, semicoherent θ ′, and coherent θ ′. The θ phase does not
have a coherent interface [22] with Al-bulk and so was not
studied. We used three different sizes for the θ ′ interfaces
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and four different sizes for the θ ′′ interfaces, with each size
corresponding to an equal number of layers of precipitate
and matrix on either side of the interface. Structures corre-
sponding to high-symmetry points of the (011)θ generalized
stacking fault surface were also created (this structure having
also some particular importance for laser-sintered laminated
structures [6]). Phonons in the 45 structurally stable OQMD
structures were studied using Phonopy [32] with supercells
having a minimum of 108 atoms and with cell shapes as close
to cubic as possible. Phonopy was then used to determine
the minimum set of displacements needed to generate the
dynamical matrix; e.g., a 144 atom supercell for the Al2Cu-θ
phase requires three displacements (two on an Al atom and
one on a Cu atom).

To test the NNPs developed using the above structures, we
also examined a number of other structures or properties that
were not included in the above training set

(i) GSF for the (111) plane of θ ′′
(ii) Cu clusters of three, four, and more atoms in an Al

matrix
(iii) Unrelaxed antisite and vacancy energies for all sites

in all OQMD structures
(iv) Thermodynamics of the θ/θ ′′ transition
(v) Melting of Al and eutectic Al-18%Cu
(vi) Early precipitate clusters, i.e, Guinier-Preston (GP)

zone formation during annealing as predicted using kinetic
Monte Carlo (KMC); there are no first-principles results for
these structures

(vii) The a〈110〉/2 edge dislocations in pure Al
(viii) An atomistically sharp crack and dislocation emis-

sion under load; there are no precise first-principles results for
these structures.

While amorphous Al-Cu has been studied recently [33], it
is not a major technological alloy and atomistic models have
difficulty reproducing amorphous structures consistent with
realistic cooling rate and so we do not study it here.

B. DFT methodology

All first-principles calculations were performed within the
framework of DFT as implemented using Quantum Espresso
[34] (QE). The GGA-PBE [35] exchange-correlation func-
tional was used with a 544-eV (40-Ry) energy cutoff. An 80
k-points/Å−1 Monkhorst-Pack grid [36] (corresponding to a
20 × 20 × 20 k-point grid for the 4.04 Å3 conventional cu-
bic FCC cell) and an 0.6-eV (0.0441-Ry) Methfessel-Paxton
smearing parameter [37] were also used. These latter choices
were made after significant convergence and validation stud-
ies for achieving reliable elastic constants, especially C44, in
both Al and Cu. The Al pseudopotential was chosen from
the solid-state pseudopotential (SSSP) library [38]. The Cu
pseudopotential of Dal Corso [39] was used, which was found
to have better accuracy and reduced computational cost as
compared to the SSSP version.

The AiiDA platform [29,40] was used to manage the large
number of DFT computations needed for this study, as well as
to ensure that all calculations used consistent settings, which
is essential for ML potentials [11]. Figure 1 shows a schematic
of how AiiDA was used, with the various key terms having the
following meanings:

FIG. 1. Schematic of AiiDA usage. Structures are stored in
the database in a Structure Group; jobs are launched with the
aiida_launch_workflow.py wrapper script; each WorkChain ob-
ject manages a CalcJob where common events, e.g., job submission,
continuation of jobs past cluster time outs are handled automat-
ically; outputs such as computed energies, forces, pressures, and
atomic structures are stored automatically in a database, organized
in Calculation Groups with typically one for each Structure

Group of interest.

(i) Structure Group: A group of structures stored in
the AiiDA database

(ii) parameters: A set of parameters stored in the AiiDA
database. These are the settings, e.g., energy cutoff, smearing,
to be used for each calculation

(iii) pseudopotentials: A set of pseudopotentials
stored in the AiiDA database

(iv) kpoint spacing: The k-point distance to be used in
each calculation.

(v) CalcJob: An AiiDA object that directly interfaces
with an external code, in this work QE, to submit, launch, run,
collect, and parse on a HPC cluster. In this work all CalcJobs
are created and managed by a parent WorkChain.

(vi) WorkChain: An AiiDA object that encapsulates a
set of CalcJobs to achieve a high-level workflow goal. For
example, a cell relaxation requiring multiple restarts or to
compute elastic constants of a material.

(vii) aiida_launch_workflow.py: A wrapper script for
launching WorkChains

(viii) Calculation Group: A group of WorkChains in
the AiiDA database

Because AiiDA can serve as a future platform for calcu-
lations on other alloy systems, we further detail our usage of
it as follows. First, we created a set of user-friendly scripts
within AiiDA to create each type of structure mentioned in
Sec. II A. These structures were stored in AiiDA Structure
Groups. In some cases, e.g., for importing the OQMD struc-
tures or generating phonon-displaced structures, we used an
external script to create structures, which we then uploaded
into AiiDA. A wrapper script enabled the application of a
consistent set of parameters, k-point spacing, and pseudopo-
tentials to generate an AiiDA WorkChain for each structure
in the Structure Group. Each WorkChain managed a
QuantumEspresso calculation as a CalcJob on an HPC clus-
ter, where events such as job time outs and result parsing were
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handled automatically. The aiida_launch_workflow.py
wrapper script could launch in several modes to create atomic-
relaxation, atomic and cell relaxation, or no-relaxation (SCF),
as needed in each case. AiiDA stored the results of each
calculation in a Calculation Group. These files were later
parsed using a dedicated Jupyter [41] notebook for each prop-
erty of interest, e.g., surface energies, GSF, elastic constants.
We provide all scripts and all computed data openly on the
Materials Cloud [42,43].

C. NNP selection and evaluation of errors

In this work, we generated NNPs using the methodology
developed by Behler and Parrinello [7] as implemented in the
open source code n2p2 [44]. Here we sketch the essentials of
the method and refer the reader to the excellent tutorial review
of Behler for further details [3].

An NNP predicts the energy of an entire structure by sum-
ming energies of each atom within the structure as

E structure =
∑

i

E atom
i . (1)

Each atomically local energy, E atom
i , is computed using a

nested hierarchical function of weighted layers across a neu-
ral network. We use a neural-network architecture with two
hidden layers and 24 nodes per layer. We did not rigorously in-
vestigate other network architecture, and other configurations
would likely work as well. The functional form for the atomic
energy is given explicitly as

E atom
i = f3

{
b3

1 +
24∑

k=1

a2,3
k,1 f 2

k

×
[

b2
k +

24∑
j=1

a1,2
j,k f 1

j

(
b1

j +
64∑

i=1

a0,1
i, j Gi

)]}
, (2)

where aq,p
z,w is the weighting from node z on layer q to node

z on layer w; similarly, bq
z is the bias of node z on layer q.

fq is an activation function; here we use the softplus function
ln(1 + ex ) for f1 with f2 and f3 the identity functions.

The Gi are functions used to characterize a local atomic en-
vironment and are generally referred to as the Descriptors. In
the B-P NNP framework, they are called symmetry functions.
We use radial and angular symmetry functions defined as

Gradial
i =

Natom∑
j=1

e−η(Ri j−Rs )2
fc(Ri j ), (3)

Gangular
i = 21−ζ

∑
j �=i

∑
k �=i, j

[
(1 + λcosθi jk )ζ e−η(R2

i j+R2
ik+R2

jk )

× fc(Ri j ) fc(Rjk ) fc(Rjk )
]
, (4)

where Rc, η, ζ , and λ are predefined, or hyper-, parameters for
a given symmetry function, Ri j is the distance between atoms i
and j, and fc(r) = tanh3(1 − r/rc) is a cut-off function, where
rc is a cutoff parameter for each symmetry function. From
among the above general class of symmetry functions, we
select a subset based on the structures in our training dataset
using the CURSEL method of Imbalzano et al. [20]. First,
we generate a dense grid hyperparameters to create a total

of 1192 unique radial and angular symmetry functions. We
then performed a CUR decomposition on all 4857 structures
and selected the 32 most-descriptive Al-centered symmetry
functions and the 32 most descriptive Cu-centered symmetry
functions for a total of 64 symmetry functions. We found
that 32 symmetry functions per atom type resulted in a good
balance between accuracy and computational cost. The result-
ing list of symmetry functions is shown in the Supplemental
Materials [45].

Training of the NNP potential, i.e., determination of the
weights and biases to best-match the DFT reference data, was
accomplished with the n2p2 library [44,46]. We selected at
random 90% of the structures for training and the remainder
for testing. NNP weights were updated during the training
using a fading memory Kalman filter. The training is based
on minimizing an objective, or loss, function. We trained a
loss function �loss on the total energy of the ith structure in
the training set, Ei, as well as the jth force for that structure
Fi, j :

�loss = 1

N struct

N struct∑
i=1

⎡
⎣(

ENNP
i − EDFT

i

)2

+ β

3Natom
i

3Natom
i∑

j=1

(
F NNP

i, j − F DFT
i, j

)2

⎤
⎦, (5)

where the sums are performed over all training structures
N struct at each iteration of training. Note that for each structure
there is only one energy, Ei, but 3Natom

i forces, i.e., three
forces (X,Y, Z) for each atom. β controls the relative influ-
ence of forces on the loss function, in this study β = 8(Å2).
Each training structure of N atoms provided 3N forces, but
only one energy, and we wished to avoid having the forces
overwhelm the energies when training the potentials. We used
2.1% of forces during each training epoch, (the n2p2 default
is 2.3%), increasing the ratio beyond this number resulted
in prohibitive computational cost. Note that this formulation
tends to be biased toward larger structures since each atom
independently contributes to the error. We use a standard 150
epochs (iterations) of training per NNP after which we found
there to be only minimal gains in accuracy. LAMMPS [47]
was used to compute the energies and forces of all structures
using the evolving NNP during training via the n2p2 interface.

Here we generated 40 NNPs that differ in the specific
90% training structures and the initial random weights and
biases. The initial training structure dominates the final NNP.
Note that these 40 NNP are thus not independent poten-
tials. However, they represent the range of potentials that
are achieved using this NNP structure, symmetry functions,
and set of training structures. Their predictions for various
material properties thus represent the range of properties as-
sociated with these NNP details. The set of 40 NNPs can be
used as a committee model to assess whether a particular new
structure outside the overall training dataset may or may not
be accurately represented. To present one specific set of results
for many different properties, we select one NNP from among
the 40 NNPs, labeled NNP11, that has the lowest error for
C44 in Al. This choice is motivated by the importance and
relative difficulty of modeling C44 accurately. In results below,
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FIG. 2. Histogram of errors for the (a) energy and (b) forces for both training and testing for NNP11.

all error bars center on the average of all 40 trained NNPs and
indicate +/−1 standard deviation. We note that the standard
deviation is an imperfect model for the error of NNPs which
we use for its extreme simplicity; for a more sophisticated
treatment we refer to the work of Musil et al. [48]. The NNP11
may fall near the average or outside the error bars; it is just
one particular NNP. This also highlights the care necessary
in considering the average and standard deviation across the
40 NNPs: There may not be any single NNP that is within 1
standard deviation of the average for all properties considered.
Last, we reiterate that the standard deviation does not indicate
statistically independent results since all NNPs are trained on
very similar sets of structures.

III. RESULTS: NNP VERSUS TRAINING AND TEST DATA

A. Overall NNP accuracy

Here we look at the root-mean-square error (RMSE) for
structures in the testing and training sets for both energies and
forces separately,

RMSE(E ) =
[

1

N struct

N struct∑
i

(
EDFT

i − ENNP
i

)2

] 1
2

, (6)

RMSE(F ) =
⎡
⎣ 1

N struct

N struct∑
i

3Natom
i∑
j

1

3Natom
i

(
F DFT

i, j − F NNP
i, j

)2

⎤
⎦

1
2

.

(7)

Over all 40 NNPs there is an average RMSE for the energy of
2.49 meV/atom for testing and 69.15 meV/atom for training,
while the testing and training RMSE for the forces are 23.9
and 35.93 meV/Å, respectively. These would appear to be
unacceptably large testing errors, indicating poor potential
quality. In fact, most of the NNPs show only a modest differ-
ence, with 21 of the 40 potentials having a testing RMSE for
energy of less than 5 meV/atom. The major contributor to the
large error in the RMSE values for the remaining potentials is
due to a single outlier structure under very high compression.
Examining NNP11 as an example, the RMSE for energy is
2.58 meV/atom for the training set but 26.51 meV/atom for
the testing set, but the histogram of errors shown in Fig. 2(a)
reveals the single outlier, which is FCC Al at lattice con-
stant a/a0 = 0.81. The testing RMSE for NNP11 without this

outlier structure would fall to a very acceptable value of only
3.46 meV/atom. The forces follow a nearly uniform error
distribution and do not have an outlier like in the energies, as
can be seen in Fig. 2(b). For all other NNPs with high test-train
error ratios, the cause was found to be outlier structures with
a/a0 = 0.8.

The predictions of ML potentials at high compression out-
side the domain of training is commonly highlighted as a
failure of NNPs. In fact, such behavior is easily prevented by
the addition of a strongly repulsive potential for small atomic
spacings, and such an ad hoc potential is part of standard EAM
or MEAM potentials to handle exactly this behavior. Of equal
importance is that there are few, if any, metallurgical problems
where such a high compression and high energy structure
could be accessed. Here the NNPs have high error when the
training set does not include the structures with a

a0
= 0.8, as

can be seen in Fig. S1 in the Supplemental Material [45].
Putting aside this unusual structure—which can be captured
if it is included in the training set—all 40 NNPs perform very
well overall.

B. Bulk properties

Figure 3 shows the fractional deviation with respect to the
DFT reference value for a number of fundamental proper-
ties in pure Al and Cu as predicted by the NNP and ADP.
For the lattice and elastic constants and surface energies, to
which the ADP is directly fit, the NNP shows no advantage
relative to ADP. The NNP only improves over ADP in the
predicted stable stacking fault energies in Al. The NNP shows
substantially different values for C44 of Al as compared to
DFT, systematically too large by 20%. Such a deviation is
not unusual for NNPs, and prior work has found errors of a
similar magnitude for elastic constants [49]. Elastic constants
are derived from the second derivative of the energy around
the minimum energy, and so are presumably challenging to
model accurately when training is performed primarily on
energies and on a training set with a very wide distribution
of energies relative to the bulk perfect crystal. We note that
the error is not in the DFT because the DFT parameters have
been carefully converged with respect to C44. Otherwise, for
the basic properties to which EAMor MEAM-type potentials
are fit, the NNP performs roughly as well as the ADP.

Figure 4 shows the formation energies, atomic volumes,
and elastic constants for all Al-Cu intermetallic structures
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FIG. 3. Deviation of NNP and ADP properties from DFT ref-
erence values (%) for lattice constants, elastic constants, surface
energies, and stable and unstable stacking fault energies of FCC
Al and Cu. Dashed blue lines and error bars: mean and standard
deviation across 40 NNPs; dark blue line: NNP11; red lines: ADP.
All structures from which these properties are derived are included
in the training set.

within the OQMD database as computed via DFT, the NNPs
(mean, standard deviation, and the specific NNP11), and the
ADP. The formation energy 	E structure

f of each structure is
computed relative to bulk FCC Al and dilute solid-solution
Cu in the Al matrix as

	E structure
f = E structure

N − nE ref
Al − (N − n)E ref

Cu , (8)

E ref
Al = EFCC

Al , (9)

E ref
Cu = E1sol

255Al,1Cu − 255EFCC
Al , (10)

where N and n are the total number of atoms and number of Al
atoms, respectively, in a given structure. The formation ener-
gies are generally very well predicted by the NNPs, with most
errors within a few meV/atom. In contrast, the ADP often
highly overestimates or underestimates the formation energy;
in a few cases, ADP reverses the sign relative to pure Al. The
B2 structure poses a challenge to both ADP and most NNPs.
The ADP predicts the B2 phase to be extremely stable—more
stable than any other structure—while the NNP predictions
have the highest error among all structures considered. Some
NNPs have, however, good predictions for the B2 phase and
the NNPs largely preserve the overall order of stability among
the many different phases. For structures with high formation
energy, both the NNP and ADP show inaccuracies, often not
relaxing to the same structure as DFT or having substantial
errors, especially the ADP. The ADP regularly underestimates
the atomic volume, even for the critical θ and θ ′ structures.
Since strain energies due to lattice mismatch can contribute to
in situ precipitate formation energies, these large deviations in
volume can lead to substantial erroneous effects. For elastic
constants, neither the ADP nor the NNPs are extremely accu-
rate but overall the NNPs are superior to the ADP, especially
for the important low-energy structures.

C. Solutes

The binary formation energies for Cu, Al, and vacancy in
Al or Cu matrix are computed as

	Ebind
f = E2sol

N−2,X,Y − E1sol
N−1,X − E1sol

N−1,Y + EPure
N , (11)

where 	Ebind
f is the binding energy for the solute pair, with

a negative energy indicating attraction. E2sol
N−2,X,Y , E1sol

X , E1sol
Y ,

and E1sol
Y are the energies for a solute pair, a single solute of

species X, a single solute of species Y, and a system of pure
bulk matrix, respectively. Here N = 256 for Al matrix and
N = 108 for Cu matrix. The DFT, NNP, and ADP results for
these quantities in Al are shown in Fig. 5 while those for the
Cu matrix are shown in Fig. S3 in the Supplemental Material
[45]. The NNP predictions for pair binding energies are gen-
erally in good agreement with DFT, typically within 25 meV
(kT at room temperature) across all NNPs, and notably better
than the predictions of the ADP. The NNP11 near-neighbor
Cu-vacancy and vacancy-vacancy binding energies do deviate
from the DFT values by 20 meV, but the ADP predicts massive
overbinding of Cu-Cu and Cu-vacancy near-neighbor pairs
and underbinding of Cu-Cu third and fourth neighbors. While
these ADP values collectively lead to reasonable formation
energies for the θ and θ ′ structures (see Fig. 4), it is evi-
dent that such agreement is due to significant cancellations
of errors among the different pair interactions. These pair
interactions would also have serious negative implications for
kinetic studies of precipitation using the ADP.

Table I shows the solute misfit volumes for Cu in Al and
Al in Cu, as predicted by DFT, the NNPs, and the ADP. The
misfit volumes are computed from the relaxed total volumes
of cells containing one solute when using the potentials. When
using DFT, we fix the cell size at the bulk elemental value,
measure the induced pressure on introduction of the solute,
and compute the misfit volume using the pressure and metal
bulk modulus. The ADP is grossly incorrect for Cu in Al.
This is the origin of reported difficulties in measuring solid-
solution strengthening of dilute Al-Cu alloys [26]. The ADP
also predicts the incorrect sign for the volume of Al in Cu.
The NNPs show a range of values around the DFT value for
Cu in Al, with NNP11 in reasonable agreement. The NNPs
for Al in Cu are slightly smaller than, but within the range of,
the DFT, although NNP11 predicts a particularly small value.
Solute strengthening at T = 0 K scales as (misfit volume)4/3,
and hence the deviation for the NNP11 is not negligible for
accurate prediction of solute strengthening but other NNPs
could yield suitable values for misfit volume but offset by
larger errors in the elastic constants.

Table I also shows the solute or stacking fault interaction
energies for Cu in Al and Al in Cu, as predicted by DFT, the
NNPs, and the ADP. This interaction energy is computed from
various system energies as

	ESol-SF
f ,(N−1,X ) = ESol-SF

N−1,X − ESF
N − (

E1sol
N−1,X − EPure

N

)
, (12)

where ESol-SF
N−1,1 is the energy of a system containing the stacking

fault and a single solute and ESF
N is the energy of the system

with the stacking fault alone. For Cu in Al, the NNPs are in
good agreement with DFT while the ADP value is far too
large. In contrast, for Al in Cu, the ADP value is in reasonable
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FIG. 4. Formation energy, atomic volume, and elastic constants C11, C21, and C44 as predicted by DFT, the NNPs, and the ADP versus
structure for all Al-Cu structures in the OQMD database. All structures from which these properties are derived are included in the training set.

agreement with DFT while the NNP values are too small and
around zero. This energy can enter into solute strengthening
[50] and is crucial for dynamic strain aging (DSA) [51]. With
Cu-15at%Al a classic alloy for DSA, the ADP appears better
than the NNP but actually remains unsuitable due to the error
in the misfit volume.

D. Interface and generalized stacking fault energies

The interface energy between a precipitate and a matrix
is an important component of the thermodynamics of nu-
cleation and growth of nanoscale precipitates. In addition,
the interaction of a matrix dislocation with a precipitate is

first dominated by the dislocation-interface interactions. It is
thus important that any potential provide an accurate descrip-
tion of the precipitate-matrix interfaces. This is challenging
due to the absence of information about the interface struc-
ture, but machine learning of the energies of approximate
structures is valuable for providing some guidance to po-
tentials for modeling of fully relaxed interfaces. Interface
energies are almost never considered in the fitting of EAM-
type potentials, leading to significant quantitative issues when
interface-dominated phenomena are studied.

The interface energy is computed as in Ref. [52] and is
briefly summarized here. The formation energy for an inter-
face with N atoms of which X are of the matrix and Y are of
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FIG. 5. Pair binding energies for Cu-Cu, Cu-vac, and vac-vac pairs in an Al matrix as a function of near neighbor index. ADP predicts huge
errors for Cu-Cu first-neighbor binding (−318 meV) while third and fourth neighbors are far too repulsive (108 and 175 meV, respectively).
Relevant structures are included in the training set.

the precipitate, 	E interface
f ,(X,Y ) = E interface

X,Y − XEMatrix
bulk − Y EPrecip

bulk ,
is related to the number of atoms as

	E interface
f ,(X,Y ) = δE strain

X,Y + 2Aγ interface

N
, (13)

where 	E interface
f is the interface formation energy, δEstrain is

the strain energy, A the surface area, γ int the interface energy,
and N = X + Y the total number of atoms in interface. During
relaxation, atoms are free to move, but the overall cell size and
shape are held fixed. The interface surface energy γ interface is
then the slope of 	E interface

f versus 1
N and divided by 2A.

Figure 6 shows the computed interface energies from DFT,
the NNPs, and the ADP. The ADP correctly predicts the gen-
eral trends but makes several serious errors. The coherent θ ′
interface energy is far too high while all the θ ′′ interfaces are
predicted to have negative energy. The θ ′′ interface is partic-
ularly challenging because it has such low interface energy;
therefore, it is easy for a potential to predict a negative value.
In contrast, NNP11 shows good predictions versus DFT for
all of these interfaces. More details on the underlying data for
these energies are given in the Supplemental Materials [45].

The GSF energy surface (GSFE) determines the stable
faults for the dissociation of dislocations, the core structure of

TABLE I. Misfit volumes and solute stacking fault interactions
for DFT, ADP, and NNP.

DFT ADP NNP11 NNP-Avg/SD

Misfit Vol Cu in Al (Å3) −6.077 −16.958 −4.380 −7.095/1.076
Misfit Vol Al in Cu (Å3) 2.187 −1.259 0.109 1.334/0.857
SolSF Cu in Al (eV) 0.052 0.108 0.042 0.062/0.030
SolSF Al in Cu (eV) −0.049 −0.034 −0.006 0.002/0.031

such dissociated partial dislocations, and the energies related
to shearing of the material. For precipitates in Al, the GSFE
for surfaces best-aligned with the (111) slip planes in Al de-
termine the resistance of the precipitate to shearing and hence
control the strength of the alloy. It is thus important that the
GSFE well represent all phases that would be used to study
dislocation motion and strengthening.

The GSFE is computed using the methods detailed in
Ref. [53], which we briefly summarize here. The smallest
periodic cell vectors a1 and a2 for the desired slip surface
are first identified and a supercell created with a3 normal to
the a1-a2 plane. The energy of the undeformed cell Epristine

was computed. For each vector �t of the GSF, the periodic cell

FIG. 6. Interface structure vs. interface energy for precipitate
structures. These are the θ ′ coherent, θ ′ semicoherent, θ ′′ coherent,
and θ ′′ semicoherent interfaces in order. Relevant structures are in-
cluded in the training set. Figure S3 in the Supplemental Material
shows the atomic structure of these interfaces [45].
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FIG. 7. (a) In-plane unit cell for the (011) generalized stacking fault surface of the θ precipitate; (b) generalized stacking fault energy
surface as computed by NNP11 and the ADP at a discrete set of points indicated by black dots, from which the energy contour is constructed.
Red points and labels are local minima or maxima for which the energies were computed via DFT and present in the training set; (c) GSFE at
the selected extremal points, as computed by DFT (black dots), all the NNPs (blue dashed lines), NNP11 (blue dots), and the ADP (red dots);
the structures contributing to the GSFE for these seven sites are included in the training set.

shape was deformed by shifting a3 by �t . All atoms and the a3
cell vector were then allowed to relax in the 3-direction only to
compute the energy EGSF

�R . The GSF energy at a displacement
γGSF�t was then calculated as

γ GSF
�t = (

EGSF
�t − Epristine

)
/A, (14)

where A is the area of the slip surface in the simulation cell.
Figure 7 shows the geometry and GSFE surface for the

(011) for the θ phase as computed by NNP11 and the ADP
and the energies at the local minima and maxima as computed
by DFT, all the NNPs, and the ADP. The NNPs all predict
the extremal values in very good agreement with DFT. In
contrast, at the extremal points, the ADP deviates significantly
from the DFT for the unstable points 4, 6, and 7 and remains
quantitatively much worse than the NNP for the sites 2, 3,
and 5. The remainder of the GSFE surface is outside of the
DFT training set. The GSFE for the NNP11 is smooth while
the ADP shows very sharp gradients that are not expected
to be realistic. The normal concern about ML potentials is

that they may have sharp gradients and highly inaccurate
energies in regions away from the training set, but the present
results demonstrate that it is the traditional ADP potential that
suffers from such issues. The GSFE results for the NNP11
indicate that the NNPs can be used reliably for the study of θ

precipitate shearing, whereas the ADP cannot.

IV. RESULTS: TRANSFERABILITY

A. Generalized stacking faults θ′′

GP zones and θ ′′ precipitates are among the most pertinent
to understanding mechanical properties of Al-Cu alloys [22].
The most important plane of shearing in the precipitate is then
that which most closely corresponds to the (111)-type glide
planes of Al. Both the θ ′′ precipitates and the GP zones are
structurally similar, being composed of (100) planes of Cu in
Al. The θ ′′ consists of (100) planes of Cu with one intervening
plane of Al spaced by two lattice constants while a GP zone
is a single plane of (100) Cu. Here we examine the (111)
GSFE surface of θ ′′ since a GP zone does not have a periodic
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FIG. 8. In-plane unit cell for the (111) generalized stacking fault surface of the θ ′′ precipitate; (b) generalized stacking fault energy surface
as computed by NNP11 and the ADP at a discrete set of points indicated by black dots, from which the energy contour is constructed. Red
points and labels are local minima or maxima for which the energies were computed via DFT and present in the training set; (c) GSFE at the
selected extremal points, as computed by DFT (black dots), all the NNPs (blue dashed lines), NNP11 (blue dots), and the ADP (red dots); the
structures contributing to the GSFE for these 11 sites are not included in the training set.

structure; however, results for θ ′′ should extrapolate well to
GP zones.

Figures 8(a) and 8(b) show the GSFE surface geometry
and the energies over the slip surface θ ′′, as predicted by
the NNP and the ADP, even though outside the training set
the NNP predicts a smooth GSFE with maxima and min-
ima at the expected symmetry points. The ADP prediction
is much less smooth, with a lack of radial symmetry around
the extremal points and with sharp ridges extending across
the high-energy regions. Most troubling is that regions of
the ADP-predicted θ ′′ surface are negative, i.e., the sheared
precipitate is more stable than the unsheared precipitate. The
ADP cannot be used reliably to investigate shearing of these
precipitates. Figure 8(c) shows the GSFE energies at the ex-
tremal points indicated in Fig. 8(b) as predicted by DFT, the
NNPs, and the ADP. The NNPs are in excellent agreement
with the DFT results at all points while the ADP is in seri-
ous error at several points. Relative to the GSFE of θ (011)
(Fig. 7), which was in the training dataset, the accuracy of
the NNP is lower and with notably higher variation across
the family of NNPs. Nonetheless, the accuracy remains quite
good, validating that these NNPs can be reliable used in com-
plex mechanistically important environments. We also note

that the NNPs can be further improved by the inclusion of
more training data relevant to particular problems of interest,
whereas traditional potentials such as the ADP remain high
constrained by the limited degrees of freedom available for
describing alloys.

B. Antisites and vacancies

In modeling the evolution of precipitate microstructures, it
is unavoidable that there will be antisite defects and vacan-
cies inside the precipitates. These configurations also serve
as further tests of the ability of the NNPs to broadly capture
the energetics of the entire Al-Cu system. For this reason, we
compute the unrelaxed antisite and vacancy formation ener-
gies for every OQMD structure predicted to be stable using the
NNPs (see Fig. 4). Unique atomic sites in each structure were
identified using pymatgen. The primitive unit cell was then
used to generate larger cells with a minimum of 108 atoms
to minimize defect-defect interactions. For each of the unique
sites identified, a different atom was substituted, e.g., Al →
Cu or Cu → Al, or the atom was removed to create a vacancy.
The unrelaxed formation energies 	E antisite

f of all the antisite
structures were then calculated relative to the solid solution
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FIG. 9. DFT antisite formation energy vs. ADP or NNP antisite formation energy. These structures were not included in the training set.

alloy as

	E antisite
f = E antisite − Epristine − E ref

new + E ref
old, (15)

where E antisite and Epristine are the total energies of the pre-
cipitates with and without the antisite defect and E ref

new and
E ref

old are the reference energies for the new and old element,
respectively, as stated in Eqs. (9) and (10).

Figure 9 shows the antisite results. When there are mul-
tiple possible antisites or vacancies for a given element in a
structure, we only plot the one with the lowest DFT formation
energy; this is purely to make the figure easier to read, the
overall accuracy being the same for all vacancies and antisites.
For completeness we include Fig. S4 in the Supplemental
Material [45], which shows the energies for all antisites and
vacancies. Error bars rarely exceed 0.1 eV and are almost
always centered around the correct DFT value. The NNP-
calculated energies for relaxed sites for Al, Cu, θ , θ ′, and
θ ′′, deviate from their unrelaxed configurations by 0.1 eV,
i.e., within the margin of error of DFT vs. NNP. ADP also
performs reasonably but has substantially more errors, with
many cases deviating by more than 1 eV from DFT. These
results demonstrate that NNPs make accurate predictions of
point defects that are not in the training set.

C. θ-to-θ′ transition temperature

We now turn to the investigation of the phase transition be-
tween the θ phase and the θ ′, comparing the NNPs to the ADP.

The T = 0 K formation energies of both phases have been
presented in Fig. 4, and both the NNPs and ADP provide good
predictions, with the ADP results also previously reported
[25]. An analysis of the finite-T Gibbs free energy starts with
the underlying equations of state of both phases. We therefore
fit the T = 0 K energies to the Vinet equation of state and
obtain the zero-temperature bulk moduli K and derivatives of
the bulk moduli with respect to pressure K ′ for θ and θ ′. The K
values agrees well with the ones derived independently from
the elastic constants. As shown in Table II, the ADP potential
predicts a large negative value for K ′ of the θ phase, which
has critical implications for phase stability (see below). The
K ′ values predicted by NNP11 differ from the DFT references
but are positive for both phases and in qualitative agreement
with DFT.

To obtain the full temperature dependence of the Gibbs
free energy including all anharmonic contributions for both
the θ ′ and θ phases, we follow the strategy developed in

TABLE II. Derivative of the isothermal bulk modulus K ′ at T =
0 K for the θ an θ ′ phases comparing ADP, DFT, and our NNP11
potential.

Phase ADP (this work) DFT Neural network

Theta (θ ) −4.2 4.55 2.29
Theta prime (θ ′) 2.9 4.58 1.03
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FIG. 10. Gibbs free energy versus temperature for the θ and θ ′

phases of Al-Cu as predicted using NNP11 and the ADP. The ADP
predicts an instability for the θ phase at ≈150 K while NNP11
predicts no instabilities and a phase transition at just below 600 K.
Note that for plotting purposes, a constant energy has been added to
the NNP11 Gibbs free energies.

Refs. [54–56]. We first compute the harmonic vibrational
Helmholtz free energy,

F vib(V, T ) = 1

N

3N∑
i

[
h̄ωi

2
+ kBT ln[1 − e−β h̄ωi ]

]
, (16)

at seven atomic volumes V over the range needed for the
temperatures considered. Here N is the number of atoms,
kB Boltzmann constant, and β = (kBT )−1. We investigate
supercells of up to N = 768 (for θ ) and N = 648 (for θ ′)
and obtain the 3N eigenvectors ki and eigenfrequencies
ωi by direct diagonalization of the force constant matrix.
The quasiharmonic free energy surface F (V, T ) = E (V ) +
Fvib(V, T ) is minimized with respect to the volume to define
the zero-pressure volume at each temperature and obtain the
corresponding zero-pressure quasiharmonic Gibbs free en-
ergy. Finally, we perform thermodynamic integration [55,57]
from the (quasi)harmonic reference to the full Gibbs free
energy surface including anharmonic contributions. Conver-
gence tests show that supercells containing 96 and 81 atoms
are sufficient to reach an accuracy in the phase transition
temperature to within 10 K.

Figure 10 shows the Gibbs free energy versus temperature
of both phases, as predicted for both NNP11 and the ADP. No-
tably, the ADP θ phase becomes unstable above 150K so that
no transition from θ ′ to θ can be obtained. A previous study of
the θ phase using the ADP in a quasiharmonic analysis with
linear expansion of the Gibbs free energy versus volume [25]
suggested a stable θ phase, which is now seen to be incorrect.
In contrast, NNP11 shows a smooth variation in the Gibbs free
energies for both phases, with the phase transition predicted to
be just below 600 K. Across the 40 different NNPs, we obtain
a transition temperature of 596 K with a standard deviation
of 5 K, showing high consistency across all NNPs. As an
aside, the average quasiharmonic transition temperature is
31 K lower at 565 K. Very early experimental data for this
transition reported a transition temperature of 463 K [58].

The fact that the NNPs predict the transition at a tempera-
ture in reasonable agreement with experiment is very positive,
especially recalling that the NNPs were only trained on the
T = 0 structures and various Al-Cu structures with random
imposed displacement. An error in the relative free energy
of just a few meV would shift the predicted transition tem-
perature by 100 K, and the overall training of the NNPs is
only accurate to within this energy range. This analysis thus
provides further confidence in the transferability of the NNPs
developed here.

D. Solid-to-liquid transition temperature

We have investigated the solid-to-liquid transition temper-
ature of NNP11 for pure Al and for a near-eutectic Al-18%Cu
solid solution using molecular dynamics simulations using
LAMMPS. We follow the solid-liquid coexistence methodol-
ogy as follows. One half of the atoms in a periodic simulation
cell are first equilibrated at a temperature well above the
melting point and the other half equilibrated below the melt-
ing point, while maintaining zero pressure on the entire cell.
The equilibration time is 10 ps with a time step of one fs.
The entire system is then evolved further within the Isoen-
thalpicisobaric ensemble (NPH) ensemble at zero pressure for
another 50 ps. The solid-liquid coexistence temperature (melt-
ing point) is found as the temperature at which the interface
position is stable during the latter portion of the simulation.

Figures 11 illustrates the solid-liquid coexistence geome-
tries at different average system temperatures for pure Al.
At T = 800 K the liquid region is shrinking and the solid
growing, while at T = 850 K the solid region is shrinking.
The interface was stable at 825 K for 10 ps, with a slight pref-
erence for the liquid region. Therefore, the estimated melting
temperature of pure aluminum for NNP11 is Tm = 825 K
approximately 108 K lower than the experimental melting
point (933 K). A similar study using potential NNP10 gave
a similar result of Tm840 K.

Figure 12 shows results for a similar study at the near-
eutectic composition Al-18%Cu. The eutectic point is an
equilibrium between the liquid and two crystalline phases (a
dilute solid solution and an intermetallic). We examine the
equilibrium between the liquid phase and the crystalline solid
solution at the same composition; this temperature should be
below the eutectic point. Simulations with NNP11 show that
the liquid phase is stable down to 600 K, with a transition to
the crystalline solid-solution structure at an estimated temper-
ature of T = 560 K. This transition temperature is lower than
the experimental eutectic point of 823 K, as expected. The
main feature here is thus that the Al-18%Cu liquid is stable
at much lower temperatures than pure Al, as seen experimen-
tally. A similar study repeated using potential NNP10 gave a
similar result of 600 K.

E. Solute clusters and kinetic Monte Carlo

In early-stage precipitation, preprecipitates are nucleating
by formation of small multiatom clusters. An understand-
ing of the nucleation and early-stage growth thus requires
that a potential properly represent not only many possible
precipitate phases and precipitate-matrix interfaces but also
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FIG. 11. Solid-liquid coexistence in pure Al at different temperatures simulated using the NNP11 potential. The blue lines indicate the
solid-liquid interface.

possible clusters that cannot be classified as precipitates. The
pair interactions have already been discussed, and so here we
focus on several three- and four-atom clusters of Cu in Al
that have recently been studied by Gorbatov et al. [59] in
their development of a cluster expansion method. The specific
clusters are illustrated in Table III and we use the notation of
Gorbatov et al. Among these clusters, we note that the 111 and
111111 (compact triangle and tetrahedron of nearest-neighbor
Cu atoms, respectively) are not compatible with the formation
of GP-I and GP-II zones on the (100) planes that occur in
real Al-Cu while the 112, 111112, and 111122 clusters are
consistent with GP-I and GP-II zones.

We compute the cluster formation energy 	E cluster
f ,(N−X,X ) as

the energy of the embedded cluster relative to the energy of
Cu in solid solution,

	E cluster
f ,(N−X,X ) = E cluster

N−X,X −
∑

i

E ref
i . (17)

The DFT values for all the clusters as computed in simulation
cells of 256 atoms are shown in Table III along with the NNP
and ADP values. The DFT predicts that clusters favoring the

(100) plane are energetically preferable as compared to the
other clusters and with the 111111 tetrahedron cluster having
positive formation energy. NNP11 is in reasonable agreement
with DFT for most of the clusters but notably incorrectly
predicts a strongly negative formation energy for the 111111
cluster and also overpredicts the stability of the 111 cluster.
Shown for comparison are the results from NNP10 which is
in better agreement with DFT with respect to the relative sta-
bility of the clusters. Also shown are the results from NNP13,
which performs better for small three- and four-atom clusters
but deviates at larger sizes. Across the mean and standard
deviation of the 40 NNPs, the deviations seen for NNP11
are also not evident. The ADP potential shows gross errors,
predicting all clusters to be very energetically favorable and
predicting the relative stability of the three-atom clusters in-
correctly (as does NNP11 but with a much smaller difference).
Application of ADP to the study of early-stage clustering is
thus expected to be very inaccurate while the performance of
the NNPs may vary. We will investigate this next.

To examine the early-stage clustering under realistic con-
ditions of time and temperature, we perform off-lattice KMC

FIG. 12. Solid-liquid solution coexistence in Al-18%Cu at different temperatures simulated using the NNP11 potential. The cyan lines
indicate the solid-liquid interface.
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TABLE III. Cu cluster energies for DFT, ADP, and NNP. Clusters are described using the length of edges of the cluster, e.g., 111 represents
three edges that are all nearest neighbors. Note that there are three edges for a three-atom cluster but six edges for a four-atom cluster.

DFT ADP NNP11 NNP10 NNP13 NNP-Avg/SD Figure

E 3Cu
111 (eV) −0.073 −0.718 −0.112 −0.096 −0.081 −0.060/0.037

E 3Cu
112 (eV) −0.112 −0.595 −0.097 −0.127 −0.110 −0.085/0.025

E 4Cu
111111 (eV) 0.039 −0.612 −0.081 −0.003 −0.016 0.071/0.086

E 4Cu
111112 (eV) −0.126 −1.071 −0.184 −0.183 −0.185 −0.093/0.066

E 4Cu
111122 (eV) −0.268 −1.275 −0.226 −0.312 −0.303 −0.205/0.055

E 10Cu
Unrelaxed (eV) 1.62 5.141 1.589 2.254 0.967 2.275/0.618

E 10Cu
relaxed (eV) – −0.606 −0.043 0.961 −0.512 0.700/0.589

simulations of the evolution of an Al-(4-5)at% Cu alloy
starting from a random solid solution state. For this demon-
stration, we use the bulk vacancy migration barrier EMig

Al in
Al (computed from DFT) as the migration barrier for all
vacancy-mediated transitions and compute the enthalpy bar-
rier between the initial state i and final state f using a simple
chemical-kinetics model as

EMig
i− f = EMig

Al + (E f − Ei )/2, (18)

where E f and Ei are the fully relaxed final and initial state
energies of the entire system. Table IV shows the migration
barriers for the three main transitions in a dilute alloy: the
Al-V exchange in bulk, the Al-V exchange in a triplet with
Cu neighbor, and the Cu-V exchange, as computed via DFT
[60], ADP, NNP11, and NNP10, which will be discussed

further below. All three migration barriers are well captured
by both NNPs but the approximation above will use only the
bulk vacancy migration barrier for all transitions, including
those in and around small clusters the form during the KMC.
Thus, the KMC will satisfy detailed balance and capture the
correct thermodynamics but not represent the true timescale
of evolution [60] of the system. We use a 1000-atom supercell
containing one vacancy and execute simulations at 300 K
with 4at% Cu and at 696 K with 5at% Cu using both NNP11
and NNP10, the latter providing a better representation of the
energetics of the three- and four-atom Cu clusters shown in
Table III.

Figure 13 shows KMC simulations using NNP11 and
NNP10 with Al-4at% Cu at 300 K after 5 × 105 KMC steps.
Both systems ultimately form Cu GP-I precipitates consistent

TABLE IV. Vacancy migration barriers with a single Cu atom in the Al matrix.

Migration energy (eV)

Jump type DFTa ADP NNP11 NNP10 NNP13 NNP-Avg/SD

Bulk Al-V 0.58 0.63 0.58 0.58 0.60 0.58/0.01

Triplet Al-V 0.38 0.46 0.41 0.42 0.43 0.42/0.02

Cu-V 0.57 0.76 0.43 0.52 0.42 0.47/0.04

aThe reported DFT results were computed by Mantina et al. [60].
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FIG. 13. Energy vs. simulation time and the final geometry showing Cu GP1 precipitate formation. The simulations were carried out with
NNP10 and NNP11 at 300 K using a 1000-atom supercell containing 40 Cu atoms for 5 × 106 KMC steps.

with real alloys under similar conditions. NNP11 requires
a much longer time, nearly 1 s, before GP-I formation as
compared to NNP10 (less than 0.1 s), which may reflect
the different competing energetics of the various three- and
four-atom clusters in NNP11 as compared to NNP10. The
NNP10 structure also has a much lower energy, indicating
a more-well-formed precipitation state, relative to NNP11,
again indicating that the GP-I formation with NNP11 may
compete energetically with some other structures at the early
stages of formation. Starting the KMC simulation from dif-
ferent initial random geometries and/or other NNPs leads to
the formation of GP-I within similar times and energy levels.
The NNPs thus consistently capture the behavior expected in
real materials. Gorbatov et al. [59] and Miyoshi et al. [61]
have recently presented KMC studies of the same problem,
showing similar formation of the GP-I zones, and so our
results are not unique. However, these potentials used cluster
expansion methods that, while suitable for KMC, cannot be
used for any other studies beyond Al-Cu thermodynamics
such as plasticity and fracture studies. The NNPs show the
expected precipitation behavior while also being valid for a
wide range of applications.

KMC simulations at higher temperature (696 K) [and
slightly higher Cu concentration (5at%)] reveal pitfalls of
some of the NNPs, however, as can be seen in Fig 14. For
the case of NNP13, a dense block of FCC Cu is formed with
a very low energy 14 compared to the initial solid solution.
This spurious behavior arises because NNP13 has a negative
formation energy for the three-atom 111 and four-atom tetra-
hedral 111111 clusters (Table III) and even larger formation
energies for larger dense clusters (10 atom cluster shown
in Table III). The formation energy becomes progressively
lower as more Cu atoms cluster, ultimately favoring growth

of the dense FCC Cu. Neither NNP11 nor NNP10 exhibit this
erroneous behavior, and the KMC simulations at 696 K show
no precipitation and only sporadic few-atom clusters of Cu;
this is consistent with expectations for real Al-Cu under these
conditions. Note, however, that even NNP13 correctly predicts
Cu GP-I precipitation at room temperature.

The above findings reinforce that careful validation of any
potential (NNP or otherwise) must be done within the range
of structures for which the NNP will be used. This result also
highlights the use of multiple NNPs for the same problem,
especially extracting new structures from a simulation using
NNP-X and evaluating their energies using other NNPs as

FIG. 14. Energy vs. simulation time for the KMC simulations
carried out with NNP10, NNP11, and NNP13 at 696 K using a
1000-atom supercell containing 50 Cu atoms. The NNP11 trajectory
was stopped at 3 × 106 steps as it closely follows NNP10, while the
NNP10 and NNP13 trajectories were continued for 5 × 106 steps.
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some measure of reliability of the NNPs for these new struc-
tures. Finally, having a family of NNPs can enable mixing and
matching of the NNPs in a set of related studies. For instance,
NNP10 can be used for precipitate evolution in KMC while
NNP11 (or some other choice) is then subsequently employed
to study dislocations moving through the microstructure that
was established using NNP10. The close agreement among
the family of NNPs for many properties makes such a mix-
and-match strategy feasible in a manner that is not possible
using traditional potentials.

F. Dislocations and fracture in aluminum

In any applications of potentials to plasticity and fracture, it
is essential to demonstrate that the potential reproduces a rea-
sonable structure for the relevant dislocation(s) and exhibits
physically expected behavior at sharp crack tips. There are
no precise first-principles results for comparisons, but DFT
results using other settings and novel simulations methods
provide a approximate references for determining whether the
ML potential is reasonable and physical. An ML potential
can also be compared to other traditional potentials where the
behavior has previously been found reasonable.

With that background, we examined the predictions of
the NNP11 potential for the structure and energetics of the
a〈110〉/2 edge and screw dislocations in pure Al. The method-
ology to create the dislocation is standard and described in
Ref. [62]. An edge or screw dislocation is placed at the center
of a cylindrical cell of radius 143.1 (Å). All atoms in the cell
are deformed according to the anisotropic displacement field
of a Volterra dislocation computed using the Stroh formalism
[63]. Atoms within 22 Å of the outer boundary are then
fixed at these initial positions, and all interior atoms relaxed
to a minimum energy condition. The core structure for both
edge and screw dislocations for NNP11 is shown in Fig. 15
along with the DFT-computed structure from Ref. [64]. The
NNP11 dislocation dissociates into two partial dislocations, as
expected. The dissociation distance between the two partials
differs slightly from the DFT reference, recalling that the
NNP11 has a higher C44 than usually obtained in DFT and that
this DFT structure is obtained by very different methodology
and DFT parameters.

As a quantitative measure, we compute the core energy
�core energy of the dislocation as defined at distance rc =

FIG. 15. Atomistic structures of the edge and screw a〈110〉/2
dislocations in pure Al as predicted by DFT and NNP11. (a) Edge
dislocation: DFT shows the differential displacement map and the
estimated partial dislocation spacing; NNP shows atoms identified
by common neighbor analysis (green, FCC; red, HCP; white, other)
where the HCP atoms lie in the stacking fault between the two par-
tials and the partial core regions appear as white, with the estimated
partial dislocation spacing shown. (b) Screw dislocation: as in (a) but
where white and blue atoms identify the screw partial cores. DFT
image adapted from [64] with permission of the APS

b using the analysis of Ref. [62]. We compute E core =
1.144 eV/nm for the edge dislocation and 1.055 eV/nm for
the screw dislocation, respectively, which compare well to the
values from EAM potentials of Ercolessi-Adams [65] (edge:
0.463 eV/nm; screw: 0.810 eV/nm) and Mishin [66] (edge:
1.198 eV/nm; screw 1.262 eV/nm) [62]. The EAM potentials
have been widely used for modeling of dislocations in Al, and
so the values obtained for the NNP, along with the accurate
structures, indicate the suitability of the NNP for studying
dislocations.

Our broad experience with both ML and traditional poten-
tials has indicated that they can struggle to correctly capture
behavior at the tip of a sharp crack. So here we examine the
most basic fracture test for an FCC metals, the emission of a
dislocation from a sharp crack tip. Theoretical models predict
that the critical stress intensity factor KIe for emission of the
first partial dislocation from the tip of a crack with crack plane
(111) and crack line direction (110) is

KIe =
{√

γ USFo(θ slip, φBurgers )/F12(θ ) γ 111 � 3.45γ USF√
(0.5γ USF + 0.145γ 111)o(θ slip, φBurgers )/F12(θ ) γ 111 > 3.45γ USF , (19)

where γ USF is the unstable stacking fault energy, γ 111 is the
surface energy of the emission plane, o(θ slip, φBurgers ) is an
anisotropic elasticity term dependent on the inclination of
the slip plane and Burgers vector, and F12(θ slip) provides the
resolved slip on the slip plane oriented at an angle with respect
to the crack plane (see Andric and Curtin [67]). Using the
DFT-computed values of the various material quantities, the
critical value is predicted to be KIe = 0.341 MPa

√
m. A mul-

tiscale DFT simulation using the same crack orientation but

different DFT parameters [68] was shown to emit a disloca-
tion at KIe = 0.368 (MPa

√
m). We note further that emission

occurs rather than cleavage because the stress intensity for
cleavage, related to the surface energy, is larger than KIe.
This background provides a basis for assessing the NNPs and
demonstrates the range of values that can emerge from DFT
assessments.

We simulate the crack tip behavior following the K-test
methodology carefully described by Andric and Curtin [67].
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FIG. 16. Observed dislocation emissions: (a) leading and (b) leading and twin partial. Green atoms are those in FCC configuration, red are
for HCP (i.e., stacking faults), and white atoms are neither HCP nor FCC (e.g., surfaces, crack tips).

We use a simulation cell of size 200 × 200 × 10 Å3, insert a
crack terminating along the z direction in the center of the cell,
hold boundary atoms fixed at the anistropic elastic predictions
for the desired applied stress intensity factor, and allow all
interior atoms to relax using the conjugate-gradient method
followed by steepest descent with force tolerance 1x10 − 5
ev/A. Successive increments in load level are applied until
any notable event occurs at the crack tip. All 40 NNPs show
partial dislocation emission and with no gross artifacts at the
crack tip; a typical example is shown in Figure 16, which is
qualitatively similar to results found with many traditional
potentials. The emission event occurs at a critical load of
KIe = 0.354 + / − 0.007 (MPa

√
m) across all 40 NNPs, in

very good agreement with the DFT-predicted theoretical value
and consistent with the value found in the direct multiscale
DFT simulation. Some variation does arise among the NNPs:
Thirteen NNPs showed emission of only the leading partial
[Fig. 16(a)] while 27 NNPs showed the emission of a second
twinning partial just behind the crack tip [Fig. 16(b)] follow-
ing the leading partial with no increase in the applied load.
The NNP simulations are thus consistent with theory and other
simulations showing that this second partial emission event
is the next expected event. The load for this second event
depends on several additional factors including the unstable
twinning fault energy and results from EAM Al potentials
show that the load is only slightly higher than that required
for the first event. The NNP behavior is thus within the scope
of reasonable behavior. Overall, the NNPs for pure Al provide
a very good representation of the crack tip and the first par-
tial emission process as compared to DFT, theory, and other
simulations.

V. CONCLUSION

We have developed a family of Behler-Parinello–type
NNPs for the Al-Cu system based on a comprehensive met-
allurgically relevant training dataset based on first-principles

DFT. We have demonstrated the ability of these potentials
to predict many different properties of importance in metal-
lurgy, including the many possible phases, solute properties,
shearing of precipitates, early stage clustering during anneal-
ing, dislocation structures, and crack tip performance. We
emphasize that it is essential to study the performance of
any potential across such a broad spectrum of structures if
the potential is to be used for realistic studies of atomistic
phenomena. Our examination of the NNPs has included prop-
erties that are directly derived from the training dataset and
hence expected to be well captured by the non-linear regres-
sion of the NN method. But, moreover, we investigated a
number of properties and structures that were intentionally not
in the training dataset. The methodology is easily extendable
to the inclusion of more training data when the current family
of NNPs is found to be inaccurate for some problems, as will
undoubtedly be the case in the future. To facilitate such future
advances, our entire DFT training set is available along with
the DFT provenance necessary to expand the database using
the same DFT parameters.

The NNPs developed here have been extensively compared
to the newest and widely used traditional interatomic potential
for Al-Cu, the angularly dependent potential from Apostol
and Mishin. While the ADP is based on some underlying
physical principles, it has far fewer fitting parameters and
hence performs comparably to the NNPs only for those few
properties to which the ADP is fit. Across the much broader
range of properties that are necessary for realistic metallurgi-
cal studies, the NNPs here are demonstrably far better, and the
ADP gives unphysical behavior for some important situations.
We reiterate that our purpose is not to denigrate the ADP in
particular but rather to show that one of the best traditional
alloy potentials has many deficiencies and that a machine
learning approach overcomes those deficiencies. The overar-
ching philosophical concern about the use of ML potentials
is that they contain no physics and so can possibly fail very
badly in situations where a traditional potential might also
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fail quantitatively but not qualitatively. With our comparison
of the NNP to ADP, this concern can be partially relieved.
Across a much wider spectrum of properties that must be
well represented for realistic atomic-scale studies in alloys,
the NNPs perform far better than the ADP and so it is, in
fact, use of the ADP that will more likely introduce hidden
errors across a wide scope of possible applications, leading to
incorrect predictions either qualitatively or quantitatively. A
compromise strategy, emerging in the literature, is to combine
a traditional potential such as the ADP with an ML potential
that is trained on the difference between the traditional poten-
tial and a DFT training set. Such a strategy can be pursued in
the future for Al-Cu using our openly available DFT training
set.

The family of NNPs is not perfect. Most notably, C44

of Al has substantial errors even with careful inclusion of
relevant structures. Across our family of NNPs, and adding
structures intended to bias the optimization toward a better
representation of C44, we could not achieve an error below
10%. Similarly, we could not reduce the errors on solute
pair energies below 20 meV, again despite the careful in-
clusion of structures in the training set. These limitations
might be resolved through the use of other ML methods, other
optimization methods based on energy differences between

structures rather than absolute energies, a larger set of descrip-
tors for the atomic environments, and so on, and all of these
can also be pursued in the future using our openly available
DFT training set.

In summary, we have demonstrated that a machine learning
interatomic potential can be created that accurately captures
the exceptionally rich and diverse phase space of a binary al-
loy, here Al-Cu, with very good and physical performance for
material properties and structural response that are necessary
for metallurgical studies. This demonstration points to contin-
ued development of ML-based interatomic potentials based
on an extensive database of carefully chosen metallurgically
relevant structures as a viable path toward the quantitative
study of metal alloys at the atomic scale.
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