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Machine learning for metallurgy III: A neural network potential for Al-Mg-Si
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High-strength metal alloys achieve their performance via careful control of the nucleation, growth, and kinetics
of precipitation. Alloy mechanical properties are then controlled by atomic scale phenomena such as shearing
of the precipitates by dislocations. Atomistic modeling to understand the operative mechanisms requires length
and timescales far larger than those accessible by first-principles methods. Here, a family of Behler-Parinello
neural network potentials (NNPs) for the Al-Mg-Si system is developed to enable quantitative studies of Al-6xxx
alloys. The NNP is trained on metallurgically important quantities computed by first-principles density function
theory (DFT) leading to high-fidelity predictions of intermetallic compounds, elastic constants, dilute solid-
solution energetics, precipitate/matrix interfaces, Al stacking fault energies, antisite defect energies, and other
quantities. The generalized stacking fault energy surfaces for the three prevalent 8" precipitate compositions in
peak-aged Al-6xxx are then computed with the NNP, and are validated by DFT computations at key points. A
preliminary examination of early stage clustering kinetics and energetics in Al-6xxx is then made, showing the
formation of low-energy Mg-Si structures and the trapping of vacancies in these clusters. The NNP thus shows
significant transferability across structures, making it a powerful approach for chemically accurate simulations

of metallurgical phenomena in Al-Mg-Si alloys.
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I. INTRODUCTION

The plastic flow, fracture toughness, creep, fatigue, radi-
ation resistance, and other mechanical properties of metals
are related to the behavior of atomistic defects (dislocations,
grain boundaries, interfaces, precipitates, crack tips, vacan-
cies) and their motion and interactions. Understanding the
detailed mechanisms, and ultimately designing alloys to con-
trol these mechanisms and achieve enhanced performance,
is a major goal in metallurgy. Pursuit of that goal is greatly
aided by atomic-scale simulations but the relevant length
and timescales of the mechanisms and phenomena are of-
ten far too large to study by direct first-principles methods
such as density-functional theory (DFT). Useful and pre-
dictive atomic simulations require chemically accurate but
semiempirical classical interatomic potentials. The traditional
approaches such as the embedded-atom method EAM or
modified embedded-atom method MEAM can perform well
against selected experimental or first-principles benchmarks
but are often very inaccurate for other critical properties.
Potentials for alloys generally have even more limited capa-
bilities and accuracy due to restrictive assumptions of these
frameworks. New approaches are thus essential to harness the
power of atomistic computations for driving understanding
and development of technologically valuable metal alloys.

Such a new approach is machine learning (ML) of the
potential energy surface (PES) [1-9]. The construction of an
ML potential involves (i) developing a database of energies
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and forces of atomic structures, (ii) selecting a set of structural
descriptors for the local atomic environments of the struc-
tures in the database [10—-13], and (iii) applying a regression
algorithm (e.g., neural network, kernel ridge regression) to
optimize parameters in the ML method so as to best match
the data set. The number of descriptors and parameters can be
increased at will, and so an ML approach is parameter rich and
can fit the configurations of the PES data set very well. Due
the interpolative nature, ML potentials can fail to extrapolate
accurately to regions of the PES outside the training database
(training set). The atomic descriptors, the ML framework, and
the scope of the training set all affect the resulting interatomic
potential. Such factors also enter for traditional potentials,
the difference being that the functional forms for traditional
potentials are based on some underlying physics and have
fewer parameters.

For broad applications of an ML interatomic potential
(MLIP), selection of the training data set is essential [14—16].
Ideally, an exhaustive data set of relevant atomic environ-
ments with their energies and forces from electronic structure
calculations is needed to improve transferability to new en-
vironments. Such relevant atomic environments are those
needed to determine key physical properties of the material
(see Fe [17] and W [9] within the GAP framework, for in-
stance). Other approaches use more-automated methods of the
selection of structures, such as random perturbations of bulk
crystalline structures [18,19], and on-the-fly learning where
an MLIP is used to evolve a system in time. The configura-
tions for which the MLIP is deemed inaccurate are computed
via DFT and used to update the MLIP [20-24]. These ap-
proaches limit costly DFT calculations to critical cases, but
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only within the framework of the configuration space sampled
by molecular dynamics starting from a specified initial state.
The physically informed neural-network (PINN) method is
a hybrid approach that combines an analytical bond order
potential (BOP) with a neural network that adjusts the BOP
parametrization as a function of the specific environment
[4]. The PINN method thus retains some expected physical
bounds when extrapolated to new atomic environments.

For realistic metallurgical applications of MLIPs, it is es-
sential to develop a database that explores metallurgically
relevant structures associated with the many noncrystalline
defects that are crucial to mechanical performance. This re-
quires going well beyond the standard configurations such
as the equilibrium structure, its elastic and vibrational re-
sponse, single vacancies, a few high-symmetry surfaces,
and occasionally liquid-state information. These structures
are absolutely essential but are very far from sufficient
for applications to realistic metallurgical problems. Several
MLIPs have thus extended beyond basic properties. The GAP
potentials for Fe [17] and W [9] included baseline data
needed for describing dislocations structures and motion [25].
Kobayashi et al. [3] developed a neural network potential
(NNP) for ternary Al-Mg-Si that included a wide range of
intermetallics, solute-solute interactions, and interfaces, and
showed good predictions for edge and screw dislocation struc-
tures, solute/dislocation interactions, and in situ precipitates;
further development was shown by Imbalzano er al. [26].
Here, we will expand on the database used by Kobayashi
et al. and employ an open-source code that will enable broad
use of the NNPs developed here. Other methods are evolving
toward modeling of realistic mechanical performance. The
PINN method [4] showed application to an fcc edge dislo-
cation, the active learning algorithm developed by Hodapp
and Shapeev [6] examined the Peierls-type motion of a screw
dislocation in W, and Lopanitsyna et al. applied machine
learning to compute accurate finite temperature properties of
Ni [27]. Thus, progress is being made toward powerful MLIPs
for metallurgy.

Here, we develop a new Al-Mg-Si neural network po-
tential (NNP) for applications to Al-6xxx alloys, which are
widely used in the automotive industry. The Behler-Parinello
framework is used along with the open-source code N2p2
[10], with an extensive DFT training set of structures, ener-
gies, and forces. Relative to earlier work [3], in this work
the training data is more extensive, the range of symmetry
functions/descriptors is broader, the training and execution
are accomplished within an open-source code that couples
with the open-source molecular dynamics code LAMMMPS,
and the resulting potential is used to provide new insights
into several key issues in Al-6xxx alloys. Specifically, those
preliminary applications to metallurgical problems are the
shearing energies of B” precipitates and the natural aging of
Al-Mg-Si at room temperature, both of which are postval-
idated via DFT results to further demonstrate the excellent
transferability of the AI-Mg-Si NNP.

The remainder of this paper is structured as follows. In
Sec. II, we summarize the methodology and details of the po-
tential creation. In Sec. III we assess the overall NNP accuracy
against many properties associated with the training set data.
In Sec. IV, we present a study of the relevant GSFE shearing

surfaces for three 8” precipitates, which is important for peak-
aged alloy strength. In Sec. V, we present preliminary results
for natural aging in Al-6xxx alloys, which is important for
alloy processing. Section VI contains concluding remarks.

II. METHODOLOGY

We first summarize the first-principles DFT methodology,
the Behler and Parinello neural-network potential framework
[10], and the training data sets used here.

A. DFT methodology and database of structures

The training of the MLIP is based on energies and
forces calculated using first-principles density-functional the-
ory (DFT) as implemented in QUANTUM ESPRESSO [28] (QE).
The GGA-PBE [29] exchange-correlation functional is used
with a cutoff energy of 544 eV (40 Ry) and a k-point spacing
80/A using the Monkhorst-Pack grid [30]. The Methfessel-
Paxton smearing scheme with a smearing of 0.6 eV is used
along with the solid-state pseudopotential (SSSP) library [31].
The AiiDA framework is used for systematic calculations of
all structures in DFT, ensuring consistent convergence settings
and facilitating data generation and management [32,33]. De-
tails and references to the AiiDA scripts and work flows can
be found in Ref. [7].

The DFT methodology is applied to a broad range of
structures relevant for the modeling of precipitation, plastic-
ity, and fracture in Al-Mg-Si alloys. Our main focus is on
the dilute limit in the Al-rich region of the phase diagram,
corresponding to the Al-6xxx alloys. Specifically, we incorpo-
rate selected structures from the Al-Mg-Si database of 10000
structures generated by Kobayashi et al. [3]. This database
contains, among other structures,

(1) many AI-Mg-Si binary and ternary intermetallic
phases, including three 8” phases relevant at peak aging;

(2) configurations for pure Al related to elasticity, vacan-
cies, stacking fault energies;

(3) random fcc cells of Al-Mg-Si-vacancy over a range of
solute concentrations;

(4) cells with random displacements of atoms away from
the ideal fcc lattice sites.

All of the energies and forces for these structures have been
recomputed using the DFT method here to be consistent with
all additional data. We use a furthest-point-sampling scheme
introduced by Imbalzano et al. [26] to select a subset of 4998
structures that show the largest variance among the 10000
structures.

We also include geometries generated by Giofre et al. [34]
that include

(1) the most stable B’ precipitate structures found in Al-
Mg-Si alloys;

(2) two-dimensional (2D) and 3D precipitates structures
embedded in an Al matrix, with and without elastic strain
(small cell deformations);

(3) interface structures with different orientations between
B” precipitates and the Al matrix

plus a further 153 structures relevant to the calculation of
various elastic constants and beyond the linear elastic limit
using strains of up to 10%. Finally, we added structures with
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large volumetric tension or compression for Al, Mg, Si, f/,
and B”, specifically six structures with :_o from 0.8-1.1 for
each composition. These structures are intended to increase
the robustness of the MLIP to extreme conditions.

With an interest in modeling the evolution of precipitate
formation, it is also necessary to have information on both
antisite defect energies and vacancy formation energies in-
side the various precipitates. We thus study the formation
energies of all possible antisites for the three metastable g”
phases. To further enhance the suitability for following precip-
itate evolution, we examined structures emerging from kinetic
Monte Carlo simulations of early stage Si-Mg clustering in Al.
Structures deemed most different from the training database
were selected and computed via DFT, but found to be well
predicted with no need to further refine the NNP. Thus, the
initial comprehensive DFT data set was found sufficient for
accurate study of precipitate evolution, and further validation
is provided below.

B. Neural network methodology

Here we summarize the essential formulation of the neural-
network methodology introduced by Behler and Parrinello
[2,10]. The total energy ES™“ of a particular structure is
first represented as a sum over individual atomic energies
Eialom’

[ structure _ Z Eialom. (1)
i

Each local atomic energy EX°™ is then calculated using a
nested hierarchical function of weighted layers across a neu-
ral network. We use a neural-network architecture with two
hidden layers and 24 nodes per layer. We have tested deeper
networks with three layers that did not lead to improvements
in the final errors with respect to DFT. The atomic energy is
thus defined as

24 24
atom 3 § : 2,3 2] 1,2 § : 1,2
Ei - f3{b1 + ak,l . fk [bk + aj’k
k=1 j=1

64
(a6 @
i=1

where al'l is the weight of node z on layer ¢ to node w on
layer p, similarly 7 is the bias of node z on layer . f, is an
activation function; here we use the SOFTPLUS function In(1 +
e¥) for f; with f, and f3 the identity functions. The G; are
the descriptors for characterizing a local atomic environment,
referred to as symmetry functions by Behler and Parinello.

We use two families of symmetry functions, a family of
two-body radial symmetry functions

Nulom
Gl = 37 iR RY Ry 3)

j=1
and a family of three-body angular symmetry functions
G?ngular —9l=¢ Z Z [(1+ A - cos Qijk)‘: . o NREARYHR)
A kL
feRip) - foR) - foRp). @)

Here n, ¢, and A are predefined so-called hyperparameters
for a given symmetry function, R;j is the distance between
atoms i and j, and f.(r) = tanh®(1 — r/r,) is a cutoff function
where r,. is a cutoff parameter for each symmetry function.
A comprehensive summary of these descriptors can be found
in Refs. [10-13]. The hyperparameters can be found in the
file input.nn provided on the materials cloud [53]. Following
Imbalzano et al. [26], we utilize 64 symmetry functions per
element (192 symmetry functions overall), which we find
to be a good balance between accuracy and computational
cost. The symmetry functions used here are also provided in
Appendix A 3.

The above methodology is executed within the N2P2 code
[35,36] to determine the weights of the neural network. The
N2P2 code randomly chooses 90% of the database structures
for training of the weights and the remaining 10% of the
structures for testing. We utilize the fading memory Kalman
filter to update the NNP weights during training.

We assess the root mean square error (RMSE) for struc-
tures in the testing and training sets for both energies and
forces separately,

1
n

RMSE(E) = |:% Z (E[DFT _ E[NNP)Z] 5)

i

(S

n

3N;
RMSE(F) = [522%@“—@”)2} . ®
i !

where EP*T and EMYP are the respective DFT and NNP en-
ergies for a particular structure i, £ and K are the
respective DFT or NNP forces on atom j of structure i, n is
the total number of structures, and &V; the number of atoms of
a particular structure with index i. Note that for each structure
i there is one energy, E;, but 3N; forces, one in every spatial
direction for every atom.

The objective (loss) function I'!°* that is minimized during
the neural network optimization of the weights is given by

Floss — 1 i |:(EZNNP _ E,DFT)Z
n i=1
3N;

R s R
1 j:l

where « controls the influence of forces on the loss function
and is set to 8(A2) in this work. The training was carried out
for a fixed 500 epochs, which is found, via further testing,
to be prior to the point at which the validation error begins
to increase. With the optimized weights, we then utilize the
N2P2 interface in LAMMPS [37] for computing the energies and
forces for determining the final physical properties of interest.

III. ACCURACY OF THE NNP

With the set of structures discussed in Sec. II, we created
20 different NNPs differing in the precise 90% training set
and the initial random weights and biases. Limited studies
show that variations among NNPs are due to the differences
in training set rather than initial weights and biases. The 20
NNPs are not independent potentials since most of the training
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FIG. 1. (a) Energy difference EPFT — ENNP for all test structures across all 20 NNPs as a function of the volume per atom. (b) Histogram
of the difference between NNP and DFT energies for the training and test data of NNP16. (c) As in (b) but for the difference in forces.

structures are common to all of them, but the variations in
overall error and in computed material properties is useful
as a reflection of the reliability of the NNPs obtained us-
ing these training structures. From among the 20 NNPs, we
have selected one particular final potential, labeled NNP16,
for broader applications and usage. Over all 20 NNPs, there
is an average RMSE for the energy of 2.75 meV/atom for
training and 204 meV /atom for testing, while the training and
testing RMSE for the forces are 27.1 meV/ Aand 614 meV/A,
respectively. At first glance the testing errors appear unac-
ceptably large, indicating a poor average potential quality.
However, the large testing errors are exclusively due to struc-
tures in the test set that have a very large compression of
more than 25% as shown in Fig. 1(a). Specifically, all but
two structures with an error above 100 meV/atom have a
separation of less than 1.8 A (as compared, for example, to the
equilibrium distance in aluminum of 2.86 A) and the other two
structures are at fairly large expansion (>20%). These errors
then depend on whether the high-compression structures are
in the training set or the test set. Only 4 of 20 potentials show
testing errors of larger than 160 meV/atom while 13 of 20
have quite lower RMSE of 4.46 meV /atom. As discussed in
Ref. [7], ML predictions at high compression are commonly
highlighted as a failure of NNPs. At the same time, adding
many such high-energy structures can reduce the quality of
the resulting NNP in the domains of physical interest.

Serious failures at small atomic spacing can, fortunately,
be circumvented by the ad hoc addition of a strongly re-
pulsive potential for small atomic spacings. As discussed
in Appendix A 1, we have added a cut-and-shifted repul-
sive Lennard-Jones potential to the NNP potential that is
nonzero only at small atom separations. This prevents some
problems that can be encountered when initial atomic con-
figurations are created that have very close atomic spacings,
as discussed later. The nature of the behavior at small spac-
ings, with or without the added repulsive potential, is usually
not operationally important because there are few metallur-
gical problems where such a high compression is accessed
physically. Thus, while we have elaborated on these ex-
treme limits of the NNP, the physical properties relevant for
most materials modeling are not affected, as will be shown
below.

Figures 1(b)-1(c) show the difference between NNP16
and the DFT data for the forces and energies of all struc-
tures in the training and test sets for NNP16. These results
show that the vast majority of configurations, whether in the
training or test sets, have force errors below 1 meV/A and
energy errors below 20 meV /atom, with most configurations
having errors ten times smaller or more. This level of ac-
curacy is sufficient for high accuracy in material properties
derived from these configurations using NNP16, as discussed
next.
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FIG. 2. Deviation of the average NNPs and of NNP16 from DFT
(in %) for volume and elastic constants of fcc Al. Red symbols
and error bars: mean and standard deviation across 20 NNPs; blue
symbols: NNP16.

A. Alloy properties

We now examine alloy properties that are derived from the
structures in the training/test data set. We do not examine
all relevant alloy properties; the level of agreement here for
many properties is comparable to that obtained previously by
Kobayashi et al., who used a different methodology. Results
for pure Al are also similar to those presented recently in
the development of an NNP for Al-Cu [7]. Instead, we focus
on properties relevant to precipitate evolution that were not
examined in detail previously.

Figure 2 shows the deviations of NNP16 with respect to
DFT, as a percentage, for selected properties in pure Al. In
general, deviations of less than 5% are found for most quan-
tities, with the exception of the elastic constants. The error
of 20% for Cy44 is common among MLIPs [7,38]. In general,
deviations in elastic constants can be large because the elastic
constants are the second derivatives of the energy, magnifying
small energy differences between NNP and DFT. The stacking
fault energy, important for dislocations in Al, is, in contrast,
very well predicted, as are the unstable stacking fault energy
and vicinal surface energies that relate to fracture behavior at
sharp crack tips [7].

The solid solution energies of individual solutes are impor-
tant as the reference state for precipitation. The solid solution
energy for a solute of type X is defined as

Eg® = Eny, ,x, — (M — D)Ep, /M, ®)

where X = Si, Mg, vacancy (V) with Ea),, and Eay,_,, the to-
tal energies of supercells containing M Al atoms and (M — 1)
Al atoms and one atom of X =, respectively. The energy

}\"1;471 ., 1s computed using a 3 x 3 x 3 supercell of the cubic
fce cell (108 atoms) with the volume held fixed. The cell de-
velops a small pressure due to the misfit volume of the solute
but this contribution to the energy is less than 1 meV/atom
at this cell size. The 8" precipitate has a monoclinic structure
with a 22 atom unit cell. This is included in the DFT data
base for three different compositions MgsSis, MgsAl,Si4, and
Mg, Al3Siy that are considered experimentally accessible. The
precipitate formation energy, relative to the solid solution, for
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FIG. 3. Comparison of NNP16 and DFT results for Al solid solu-
tion energies of Si and Mg, vacancy formation energy, and precipitate
formation energies. The corresponding structures are included in the
training set.

one formula unit of 11 atoms is

> mxE, ©

X=AlSiMg

Eform __ _ prtot _
fu. — 2 Aly Mgy Siz

where E}fllx Me, Siy is the total energy of a precipitate unit cell
containing X Al atoms, Y Mg atoms, and Z Si atoms with all
atomic positions fully relaxed. The solid solution energies and
precipitate formation energies are summarized in Fig. 3. The
Mg and vacancy solid solution energies are within 4% of the
DFT value while that for Si shows a slightly larger deviation
of 9% but still a very small absolute error of 0.031 eV. The
overall agreement for precipitate formation energies is very
good, deviating by at most 4%.

The most stable precipitate in Al-Mg-Si is the g/, with
a hexagonal 28-atom unit cell containing two formula
units of composition MggSis and one vacancy per formula
unit. The DFT formation energy for the B’ precipitate is
—0.328 eV/atom, indeed below those for the 8" precipitates
of —0.261 eV to —0.222 eV. The B’ structure was included
in the original training set. The NNP prediction is also shown
in Fig. 3, and deviates from the DFT reference by less than
4%. The total energy per atom difference between 8” MgsSig
and B’ Mg,Sis is 0.086 eV /atom as computed by the NNP,
in good agreement with the value 0.079 eV /atom computed
by DFT. There is a small elastic mismatch between the 8”
precipitates and the Al matrix. Figure 4 shows the difference
between NNP and DFT computed elastic constants for the
three B” precipitates. Most of the results are within 10% of the
DFT values, which we consider quite sufficient. The precise
values of all the basic crystalline properties of the various 8"
precipitates are provided in Appendix A 2.

Precipitate evolution involves nonstoichiometric composi-
tions as the precipitates form. It is thus useful to examine
the anti-site defect formation energies in the three 8" phases.
Antisites are studied using 132-atom supercells of dimen-
sions a x 3b x 2c in terms of the precipitate primitive vectors
[34]. The total energies E| y;, s;, of the relaxed supercells
containing X Al atoms, ¥ Mg atoms, and Z Si atoms are
calculated with DFT to ensure accuracy with the primitive unit
cells at similar but not identical k-point sampling densities.
These supercells are first relaxed with the NNP to obtain the
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FIG. 4. Differences of NNP16 with respect to DFT for the elastic
constants of the most relevant precipitates. The corresponding struc-
tures are included in the training set.

equilibrium cell volume and atom positions. Antisite defects
are created by removing an atom X at position i in the super-
cell and replacing it with an atom Y, denoted as X — Y, and
relaxing with the NNP. The DFT calculations are carried out
on the NNP relaxed geometries to obtain the total energies.
The DFT cell is not relaxed so this energy is not the true anti-
site energy but nonetheless enables comparison to the NNP
having exactly the same geometry. The total energy of the
supercell is E}\"l; Mg, Si, where X/, Y’, and Z’ are the numbers
of Al, Mg, and Si atoms after the substitution.

The antisite formation energy is relative to the solid solu-
tion state, and so involves the energy of the X atom placed
into the solid solution and the ¥ atom removed from the solid
solution as

form — ot _ Etot
Alys Mgy Siyy — “Aly Mgy Siy Alx Mgy Siz

— (X' =X)E} — (Y = Y)Ey,

—(Z - 2)ES’. (10)

Figures 5(a)-5(c) shows the formation energies of (unre-
laxed) antisite defects inside the three 8" precipitates, without
indication of the precise site position i. For MgsSie, nearly
all antisite defects are positive and large (>0.5 eV). The DFT
results indicate that substitution of Mg at two of the Si sites is
very slightly negative and here the NNP prediction deviates in
predicting a positive value of 0.12 eV. These results suggest
that the precipitate evolution favors higher Mg concentration,
which would drive the nucleation of a 8’ precipitate. Both
the Al,MgsSiy and AlsMg,Siy show similar trends where
substituting Al with Mg lowers the energy, consistent with the
Mg;Sie having the lowest energy. The substitution of Al for Si
is positive and small, with the NNP predicting slightly lower
values than the DFT (~0.08 eV vs. ~0.16 eV). Different
NNPs predict similar trends across the spectrum, especially
for the most stable configurations, but none of the potentials
predict negative energies when substituting Si with Mg in the
MgsSie precipitate.
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IV. APPLICATION: GENERALIZED STACKING FAULT
ENERGIES OF p” PRECIPITATES

The mechanical properties of peak-aged Al-Mg-Si are
controlled by dislocation motion through the field of S”
precipitates formed during aging. A recent study [39] suggests
that precipitate shearing is the strength-limiting process. Thus
the yield strength depends on the energetic cost of shearing
the precipitates by dislocations impinging from the Al matrix.
Here, we first identify the relevant crystallographic planes
for shearing of in situ 8" precipitates; to our knowledge this
analysis has not been done previously. We then use NNP16
to compute the shearing energies, known as the generalized
stacking fault energy (GSFE) surface, for these surfaces. We
compare the NNP results to DFT results at individual points
corresponding to the six possible a (110)/2 dislocations in the
Al matrix.

Slip in fcc metals occurs on the close-packed {111} planes
in the close-packed %(112) directions. The precipitates are
thus sheared along planes that are the closest to the matrix slip
planes, since shearing along such planes creates the smallest
residual Burgers vectors (and hence lowest residual energy)
at the precipitate/matrix interface. We have computed the
equivalencies between the parent Al-matrix {111} planes and
%(1 12) directions and the daughter B” precipitate using the
crystallographic methodology described by Cayron [40] as
implemented in the GenOVa program [41]. Not all {111},
planes are equivalent in the 8” phase. We find that two groups
of planes in B”, the {511} and {112} as expressed in the a, b, ¢
lattice vectors for B”, are the best projections of the {111}
Al planes onto the 8" cell. The normal vectors for these two
planes are misaligned from their Al equivalents by only 0.41
and 0.37 degrees, respectively.

Calculations of the GSFE surfaces are made using the tilted
cell method as described in Ref. [42]. Input to the method
is a structure whose plane of interest (here {511} or {112})
lies perpendicular to the z axis while maintaining full 3D
periodicity of the original structure. This geometric compli-
cation makes the method more challenging than the standard
method that uses displacements of a rigid half-cell but is far
more accurate and efficient. To construct a suitable cell, we
first use the ase.build.surface method in the atomic simula-
tion environment (ASE) package [43]. This tool generates a
structure with the in-plane a; and a, vectors of the lattice
cell on the plane of interest but the a3 vector may not ensure
periodicity. To create a periodic structure, we then choose
an arbitrary atom and shift all positions so that this atom is
centered at the origin. We then choose a new a3 vector that
points from the origin atom to an arbitrary atom of the same
type, but at a higher z coordinate, and wrap all positions with
this periodicity and delete any duplicate (overlapping) atoms.
To eliminate duplicates, we look for any atoms that lie on the
same z plane as the origin atom, set a; to be the position of this
atom, wrap the positions, and delete the duplicates. The input
and output structures are verified to maintain the same crystal
structure using the spglib [44] library via an ASE wrapper. In
the tilted cell method, it is the cell periodicity that is imposed,
and the fault plane then appears at the cell boundary normal to
the fault plane. We thus select an optimal cut plane by shifting
the z component of the atoms, while holding cell vectors and

al-a2 plane fixed, to maximize the z distance of atoms on
either side of the al-a2 cut plane; i.e., we seek the most open
plane as the likely lowest-energy plane. Our selection of cut
plane was confirmed to be optimal by computing the entire
GSFE surface, in the manner further detailed below, for all
unique cut planes and confirming our selection had the lowest
energy at all points.

The GSFE is obtained by shifting the a3 vector by in-plane
vectors t to as + t while keeping all atoms fixed. While the
atoms are fixed in their absolute positions, interatomic dis-
tances above and below the cut plane will change as a function
of t due to periodicity. This can result in atoms in the imposed
initial structure that are extremely close together, causing nu-
merical instabilities for both NNPs and, occasionally, DFT.
Note that this problem is almost entirely one related to initial
placement of atoms in very high-energy positions that would
never arise naturally. The numerical issues associated with
the NNP are largely avoided here by including the ad hoc
repulsive LJ potential (see Appendix A 1) to the overall po-
tential. To accelerate convergence, we ensure that any initial
GSF configuration does not have excessive atomic overlap by
increasing the z component of a3 by c,, i.e., a5 = a3 +t+ ¢,
to ensure a minimum distance of 2.0 A between all atoms. All
the atoms in the cell and the a3 vector are allowed to relax
in the z direction (normal to the fault plane). When using
the additional repulsive potential, this step is not necessary.
Finally, the %(1 12)4; Burgers vectors of Al are mapped into
the B” coordinates via the GenOVa program. However, when
the B” structure is converted from the conventional cell to
the GSF cell, remapping of the Burgers vector is subtle. To
achieve this, we create artificial atoms, one for each of the
Burgers vectors of interest, in the conventional cell, create the
GSF cell as above, and use the artificial atoms as markers for
the Burgers vectors in the new cell.

Figure 6 shows atomistic images of the projected GSF
geometries for the {112} and {511} surfaces in Mg;Sis, with
the fault plane and periodic units of material indicated for
clarity. The geometries are complex, with many local atomic
environments spanning the slip plane. The full computed
GSFE surfaces for {112} and {511} for the three compositions
Mg;Sis, Mg, Al3Siy and MgsAl,Siy are shown in Figs. 7 and
8. With the exception of the {112} surface of Mg;Sig, all cases
show a very smooth and continuous energy surface. With the
use of the NNP plus the repulsive potential, we find a smooth
GSFE. Using the NNP alone, even with attempts to minimize
problems by adroit choice of the initial configuration, the
{112} of MgsSic shows regions where the NNP prediction
collapses into a deep energy minimum associated with atoms
coming extremely close together during the relaxation pro-
cess. The additional repulsive potential has little or no effect
for the large majority of the energy surface, but in 2% of cases
we found that the system would always collapse upon removal
of the repulsive term.

To quantitatively validate the GSFE predicted by the NNP,
we have used similar computational cells in DFT to compute
the GSFE at the slip of the six Al a(110)/2 Burgers vectors.
These points are indicated in Figs. 7 and 8. Note that these
positions are not local minima, unlike the situation arising
in simpler precipitates where cutting by matrix dislocations
forms antiphase boundaries that are local minima. Figure 9
compares the NNP and DFT GSFE values for all shearing
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FIG. 6. Atomic view of the Mg;Sic B” precipitate with normal
planes {112} and {511} appropriate for computing the generalized
stacking fault energy surfaces relevant to precipitate shearing in an
Al matrix. Dotted lines extend through the slip plane, and solid line
highlight two periodic units of material above and below the slip
plane, respectively.

planes in all three compositions for all six relevant Burgers
vectors. The agreement is generally very good, recalling that
no information directly related to these complex slip surfaces
exists in the training data set. The NNP captures the fact
that MgsAl,Sis has rather higher fault energies while those
for MgsSis and MyAl3Si4 are comparable. Quantitatively, the
NNP is frequently within 100 mJ/m? of the DFT, although
there are some differences of up to 150 mJ/m?. The NNP is
also typically larger than the DFT, which means that the NNP
precipitates are more resistant to shearing than indicated by
DFT.

Overall, while improvements to the NNP predictions
would be desirable for fully quantitative results for shearing
energies of B”, the performance of the NNP remains im-
pressive. We are aware of few, if any, DFT computations
of such complex GSFEs, much less any assessment of the
performance of a traditional potential for such crucial but
challenging structures. Results for Al-Cu were presented re-
cently, highlighting success of the NNP and notable failure
of an established traditional potential [7]. We believe that the
level of agreement here should enable insightful atomistic
simulations of precipitate shearing, and hence alloy strength-
ening, that have heretofore been not feasible.

V. PRELIMINARY APPLICATION: EARLY STAGES
OF NATURAL AGING IN AL-6XXX

After quenching from solutionizing temperatures to room
temperature, Al-6xxx alloys undergo an undesirable natu-
ral aging, i.e., the formation of initial clusters of solutes
made possible at room temperature by the presence of excess
quenched-in vacancies. Here we present an initial study of
early stage clustering using NNP16 in combination with off-
lattice kinetic Monte Carlo (KMC) simulations to demonstrate

TABLE 1. Vacancy migration barriers for a single Mg or Si atom
in the Al matrix.

Migration energy [eV]

Jumptype ~ DFT[47] NNP16  NNP-Avg / StdDev

Al

/ 0.58 0.61 0.62 /0.011
a

/ 0.68 0.74 0.75/ 0.016
Mg

Mg

/ 0.46 0.47 0.48 / 0.011
a

Al

/ 0.52 0.52 0.53/0.011

Si \

/ 0.45 0.41 0.44/ 0.020
a

at a realistic alloy composition. These simulations were car-
ried out within the framework of the I-PI code [45].

Since precipitation involves solute transport via vacancy-
mediated solute diffusion, achieving quantitative timescales
using the NNP requires accurate migration barriers. No infor-
mation regarding migration barriers was included in the NNP
training set, however. Here, we thus present the basic migra-
tion barriers for Al, Mg, and Si that govern the frequencies
that enter the five-frequency model for solute diffusion [46]
in the matrix as further validation of the transferability of the
NNP. Specifically, we have examined five different vacancy
transitions: Al-V exchange in Al (related to Al self-diffusion),
Al-V exchange adjacent to a Mg atom, Al-V exchange ad-
jacent to a Si atom, Mg-V exchange in the Al matrix, and
Si-V exchange in the Al matrix. Table I compares the DFT
and NNP16 migration barriers for these five transitions. The
agreement is quite good, within a few meV in all cases, with
the largest deviation of only 5 meV for the Al-V exchange
adjacent to a Mg atom. Results for all 20 NNPs are similar,
with variations of only about +/— 1 meV. The NNP potential
should thus provide quite accurate diffusion coefficients for
Al, Mg, and Si in dilute Al, giving accurate long-range solute
transport through the Al matrix.

Turning to the precipitate evolution, the KMC simulations
are topologically on lattice but with full atomistic relaxation of
every configuration studied. Thus, every atom can be uniquely
associated with an underlying fcc lattice site but the actual
atom positions deviated from the ideal lattice due to the
atomic size mismatch (misfit strains). To date, we find no
configurations where the topology of the system is altered.
The vacancy can then also be associated with a specific lat-
tice site for bookkeeping purposes. KMC then requires the
migration barriers for all 12 possible transitions of a vacancy
from its current site to the surrounding fcc neighbor sites at
each time step. The vacancy starts at a random lattice site
in the fcc supercell containing N — 1 atoms. The vacancy is
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FIG. 7. GSEFE for the {112} plane of 8" for MgsSis, Mg,Al;Si4, and MgsAl,Sis obtained using the NNP plus the repulsive potential.
Without the repulsive potential, a few points on the MgsSi¢ surface would have an unphysical collapse into a deep energy minimum; none of

these points corresponding to any aluminum Burger vector.

then exchanged with each of its 12 neighbors, and the entire
atomistic system relaxed to a minimum energy state for each
case; this provides the initial and final state energies for each
possible transition. It is computationally intensive to compute
the migration barriers for each specific chemical environment
during the natural aging. Thus, while the NNP captures the
dilute migration barriers very well (Table I), we make a sim-
plifying approximation to avoid direct computation of specific
migration barriers. Specifically, we use linear interpolation
to approximate the migration barriers of all solute-vacancy
exchanges as

Eﬂff =EN +(E; — E)/2,

1

an

where E; and E; are the fully relaxed NNP energies of the
initial and final states (before and after migration) and E}f =

0.58 eV is the vacancy migration barrier in Al as computed
from DFT. The linear approximation ensures that detailed
balance is satisfied and that the configurational energy land-
scape is sampled correctly, but it does not capture the true
precise timescale of clustering. The differences in migration
barrier in the dilute limit are not entirely negligible, with the
controlling barrier for Si diffusion lower by —0.06 eV and that
for Mg higher by 0.1 eV, but are small enough for the present
preliminary application.

The KMC simulations are standard. We construct a cat-
alog of rates w;_ for the vacancy to jump from the initial
configuration i to the 12 nearest neighbors f =1,2,..12
with w;_y =v exp_ng /T where v is an attempt frequency
set to 16.6 THz [48] for all transitions. One transition is
randomly chosen based on the relative probability of the
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FIG. 8. GSFE for the {511} plane of 8” for MgSis, Mg, Al;Siy,
and Mg;Al, Siy.

different rates. The time step for the KMC move is then
t = —logu/ Zf w;_s, where u is a random number in the
range (0,1]. The process is repeated for each new vacancy
position.

Simulations of natural aging (7 = 300 K) are carried out in
1000 and 1728 atom supercells, each containing one vacancy
and an initial random distribution of Mg and Si solutes at
the near-commercial concentration of Mg1%Si0.6%. The va-
cancy concentration (1073 in the 1000 atom cell) is far higher
than expected after quenching in real alloys (1075-107%). This
difference correspondingly accelerates the overall apparent
timescale of aging by 2-3 orders of magnitude. The times
in the KMC are thus scaled by a factor of 10° (vacancy
concentration 107®) to make more-reasonable contact with
timescales pertinent in real alloys.

Figure 10 shows the evolution of the 1000-atom system
energy with time for three different simulations along with
the root mean square displacement of the vacancy (exiting and
reentering the periodic cell mimicking longer-range motion).
At early times, the vacancy migrates in the bulk and pairs
with a Si atom due the attractive binding energy. The Si-V

—&— DFT e~ NNP-16 —— MgsALSiy —— MgsSis —— MgyALSi;
200

700

6001

500

8" {511} / Al {111}

4001—F - - - - =
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GSF Energy mJ/m?

B {112} / Al {111}
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§ FCC Burgers Vector

FIG. 9. Burgers vector vs GSF energy using NNP-16 and DFT
for Mg;Sis, MgsAlSiy, and Mg, Al;Siy in both the {511} and {112}
configurations. The NNP shows excellent ability to predict general
trends, e.g., that [011] in MgsAl,Siy is one of the highest-energy
points corresponding to an Aluminum fcc Burgers vector and [011]
with Mg;Sie has one of the lowest-energy points. These energies do
not include the LJ term, using the LJ term is largely the same, with a
few points deviating by 10 mJ/m?.

pair migrates, eventually encountering Mg or another Si atom,
which leads to triplet formation and cluster growth. These
small clusters are unstable and go through cycles of formation
and dissolution, as indicated by the energy fluctuations in
the figure. More-stable, lower-energy clusters form due to
aggregation of at least three Si and three Mg atoms, with
the plateaus in vacancy RMS displacement showing that the
vacancy remains within or around these clusters. Figure 11
shows a typical cluster at one instant of time consisting of
five Mg atoms, five Si atoms, and the vacancy. These typical
more-stable clusters have energies of —1 eV to —1.3 eV
relative to the solid solution, with the vacancy as part of the
cluster. They form over a time of approximately 5 min and
with vacancy diffusion over distances of ~1000 A, both in
good agreement with experiments [49]. Cluster evolution then
slows considerably due to a combination of vacancy trapping
(see below) and depletion of Si in the matrix. However, these
more-stable clusters can still dissolve partially or fully, as
seen at the later times of two of the three simulations shown,
which will be examined semiquantitatively below. Multiple
simulations carried out with different starting configurations
lead to similar geometries, energies, and timescales. A full
characterization of typical clusters and their role in trapping
vacancies will be presented in forthcoming work.
Simulations on the 1728 atom cell reduce size effects due
to depletion of solutes. Figure 12 shows one example of the
energy versus time and vacancy RMS displacement. After the
early stages of few-solute cluster formation and dissolution,
the nucleation of low-energy clusters occurs on a similar
timescale as in the smaller system. However, now the pres-
ence of more Si atoms enables the formation of larger and
more-stable precipitates with typical energies in the range of
—1.2 eV to —1.9 eV, including the vacancy in the cluster.
These larger clusters persist to much longer times (hours),
with the vacancy also remaining trapped for much longer
times. The vacancy periodically escapes the trap, indicated
by the spikes in both displacement and energy curves, but

053805-10



MACHINE LEARNING FOR METALLURGY III: A NEURAL ...

PHYSICAL REVIEW MATERIALS 5, 053805 (2021)

r1750

r 1500

r1250

r 1000

r750

Energy (eV)
Displacement (A)

500

r250

F 2500

r 2000

r 1500

Energy (eV)

r 1000

Displacement (A)

r500

o
v
=
o
=
v
N
o
N
u

r 1400
r 1200
r 1000
r 800

r600

Energy (eV)
Displacement (A)

r400

r200

ro

6 8 10 12
Time (min)

o
INE
I

FIG. 10. Energy and vacancy displacement vs simulation time
for three different KMC simulations carried out with the NNP using
a 1000 atom supercell containing 10 Mg atoms and 6 Si atoms. The
simulations were carried out for 5 x 10° steps.
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FIG. 11. Geometric illustration of a low-energy Mg-Si cluster
formed during the KMC simulation with 10 Mg and 6 Si atoms in
a 1000 atom cell.
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FIG. 12. Energy and vacancy displacement vs simulation time
for the KMC simulations carried out with the NNP using a 1728
atoms supercell containing 17 Mg atoms and 10 Si atoms. The
simulation was carried out for 1.5 x 107 steps.

becomes trapped again, and the clusters show no indica-
tions of significant dissolution over the timescales simulated.
Figure 13 shows a typical cluster at 11 h of simulation time,
where the vacancy is trapped within a cluster of eight Mg and
seven Si atoms. The remaining solutes in solution are more
numerous, i.e., not near depletion, and yet further growth is
not observed over the simulation time.

To further validate the accuracy of the NNP for these KMC
simulations and to quantify vacancy trapping energies, peri-
odic cells of 108 atoms containing a small KMC cluster (five
Mg, five Si,1V) and a large KMC cluster (eight Mg, seven
Si,1V) were created and fully relaxed to the equilibrium cell
volume and zero stress using both the NNP and full DFT.
Although such calculations are not a true representation of the
clusters embedded within the Al bulk, they provide compara-
ble energy estimates and serve as a performance benchmark
for the NNP. Table II shows the NNP16 and DFT cluster
formation energies with the vacancy and with the vacancy
replaced by an Al atom, for both clusters. The very good
agreement between DFT and NNP16 demonstrates the chem-
ical accuracy of the NNP in all cases. The cluster-vacancy
binding energy is simply the difference between the cluster
formation energies with the vacancy and with the vacancy re-
placed by an Al atom with the vacancy in the bulk matrix. The
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féﬁ:

FIG. 13. Geometric illustration of a typical low-energy Mg-Si
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]
)

cluster formed during the KMC simulation with 17 Mg and 10 Si
atoms in a 1728 atom cell.
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TABLE II. (a) The formation energies (Eéluswr) of the clusters
obtained from KMC simulations, computed from NNP16 and DFT
using 108 atom supercells. The binding energy is the difference
between the formation energies of the cluster with and without the
vacancy. (b) The free energies of solid solution (SS), and the clus-
tered geometry with remaining solid solution for 1000 atoms and
1728 atoms supercells with commercial alloy composition.

NNP16 DFT NNP — DFT

(a) Cluster formation energies (eV)
Eyg.sisv —-0.984  —1.090 0.106
Eg.si, —0.678  —0.636 —0.041
Vacancy binding energy —0.306 —0.454 0.147
Egosivv —1478  —1.654 —0.011
Egsis -0.925  —0914 0.178
Vacancy binding energy —0.553 —0.742 0.189

E N F

(b) Free energies at 7 = 300 K (eV)
AlggsMg,,Sig (SS) 0 —2.293 —2.293
AL Mg,Sis (Cluster +SS)  —0.678  —1.267 —1.945
Aly701Mg;;Siio (SS) 0 —3.914 —3.941
AlsMg,Si7 (Cluster+SS) —0.925 —2.407 —3.332

NNP cluster-vacancy binding energy is —0.306 eV (NNP16)
for the small cluster and —0.553 eV for the large cluster, both
slight underestimates relative to DFT. The vacancy binding

J

N,!

Foustered (T) = Ecluster — kT |:l n <m

Applying these results to the 1000 atom cell with Ny; = 984,
Ny =10, Ns; =6, at T =300 K, we compute F(T) =
—2.293 eV for the solid solution as shown in Table II. A typ-
ical observed cluster has N,y =5, Nesi =5, and N, 4y = 4
(N, = 14) and we use the energy E.jyser = —0.678 eV found
for one cluster without the vacancy as typical. The free en-
ergy of the clustered state is then estimated to be Fiysiered =
—1.945 eV. The free energies of the solid solution and the
observed clusters are roughly comparable, and become very
similar when the vacancy binding to the cluster (entropy
neglected) is considered. This indicates rough equilibrium
between the two states and hence ongoing dissolution and ref-
ormation of the clusters, as suggested by the KMC simulations
here. Considering the 1728 atom cell, we have Ny; = 1701,
Nyg =17, Ng; = 10and, at T = 300 K, F(T) = —3.914 eV
(Table II). For a typical larger cluster (13), we take N, yy = 8,
Ngsi="T and N. 4 =5 (so N, = 20) and energy Eguster =
—0.925, leading to the free energy of the clustered system
as —3.332 eV. This is again roughly comparable, and nearly
equivalent if the vacancy binding is included. Hence, even
the larger clusters might be susceptible to dissolution but the
vacancy trapping slows the kinetics considerably so that no
such dissolution is observed over the KMC timescales studied
so far. The above results are only preliminary estimates, and
so should not be taken as definitive measures of the relative
system stability.

) + ln(
(Nar — Neai)!(Nyg — Neg)! (Nsi

energy of —0.306 eV for the ten solute atoms cluster is similar
to the binding energy found for trapping of vacancies by
individual Sn atoms [46] in Al-6xxx with the addition of
90 appm of Sn, which was found to retard natural aging by
several weeks. Thus, the trapping of vacancies in Al-6xxx by
these small solute clusters significantly limits further solute
transport, slowing all kinetic processes at this stage of cluster
development. The vacancy binding energy of —0.553 eV for
the larger 15 solute atom cluster prevents vacancy escape on
much longer timescales, slowing kinetics even more signifi-
cantly, and potentially limits further precipitate evolution even
at artificial aging temperatures (443 K).

To further assess stability of the clusters observed in the
simulations, we can estimate the Helmholtz free energies of
these systems relative to the random solid solution. The solid
solution free energy is essentially due to entropy and so given
by

FSS(T)=—kBTln< Nt ) (12)

Ny !NMg !NSi !

The free energy in the clustered state is estimated by a
combination of the cluster energy, the cluster entropy, and
the remaining solid solution entropy. We consider a generic
compact cluster consisting of a total of N, atoms, composed
of N a1, Ne mg, and N, g; specific solutes. The total free energy

is then estimated as
. 13
- Nc,Si)! )i| ( )

Overall, the KMC simulations find thermodynamically
low-energy, long-lived solute clusters of 10-15 solute atoms,
with sufficiently low formation energies to roughly balance
the entropy costs in the simulation cell at room temperature.
The timescales and diffusion lengths needed for the formation
of such clusters are comparable to experimental observations.
A major observation is, furthermore, the strong trapping of
vacancies in these clusters, which slows further evolution.
This is fully consistent with experimental deductions of solute
clusters as so-called vacancy prisons in Al-Mg-Si [50].

N = N)!

(

VI. CONCLUSION

We have developed, validated, and applied a family of
near-DFT-accurate Behler-Parinello-type neural network po-
tentials (NNPs) for the Al-Mg-Si system. A key aspect in the
development is the building of a comprehensive data set of
metallurgically relevant structures with energies and forces
computed from DFT. These NNPs are demonstrably accurate
in predicting notable alloy properties such as lattice con-
stants, elastic constants, surface and stacking fault energies,
dislocation structures (not studied here), precipitate formation
energies, precipitate antisite defects, and vacancy migration.
These NNPs can be further enhanced with additional struc-
tures, but the current results appear broadly accurate for many
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metallurgical problems. Along with the NNPs generated here,
the DFT database here is also openly available for use with
other ML methods on materials cloud [51] where we have
uploaded all the DFT from the prior Al-Mg-Si study [52] as
well as all DFT unique to this study [53].

Using these NNPs, we have demonstrated several metal-
lurgical aspects critical in the processing and performance of
Al-Mg-Si alloys. First, the NNPs have been used to com-
pute the entire GSFE surfaces for the relevant slip planes of
in situ B” precipitates, with postvalidation by DFT at slip
corresponding to the Burgers vectors of dislocations in Al.
We are not aware of any other accurate shearing energies
for any precipitates in any Al alloys (and few, if any, other
alloys) using traditional potentials. This will enable the study
of fully atomistic precipitate shearing and hence strengthening
in these alloys. Second, we have examined the early stage
clustering of solutes in Al-6xxx alloy under natural aging
conditions. We show solute clustering and vacancy trapping
with energies, timescales, and length scales that are consistent
with deductions from experimental observations, with post-
validation by DFT of several complex clusters. We believe
this is the first interatomic potential capable of accurately
predicting early stage age-hardening kinetics in Al alloys, and
which then remains suitable for further studies of mechanical
performance versus aging.

The NNPs are not perfect. For instance, we find a
non-negligible error in the Cy for Al, some deviations in
low-energy antisite defects in 8" precipitates, and require the
added repulsive potential to avoid artifacts at small atomic
separations. However, there are paths to reduce or elimi-
nate errors through further structural data, improved selection
of symmetry functions, use of new classes of symmetry
functions, training on energy differences rather than absolute
energies, improved optimization strategies, and other machine
learning methods beyond NNPs. Nonetheless, the overall per-
formance of these potentials for a complex ternary alloy with
complex precipitate phases remains impressive and generally
far exceeds the capabilities of traditional potentials for binary
alloys. The approach and methodology are not limited to Al-
Mg-Si and so the success here points toward a bright future for
accurate, predictive computational metallurgy using machine
learning interatomic potentials.

ACKNOWLEDGMENTS

The authors acknowledge support for this work by the
NCCR MARVEL, funded by the Swiss National Science
Foundation. A.G. acknowledges support from the SNF Flexi-
bility Grant. The authors would also like to thank Dr. G. Pizzi
and Dr. S. Huber for their help in employing AiiDA.

APPENDIX A

1. Addition of a short-range repulsive potential to the NNP

As discussed in the main text, the major errors in the NNP
are found for very close atomic distances. In this short-range
domain, the NNP energies can become strongly negative, driv-
ing the system to collapse toward zero atomic spacings. Since
the potentials are repulsive at larger distances, such short

distances would rarely, if ever, be present in most applica-
tions governed by thermodynamics. However, when atoms are
placed in positions a priori, such as in defining an initial path
for a transition state analysis or an initial configuration for
computing a fault energy, atoms can be placed close together
and the serious failure of the NNP can lead to problems for
these types of applications. To avoid pathological results, in
principle, more structures with close atom spacings could be
added to the set of training structures. Because these structures
would have high energy, they could adversely affect the qual-
ity of the NNP in the domains of physical interest. Another
solution, demonstrated here, is to simply add an ad hoc re-
pulsive cut-and-shifted Lennard-Jones (LJ) potential at short
distances to counteract the deficiencies of the NNP.

Specifically, we introduce a cut-and-shifted LJ potential
to create a purely repulsive potential. The potential between
atoms i and j at distance r is taken to be

0;;\12 0;;\0
LI ;(r) = {35[(7) —(F)T+4e, r<ra (ap

) r > Teut

where 7oy = 2é0. For a ternary alloy, we have six LJ func-
tions, and we use a common energy scale € = 20(eV) and
pair-specific distances o; ;. We choose 7., = 0.857¢ ;; where
ro,ijj =i is the bulk interatomic distance for atom i given
in the ASE [43] package. For unlike pairs j # i, we use
ro,ij = 0.5(ro,ii + ro_jj-

Figure 14 shows benchmark results equation-of-state
(EOS) results for Al, Mg, Si, 8”, and g’. In all cases, the
LJ addition leads to a strongly repulsive potential in regimes

=500 A

~= NNP = NNP-16 === NNP + LJ === DFT

—525 1

—425

—450 A

—125 1

—150 A

Energy (eV)

=275 A

—300 +

—325 A

—350 1

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
(VIVo)s

FIG. 14. Equation of state for key structures as predicted by the
various NNPs with and without the additional repulsive potential.
The DFT reference data is shown along with the specific behavior of
NNP16 used in the main text.
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where the NNP may show softening or become attractive, both
unphysical. The LJ correction leads to significant deviations
from the DFT data, but that remains largely irrelevant since

these domains are not accessed in most simulations. Other
machine learning methods, such as the PINN potential [4] or

differential (A) learning methods [54] would likely be better.

TABLEIII. Statistics for material properties of the 8" phases.

2. Full table for g’ parameters

Table III shows compiled results for the 8” phase.

However, the present LJ term easily and efficiently resolves
the severe issues with the NNP and is easily and efficiently
implemented in, for instance, the LAMMPS code.

Mg5A12514 MgSSI6 Mg4A13$14

DFT NNP16 AVG STD DFT NNP16 AVG STD DFT NNP16 AVG STD
Vol(A%) 18.49 18.45 18.46 0.01 18.20 18.06 18.17 0.03 17.98 17.91 17.94 0.01
a(A) 15.34 15.35 15.33 0.02 15.12 15.34 15.25 0.03 15.12 15.13 15.14 0.02
b(A) 4.06 4.03 4.04 0.01 4.08 3.96 4.04 0.03 4.13 4.08 4.08 0.01
c(A) 6.79 6.81 6.81 0.01 6.93 6.93 6.90 0.02 6.61 6.64 6.64 0.01
o 90.00 90.00 90.00 0.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00 0.00
B 105.93 105.57 105.65 0.13 110.20 109.24 109.97 0.32 106.61 105.95 105.97 0.13
y 90.00 90.00 90.00 0.00 90.00 90.00 90.00 0.00 90.00 90.00 90.00 0.00
C11(GPa) 108.38 113.95 109.74 1.80 105.76 104.21 103.70 5.12 114.18 114.49 113.43 1.45
C2(GPa) 94.82 93.08 92.08 3.36 90.18 81.91 78.42 5.80 104.49 95.52 89.91 2.50
C;33(GPa) 99.93 96.15 95.44 1.68 87.50 84.26 81.19 4.61 103.91 108.18 103.47 1.67
Cy4(GPa) 23.02 26.46 25.30 1.15 16.89 20.38 21.70 1.56 21.49 27.09 23.99 1.00
Css(GPa) 33.35 34.31 32.96 1.07 32.83 24.50 26.67 1.09 34.26 32.86 31.49 1.03
Ce6(GPa) 27.06 31.52 30.32 0.78 30.33 31.58 30.05 1.32 23.30 31.45 30.31 1.01
C12(GPa) 42.28 45.61 45.15 1.82 49.24 63.53 60.42 2.98 45.87 49.07 51.10 243
C3(GPa) 47.66 47.92 46.30 1.53 50.07 48.96 46.52 3.29 47.76 49.62 46.95 1.77
Cy3(GPa) 46.39 38.91 39.00 2.40 46.36 44.70 42.38 2.14 48.90 44.23 44.28 2.82
Ci5(GPa) —2.66 —3.64 —4.81 1.71 —10.79 —8.34 —4.82 2.26 —4.11 —5.01 -3.09 2.05
C,5(GPa) 4.52 1.66 3.64 1.70 6.16 1.69 4.03 1.45 5.87 1.37 4.55 1.83
C;35(GPa) 3.08 2.77 2.78 1.34 8.76 4.18 4.44 1.18 6.56 4.08 6.24 1.07
Cy6(GPa) 4.16 242 3.76 0.69 1.42 9.11 6.09 0.64 —-0.12 2.20 3.46 0.65
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3. Symmetry function hyperparameters

Here we show full symmetry function hyperparameters
Table IV shows the 2-Body terms and Table V shows the
3-Body terms.

TABLE IV. Hyperparameters for the radial symmetry functions.

Element 1 Element 2 n 2 T

Al Al 0.003 0.000 20.000
Al Al 0.016 0.000 16.000
Al Al 0.016 0.000 8.000
Al Al 0.045 11.314 16.000
Al Al 0.058 10.000 20.000
Al Al 0.062 0.000 8.000
Al Al 0.071 16.259 20.000
Al Al 0.091 8.000 16.000
Al Al 0.108 13.218 20.000
Al Al 0.112 13.007 16.000
Al Al 0.124 0.000 8.000
Al Mg 0.003 0.000 20.000
Al Mg 0.016 0.000 16.000
Al Mg 0.016 0.000 8.000
Al Mg 0.036 0.000 8.000
Al Mg 0.058 10.000 20.000
Al Mg 0.071 16.259 20.000
Al Mg 0.082 0.000 8.000
Al Mg 0.091 8.000 16.000
Al Mg 0.108 13.218 20.000
Al Mg 0.112 13.007 16.000
Al Mg 0.117 7.071 20.000
Al Si 0.003 0.000 20.000
Al Si 0.016 0.000 16.000
Al Si 0.016 0.000 8.000
Al Si 0.058 10.000 20.000
Al Si 0.071 16.259 20.000
Al Si 0.082 0.000 8.000
Al Si 0.091 8.000 16.000
Al Si 0.108 13.218 20.000
Al Si 0.112 13.007 16.000
Al Si 0.117 7.071 20.000
Mg Al 0.003 0.000 20.000
Mg Al 0.016 0.000 16.000
Mg Al 0.016 0.000 8.000
Mg Al 0.036 0.000 8.000
Mg Al 0.058 10.000 20.000
Mg Al 0.071 16.259 20.000
Mg Al 0.082 0.000 8.000
Mg Al 0.091 8.000 16.000
Mg Al 0.108 13.218 20.000
Mg Al 0.112 13.007 16.000
Mg Mg 0.003 0.000 20.000
Mg Mg 0.016 0.000 16.000
Mg Mg 0.016 0.000 8.000
Mg Mg 0.045 11.314 16.000
Mg Mg 0.058 10.000 20.000

TABLE 1V. (Continued).

Element 1 Element 2 n r Te

Mg Mg 0.062 0.000 8.000
Mg Mg 0.071 16.259 20.000
Mg Mg 0.091 8.000 16.000
Mg Mg 0.108 13.218 20.000
Mg Mg 0.112 13.007 16.000
Mg Mg 0.117 7.071 20.000
Mg Mg 0.124 0.000 8.000
Mg Si 0.003 0.000 20.000
Mg Si 0.016 0.000 16.000
Mg Si 0.016 0.000 8.000
Mg Si 0.029 14.142 20.000
Mg Si 0.036 0.000 8.000
Mg Si 0.045 11.314 16.000
Mg Si 0.071 16.259 20.000
Mg Si 0.082 0.000 8.000
Mg Si 0.108 13.218 20.000
Mg Si 0.112 13.007 16.000
Mg Si 0.117 7.071 20.000
Si Al 0.003 0.000 20.000
Si Al 0.016 0.000 16.000
Si Al 0.016 0.000 8.000
Si Al 0.071 16.259 20.000
Si Al 0.082 0.000 8.000
Si Al 0.091 8.000 16.000
Si Al 0.108 13.218 20.000
Si Al 0.112 13.007 16.000
Si Mg 0.003 0.000 20.000
Si Mg 0.016 0.000 16.000
Si Mg 0.016 0.000 8.000
Si Mg 0.058 10.000 20.000
Si Mg 0.071 16.259 20.000
Si Mg 0.082 0.000 8.000
Si Mg 0.091 8.000 16.000
Si Mg 0.108 13.218 20.000
Si Mg 0.112 13.007 16.000
Si Mg 0.117 7.071 20.000
Si Si 0.003 0.000 20.000
Si Si 0.016 0.000 8.000
Si Si 0.021 0.000 16.000
Si Si 0.036 0.000 8.000
Si Si 0.058 10.000 20.000
Si Si 0.071 16.259 20.000
Si Si 0.082 0.000 8.000
Si Si 0.091 8.000 16.000
Si Si 0.108 13.218 20.000
Si Si 0.112 13.007 16.000
Si Si 0.117 7.071 20.000
Si Si 0.124 0.000 8.000
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TABLE V. Hyperparameters for the angular symmetry functions.

Element 1 Element 2 Element 3 n A ¢ T

Si Al Al 0.007 —1.000 1.000 12.000
Si Al Al 0.007  1.000 1.000 12.000
Si Al Al 0.016  1.000 1.000 8.000
Si Al Si 0.007 —1.000 1.000 12.000
Si Al Si 0.007  1.000 1.000 12.000
Si Al Si 0.007  1.000 4.000 12.000
Si Al Si 0.016  1.000 1.000 8.000
Si Al Si 0.020  1.000 4.000 12.000
Si Mg Al 0.007 —1.000 1.000 12.000
Si Mg Al 0.007 —1.000 4.000 12.000
Si Mg Al 0.007  1.000 1.000 12.000
Si Mg Al 0.020  1.000 1.000 12.000
Si Mg Mg 0.007 —1.000 1.000 12.000
Si Mg Mg 0.007 —1.000 4.000 12.000
Si Mg Mg 0.007  1.000 1.000 12.000
Si Mg Mg 0.007  1.000 4.000 12.000
Si Mg Mg 0.020 —1.000 1.000 12.000
Si Mg Mg 0.020  1.000 1.000 12.000
Si Mg Si 0.007 —1.000 1.000 12.000
Si Mg Si 0.007 —1.000 4.000 12.000
Si Mg Si 0.007  1.000 1.000 12.000
Si Mg Si 0.007  1.000 4.000 12.000
Si Mg Si 0.016  1.000 1.000 8.000
Si Mg Si 0.020 —1.000 1.000 12.000
Si Mg Si 0.020  1.000 1.000 12.000
Si Si Si 0.007 —1.000 2.000 12.000
Si Si Si 0.007 —1.000 4.000 12.000
Si Si Si 0.007  1.000 1.000 12.000
Si Si Si 0.007  1.000 4.000 12.000
Si Si Si 0.016 —1.000 2.000 8.000
Si Si Si 0.016  1.000 1.000 8.000
Si Si Si 0.016  1.000 8.000 8.000
Si Si Si 0.020 —1.000 1.000 12.000
Si Si Si 0.020  1.000 1.000 12.000
Al Al Al 0.007 —1.000 1.000 12.000
Al Al Al 0.007  1.000 1.000 12.000
Al Al Al 0.007  1.000 4.000 12.000
Al Al Al 0.016 —1.000 1.000 8.000
Al Al Al 0.016  1.000 1.000 8.000
Al Al Si 0.007 —1.000 1.000 12.000
Al Al Si 0.007  1.000 1.000 12.000
Al Al Si 0.007  1.000 4.000 12.000
Al Al Si 0.016  1.000 1.000 8.000
Al Al Si 0.020  1.000 1.000 12.000
Al Mg Al 0.007 —1.000 1.000 12.000
Al Mg Al 0.007  1.000 1.000 12.000
Al Mg Al 0.007  1.000 4.000 12.000
Al Mg Al 0.016  1.000 1.000 8.000
Al Mg Al 0.020  1.000 2.000 12.000
Al Mg Mg 0.007 —1.000 1.000 12.000

TABLE V. (Continued).

Element 1 Element 2 Element 3 n A Is T

Al Mg Mg 0.007 —1.000 4.000 12.000
Al Mg Mg 0.007  1.000 1.000 12.000
Al Mg Mg 0.007  1.000 4.000 12.000
Al Mg Mg 0.020 1.000 1.000 12.000
Al Mg Si 0.007 —1.000 1.000 12.000
Al Mg Si 0.007 —1.000 4.000 12.000
Al Mg Si 0.007 1.000 1.000 12.000
Al Mg Si 0.007  1.000 4.000 12.000
Al Mg Si 0.020  1.000 1.000 12.000
Al Si Si 0.007 —1.000 1.000 12.000
Al Si Si 0.007 —1.000 4.000 12.000
Al Si Si 0.007  1.000 1.000 12.000
Al Si Si 0.007 1.000 4.000 12.000
Al Si Si 0.016  1.000 1.000 8.000
Al Si Si 0.020 —1.000 1.000 12.000
Al Si Si 0.020 1.000 2.000 12.000
Mg Al Al 0.007 —1.000 1.000 12.000
Mg Al Al 0.007  1.000 1.000 12.000
Mg Al Al 0.007 1.000 4.000 12.000
Mg Al Al 0.016  1.000 1.000 8.000
Mg Al Si 0.007 —1.000 1.000 12.000
Mg Al Si 0.007 1.000 1.000 12.000
Mg Al Si 0.007  1.000 4.000 12.000
Mg Al Si 0.020  1.000 1.000 12.000
Mg Mg Al 0.007 —1.000 1.000 12.000
Mg Mg Al 0.007  1.000 1.000 12.000
Mg Mg Al 0.007 1.000 4.000 12.000
Mg Mg Al 0.020  1.000 1.000 12.000
Mg Mg Mg 0.007 —1.000 1.000 12.000
Mg Mg Mg 0.007 —1.000 4.000 12.000
Mg Mg Mg 0.007  1.000 1.000 12.000
Mg Mg Mg 0.007  1.000 4.000 12.000
Mg Mg Mg 0.020  1.000 1.000 12.000
Mg Mg Si 0.007 —1.000 1.000 12.000
Mg Mg Si 0.007 —1.000 4.000 12.000
Mg Mg Si 0.007  1.000 1.000 12.000
Mg Mg Si 0.007  1.000 4.000 12.000
Mg Mg Si 0.016 1.000 1.000 8.000
Mg Mg Si 0.020 —1.000 1.000 12.000
Mg Mg Si 0.020  1.000 1.000 12.000
Mg Si Si 0.007 —1.000 1.000 12.000
Mg Si Si 0.007 —1.000 4.000 12.000
Mg Si Si 0.007 1.000 1.000 12.000
Mg Si Si 0.007  1.000 4.000 12.000
Mg Si Si 0.016  1.000 1.000 8.000
Mg Si Si 0.020 —1.000 1.000 12.000
Mg Si Si 0.020  1.000 4.000 12.000
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