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Abstract: The generation of inverted indexes is one of the most computationally 

intensive activities for information retrieval (IR) systems: indexing large multi-

gigabyte text databases can take many hours or even days to complete. We 

examine the generation of partitioned inverted files in order to speed up the 

process of indexing. We describe the components of PLIERS, the system  used to 

index the documents and how these components can be re-configured to generate 

indexes with different types of partitioning. Two types of index partitions are 

investigated: TermId and DocId. Two types of build are investigated: local and 

distributed. The results from runs on both partitioning and build methods are 

compared and contrasted, concluding that DocId is the more efficient method. 

 

1. INTRODUCTION 

 The generation of inverted indexes for text databases is a computationally intensive 

process that requires the exclusive use of processing resources for long periods. The 

following considers  techniques that could be used in order to speed up the generation of the 

initial inverted file. The research described in this paper is part of an overall effort to 

understand and quantify the effects that differing partitioning methods for inverted files in 

parallel IR systems have on the performance of indexing, search, passage retrieval and index 

update (MacFarlane, 2000). Two types of partitioning methods are investigated: term 

identifier (TermId) partitioning and document identifier (DocId) partitioning: a partition is 

defined as the logical distribution of the inverted file. TermId partitioning is a type of 

partitioning which distributes each word to a single partition, while DocId partitioning 

distributes each document to a single partition. These partitions are fragmented across 

physical disks.  A fuller discussion of these partitioning methods can be found in (Jeong & 

Omiecinski, 1995; MacFarlane et al, 1997) and an example can be found in appendix 1. Two 

types of index build methods are used: Local and Distributed. With local build, documents 

are kept on a Local disk and analysis is done on that Local disk only (Hawking, 1997): this 

method is applicable to DocId partitioning only. The distributed build method works by 

distributing the documents to nodes from a single disk. Section 2 describes a re-configurable 

process topology used to create different types of partitioned inverted files. Sections 3 and 4 

describe the individual components of this process topology, while the indexing methodology 

used for the experiments is outlined in section 5. The hardware used for the experiments is 

described in section 6 while the data used in the experiments is described in section 7. In 

sections 8 and 9 we describe some results on build methods using DocId partitioning and 

TermId partitioning respectively, concluding in section 10 by comparing and contrasting the 

results. We provide a glossary of terms at the end. 

 

2. INDEXING TOPOLOGIES 

 Our requirement for indexing topologies is to be able to support both partitioning 

methods under consideration as well as the two build strategies. The components of the 

topology must be reconfigurable in order to create different build types and numbers of 

inverted file partitions using different process combinations. Figure 1 show examples of both 

types of builds using the DocId partitioning method, together with process to processor 

mapping examples. 
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Fig 1a - local build 
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Fig 1b - distributed build 

Fig 1 - Build examples using the DocId partitioning method 

 

 The local build method for parallel indexing is a very simple topology requiring little 

communication (see fig 1a). Each indexer node runs independently with no need for 

communication  between them (the function of the indexer is described below). This form of 

build is applicable to DocId only. The distributed build method uses the process farm 

paradigm (Bowler et al, 1989) and an example of the one  proposed for indexing is shown in 

fig 1b. The structure in the example consists of a farmer and n worker processes whose 

function is described below. Fig 1 shows the contrast in the build methods particularly with 

regard to the distribution of text to be indexed. The difference between the two methods is 

that text is kept locally when the local build method is used, and kept centrally on a single 

disk when distributed build is used (see appendix 2 for an example of how this works). We 

use local build where a given collection could not be physically placed on a single disk (e.g. 

VLC2/WT100g). 
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Fig 2a - Distribution of text Phase 
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Fig 2b - Distribution of data to paritition phase 

Fig 2 - Distributed Build example using the TermId partitioning method 

 

 Each method has its own advantages and disadvantages, and we leave the detailed 

discussion of such until later. The issue of communication is important here. It can be seen 

from both the diagrams and the descriptions above that some topologies will require a great 

deal more network resource than others. For example distributed build methods will require 

more communication than local build indexing in order to distribute text. Fig 2 shows an 

index topology example for TermId partitioning.  



 

 

3. DISTRIBUTED BUILD TOPOLOGY COMPONENTS 

 In this section we describe the functions of the farmer, worker and global merge 

parallel processes. Note that there is only one farmer processor, and a number of worker 

processes (which become global merge processes in TermId). Our reason for using this 

method is that it allows us to automatically distribute text to nodes: it has the disadvantage in 

that the method is more communication intensive than the local build method (see section 4). 
 

 

 

3.1 Farmer Process 

 The farmer's job is to distribute documents to the workers (see Fig 3). Essentially it 

distributes work as equally as possible to create the least amount of load imbalance possible. 

Single documents or files containing multiple documents can be distributed: the latter saves 

communication time. There is an initialisation stage where each worker is given its first 

initial document/file; after that workers are only given documents/files when they request 

them, i.e. send a message to the farmer asking for more work. When no more documents/files 

are left, a termination notice is sent to every worker process. Document identifiers are 

allocated individually if the granularity of parallelism is documents and in blocks if it is files. 

The document length cannot be recorded until the document has been analysed, and this data 

is sent to the farmer when a worker requests further work: this data is saved to disk when 

received. In an attempt to keep workers load balanced a request for work is serviced as soon 

as possible after it has been received so that workers who index small documents or files are 

not kept waiting for too long. 

 

3.2 Worker Process 

 The worker's function is to break down the document into its constituent parts, i.e. 

terms, and perform some analysis on these terms, e.g. stemming using the methodology 

described below (see fig 4). If required, the position record is stored for each term using 

current values of accumulated data for field number, paragraph number, sentence number, 

word number and preceding stop words. After each word is found these values are updated. 

The worker creates and inserts this word/position data in a bucket: the method of storage for 

bucket elements is an AVL tree. In the case of DocId partitioning one bucket is used while 

100 are currently used for TermId: words are hashed to a given bucket based on a dictionary 

(Cowie, 1989). The posting list is either created using the document identifier and the 

position record or updated by incrementing the number of positions and adding the position 

record to the position list. When any of the memory limits is reached, the results are saved on 

 

Distributed Initial set of documents/files to all workers 

 

Loop no of files/documents 

 get a request from worker i 

 Case(request type) 

      work request: send document/file to worker i 

       id request     : send block of document id's to worker i 

          EndCase 

EndLoop 

Loop until all workers have been terminated 

 get a request from any worker i 

 Case(request type) 

      work request: send termination notice to worker i 

       id request     : send block of document id's to worker i 

          EndCase 

EndLoop 

 

 

Fig 3. Farmer algorithm for parallel indexing 



 

a temporary file on disk for each bucket. A worker then requests work from the farmer and 

waits for a new document/file to analyse. A termination notice is received when there are no 

more documents/file to be processed and the worker either saves the inverted file directly 

from memory if the inversion has fitted into memory, or merges the intermediate results to 

create the inverted file. Where DocId partitioning is required the process can stop here, if 

TermId is required then a global merge is invoked. 

 

 

 

3.3 Global Merge Process 

 This further process is only used for TermId partitioning (see fig 5). The global 

merge process has three phases; a heuristic is applied to choose the distribution of the files, 

the files are then transferred across the network to the required node and a second Local 

merge is initiated to create the final inverted file. The heuristic in the first phase works by 

calculating the average value for each of the 100 partitions and attempts to derive a 

distribution of buckets amongst nodes that is within a given criterion, currently with 10% of 

the average value: up to five iterations are used. The average chosen for distribution is to 

prevent a node being overloaded with data, while iterations were restricted to ensure the 

process of allocating terms to nodes was fast. The average value can be one of three variables 

on a bucket; word count (WC), collection distribution (CF) and term distribution (TF): we 

refer to these as term allocation strategies. When the distribution is generated it is used to 

transfer the files for that bucket to the node that has been allocated that bucket: this is done 

by gathering from all processes to the target process. The merge is then initiated on those 

transferred files. 

 

Loop until termination notice received 

 Receive a document/file from the farmer 

 Analyse document/file -> index  

 If memory limits exceeded at any point during analysis 

   then save index on disk 

 Send request for work to farmer 

EndLoop 

If memory limits have not been exceeded 

 Save index directly to create inverted file 

Else 

 Save current index to disk. 

 Merge data saved on disk to create inverted file 

EndIf 

 

Fig 4. Worker algorithm for parallel indexing 



 

 

4. LOCAL BUILD TOPOLOGY COMPONENTS 

 

4.1 Timing Process 

 The only central process for local build is the timing process: it waits until all 

indexer processes are finished and saves the total elapsed time for the build. Our reasoning 

for using this method is to examine the scalability of our parallel data structures and 

algorithms: however because of its minimal communication it is the one most would choose 

in many circumstances. 

 

4.2 Indexer Process 

 Each indexer process is a sequential index process that takes the function of the 

farmer and worker processes i.e. it reads in documents, breaks them down, adds them to the 

index creating intermediate indexes when a given set of criteria is met. The intermediate 

results are then merged to form one index for each node. The indexer process only 

communicates with the timing process when it has finished building the index: apart from 

that, its work is completely independent of any other process. 

 

5. INDEXING METHODOLOGY 

 For each index build we used a stop word list of 450 words supplied by Fox (1990)  

to filter out unwanted terms. All HTML/SGML tags are stripped from the text and ignored if 

not used for specific reasons such as identifying paragraphs <p> and the end of document 

</DOC>. Each identified word was put through a Lovins stemmer, supplied by the University 

of Melbourne, and indexed in stem form. Numbers were not indexed. A large amount of in-

core memory is pre-allocated in blocks by each indexing process, and documents are analysed 

until one of several criteria is reached: exhaustion of keyword block, posting block or 

position block space. When one of the criteria is satisfied, the current analysis is saved on 

disk as an intermediate index, so that the in-core memory can be used for the next set of 

documents. When all documents have been analysed, the intermediate indexes are merged 

together to create the final index and deleted. 

 

6. HARDWARE USED 

 PLIERS (ParaLLel Information rEtrieval Research System) is designed to run on 

several parallel architectures and is currently implemented on those which use Sun Sparc, 

DEC Alpha and Pentium PII processors. All results presented in this paper were obtained on 

an 8 node Alpha farm  and 8 nodes of a 12 node AP3000 at the Australian National 

Worker i 

 

(Phase 1) 

Exchange word frequency data with all other workers 

Partition words amongst workers using required word distribution 

 criteria (WC,TF,CF) 

 

(Phase 2) 

Loop no of partitions -> j 

 If partition j belongs to worker i 

  gather partition j data from all other workers 

 Else 

  Send partition j data to required worker 

 EndIf 

EndLoop 

 

(Phase 3) 

Merge data for Workers partition to create inverted file. 

 

 

Fig 5. Global merge algorithm for parallel indexing (TermId only) 



 

University (ANU), Canberra. Each node has its own local disk: that is a shared nothing 

architecture (DeWitt & Gray, 1992) is used by PLIERS. For the Alpha farm, each node is a 

series 600 266Mhz Digital Alpha workstation with 128 Mbytes of memory running the 

Digital UNIX 4.0b operating system. Two types of network interconnects were used: a 155 

Mbytes/s ATM LAN with a Digital GIGASwitch and a 10 Mb/s Ethernet LAN: most of the 

indexing was done on ATM. The Fujistsu AP3000 is a distributed memory parallel computer 

using Ultra 1 processors running Solaris 2.5.1. Each node of the AP3000 has a speed of 

167Mhz. The machine we used has 12 nodes, but only 8 are available on a partition. The 

torus network has a top bandwidth of 200 Mbytes/s per second. 

 

7. DATA DESCRIPTION 

 We use a number of collections in our experiments: BASE1 and BASE10 plus 

BASE2, BASE4, BASE6 and BASE8 that are subsets of BASE10. BASE1 and BASE10 are 

officially defined samples of the 100 Gigabyte VLC2 collection (Hawking et al, 1999) and 

are 1 and 10 gigabytes in size respectively. The subsets of the official BASE10 collection 

were created by varying the number of BASE10 compressed text files put through the 

indexing mechanism (130 files per node for BASE2, 260 for BASE4, 390 for BASE6, 520 

for BASE8). Each of the BASE x collections is approximately x gigabytes in size. 

 The strategy used to distribute the BASE1 and BASE10 collections for local build 

was to evenly spread the directories (in which the data is distributed by the ANU) among the 

nodes as far as possible. An alternative if more time consuming strategy is to do it by file 

size. The requirement of a distribution strategy is to get the best possible load balance for 

indexing as well as term weighting and passage retrieval search. The distribution process was 

done before the indexing program was started, and is not included in the timings.  

 Two types of inverted files were used for experiments: one type that recorded 

position information (necessary for passage retrieval and adjacency operations) and one that 

recorded postings only in the inverted list. The conventional form of inverted file was used 

with a clear keyword and postings file split. A document map was also used to store data such 

as document length: this file is fragmented with local build and replicated with distributed 

build. Map data on distributed build with DocId could be fragmented, but we chose to 

replicate rather than maintain extra source code in order to save time. 

 

8. INDEX GENERATION TIME COSTS 

 In this section we declare the timing results on indexing using the configurations 

described above. The results are compared and contrasted where necessary as well as 

comparing them with available results for other systems on the BASE1 and BASE10 

collections used in the VLC2 sub-track at TREC-7 (Hawking et al, 1999). We use the local 

build method on all defined collections, but only BASE1 is indexed using the distributed 

build method. The measures discussed are: indexing elapsed time in hours, throughput, 

scalability, scaleup, speedup and efficiency load imbalance (LI) and merging costs. Metrics 

used are defined in the glossary. Results on the Alpha farm and the AP3000 are discussed. 

 

8.1 Indexing Elapsed Time 
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Fig 6. BASE1-10 local build [DocId]: indexing elapsed time in hours  

 

 In general, the Alpha farm was much faster than the AP3000 for indexing elapsed 

time as its processors are faster. For example on BASE10 local build indexing with postings 

only data took 0.82 hours on the Alphas and 1.08 hours on the AP3000 (see fig 6). The Alpha 

elapsed times recorded on local build also compare well with the results given at VLC2 

(Hawking et al, 1999). That is, on BASE1 only two groups report slightly faster times than 

our posting only elapsed time of 0.065 hours (0.043 and 0.052 hours). Our sequential elapsed 

time on BASE1 at 0.56 (postings only) also compares well with those groups utilising a 

single processor: two other groups using uniprocessors recorded 0.42 and 1 hour respectively 

(refer to figs 7 and 8). On BASE10 on the Alphas the comparison is even more encouraging: 

only one group records a faster time of 0.504 hours. It should be noted that while the group 

with the fastest BASE10 indexing time uses a much smaller machine configuration (4 Intel 

PII processors) they use a very different method of inversion in which the collection is treated 

as one document (Clarke et al, 1998). 
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Fig 7. BASE1 distributed build: indexing elapsed times in hours (position data)*  

(*Note: refer back to section 3.3 re: WC/CF/TF) 

 

 The results for distributed build indexing are presented in figs 7 and 8. The elapsed 

times for DocId are much better than those for the TermId method. This trend can be seen in 

all of the diagrams irrespective of machine or inverted file type used. The smallest difference 

is found on indexes with postings only using the AP3000. In general TermId elapsed times 

were longer than DocId because of the amount of data that has to be exchanged between 

nodes for the method, particularly for indexes with position data. Very little difference in 

time was found in any of the term allocation strategies (see section 3.3) studied for TermId.  
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Fig 8. BASE1 distributed build : indexing elapsed times in hours (postings only) 

 

 One interesting factor found in the TermId results was that the AP3000 outperformed 

the Alpha farm at 7 worker nodes largely due to the extra network bandwidth available. It is 

that this point where the compute/communication balance favours the AP3000. A further run 

using distributed build with DocId partitioning on the Alpha farm revealed how much faster 

it is to use the ATM network than the Ethernet network: the time with ATM on 2 worker 

nodes building an index for BASE1 with no position data was 0.27 hours, while the figure for 

Ethernet was nearly double at 0.47 hours. This comparison further illustrates the importance 

of network bandwidth to the distributed build method and which can cause problems in many 

IR tasks (Rungsawang et al, 1999). We did not conduct any further experiments on this type 

of build for indexing using the Ethernet network as a consequence. 

 The extra time costs engendered by generating inversion with position data varied 

(this ratio is declared in the glossary - our aim is to record a ratio as close to 1.0 as possible).  

For example, in local build DocId the difference between posting only generation and 

position data generation ranged between 1.09 - 1.37 times on the Alphas (where merging was 

required). The extra costs on BASE1 are the highest (1.25 for the AP3000 and 1.37 for the 

Alphas) because the index with postings only is saved directly to disk without the need for 

merging: merging is required only when memory limits have been exceeded. Fig 9 shows the 

ratios for distributed build experiments. How much these extra costs are justified depends on 

the query processing requirement: such as a user need for passage retrieval or proximity 

operators. 
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Fig 9. BASE1 distributed build: indexing extra costs for storage of position data 

 

8.2 Throughput 

 The metric we use for throughput is Gigabytes of text processed per hour (G/Hour) to 

compare performance between database builds. Fig 10 shows the throughput for 8 processor 

configurations. The throughput for the Alphas is much faster than for the AP3000, e.g. on 

BASE1 local build indexing with postings only the rate is 15.4 G/Hour compared with 9.5 

G/Hour on the AP3000. These are by far the best throughput results because no merging was 

needed: the configuration had enough memory to store the whole index and save it directly. 

The rate for other collections for local build indexing was 12-14 G/Hour on the Alphas for 



 

postings only. Only one VLC2 participant recorded faster throughput for BASE1 and 

BASE10 collections (just over 19 G/Hour). The throughput on BASE1 using distributed 

build DocId with is not as good the local build but is still encouraging (see fig 11).  
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Fig 10. BASE1-BASE10 local build [DocId]: indexing Gb/Hour throughput 
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Fig 11. BASE1 distributed build [DocId]: indexing Gb/Hour throughput 

 

 It was found that increasing the number of worker nodes increased the throughput for 

both distributed build methods. For example, the DocId results for 7 worker nodes yielded a 

throughput of 9.7 G/Hour on the Alphas for postings only data indexes, compared with 1.8 

for the uniprocessor experiment. The throughput for TermId builds was not as impressive but 

still acceptable with postings only: for example 5.8 G/Hour was recorded on the AP3000. 

The throughput for builds with position data was not as good, with 4.5 G/Hour on the 

AP3000 (see fig 12). Note that we only declare results for TermId with the word count (WC) 

method as there is very little difference in measurement between any of the term allocation 

strategies studied. Note also the superior performance in throughput on the AP3000 at 7 

worker nodes due to the extra bandwidth available with that machine. 
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Fig 12. BASE1 distributed build [TermId]: indexing Gb/Hour throughput (WC only) 

 

8.3 Scalability 
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Fig 13. BASE2-BASE10 local build [DocId]: indexing scalability from BASE1 

 

 The data measure used in the equation is the size of indexed text. The scalability 

metric is defined in the glossary. We measure the effect of increasing collection size on the 

same sized parallel machine using the BASE2-10 collections over the BASE1 collection. We 

look for a scalability of around 1.0, greater than 1.0 being the aim. The results are presented 

in fig 13. With postings only data the scalability ranges between 0.80 and 0.93 on the Alphas 

and 0.92 and 0.99 on the AP3000. These figures are rather distorted because of the direct 

save on BASE1, that is no merging was needed as memory limits were not exceeded. The 

results are on the pessimistic side (if more memory was available we might be able to save 

indexes directly on all the collections studied). In builds with position data the scalability is 

excellent with the Alphas registering super-linear scalability on most BASEx (BASE10 was 

the exception) and the AP3000 delivering super-linear scalability on BASE6,8 and 10. The 

scalability results for indexes with position data demonstrate that the algorithms and data 

structures implemented are well able to cope with the extra computational load and data size 

that such builds both require and process. 

 

8.4 Scaleup 
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Fig 14. BASE1-BASE10 local build [DocId]: indexing scaleup 

 

 The scaleup metric is declared in the glossary. We measure within BASEx scaleup 

for local build only in this section. We take the times on each individual processor and 

compare the smallest elapsed time with the largest elapsed time on all 8 nodes. We are 

comparing the smallest sub-collection of BASEx (1/8th of BASEx) with the full sized 

BASEx collection. We use the least favourable figure in our measurement to obtain the 

lowest scaleup from any of the chosen sub-collections: our measurements are therefore 

pessimistic. We look for a scaleup of around 1.0, greater than 1.0 being the aim. The results 

are given in fig 14. In general the scaleups recorded are very good with most above the 0.8 

mark. The worst scaleup was measured over the BASE10 collection on builds with no 

position data with a figure of 0.77. This figure was found on the Alpha farm where the 

processors are much faster. A combination of data size and processor speed can have an 

impact on scaleup: the scaleup figures for indexes with position data on the Alpha farm are 

generally superior to indexes without such data.  The situation is reversed for AP3000 where 

the processors are slower.  These scaleup figures show that there is little deterioration in 

performance of our implemented data structures and algorithms when moving from a smaller 

collection indexing on a small configuration parallel machine, compared with a larger 

collection on a larger configuration machine. 

 

8.5 Speedup and Efficiency 

 All figures relate to the BASE1 collection. Definitions of these metrics can be found 

in the glossary. Recall that our ideal speedup is equal to the number of nodes, whereas for 

efficiency we look for a figure of 1.0. A surprising feature was the superlinear speedup and 

efficiency figures found with some of the indexing experiments particularly for the local 

build DocId 8 processor runs (see table 1). For example with the direct save on postings only 

data local build on the Alphas yielded a speedup of 8.5 and efficiency of 1.07. This effect 

was also found on some of the runs using Distributed DocId indexing (see figs 15 and 16). 
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Fig 15. BASE1 distributed build [DocId]: 

indexing speedup 
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Fig 16. BASE1 distributed build [DocId]: 

indexing efficiency 

 

Machine File Type Speedup Efficiency 

Alpha NPOS 

POS 

8.5 

8.4 

1.07 

1.04 

AP3000 NPOS 

POS 

7.96 

7.2 

0.99 

0.90 

 

Table 1. BASE1 local build [Docid]: indexing speedup and efficiency 

 

 The reason this effect can occur is the extra memory multiple nodes have compared 

with a sequential processor, i.e. on local build with 8 nodes the index fits into main memory 

and it can be saved directly without the need for merging. More memory reduces the number 

of intermediate results saved to disk and therefore saves I/O time when data is merged to 

create the index. On distributed build a two worker configuration has twice the memory of 

the sequential program. The super-linear effect tails off at various stages on the Distributed 

version as communication time becomes more important (see fig 15). 
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Fig 17. BASE1 distributed build [TermId]: 

indexing speedup (WC only) 
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Fig 18. BASE1 distributed build [TermId]: 

indexing efficiency (WC only) 

 With TermId communication is very important: the global merge reduces most 

speedup/efficiency measures to less than linear (see figs 17 and 18). With position data and 

TermId there is little speedup on the Alpha Farm and efficiency ranges from the average to 

poor. Interestingly super-linear speedup/efficiency does occur on two worker nodes with 

builds on posting only data: further evidence of the significance of the memory effect.  

 

8.6 Load Imbalance 
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Fig 19. BASE1-BASE10 local build 

[DocId]: indexing load imbalance 
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Fig 20. BASE1 distributed build [DocId]: 

indexing load imbalance 

 

 The load imbalance metric we use is declared in the glossary - the ideal load balance 

is close to 1.0.  In general it was found that the distributed build imbalance was lower than 

those of local build (see figs 19 and 20). In fact distributed build using any partitioning 

method is excellent on all nodes with both methods, e.g. on 2-7 Alpha and AP3000 workers 

the LI was in the range 1.002 to 1.03 on average for DocId. The LI figures demonstrate that 

the implemented process farm method provides good load balance for indexing jobs when 

whole files are distributed to workers. 
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Fig 21. BASE1 distributed build [TermId]: indexing load imbalance 

 

 The results for TermId were generally not as good as DocId, but good in the average 

case (see fig 21). The exception was for builds with position data on 6 nodes: LI's of 1.2 for 

the AP3000 and 1.15 for the Alphas were recorded with word count (WC) distribution. The 

farm method described in, section 3 above is a very good way of ensuring load balance in the 

majority of cases. The local build LI is still very good: the worst LI recorded was 1.17 for 

BASE10 for the Alpha postings only run. We conclude by stating that both Distributed and 

local build methods achieve good load balance, but local build LI could be improved by 

paying more attention to text distribution. 

 

8.7 Merging Costs 

 We consider here the percentage of time spent merging the temporary results to 

create the final inverted file: see the glossary for a formal definition - we look for the lowest 

possible cost in % terms. We examine the DocId method first. The merging for local build 

was in the main consistent within a 1% range, e.g. on the Alphas with posting data only, the 

average merge cost was 14 to 15% (see table 2). Merging costs for builds with position data 

were higher, e.g. on the Alphas the merge cost was 19 to 20%.  Merge costs on the AP3000 

were lower on local build, e.g. with posting data the average merge cost was around 13 to 

14%. This difference is because the Alpha Farm processors are much faster and therefore the 

I/O time (which remains constant) is more significant. 

  With distributed build DocId build the merging costs were much the same as local 

build apart from Alpha builds with position data: the range found was 17 to 20%: these costs 

did not vary much from the local build (see table 3). The uniprocessor builds with position 

data registered the highest merge costs, whereas parallel DocId builds without position data 

saved indexes directly without the need for merging on 8 processors. The merge costs were 

more prominent on the Alpha as the faster processor speed reduces the computational costs 



 

and increases the importance of I/O (merge is an I/O intensive process). Merge costs are also 

more prominent on indexes which contain position data. 

  

 
Collection 

 

Alphas 

NPOS POS 

AP3000 

NPOS POS 

BASE1 - 20% - 14% 

BASE2 14% 19% 10% 14% 

BASE4 14% 19% 9% 13% 

BASE6 15% 19% 9% 13% 

BASE8 14% 19% 9% 13% 

BASE10 14% 19% 9% 14% 

Table 2. BASE1-10 local build [DocId]: % 

of average elapsed indexing time spent 

merging 

 

 
Work

-ers 

Alpha 

NPOS POS 

AP3000 

NPOS POS 

1 15% 24% 9% 16% 

2 15% 20% 9% 14% 

3 15% 19% 10% 14% 

4 15% 20% 10% 14% 

5 15% 19% 10% 13% 

6 14% 18% 9% 13% 

7 13% 17% 9% 14% 

Table 3. BASE1 distributed build [DocId]: 

% of average elapsed indexing time spent 

merging 

 

Work-

ers 

Alphas  

NPOS 

Alphas  

POS 

AP3000  

NPOS 

AP3000  

POS 

Value WC CF TF WC CF TF WC CF TF WC CF TF 

2 38% 37% 38% 44% 43% 44% 26% 26% 26% 35% 36% 37% 

3 36% 35% 36% 42% 42% 42% 26% 26% 26% 34% 34% 34% 

4 35% 34% 35% 41% 40% 40% 26% 26% 26% 34% 34% 41% 

5 32% 31% 31% 36% 37% 36% 24% 25% 25% 31% 32% 38% 

6 28% 29% 27% 33% 34% 33% 24% 24% 24% 29% 30% 30% 

7 26% 26% 25% 30% 31% 31% 23% 23% 23% 28% 30% 29% 

 

Table 4. BASE1 distributed build [TermId]: % of average elapsed indexing time spent 

merging: distributed build 

 

 Merge costs for TermId are very much higher as one would expect given the extra 

work required for merge with that method to exchange data between nodes (see table 4). 

These higher merge costs are a contributory factor in the overall loss of performance for 

TermId partitioning index builds. However there is a distinct decrease in all cases of the 

significance of merging on the Alphas, e.g. merging on indexes with position data and word 

count (WC) word distribution decreased from 44% at 2 workers to 30% on 7 workers. This is 

largely because the costs in transferring index data before the second merge can proceed 

increases with the numbers of worker nodes deployed, e.g. on the Alpha indexes with 

position data the increase is from 2 minutes at two workers to 4 minutes at seven workers. On 

the AP3000 a slight decrease in merging costs is recorded in most cases, and the decrease is 

not as pronounced as the Alphas. The Alpha's extra processor speed brings benefit to extra 

merging found when building TermId indexes. The corresponding figure for transferring 

indexes with position data on the AP3000 ranges from 2.4 minutes with two workers to 2.9 

with seven workers. The AP3000 is better able to cope with this extra cost in transferring 

data for the second merge as it has extra bandwidth available in its network. 

 

8.8 Summary of Time Costs for Indexing 

 With respect to comparable metrics such as elapsed time and throughput, we have 

demonstrated that for a least one partitioning method, namely DocId, our results are state of 

the art compared with other VLC2 participants (Hawking et al, 1999). We have found that in 

most cases the Alpha farm outperforms the AP3000 except for some TermId runs: the 

AP3000 has a much higher bandwidth network available to it that is an advantage in such 

builds. Comparing the partitioning methods we have found that builds using the DocId 

method outperform index builds using TermId in all experiments. Our speedup and efficiency 

figures show that the methods of parallelism do bring time reduction benefits, particularly for 



 

the DocId partitioning method. The scalability and scaleup figures show that our 

implemented data structures and algorithms are well able to cope with increasingly larger 

databases on a same sized or larger parallel machine. The load imbalance is generally quite 

small for all runs. The extra costs for generating indexes with position data vary, but are not 

an insubstantial part of the overall costs. Merge costs are also an important element of total 

time, depending on the build and partitioning method used. 

 

9. INDEX FILE SPACE COSTS 

 In this section we declare the space overheads using the configurations described 

above. The results are compared and contrasted where necessary as well as comparing them 

with overheads on the BASE1 and BASE10 collections used in the VLC2 sub-track at TREC-

7 (Hawking et al, 1999). The space overheads discussed are: overall inverted file space costs, 

keyword file space costs and file space imbalance. 

 

9.1 Inverted File Space Costs 
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Fig 22a. BASE1-BASE10 local build 

[DocId]: index space costs in Gigabytes 
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Fig 22b. BASE1-BASE10 local build 

[DocId]: index space costs in % of text 

 

 The metrics we used here are the file sizes in Gigabytes and percentage of original 

text size. The space costs for local build indexes are fairly constant in percentage terms 

across all collections (see fig 22b), although a slight reduction in index size compared with 

the size of the text can be see in fig 22a. This reduction occurs irrespective of the type of data 

stored in the inverted file. From fig 23 we can observe that there is a slight increase in index 

size for increasing the processor set when using distributed build methods. The reason for 

this is because of the replicated map requirements of distributed builds. The increase is more 

marked for DocId partitioning. If the map file size is taken away from the total size then the 

DocId indexes increase is much smaller (the reason any increase at all is explained in section 

9.2).  
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Fig 23a. BASE1 distributed build: index 

space costs in Gigabytes  
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Fig 23b. BASE1 distributed build: index 

space costs in % of text 

 

 The comparison with space costs of the VLC2 participants (Hawking et al, 1999) is 

favourable with postings only data: our smallest figure of 0.11 Gigabytes on BASE1 was 

smaller than all submitted results and on BASE10 only one VLC2 participant at 0.902 



 

Gigabytes was smaller than our figure of 1.1 Gigabytes. The comparison with files that 

contain position data is not so good and our smallest figure of 0.31 Gigabytes for BASE1 is 

bested by two groups, while on BASE10 three groups record a smaller figure than our 3.0 

Gigabytes. 

 

9.2 Keyword File Space Costs 

 The metric for keyword file space costs is the size in megabytes and the keyword file 

percentage of the total inversion. With local build on both postings only and position data we 

found that the trend in keyword space costs was a decreasing one, e.g. 32% on BASE1 to 

22% on BASE10 with postings only data (see fig 24b). This is because the increase in 

lexicon is not linear with the increase in collection (fig 24a).  With distributed DocId indexes 

the keyword costs remain constant, e.g. 24-26% (see fig 25b). The size of the keyword file 

actually increases with more inverted file partitions (see fig 25a), but this increase is not 

significant and is absorbed by the increase in size of the replaced document map. We state 

that there is little extra cost in having words replicated across different fragments for DocId 

partitioning on this type of collection (Web data). For TermId indexes the size of the keyword 

file was constant irrespective of term allocation method, and if the map data is included in 

costs the significance of the keyword file with respect to the total index size gradually 

decreases (see figs 25a and 25b).  
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Fig 24a. BASE1-BASE10 local build 

[DocId]: index space costs in megabytes for 

keyword file 
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Fig 24b. BASE1-BASE10 local build 

[DocId]: index space costs in % of index for 

keyword file 
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Fig 25a. BASE1 Distributed Build: space 

costs in megabytes for keyword file 
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Fig 25b. BASE1 Distributed Build: index 

space costs in % of index for keyword file 

 

9.3 File Load Imbalance 

 We use the concept of load imbalance (LI) but apply it to file sizes instead, i.e. 

maximum file size / average file size. We wish to ensure that index data is fairly distributed 

amongst nodes, e.g. it would not be desirable for one index partition to exceed the space 

available on a physical disk. The index time LI results are included in the figs 26 to 28 for 

comparative purposes. The space imbalance for text space costs was in general fairly stable 

being in the range 1.04 to 1.02 for all local build indexing runs (see fig 26). In comparison 

the inverted file imbalance was much higher, particularly for the smaller collections. Clearly 

the imbalance stems not from the size of the text, but from aspects of the text such as the 



 

number of documents and total word length of the text. In contrast the space imbalance for 

distributed build  on DocId partitioning was small for any type of inverted file data storage 

(see fig 27). There is no significant difference between the space imbalance of inverted files 

and LI for indexing times with DocId partitioning. The file space imbalance figures further 

proof of the validity of the farming method for balancing load for DocId partitioning. 
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Fig 26. BASE1-BASE10 local build [DocId]: index space imbalance on files 
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Fig 27. BASE1 distributed build [DocId]: index space imbalance on index files 
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Fig 28. BASE1 distributed build [TermId]: index space imbalance on index files 

 

 The situation for TermId varies depending on the type of word distribution method 

used (see fig 28). For the word count (WC) distribution space imbalance was generally very 

poor, with the worst being indexes with position data on 6 worker nodes: an imbalance of 

1.52 was recorded (interestingly the worst imbalance for indexing times, see fig 28). The 

figures for the collection frequency distribution method (CF) are much better with an 

imbalance range of 1.02 to 1.07 for all builds. In the term frequency (TF) method the 

imbalance was erratic being very poor at 5 and 6 worker nodes for any index builds, but good 

on all other runs. Any imbalance in space does not affect computational imbalance adversely. 

None of the TermId space imbalance results are as good as the DocId for space costs on 

distributed builds, as it is much harder to derive a good data distribution method for TermId 

indexes (the allocation of terms to nodes is a more difficult problem than allocating 

documents to nodes). None of the methods implemented affect space imbalance such that an 

index partition exceeds the physical disk of any node. 

 



 

9.4 Summary of Space Costs for Indexing 

 Overall space overhead for the indexing is state of the art and comparable with the 

results give by VLC2 participants: at least for indexes with postings only. The Distributed 

Build DocId results show that the cost of storing keywords does grow with increasing the 

fragmentation, but given that local build results show that space costs decrease with database 

size we do not see this a serious overhead for the DocId partitioning method. The space costs 

imbalance for local build is generally quite stable, but the generated inverted files vary more. 

Clearly the consideration of the number of files on its own is not sufficient to ensure very 

good balance. For distributed builds space imbalance was much smaller, except for some 

TermId indexes where distribution methods are more difficult to derive: no index partition 

exceeds the size of a node's local disk. 

 

10. CONCLUSION 

 The results produced in this paper show that of the partitioning methods, DocId 

partitioning using any build has by far the most promise and would in most circumstances be 

the method chosen for indexing. This would be the case particularly if the collection under 

consideration needed frequent re-builds. We have used the DocId method to good effect in 

the Web track for TREC-8 on the full 100 Gigabyte VLC2 collection (MacFarlane et al, 

2000). Where disk space was limited, the local build method could be used to good effect: we 

used this build method on the BASE10 as we did not have sufficient space to do distributed 

builds on that collection. We have demonstrated that indexing is state of the art in both 

compute and space terms by comparing our space and time results with those given at VLC2 

(Hawking et al, 1999) and the TREC-8 Web Track (Hawking et al, 2000). Although we did 

not produce the best results for all measures, no group at VLC2 did either. Our indexing time 

for the full 100Gb collection was the best in the Web Track (MacFarlane et al, 2000). 

 A clear distinction must be made between DocId and TermId partitioning methods. 

Distributed build DocId out-performs TermId in all areas of time cost metrics and would 

therefore always be preferred if indexing was of primary concern. We state this irrespective 

of the type of inversion or algorithms/methods used if cluster computing is utilised. We 

would recommend that TermId only be used if two main criteria are met. One is that a high 

performance network is available to reduce time spent on transferring data during the global 

merge process. The other is that some other benefit must accrue from the use of TermId 

partitioning which in essence would be some advantage in search performance or index 

maintenance criterion over the DocId method. 
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Appendix 1 - An example of how Partitioning methods for Inverted Files distributes data 
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Appendix 2. Examples of build methods for distributed inverted files 

 



 

Glossary 
 

CF allocation Method of term allocation in TermId to partition using a 

collection frequency criterion. 

Distributed 

Build 

Method of building indexes where text is distributed from a single 

node. 

DocId Parititioning method which assigns all document data for a given 

document to one index partition 

Efficiency Measure of the effective use of processors. Definition: 

Speedup on n processors/n processors 

Elapsed time Time to build an index. 

Farmer Process which distributes text to nodes. 

Global Merge Process which exchanges data between nodes in order to create a 

distributed TermId inverted file. 

Indexer process Process in local build which analyses text and builds inverted file 

to the local disk. 

LI A measure of the amount of load imbalance on n processors: 

max time on n processors/average time on n processors 

Local Build Method of indexing where all processing is kept local to the node. 

Merge Costs Percentage of time spent merging over all the processors. Definition 

     average merging time on all P Processors  

      -------------------------------------------------     *  100 

     average elapsed time on all P processors. 

Mhz Megahertz: processor clock speed. 

Partition Fragment of Inverted file on a nodes disk. 

Position Data 

Extra Cost 

Ratio = Elapsed Time for a given task on an index with position data 

                 Elapsed Time for the same task on an index with postings 

only 

 

Scalability A measure of how well the algorithm scales on the same 

equipment. Definition: 
     Time on small collection             Size of large collection  

      --------------------------------     *    -----------------------------  

     Time on large collection             Size of small collection 

Scaleup We define scaleup as the comparison metric [11]:  

     elapsed time on P processors indexing small problem DB 

     --------------------------------------------------------------------- 

     elapsed time on P' processors indexing big problem DB' 
where P' > P and DB' > DB 

Speedup Measure of speed advantage of parallelism. Definition: 

Time on 1 processors / Time on n processors. 

TermId Parititioning method which assigns all term data for a given term 

to one partition 

TF allocation Method of term allocation in TermId to partition using a term 

frequency criterion. 

Timing Process Process which times local build indexing elapsed time. 

Throughput Gigabytes of text processed per hour. 

TREC Annual Text Retrieval Conference run by the National Institute of 

Standards and Technology in the United  States. 

VLC Very Large Collection: Collection of 100 GB web data used in 

the TREC-7 VLC2 sub-track. 

WC allocation Method of term allocation in TermId to partition using a word 

count criterion. 

Web Track Sub track of TREC-8. 

Worker Process which creates index data from raw text. 

Zipf distribution Distribution which suggests that a few words will occur in many 

documents, while many words will occur in few documents. 

 


