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Abstract: In this paper we examine methods for both speeding up passage 
processing and examining more passages using parallel computers. We vary the 
number of passages processed in order to examine the effect on retrieval 
effectiveness and efficiency. The particular algorithm we apply has previously 
been used to good effect in Okapi experiments at TREC. We describe this 
algorithm and our mechanism for applying parallel computing to speed up the 
processing. 

 
1. Introduction 
 
This paper addresses the issue of applying parallel techniques to a computationally 
intensive passage retrieval method used by Okapi at the Text Retrieval Conference 
(TREC). This method of passage retrieval would require vast CPU resources; 
therefore parallel techniques could be useful to speed up the process. The research 
presented here is part of an overall study of parallelism and data distribution methods 
in information retrieval [1]. Our research has a two fold purpose: to show a reduction 
for the elapsed time of this passage retrieval algorithm and examine more of the 
search space to obtain increased retrieval effectiveness.   

The aims and objectives of our research are set out in section 2. We define 
and describe passage retrieval in section 3, then outline the Okapi algorithm in section 
4. We then describe our work. The implementation of the parallel algorithm is 
described in section 5. The hardware and software used is declared in section 6. The 
data and settings used for experiments are described in section 7. We discuss retrieval 
efficiency and effectiveness results together in section 8. A conclusion is given in 
section 9.  
 
2. Experimental aims and objectives 
 
The aim of the research presented in this paper is two fold: is it possible to decrease 
the run time costs for the passage retrieval algorithm using parallelism and; is it 
possible to increase the number of relevant documents retrieved by examining more 
of the search space. We therefore have a two-fold hypothesis to examine in this paper: 
 
Hypothesis 1: Using parallel computing will increase the retrieval efficiency of 
passage processing, in terms of faster processing times (speedup) or examining more 
documents in the same time (scalability). 



 
Hypothesis 2: Examining more passages will increase the retrieval effectiveness of 
query processing, that is more relevant documents will be found. 
 
 We vary the number of documents processed in order to examine the validity 
of these hypotheses. In terms of retrieval efficiency this allows us to examine different 
rates of passage processing, while for effectiveness we can show how the retrieval of 
relevant documents varies if at all. 
 
3     Description of passage retrieval 
 

The work that motivates the research described in this paper is from Okapi 
experiments conducted within the TREC conference framework in particular Okapi at 
TREC-3 [2]. We describe the Okapi algorithm used in section 4, but first we give an 
overview of what passage retrieval actually is and the context in which we use it. 
Passage retrieval can take on a number of forms and we list some examples here: 

• Retrieval of part of a document that is most likely to be of interest to a user.  
• To help in the identification of relevant documents. 
• A component of a question-answering system. 
• A component of a query-specific summarising system. 

Our interest is in the second of these and all of the discussion that follows 
concentrates on using passage processing for the identification of more relevant 
documents. It should be noted that a passage could be a whole document.  

Retrieval is done on the basis of text atoms, which is the smallest piece of 
text manipulated by passage processing.  Atoms can be paragraphs [2], blocks, 
sentences, words or even characters: we use an atom size of five sentences. A passage 
is usually defined as a contiguous sequence of atoms, and new passages may be 
generated iteratively from old ones by adding or removing blocks of atoms in 
increments: we use an increment of one.  Once the text atom and its incremental level 
are defined we can either define static or arbitrary lengths for passages based on the 
atom and the increment size. A fixed length passage starts from a given atom position, 
and the passage weight is computed using n atoms. An arbitrary length passage 
mechanism relaxes the fixed length constraint and allows computation of passage 
weight for a passage of arbitrary length. This is rather expensive computationally 
requiring O(a3) steps [2] where a is the number of atoms processed. We compromise 
between the two methods and have maximum length passages, reducing the time 
complexity to O(a(a-1)/2): this is the complexity of the algorithm we use in this paper. 
A further refinement is the choice of increment. We may disallow overlapping 
passages to reduce the computation even further, but we do compute on overlapping 
passages. We may consider single best passages or combining evidence from several 
passages: we use the former. Passages and atoms are determined at index time in our 
methods: we save this data in the inverted file when the index is generated. 
 
 
 
4. The Sequential Algorithm 



 
The basic idea behind the passage retrieval method in Okapi is to iterate through 
contiguous sequences of text atoms and find the combination that yields the best 
weight for that document. This procedure is done on inverted files. The algorithm is 
shown in figure 1. 
 

 
There are two stages to the sequential algorithm: retrieve the top ranked documents 
(say 1000) and then apply the passage retrieval algorithm to all top ranked documents. 
Restricting processing to 1000 documents is a time saving process: in principle we 
could consider all documents. The first phase is a simple probabilistic search as 
described in [3]. In the second phase a list of positions is obtained for each document 
and word pair in the query. We do not need to analyse full text since position data is 
saved in our inverted file during the indexing process [1]. The passage retrieval 
algorithm is then applied, recording the best passage weight for each document.  

The processing requires the weighting of a document for terms in the query 
sets given the relevant position data, and iterating through the defined passage, 

Function do_passage( IN: document data ) RETURN OUT: weight 
 
   For( start=0; start < no_of_atoms; start++ ) 
       For( finish=start+INCREMENTAL_VALUE; 
               finish< no_of_atoms AND finish-start < MAX_PASSASGE_LEN; 
               finish=finish+INCREMENTAL_VALUE ) 

If(at least one query term is in start and finish atoms) 
                             calculate weight for current passage 

EndIf 
                if( current passage weight > largest passage weight ) 
                             record details of current passage as best passage 
                EndIf 
        EndFor 
   EndFor 
 
   return best passage weight 
 
END do_passage 
 
(1st Phase) 
Obtain the top 1000 ranked documents for query terms 
 
(2nd Phase) 
Get position lists for the terms in the query. 
loop 1000 documents 
call do_passage function to obtain best     
  passage for that document 
EndLoop 
Re-rank the top 1000 documents. 
Display top x documents to the user. 
 
Figure 1: Algorithm for sequential passage Retrieval 



recording the highest weighted passage. In the case of best match functions such as 
BM25 [4], the requirements may also include the calculation of the passage length. 
This passage length is available from the inverted file having being recorded at 
indexing time. Once all documents have been processed the top set is re-ranked and 
can be presented to the user. We can reduce the time complexity for this method by 
setting a maximum passage length (the term MAX_PASSAGE_LEN in figure 1), set 
to twenty atoms in our case [2]. The minimum passage length could be sensibly set to 
one atom [2]. Our arbitrary length passages therefore range from one atom to a 
maximum of twenty atoms per passage. A further refinement is to specify the number 
of increment steps for examined atoms: this can be altered by changing the 
INCREMENTAL_VALUE constant. It should be noted that if either the start atom or 
the finish atom contains no query term, we do not calculate the weight for that 
passage. In general there must be a shorter passage that would be better, given that the 
BM25 scoring function increases with reducing document length (see appendix 2). 
 
5. The Parallel Algorithm 
 

In this section we describe the parallel implementation of the passage 
retrieval algorithm described in section 4. There are a number of issues when 
considering the application of parallelism to the Okapi passage retrieval algorithm. In 
particular the issue of how the algorithm is applied to the inverted file with a chosen 
data partitioning method must be addressed. A data partitioning method is a strategy 
for distributing inverted file data to the nodes in a parallel computer. We define a 
node as being made up of a processor, memory and disk space.  

The scheme we use for data partitioning is as follows.  Each node has its own 
disk and processor and we split up or partition the inverted file among the disks such 
that each disk has its own unique set of documents (that is each node has its own sub-
collection). Another big issue is how processes in the parallel program can 
communicate with each other: this network of communicating processes is called a 
process topology. We use a process topology described in more detail in [3] but we 
give an example process configuration in appendix 1. We have a number of leaf nodes 
that manages each sub-collection and a top node that is an interface between the 
outside world and the leaf nodes. Each node does passage retrieval on a given number 
of documents say N: we can vary N according to our requirements. All passage 
processing is done locally on a leaf node. Once a leaf node has received the query,  no 
further communication is needed until the results have been produced. With each 
additional leaf node we can examine more or less of the search space as required. In 
this method a total of N*P documents is examined for possible good passages (where 
P is the number of leaf nodes). The approximate time complexity for this method is 
O( (a(a-1)/2) / P): recall that a is the number of text atoms processed. 

 



 

 
 
6. Hardware and software used 
 

The system used to do the experiments is the PLIERS system (ParaLLel 
Information rEtrieval Research System) that has been developed to investigate various 
aspects of parallelism in IR [1].  All results presented in this paper were obtained on 8 
nodes of a 12 node Fujitsu AP3000 at the Australian National University (ANU) in 
Canberra. The AP3000 is a distributed memory parallel computer using Ultra 1 nodes 
with clock speed of 167Mhz running Solaris 2.5.1. Each node in the AP3000 
architecture has its own local disk: that is a shared nothing architecture [1] is used by 
PLIERS. The torus network has a top bandwidth of 200 Mbytes/s per second. 
 
7. Data and settings used 
 

The data used in the experiments was the BASE1 and BASE10 collections, 
both sub-sets of the official 100 Gigabytes VLC2 collection for TREC [5]. BASE1 is 
1 Gigabyte in size, while BASE10 is approximately 10 Gigabytes in size. We ran 
queries on 8 nodes for BASE10 and 1 to 8 nodes for BASE1. The queries are based 
on topics 351 to 400 of the TREC-7  ad-hoc track: 50 queries in all. The terms were 
extracted from TREC-7 topic descriptions using an Okapi query generator utility to 
produce the final queries. We used two types of query sets: one based on title only 
(average number of terms per query is 2.46) and one based on the whole topic 
(average number of terms per query is 19.58). The whole topic query set has 51 
queries, one extra being for VLC2 experiment initialisation [5]. Our timing 
methodology was as follows: for title only queries we declare the average of 10 runs, 
while we declared the average for 5 runs on whole topic. The model we use for term 
weighting in our experiments is the Robertson/Sparck Jones Probabilistic model [6] 
and we use the BM25 weighting function (see appendix 2). Recall that the atom size 

Top node sends query to P leaf nodes 
InParallel for P leaf nodes 
 (1st Phase) 
 Obtain N top ranked documents for the fragments 
  query terms. 
 
  (2nd Phase) 
 Get position lists for the terms in the query. 
 Loop N documents 
  call do_passage function to obtain best  
   passage for that document 
 EndLoop 
 Re-rank the top N documents. 
EndParallel 
Top node retrieve top x documents from P leaf nodes. 
Display x documents to the user. 
 

Figure 2:  Parallel passage retrieval algorithm 



used in our experiments is 5 sentences using an incremental step of one for atoms. We 
select the top 20 of all runs for evaluation (the relevance data is targeted at this 
figure).  
 
8. Experimental results 
 
 To facilitate the discussion below (which is the examination of parallel runs) 
we declare sequential passage retrieval results used for comparison on the BASE1 
collection. The average elapsed time in seconds was 1.33 for title only queries and 
45.6 for whole topic queries. The figure for title only is acceptable and is within the 
scope of 10 second response times suggested by Frakes [7]. However whole topic 
response time is not acceptable within such criterion: it does however demonstrate 
how computationally costly passage retrieval can be. Retrieval effectiveness is 
increased on all precision points when applying passage retrieval on the BASE1 
collection using title only queries: precision at 20 was increased from 0.130 to 0.148 
(an increase in performance of 13.8%). For all other runs improvements were found 
only on some of the precision points (see table 1 for effectiveness results on runs 
without passage processing). It should be noted that we were unable to get the same 
level of retrieval effectiveness on longer queries as with shorter queries: this merits 
further investigation. 
 

Collection Query  
Type 

p@5 p@10 p@15 p@20 

BASE1 title only 
whole topic 

0.244 
0.188 

0.178 
0.172 

0.149 
0.145 

0.130 
0.128 

BASE10 title only 
whole topic 

0.324 
0.356 

0.282 
0.298 

0.273 
0.271 

0.264 
0.247 

 
Table 1 - Retrieval effectiveness results (no passage processing) 

 
 We use a number of different metrics to examine the retrieval efficiency of 
parallel passage retrieval methods: average elapsed time in seconds, system 
throughput, load imbalance or LI, scalability, speedup and parallel efficiency (these 
metrics are defined in the Glossary). We compare the elapsed times for VLC2 
participants [5] with our first set of experiments only (these are the most expensive 
runs). We use the retrieval effectiveness metric precision (at 5,10,15,20 documents 
retrieved) as well as  passage retrieval statistics such as number of documents and 
passages processed during a run. We do three sets of experiments using parallelism, 
varying the amount of passages processed to test our hypotheses. The first is applying 
passage processing to 1000 documents on each node (we therefore increase the 
number of documents examined with increasing number of nodes). The next is to 
apply passage retrieval to 1000 documents overall. Finally we apply the algorithm to 
reduced document sets of less than 1000 documents. 
 
 
 
 



  
8.1  Experiment Results on 1000 documents per node 
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 The results on title only queries are very good. The elapsed time for every parallel 



run on BASE1 is under a second (see fig 3) and meets the 10 second requirement suggested 
by Frakes [7]. The run using 8 leaf nodes is faster than 8 out of the 11 runs submitted by 
other participants at VLC2 [5]. Overall the results show a time reduction for BASE1 
parallel runs over the sequential run, with a linear increase in throughput (see fig 4). 
Scaleup is super linear and increases with more leaf nodes in the topology (see fig 8): 
although the number of extra documents examined actually decreases with more leaf nodes 
(see fig 6). This increase in performance with respect to scale can be explained in part by 
the number of passages processed as the leaf node set is increased (see fig 5). Passages 
processed from 2 to 7 leaf nodes grow at a very slow rate, from just over half a million 
passages at 2 leaf nodes to 1.2 million inspected at 8. This effect occurs because more 
passage intensive documents are placed higher up the rank by the term weighting 
mechanism. The load imbalance figures demonstrate that the workload is fairly distributed 
amongst leaf nodes (see fig 7). It should be noted that the slight drop in relative 
performance on 8 leaf nodes for title only queries is because client processes had to be 
mapped to one of the search leaf nodes and this affected the timings very slightly. 
 The elapsed time for whole topic queries on BASE1 (see fig 9) do not meet the 10 
second requirement for elapsed time suggested by Frakes [7] on runs up to 5 leaf nodes. 
Throughput is therefore much reduced compared to title only (see fig 10). The comparison 
with other VLC2 participants is not so good: the run at 8 leaf nodes only betters 2 out of the 
11 submitted runs [5]. While run times are much slower than title only, the other evidence 
found in those experiments are confirmed in these. Scaleup is super linear (see fig 8) which 
is surprising since the number of documents processed is very near the maximum (see fig 
6). As with title only the number of passages processed reduces with increasing the number 
of leaf nodes and for the same reason (see fig 11). The actual number of passages inspected 
is more with whole topic than with title only (see figs 5 and 11). Load imbalance is very 
small with whole topic queries (see fig 7).  
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Fig 9. BASE1 [whole topic]: Retrieval 

efficiency, average elapsed time in 
seconds for 1000 documents per node 
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Fig 10. BASE1 [whole topic]: 

Retrieval efficiency, throughput  
for 1000 documents per node 
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Fig 11. BASE1 [whole topic]: Retrieval efficiency,  
passages processed for 1000 documents per node 

  
 Concerning retrieval effectiveness on title only it is found that no increase accrued 
for precision at 5,10 and 15 and it decreases on precision at 20 as number of leaf nodes is 
increased (see table 2). There are also slight variations in whole topic results (see table 3). 



However no decrease or increase found is statistically significant.  We can state that 
examining the extra passages does not bring any benefit to any of the retrieval effectiveness 
measures used. It is also a clear indication that the ranking process is doing its job: the best 
documents useful for passage retrieval are contained in the top 1000 ranked documents. 
 

Leaf 
nodes 

p@ 5 p@ 10 p@ 15 p@ 20 

1 0.268 0.186 0.161 0.148 
2 to 4 0.268 0.186 0.161 0.147 
5 to 8 0.268 0.186 0.161 0.146 

 
Table 2. BASE1 [title only]: Retrieval effectiveness results for  

1000 documents per node 
 

Leaf 
nodes 

p@ 5 p@ 10 p@ 15 p@ 20 

1 0.196 0.160 0.140 0.126 
2 to 8 0.200 0.162 0.141 0.127 

 
Table 3. BASE1 [whole topic]: Retrieval effectiveness results for  

1000 documents per node 
  
 Table 4 shows the comparison of BASE1 and BASE10 measures. Elapsed times in 
general are good apart from whole topic queries on BASE10: a minute or more response 
time for queries is not acceptable [7]. The average elapsed time for title only queries on 
BASE10 is better than half the runs of other VLC2 participants [5]. The scalability derived 
from BASE1 to BASE10 is particularly good for whole topic queries which recorded 1.08 
(a figure of 1.0 is linear scalability). Throughput on BASE1 is much better than BASE10 as 
one would expect. All precision measures are better at BASE10 than BASE1: all record a 
reasonable increase.  As with BASE1, there is little variation in BASE10 precision results 
for both types of queries. 
 

MEASURE BASE1 
  title         whole 
  only         topic 

BASE10 
  title         whole 
  only         topic 

Time (secs) 0.207 7.09 2.27 65.7 
Throughput 
(Queries/Hr) 

17,406 508 1,588 55 

Scalability (1 to 10) - - 0.91 1.08 
LI 1.052 1.005 1.015 1.003 
p@ 5 0.268 0.200 0.320 0.348 
p@ 10 0.186 0.162 0.304 0.310 
p@ 15 0.161 0.141 0.275 0.275 
p@ 20 0.146 0.127 0.251 0.249 

 
Table 4. BASE1/BASE10: Retrieval effectiveness and efficiency results for 1000 

documents per node (8 nodes). 
  
 In summary we state that while retrieval efficiency advantages are gained by using 
this type of parallelism (in spite of the extra passage data inspected), there is no clear gain 
in retrieval effectiveness. From the evidence given above the ranking process does its job 
well, therefore processing extra documents using our passage retrieval method is 
unnecessary when the BM25 weighting function is used. Hypothesis 2 is not supported 
given the evidence supplied by these experiments. 



8.2  Experiment Results for 1000 documents overall 
 
 The results gained in these experiments for title only queries can only be described 
as remarkably good. The parallel measurements demonstrate this clearly with a super linear 
speedup recorded on all parallel runs (see fig 17). As a result all parallel efficiency results 
are greater than 1 with  most figures greater than 1.5 (see fig 18). Load imbalance is very 
small with most figures very near 1 (see fig 16). All elapsed times are very good and under 
half a second (see fig 12). The scalability from BASE1 to BASE10 is very good, recording 
a figure of 1.32 (refer to table 5).  
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The method gains substantially from very low communication overhead. Why does a 
substantial speed advantage over sequential processing occur with this method of parallel 
passage retrieval? There is no obvious effect from the number of passage processed (see fig 
14), as the number processed fluctuates with leaf node count. This effect has to occur 
because the documents examined in paralleism are less computationally intensive to 
examine than the set examined on the uniprocessor i.e. each passage on the uniprocessor is 
on average more expensive to process than on the parallel nodes. There is an interesting 
interaction between the parallel algorithm and the weighting function that merits 
investigation.   
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Fig 19. BASE1 [whole topic]:  Retrieval 

efficiency, average elapsed time in 
seconds for 1000 documents overall 

  
 The query processing results are even more remarkable using whole topic queries 
than using the title only query set. A large part of the difference can be put down to the 
number of passages processed in these experiments as compared with a uniprocessor on 
whole topic: just over three million for the former compared with five and half million for 
the later (see fig 21). As with title only queries the numbers do not vary much on runs with 
differing numbers of leaf nodes. Response times for parallel runs are only unacceptable at 2 
leaf nodes (see fig 19) and throughput is much improved in these experiments compared to 
uniprocessor experiments (see fig 20).   
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Fig 20. BASE1 [whole topic]: Retrieval 

efficiency, throughput (queries/ hour) for 
1000 documents overall 
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Fig 21. BASE1 [whole topic]: Retrieval 
efficiency, passages processed for 1000 

documents overall 
 
 The retrieval effectiveness found on uniprocessor experiments is also found in 
these experiments for both types of queries, e.g. 0.148 for precision at 20 for title only. 
Precision at 20 varies very slightly for whole topic queries, but the difference is not 
significant, e.g. values of 0.126/0.127 were recorded. From this we deduce that examining 
the top 1000 documents on the uniprocessor is no different from examining 1000 
documents by selecting top ranked documents locally on each leaf node. The evidence from 
this leads directly on to experimentation described in the next section.  
 
8.3  Experiment results for reduced document sets 
 
 As we have observed from the above, it does not seem to matter if we examine 
1000 documents or more, retrieval effectiveness at lower precision points is not improved 
or harmed much by any of the methods applied. We decided to experiment with a smaller 
set of documents using the parallel passage retrieval algorithm on 8 leaf nodes with the 
BASE1 and BASE10 collections. This is done to see how the reduction affected the 
performance of the parallel algorithm. We chose 504, 256 and 128 being near a half, a 
quarter and eighth respectively of experiments on 1000 documents overall (we include no 
passages results in tables 5 to 8 for comparison purposes).  
 
 
 



Docs 
pro-
cesse

d 

p@ 5 p@ 10 p@ 15 p@ 20 

1000 0.268 0.186 0.161 0.148 
504 0.268 0.186 0.161 0.147 
256 0.268 0.184 0.160 0.146 
128 0.268 0.184 0.159 0.149 

0 0.244 0.178 0.149 0.130 
  

Table 5. BASE1 [title only]: Retrieval effectiveness results on varying  
the number of documents in which passage processing is applied. 

 
Docs 
pro-
cesse

d 

p@ 5 p@ 10 p@ 15 p@ 20 

1000 0.200 0.162 0.141 0.127 
504 0.200 0.162 0.141 0.127 
256 0.200 0.162 0.141 0.127 
128 0.196 0.160 0.140 0.126 

0 0.188 0.172 0.145 0.128 
  

Table 6. BASE1 [whole topic]: Retrieval effectiveness results on varying  
the number of documents in which passage processing is applied. 

 
 

Docs 
pro-
cesse

d 

p@ 5 p@ 10 p@ 15 p@ 20 

1000 0.324 0.302 0.275 0.254 
504 0.324 0.302 0.275 0.254 
256 0.324 0.304 0.276 0.252 
128 0.320 0.300 0.279 0.253 

0 0.324 0.282 0.273 0.264 
  

Table 7. BASE10 [title only]: Retrieval effectiveness results on varying  
the number of documents in which passage processing is applied. 

 
 The evidence given in tables 5 to 8 demonstrates that we do not need to examine 
the full 1000 documents to achieve very nearly the same level of retrieval effectiveness at 
lower precision. There are some differences but they are very minor for both types of 
query. We can reduce the level of computation on the passage retrieval method and still 
obtain the extra retrieval effectiveness found when using that method. The experiments 
reinforce the assertion that the BM25 ranking function does its job well. This function in 
conjunction with passage retrieval applied to smaller document sets can improve retrieval 
effectiveness.  
 From table 9 we can see that elapsed times for title only queries change only very 
slightly as the number of documents examined by the passage retrieval decreases. The 
times in seconds from term weighting searches without passage processing (0.06 for 
BASE1, 0.54 for BASE10), show that while searches on BASE10 show linear reduction 
from 1000 to 128, those on BASE1 do not. This indicates that the size of collection 
combined with the term weighting scheme are significant factors that affect passage 
retrieval performance. As BASE10 is a much larger database, searches on it will pick 
documents that are roughly the same in passage processing costs and they are ranked in the 
top set by the term weighting scheme. Searches on BASE1 generate more passage intensive 
documents higher up the rank, which require extra computation: further evidence that the 
ranking process is doing its job. Other measures such as scalability and LI are good.   



 
 

Docs 
pro-
cesse

d 

p@ 5 p@ 10 p@ 15 p@ 20 

1000 0.352 0.310 0.275 0.251 
504 0.356 0.312 0.271 0.249 
256 0.356 0.304 0.272 0.246 
128 0.364 0.306 0.267 0.246 

0 0.356 0.298 0.271 0.247 
  

Table 8. BASE10 [whole topic]: Retrieval effectiveness results on varying  
the number of documents in which passage processing is applied. 

 
 

Measure docs=1000 
BS1     BS10 

docs=504 
BS1   BS10 

docs=256 
BS1   BS10 

docs=128 
BS1   BS10 

Time (secs) 0.11 0.84 0.10 0.71 0.09 0.62 0.08 0.58 
Throughput 
(Queries/Hr) 

32k 4.2k 38k 5.1k 42k 5.8k 46k 6.2k 

Scalability  - 1.32 - 1.35 - 1.37 - 1.34 
LI 1.11 1.04 1.14 1.04 1.16 1.04 1.18 1.05 

 
Table 9. BASE1/BASE10 [title only]: Retrieval efficiency results for on varying numbers 

of documents 
  

Measure docs=1000 
BS1     BS10 

docs=504 
BS1   BS10 

docs=256 
BS1   BS10 

docs=128 
BS1   BS10 

Time (secs) 2.29 16.3 1.64 10.4 1.28 8.47 1.09 7.50 
Throughput 
(Queries/Hr) 

1.5k 221 2.2k 346 2.8k 425 3.3k 480 

Scalability  - 1.41 - 1.58 - 1.52 - 1.45 
LI 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 

 
Table 10. BASE1/BASE10 [whole topic]: Retrieval efficiency results for on varying 

numbers of documents 
 
The figures for whole topic queries show more improvement than title only queries 

with respect to average query processing time (see table 10). The timings from term 
weighting searches without passage processing (0.77 for BASE1, 6.45 for BASE10) show 
that the time reduction is very near linear. Load balance for all runs is very good. The 
scalability is excellent for all BASE10 runs, and confirms the effect of collection size and 
term weighting function on performance. 
 
9. Summary and conclusion 
 
The retrieval efficiency results given in this paper is in the main very good indeed: the 
performance improvement using parallelism is very good on both types of query. 
Complexity analysis suggest that the passage retrieval algorithm used in this research is 
reduced from O((a(a-1)/2)) on a uniprocessor to O((a(a-1)/2)/P) when parallelism is used 
(where a is the number of text atoms and P is the number of leaf nodes). All parallel 
measures show an increase in performance that infers this complexity analysis is justified.  
The elapsed time for any run on title only queries were well under the 10 seconds 
recommended by Frakes [7], while the use of parallelism on whole topic queries does yield 
acceptable run times when using a larger node set. To the best of our knowledge we are the 
first to make a practical attempt at speeding up the passage retrieval algorithm described in 
this paper. We have demonstrated that hypothesis 1 on retrieval efficiency has been 
confirmed, that is we have demonstrated speedup and scaleup for passage retrieval using 



parallel computing. 
 With respect to retrieval effectiveness, the passage retrieval algorithms do bring 
benefits on web data over ordinary term weighting but such is not guaranteed. However it 
is clear from the above that the algorithm only needs to be applied to a subset of the top 
ranked documents to gain effectiveness. Clearly the ranking process using BM25 does its 
job very well. However gains are collection and query set dependent (this result is 
confirmed  in our TREC8 experiments [8] and independently confirmed by Kazkiel & 
Zobel [9]). With title only queries on the BASE1 database yield an increase of 13.8% from 
0.130 to 0.148 in precision at 20 when passage retrieval is applied. A reduction in 
effectiveness on some precision points is recorded when the same queries are applied to the 
BASE10 collection: any increase found is not significant. Whole topic queries do not do as 
well as title only, a problem that merits further investigation. 
 While retrieval efficiency improvement is significant using parallelism on passage 
retrieval clearly many of the experiments described above to do not bring any benefits with 
respect to effectiveness over the sequential passage retrieval algorithm. A hypothesis which 
asserts that examining more of the search space in passage retrieval yields more relevant 
documents is not supported by the results given in this paper - indeed, the evidence is 
against it. This is not to suggest that applying parallelism to passage retrieval does not 
work, but the choice will depend on whether to use parallelism with term weighting or not. 
We can apply the passage retrieval algorithm to fewer documents, at a computational cost 
slightly higher than that term weighting to obtain better retrieval effectiveness. The 
implication is that parallelism is not worth applying to passage retrieval on a reduced set of 
documents, if it is not worth applying the strategy to term weighting. 
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Appendix 1 - Example of search topology used 
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Appendix 2 – The BM25 Term Weighting Function 

 

 

 CW(i,j)  =          CFW(i) * TF(i,j) * K1+1 
                     ------------------------------------------ 
          K1 * ((1-B)+(B*(NDL(j)))) + TF(i,j) 
 
Variables 
 
CW(i,j) :   Weight for term t(i) in document d(j). 
CFW(i,j) : Collection frequency weight log(N) - log(n). 
n(i)   : The number of documents term t(i) occurs in. 
N  : The number of documents in the collection. 
TF(i,j)  : The number of occurrences of term t(i) in document d(j). 
                      (term frequency) 
DL(j)   : The total number of terms in document d(j) 
NDL(j)  :  Normalised document length 
     (DL(j) / average DL for all documents.) 
 
Constants 
 
K1  : Constant that modifies influence of term frequency. 
B  : Constant that modifies effect of document length. 


