

City, University of London Institutional Repository

Citation: MacFarlane, A., McCann, J. A. & Robertson, S. E. (2005). Parallel methods for

the generation of partitioned inverted files. Aslib Proceedings; New Information
Perspectives, 57(5), pp. 434-459. doi: 10.1108/00012530510621888

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4457/

Link to published version: https://doi.org/10.1108/00012530510621888

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 PARALLEL METHODS FOR THE GENERATION OF PARTITIONED

INVERTED FILES

1
A. MacFarlane,

2
J.A.McCann,

 1,3
S.E.Robertson

1
 Centre for Interactive Systems Research, City University, London

2
Department of Computing, Imperial College London

3
Microsoft Research Ltd, Cambridge

Abstract: The generation of inverted indexes is one of the most computationally

intensive activities for information retrieval (IR) systems: indexing large multi-

gigabyte text databases can take many hours or even days to complete. We

examine the generation of partitioned inverted files in order to speed up the

process of indexing. We describe the components of PLIERS, the system used to

index the documents and how these components can be re-configured to generate

indexes with different types of partitioning. Two types of index partitions are

investigated: TermId and DocId. Two types of build are investigated: local and

distributed. The results from runs on both partitioning and build methods are

compared and contrasted, concluding that DocId is the more efficient method.

1. INTRODUCTION

 The generation of inverted indexes for text databases is a computationally intensive

process that requires the exclusive use of processing resources for long periods. The

following considers techniques that could be used in order to speed up the generation of the

initial inverted file. The research described in this paper is part of an overall effort to

understand and quantify the effects that differing partitioning methods for inverted files in

parallel IR systems have on the performance of indexing, search, passage retrieval and index

update (MacFarlane, 2000). Two types of partitioning methods are investigated: term

identifier (TermId) partitioning and document identifier (DocId) partitioning: a partition is

defined as the logical distribution of the inverted file. TermId partitioning is a type of

partitioning which distributes each word to a single partition, while DocId partitioning

distributes each document to a single partition. These partitions are fragmented across

physical disks. A fuller discussion of these partitioning methods can be found in (Jeong &

Omiecinski, 1995; MacFarlane et al, 1997) and an example can be found in appendix 1. Two

types of index build methods are used: Local and Distributed. With local build, documents

are kept on a Local disk and analysis is done on that Local disk only (Hawking, 1997): this

method is applicable to DocId partitioning only. The distributed build method works by

distributing the documents to nodes from a single disk. Section 2 describes a re-configurable

process topology used to create different types of partitioned inverted files. Sections 3 and 4

describe the individual components of this process topology, while the indexing methodology

used for the experiments is outlined in section 5. The hardware used for the experiments is

described in section 6 while the data used in the experiments is described in section 7. In

sections 8 and 9 we describe some results on build methods using DocId partitioning and

TermId partitioning respectively, concluding in section 10 by comparing and contrasting the

results. We provide a glossary of terms at the end.

2. INDEXING TOPOLOGIES

 Our requirement for indexing topologies is to be able to support both partitioning

methods under consideration as well as the two build strategies. The components of the

topology must be reconfigurable in order to create different build types and numbers of

inverted file partitions using different process combinations. Figure 1 show examples of both

types of builds using the DocId partitioning method, together with process to processor

mapping examples.

 Process Processor

 timer

Network

 indexer1 indexern

 text/index1 text/indexn

 Disks

Fig 1a - local build

 farmer text

 worker1 workern

 index1 indexn

Fig 1b - distributed build

Fig 1 - Build examples using the DocId partitioning method

 The local build method for parallel indexing is a very simple topology requiring little

communication (see fig 1a). Each indexer node runs independently with no need for

communication between them (the function of the indexer is described below). This form of

build is applicable to DocId only. The distributed build method uses the process farm

paradigm (Bowler et al, 1989) and an example of the one proposed for indexing is shown in

fig 1b. The structure in the example consists of a farmer and n worker processes whose

function is described below. Fig 1 shows the contrast in the build methods particularly with

regard to the distribution of text to be indexed. The difference between the two methods is

that text is kept locally when the local build method is used, and kept centrally on a single

disk when distributed build is used (see appendix 2 for an example of how this works). We

use local build where a given collection could not be physically placed on a single disk (e.g.

VLC2/WT100g).

 farmer text

 worker1 workern

 temp index1 temp indexn

Fig 2a - Distribution of text Phase

 GMerge1 GMerge n

 index1 indexn

Fig 2b - Distribution of data to paritition phase

Fig 2 - Distributed Build example using the TermId partitioning method

 Each method has its own advantages and disadvantages, and we leave the detailed

discussion of such until later. The issue of communication is important here. It can be seen

from both the diagrams and the descriptions above that some topologies will require a great

deal more network resource than others. For example distributed build methods will require

more communication than local build indexing in order to distribute text. Fig 2 shows an

index topology example for TermId partitioning.

3. DISTRIBUTED BUILD TOPOLOGY COMPONENTS

 In this section we describe the functions of the farmer, worker and global merge

parallel processes. Note that there is only one farmer processor, and a number of worker

processes (which become global merge processes in TermId). Our reason for using this

method is that it allows us to automatically distribute text to nodes: it has the disadvantage in

that the method is more communication intensive than the local build method (see section 4).

3.1 Farmer Process

 The farmer's job is to distribute documents to the workers (see Fig 3). Essentially it

distributes work as equally as possible to create the least amount of load imbalance possible.

Single documents or files containing multiple documents can be distributed: the latter saves

communication time. There is an initialisation stage where each worker is given its first

initial document/file; after that workers are only given documents/files when they request

them, i.e. send a message to the farmer asking for more work. When no more documents/files

are left, a termination notice is sent to every worker process. Document identifiers are

allocated individually if the granularity of parallelism is documents and in blocks if it is files.

The document length cannot be recorded until the document has been analysed, and this data

is sent to the farmer when a worker requests further work: this data is saved to disk when

received. In an attempt to keep workers load balanced a request for work is serviced as soon

as possible after it has been received so that workers who index small documents or files are

not kept waiting for too long.

3.2 Worker Process

 The worker's function is to break down the document into its constituent parts, i.e.

terms, and perform some analysis on these terms, e.g. stemming using the methodology

described below (see fig 4). If required, the position record is stored for each term using

current values of accumulated data for field number, paragraph number, sentence number,

word number and preceding stop words. After each word is found these values are updated.

The worker creates and inserts this word/position data in a bucket: the method of storage for

bucket elements is an AVL tree. In the case of DocId partitioning one bucket is used while

100 are currently used for TermId: words are hashed to a given bucket based on a dictionary

(Cowie, 1989). The posting list is either created using the document identifier and the

position record or updated by incrementing the number of positions and adding the position

record to the position list. When any of the memory limits is reached, the results are saved on

Distributed Initial set of documents/files to all workers

Loop no of files/documents

 get a request from worker i

 Case(request type)

 work request: send document/file to worker i

 id request : send block of document id's to worker i

 EndCase

EndLoop

Loop until all workers have been terminated

 get a request from any worker i

 Case(request type)

 work request: send termination notice to worker i

 id request : send block of document id's to worker i

 EndCase

EndLoop

Fig 3. Farmer algorithm for parallel indexing

a temporary file on disk for each bucket. A worker then requests work from the farmer and

waits for a new document/file to analyse. A termination notice is received when there are no

more documents/file to be processed and the worker either saves the inverted file directly

from memory if the inversion has fitted into memory, or merges the intermediate results to

create the inverted file. Where DocId partitioning is required the process can stop here, if

TermId is required then a global merge is invoked.

3.3 Global Merge Process

 This further process is only used for TermId partitioning (see fig 5). The global

merge process has three phases; a heuristic is applied to choose the distribution of the files,

the files are then transferred across the network to the required node and a second Local

merge is initiated to create the final inverted file. The heuristic in the first phase works by

calculating the average value for each of the 100 partitions and attempts to derive a

distribution of buckets amongst nodes that is within a given criterion, currently with 10% of

the average value: up to five iterations are used. The average chosen for distribution is to

prevent a node being overloaded with data, while iterations were restricted to ensure the

process of allocating terms to nodes was fast. The average value can be one of three variables

on a bucket; word count (WC), collection distribution (CF) and term distribution (TF): we

refer to these as term allocation strategies. When the distribution is generated it is used to

transfer the files for that bucket to the node that has been allocated that bucket: this is done

by gathering from all processes to the target process. The merge is then initiated on those

transferred files.

Loop until termination notice received

 Receive a document/file from the farmer

 Analyse document/file -> index

 If memory limits exceeded at any point during analysis

 then save index on disk

 Send request for work to farmer

EndLoop

If memory limits have not been exceeded

 Save index directly to create inverted file

Else

 Save current index to disk.

 Merge data saved on disk to create inverted file

EndIf

Fig 4. Worker algorithm for parallel indexing

4. LOCAL BUILD TOPOLOGY COMPONENTS

4.1 Timing Process

 The only central process for local build is the timing process: it waits until all

indexer processes are finished and saves the total elapsed time for the build. Our reasoning

for using this method is to examine the scalability of our parallel data structures and

algorithms: however because of its minimal communication it is the one most would choose

in many circumstances.

4.2 Indexer Process

 Each indexer process is a sequential index process that takes the function of the

farmer and worker processes i.e. it reads in documents, breaks them down, adds them to the

index creating intermediate indexes when a given set of criteria is met. The intermediate

results are then merged to form one index for each node. The indexer process only

communicates with the timing process when it has finished building the index: apart from

that, its work is completely independent of any other process.

5. INDEXING METHODOLOGY

 For each index build we used a stop word list of 450 words supplied by Fox (1990)

to filter out unwanted terms. All HTML/SGML tags are stripped from the text and ignored if

not used for specific reasons such as identifying paragraphs <p> and the end of document

</DOC>. Each identified word was put through a Lovins stemmer, supplied by the University

of Melbourne, and indexed in stem form. Numbers were not indexed. A large amount of in-

core memory is pre-allocated in blocks by each indexing process, and documents are analysed

until one of several criteria is reached: exhaustion of keyword block, posting block or

position block space. When one of the criteria is satisfied, the current analysis is saved on

disk as an intermediate index, so that the in-core memory can be used for the next set of

documents. When all documents have been analysed, the intermediate indexes are merged

together to create the final index and deleted.

6. HARDWARE USED

 PLIERS (ParaLLel Information rEtrieval Research System) is designed to run on

several parallel architectures and is currently implemented on those which use Sun Sparc,

DEC Alpha and Pentium PII processors. All results presented in this paper were obtained on

an 8 node Alpha farm and 8 nodes of a 12 node AP3000 at the Australian National

Worker i

(Phase 1)

Exchange word frequency data with all other workers

Partition words amongst workers using required word distribution

 criteria (WC,TF,CF)

(Phase 2)

Loop no of partitions -> j

 If partition j belongs to worker i

 gather partition j data from all other workers

 Else

 Send partition j data to required worker

 EndIf

EndLoop

(Phase 3)

Merge data for Workers partition to create inverted file.

Fig 5. Global merge algorithm for parallel indexing (TermId only)

University (ANU), Canberra. Each node has its own local disk: that is a shared nothing

architecture (DeWitt & Gray, 1992) is used by PLIERS. For the Alpha farm, each node is a

series 600 266Mhz Digital Alpha workstation with 128 Mbytes of memory running the

Digital UNIX 4.0b operating system. Two types of network interconnects were used: a 155

Mbytes/s ATM LAN with a Digital GIGASwitch and a 10 Mb/s Ethernet LAN: most of the

indexing was done on ATM. The Fujistsu AP3000 is a distributed memory parallel computer

using Ultra 1 processors running Solaris 2.5.1. Each node of the AP3000 has a speed of

167Mhz. The machine we used has 12 nodes, but only 8 are available on a partition. The

torus network has a top bandwidth of 200 Mbytes/s per second.

7. DATA DESCRIPTION

 We use a number of collections in our experiments: BASE1 and BASE10 plus

BASE2, BASE4, BASE6 and BASE8 that are subsets of BASE10. BASE1 and BASE10 are

officially defined samples of the 100 Gigabyte VLC2 collection (Hawking et al, 1999) and

are 1 and 10 gigabytes in size respectively. The subsets of the official BASE10 collection

were created by varying the number of BASE10 compressed text files put through the

indexing mechanism (130 files per node for BASE2, 260 for BASE4, 390 for BASE6, 520

for BASE8). Each of the BASE x collections is approximately x gigabytes in size.

 The strategy used to distribute the BASE1 and BASE10 collections for local build

was to evenly spread the directories (in which the data is distributed by the ANU) among the

nodes as far as possible. An alternative if more time consuming strategy is to do it by file

size. The requirement of a distribution strategy is to get the best possible load balance for

indexing as well as term weighting and passage retrieval search. The distribution process was

done before the indexing program was started, and is not included in the timings.

 Two types of inverted files were used for experiments: one type that recorded

position information (necessary for passage retrieval and adjacency operations) and one that

recorded postings only in the inverted list. The conventional form of inverted file was used

with a clear keyword and postings file split. A document map was also used to store data such

as document length: this file is fragmented with local build and replicated with distributed

build. Map data on distributed build with DocId could be fragmented, but we chose to

replicate rather than maintain extra source code in order to save time.

8. INDEX GENERATION TIME COSTS

 In this section we declare the timing results on indexing using the configurations

described above. The results are compared and contrasted where necessary as well as

comparing them with available results for other systems on the BASE1 and BASE10

collections used in the VLC2 sub-track at TREC-7 (Hawking et al, 1999). We use the local

build method on all defined collections, but only BASE1 is indexed using the distributed

build method. The measures discussed are: indexing elapsed time in hours, throughput,

scalability, scaleup, speedup and efficiency load imbalance (LI) and merging costs. Metrics

used are defined in the glossary. Results on the Alpha farm and the AP3000 are discussed.

8.1 Indexing Elapsed Time

Collection

H
o
u

rs

0

0.2

0.4

0.6

0.8

1

1.2

BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

Alphas NPOS

Alphas POS

AP30000 NPOS

AP30000 POS

Fig 6. BASE1-10 local build [DocId]: indexing elapsed time in hours

 In general, the Alpha farm was much faster than the AP3000 for indexing elapsed

time as its processors are faster. For example on BASE10 local build indexing with postings

only data took 0.82 hours on the Alphas and 1.08 hours on the AP3000 (see fig 6). The Alpha

elapsed times recorded on local build also compare well with the results given at VLC2

(Hawking et al, 1999). That is, on BASE1 only two groups report slightly faster times than

our posting only elapsed time of 0.065 hours (0.043 and 0.052 hours). Our sequential elapsed

time on BASE1 at 0.56 (postings only) also compares well with those groups utilising a

single processor: two other groups using uniprocessors recorded 0.42 and 1 hour respectively

(refer to figs 7 and 8). On BASE10 on the Alphas the comparison is even more encouraging:

only one group records a faster time of 0.504 hours. It should be noted that while the group

with the fastest BASE10 indexing time uses a much smaller machine configuration (4 Intel

PII processors) they use a very different method of inversion in which the collection is treated

as one document (Clarke et al, 1998).

AP3000

Worker nodes

H
o

u
rs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

TERMID WC

TERMID CF

TERMID TF

DOCID

Alpha Farm

Worker nodes

H
o

u
rs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

TERMID WC

TERMID CF

TERMID TF

DOCID

Fig 7. BASE1 distributed build: indexing elapsed times in hours (position data)*

(*Note: refer back to section 3.3 re: WC/CF/TF)

 The results for distributed build indexing are presented in figs 7 and 8. The elapsed

times for DocId are much better than those for the TermId method. This trend can be seen in

all of the diagrams irrespective of machine or inverted file type used. The smallest difference

is found on indexes with postings only using the AP3000. In general TermId elapsed times

were longer than DocId because of the amount of data that has to be exchanged between

nodes for the method, particularly for indexes with position data. Very little difference in

time was found in any of the term allocation strategies (see section 3.3) studied for TermId.

AP3000

Worker Nodes

H
o

u
rs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

TERMID WC

TERMID CF

TERMID TF

DOCID

Alpha Farm

Worker Nodes

H
o

u
rs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

TERMID WC

TERMID CF

TERMID TF

DOCID

Fig 8. BASE1 distributed build : indexing elapsed times in hours (postings only)

 One interesting factor found in the TermId results was that the AP3000 outperformed

the Alpha farm at 7 worker nodes largely due to the extra network bandwidth available. It is

that this point where the compute/communication balance favours the AP3000. A further run

using distributed build with DocId partitioning on the Alpha farm revealed how much faster

it is to use the ATM network than the Ethernet network: the time with ATM on 2 worker

nodes building an index for BASE1 with no position data was 0.27 hours, while the figure for

Ethernet was nearly double at 0.47 hours. This comparison further illustrates the importance

of network bandwidth to the distributed build method and which can cause problems in many

IR tasks (Rungsawang et al, 1999). We did not conduct any further experiments on this type

of build for indexing using the Ethernet network as a consequence.

 The extra time costs engendered by generating inversion with position data varied

(this ratio is declared in the glossary - our aim is to record a ratio as close to 1.0 as possible).

For example, in local build DocId the difference between posting only generation and

position data generation ranged between 1.09 - 1.37 times on the Alphas (where merging was

required). The extra costs on BASE1 are the highest (1.25 for the AP3000 and 1.37 for the

Alphas) because the index with postings only is saved directly to disk without the need for

merging: merging is required only when memory limits have been exceeded. Fig 9 shows the

ratios for distributed build experiments. How much these extra costs are justified depends on

the query processing requirement: such as a user need for passage retrieval or proximity

operators.

Worker Nodes

R
a
ti

o

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6 7

AP3000 DocId

AP3000 TermId

WC

AP3000 TermId

CF

AP3000 TermId

TF

Worker Nodes

R
a
ti

o

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6 7

Alpha DocId

Alpha TermId WC

Alpha TermId CF

Alpha TermId TF

Fig 9. BASE1 distributed build: indexing extra costs for storage of position data

8.2 Throughput

 The metric we use for throughput is Gigabytes of text processed per hour (G/Hour) to

compare performance between database builds. Fig 10 shows the throughput for 8 processor

configurations. The throughput for the Alphas is much faster than for the AP3000, e.g. on

BASE1 local build indexing with postings only the rate is 15.4 G/Hour compared with 9.5

G/Hour on the AP3000. These are by far the best throughput results because no merging was

needed: the configuration had enough memory to store the whole index and save it directly.

The rate for other collections for local build indexing was 12-14 G/Hour on the Alphas for

postings only. Only one VLC2 participant recorded faster throughput for BASE1 and

BASE10 collections (just over 19 G/Hour). The throughput on BASE1 using distributed

build DocId with is not as good the local build but is still encouraging (see fig 11).

Collection

T
h

ro
u

g
h

p
u

t

G
b

/h
o

u
r

0

2

4

6

8

10

12

14

16

BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

Alphas NPOS

Alphas POS

AP3000 NPOS

AP3000 POS

Fig 10. BASE1-BASE10 local build [DocId]: indexing Gb/Hour throughput

Worker Nodes

T
h

ro
u

g
h

p
u

t

G
b

/h
o

u
r

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7

Alphas NPOS

Alphas POS

AP3000 NPOS

AP3000 POS

Fig 11. BASE1 distributed build [DocId]: indexing Gb/Hour throughput

 It was found that increasing the number of worker nodes increased the throughput for

both distributed build methods. For example, the DocId results for 7 worker nodes yielded a

throughput of 9.7 G/Hour on the Alphas for postings only data indexes, compared with 1.8

for the uniprocessor experiment. The throughput for TermId builds was not as impressive but

still acceptable with postings only: for example 5.8 G/Hour was recorded on the AP3000.

The throughput for builds with position data was not as good, with 4.5 G/Hour on the

AP3000 (see fig 12). Note that we only declare results for TermId with the word count (WC)

method as there is very little difference in measurement between any of the term allocation

strategies studied. Note also the superior performance in throughput on the AP3000 at 7

worker nodes due to the extra bandwidth available with that machine.

Worker Nodes

T
h

ro
u

g
h

p
u

t

G
b

/h
o

u
r

0

1

2

3

4

5

6

1 2 3 4 5 6 7

Alphas NPOS

Alphas POS

AP3000 NPOS

AP3000 POS

Fig 12. BASE1 distributed build [TermId]: indexing Gb/Hour throughput (WC only)

8.3 Scalability

Collection

S
c
a
la

b
il
it

y

0

0.2

0.4

0.6

0.8

1

1.2

BASE2 BASE4 BASE6 BASE8 BASE10

Alphas NPOS

Alphas POS

AP3000 NPOS

AP3000 POS

Fig 13. BASE2-BASE10 local build [DocId]: indexing scalability from BASE1

 The data measure used in the equation is the size of indexed text. The scalability

metric is defined in the glossary. We measure the effect of increasing collection size on the

same sized parallel machine using the BASE2-10 collections over the BASE1 collection. We

look for a scalability of around 1.0, greater than 1.0 being the aim. The results are presented

in fig 13. With postings only data the scalability ranges between 0.80 and 0.93 on the Alphas

and 0.92 and 0.99 on the AP3000. These figures are rather distorted because of the direct

save on BASE1, that is no merging was needed as memory limits were not exceeded. The

results are on the pessimistic side (if more memory was available we might be able to save

indexes directly on all the collections studied). In builds with position data the scalability is

excellent with the Alphas registering super-linear scalability on most BASEx (BASE10 was

the exception) and the AP3000 delivering super-linear scalability on BASE6,8 and 10. The

scalability results for indexes with position data demonstrate that the algorithms and data

structures implemented are well able to cope with the extra computational load and data size

that such builds both require and process.

8.4 Scaleup

Collection

S
ca

le
u

p

0.7

0.75

0.8

0.85

0.9

0.95

1

BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

Alphas NPOS

Alphas POS

AP3000 NPOS

AP3000 POS

Fig 14. BASE1-BASE10 local build [DocId]: indexing scaleup

 The scaleup metric is declared in the glossary. We measure within BASEx scaleup

for local build only in this section. We take the times on each individual processor and

compare the smallest elapsed time with the largest elapsed time on all 8 nodes. We are

comparing the smallest sub-collection of BASEx (1/8th of BASEx) with the full sized

BASEx collection. We use the least favourable figure in our measurement to obtain the

lowest scaleup from any of the chosen sub-collections: our measurements are therefore

pessimistic. We look for a scaleup of around 1.0, greater than 1.0 being the aim. The results

are given in fig 14. In general the scaleups recorded are very good with most above the 0.8

mark. The worst scaleup was measured over the BASE10 collection on builds with no

position data with a figure of 0.77. This figure was found on the Alpha farm where the

processors are much faster. A combination of data size and processor speed can have an

impact on scaleup: the scaleup figures for indexes with position data on the Alpha farm are

generally superior to indexes without such data. The situation is reversed for AP3000 where

the processors are slower. These scaleup figures show that there is little deterioration in

performance of our implemented data structures and algorithms when moving from a smaller

collection indexing on a small configuration parallel machine, compared with a larger

collection on a larger configuration machine.

8.5 Speedup and Efficiency

 All figures relate to the BASE1 collection. Definitions of these metrics can be found

in the glossary. Recall that our ideal speedup is equal to the number of nodes, whereas for

efficiency we look for a figure of 1.0. A surprising feature was the superlinear speedup and

efficiency figures found with some of the indexing experiments particularly for the local

build DocId 8 processor runs (see table 1). For example with the direct save on postings only

data local build on the Alphas yielded a speedup of 8.5 and efficiency of 1.07. This effect

was also found on some of the runs using Distributed DocId indexing (see figs 15 and 16).

Worker Nodes

S
p

e
e
d

u
p

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7

Alphas NPOS

Alphas POS

AP3000 NPOS

AP3000 POS

Fig 15. BASE1 distributed build [DocId]:

indexing speedup

Worker Nodes

E
ff

ic
ie

n
c
y

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

2 3 4 5 6 7

Alphas NPOS

Alphas POS

AP3000 NPOS

AP3000 POS

Fig 16. BASE1 distributed build [DocId]:

indexing efficiency

Machine File Type Speedup Efficiency

Alpha NPOS

POS

8.5

8.4

1.07

1.04

AP3000 NPOS

POS

7.96

7.2

0.99

0.90

Table 1. BASE1 local build [Docid]: indexing speedup and efficiency

 The reason this effect can occur is the extra memory multiple nodes have compared

with a sequential processor, i.e. on local build with 8 nodes the index fits into main memory

and it can be saved directly without the need for merging. More memory reduces the number

of intermediate results saved to disk and therefore saves I/O time when data is merged to

create the index. On distributed build a two worker configuration has twice the memory of

the sequential program. The super-linear effect tails off at various stages on the Distributed

version as communication time becomes more important (see fig 15).

Worker Nodes

S
p

e
e
d

u
p

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

2 3 4 5 6 7

Alpha NPOS

Alpha POS

AP3000 NPOS

AP3000 POS

Fig 17. BASE1 distributed build [TermId]:

indexing speedup (WC only)

Worker Nodes

E
ff

ic
ie

n
c
y

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7

Alpha NPOS

Alpha POS

AP3000 NPOS

AP3000 POS

Fig 18. BASE1 distributed build [TermId]:

indexing efficiency (WC only)

 With TermId communication is very important: the global merge reduces most

speedup/efficiency measures to less than linear (see figs 17 and 18). With position data and

TermId there is little speedup on the Alpha Farm and efficiency ranges from the average to

poor. Interestingly super-linear speedup/efficiency does occur on two worker nodes with

builds on posting only data: further evidence of the significance of the memory effect.

8.6 Load Imbalance

Collection

L
I

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

BASE1 BASE2 BASE4 BASE6 BASE8 BASE1

0

Alpha NPOS

Alpha POS

AP3000 POS

AP3000 POS

Fig 19. BASE1-BASE10 local build

[DocId]: indexing load imbalance

Worker Nodes

L
I

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

2 3 4 5 6 7

Alpha NPOS

Alpha POS

AP3000 POS

AP3000 POS

Fig 20. BASE1 distributed build [DocId]:

indexing load imbalance

 The load imbalance metric we use is declared in the glossary - the ideal load balance

is close to 1.0. In general it was found that the distributed build imbalance was lower than

those of local build (see figs 19 and 20). In fact distributed build using any partitioning

method is excellent on all nodes with both methods, e.g. on 2-7 Alpha and AP3000 workers

the LI was in the range 1.002 to 1.03 on average for DocId. The LI figures demonstrate that

the implemented process farm method provides good load balance for indexing jobs when

whole files are distributed to workers.

Worker Nodes

L
I

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

2 3 4 5 6 7

Alpha NPOS WC

Alpha NPOS CF

Alpha NPOS TF

Alpha POS WC

Alpha POS CF

Alpha POS TF

Worker Nodes

L
I

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

2 3 4 5 6 7

AP3000 NPOS

WC

AP3000 NPOS CF

AP3000 NPOS TF

AP3000 POS WC

AP3000 POS CF

AP3000 POS TF

Fig 21. BASE1 distributed build [TermId]: indexing load imbalance

 The results for TermId were generally not as good as DocId, but good in the average

case (see fig 21). The exception was for builds with position data on 6 nodes: LI's of 1.2 for

the AP3000 and 1.15 for the Alphas were recorded with word count (WC) distribution. The

farm method described in, section 3 above is a very good way of ensuring load balance in the

majority of cases. The local build LI is still very good: the worst LI recorded was 1.17 for

BASE10 for the Alpha postings only run. We conclude by stating that both Distributed and

local build methods achieve good load balance, but local build LI could be improved by

paying more attention to text distribution.

8.7 Merging Costs

 We consider here the percentage of time spent merging the temporary results to

create the final inverted file: see the glossary for a formal definition - we look for the lowest

possible cost in % terms. We examine the DocId method first. The merging for local build

was in the main consistent within a 1% range, e.g. on the Alphas with posting data only, the

average merge cost was 14 to 15% (see table 2). Merging costs for builds with position data

were higher, e.g. on the Alphas the merge cost was 19 to 20%. Merge costs on the AP3000

were lower on local build, e.g. with posting data the average merge cost was around 13 to

14%. This difference is because the Alpha Farm processors are much faster and therefore the

I/O time (which remains constant) is more significant.

 With distributed build DocId build the merging costs were much the same as local

build apart from Alpha builds with position data: the range found was 17 to 20%: these costs

did not vary much from the local build (see table 3). The uniprocessor builds with position

data registered the highest merge costs, whereas parallel DocId builds without position data

saved indexes directly without the need for merging on 8 processors. The merge costs were

more prominent on the Alpha as the faster processor speed reduces the computational costs

and increases the importance of I/O (merge is an I/O intensive process). Merge costs are also

more prominent on indexes which contain position data.

Collection

Alphas

NPOS POS

AP3000

NPOS POS

BASE1 - 20% - 14%

BASE2 14% 19% 10% 14%

BASE4 14% 19% 9% 13%

BASE6 15% 19% 9% 13%

BASE8 14% 19% 9% 13%

BASE10 14% 19% 9% 14%

Table 2. BASE1-10 local build [DocId]: %

of average elapsed indexing time spent

merging

Work

-ers

Alpha

NPOS POS

AP3000

NPOS POS

1 15% 24% 9% 16%

2 15% 20% 9% 14%

3 15% 19% 10% 14%

4 15% 20% 10% 14%

5 15% 19% 10% 13%

6 14% 18% 9% 13%

7 13% 17% 9% 14%

Table 3. BASE1 distributed build [DocId]:

% of average elapsed indexing time spent

merging

Work-

ers

Alphas

NPOS

Alphas

POS

AP3000

NPOS

AP3000

POS

Value WC CF TF WC CF TF WC CF TF WC CF TF

2 38% 37% 38% 44% 43% 44% 26% 26% 26% 35% 36% 37%

3 36% 35% 36% 42% 42% 42% 26% 26% 26% 34% 34% 34%

4 35% 34% 35% 41% 40% 40% 26% 26% 26% 34% 34% 41%

5 32% 31% 31% 36% 37% 36% 24% 25% 25% 31% 32% 38%

6 28% 29% 27% 33% 34% 33% 24% 24% 24% 29% 30% 30%

7 26% 26% 25% 30% 31% 31% 23% 23% 23% 28% 30% 29%

Table 4. BASE1 distributed build [TermId]: % of average elapsed indexing time spent

merging: distributed build

 Merge costs for TermId are very much higher as one would expect given the extra

work required for merge with that method to exchange data between nodes (see table 4).

These higher merge costs are a contributory factor in the overall loss of performance for

TermId partitioning index builds. However there is a distinct decrease in all cases of the

significance of merging on the Alphas, e.g. merging on indexes with position data and word

count (WC) word distribution decreased from 44% at 2 workers to 30% on 7 workers. This is

largely because the costs in transferring index data before the second merge can proceed

increases with the numbers of worker nodes deployed, e.g. on the Alpha indexes with

position data the increase is from 2 minutes at two workers to 4 minutes at seven workers. On

the AP3000 a slight decrease in merging costs is recorded in most cases, and the decrease is

not as pronounced as the Alphas. The Alpha's extra processor speed brings benefit to extra

merging found when building TermId indexes. The corresponding figure for transferring

indexes with position data on the AP3000 ranges from 2.4 minutes with two workers to 2.9

with seven workers. The AP3000 is better able to cope with this extra cost in transferring

data for the second merge as it has extra bandwidth available in its network.

8.8 Summary of Time Costs for Indexing

 With respect to comparable metrics such as elapsed time and throughput, we have

demonstrated that for a least one partitioning method, namely DocId, our results are state of

the art compared with other VLC2 participants (Hawking et al, 1999). We have found that in

most cases the Alpha farm outperforms the AP3000 except for some TermId runs: the

AP3000 has a much higher bandwidth network available to it that is an advantage in such

builds. Comparing the partitioning methods we have found that builds using the DocId

method outperform index builds using TermId in all experiments. Our speedup and efficiency

figures show that the methods of parallelism do bring time reduction benefits, particularly for

the DocId partitioning method. The scalability and scaleup figures show that our

implemented data structures and algorithms are well able to cope with increasingly larger

databases on a same sized or larger parallel machine. The load imbalance is generally quite

small for all runs. The extra costs for generating indexes with position data vary, but are not

an insubstantial part of the overall costs. Merge costs are also an important element of total

time, depending on the build and partitioning method used.

9. INDEX FILE SPACE COSTS

 In this section we declare the space overheads using the configurations described

above. The results are compared and contrasted where necessary as well as comparing them

with overheads on the BASE1 and BASE10 collections used in the VLC2 sub-track at TREC-

7 (Hawking et al, 1999). The space overheads discussed are: overall inverted file space costs,

keyword file space costs and file space imbalance.

9.1 Inverted File Space Costs

Collection

S
iz

e
:

G
B

0

2

4

6

8

10

BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

Text

POS index

NPOS index

Fig 22a. BASE1-BASE10 local build

[DocId]: index space costs in Gigabytes

Collection

%
 o

f
te

x
t

0

5

10

15

20

25

30

BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

POS index

NPOS index

Fig 22b. BASE1-BASE10 local build

[DocId]: index space costs in % of text

 The metrics we used here are the file sizes in Gigabytes and percentage of original

text size. The space costs for local build indexes are fairly constant in percentage terms

across all collections (see fig 22b), although a slight reduction in index size compared with

the size of the text can be see in fig 22a. This reduction occurs irrespective of the type of data

stored in the inverted file. From fig 23 we can observe that there is a slight increase in index

size for increasing the processor set when using distributed build methods. The reason for

this is because of the replicated map requirements of distributed builds. The increase is more

marked for DocId partitioning. If the map file size is taken away from the total size then the

DocId indexes increase is much smaller (the reason any increase at all is explained in section

9.2).

Worker Nodes

S
iz

e
:

G
B

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7

DocId NPOS

 DocId POS

TermId NPOS

 TermId POS

Fig 23a. BASE1 distributed build: index

space costs in Gigabytes

Worker Nodes

%
 o

f
te

x
t

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

DocId NPOS

 DocId POS

TermId NPOS

 TermId POS

Fig 23b. BASE1 distributed build: index

space costs in % of text

 The comparison with space costs of the VLC2 participants (Hawking et al, 1999) is

favourable with postings only data: our smallest figure of 0.11 Gigabytes on BASE1 was

smaller than all submitted results and on BASE10 only one VLC2 participant at 0.902

Gigabytes was smaller than our figure of 1.1 Gigabytes. The comparison with files that

contain position data is not so good and our smallest figure of 0.31 Gigabytes for BASE1 is

bested by two groups, while on BASE10 three groups record a smaller figure than our 3.0

Gigabytes.

9.2 Keyword File Space Costs

 The metric for keyword file space costs is the size in megabytes and the keyword file

percentage of the total inversion. With local build on both postings only and position data we

found that the trend in keyword space costs was a decreasing one, e.g. 32% on BASE1 to

22% on BASE10 with postings only data (see fig 24b). This is because the increase in

lexicon is not linear with the increase in collection (fig 24a). With distributed DocId indexes

the keyword costs remain constant, e.g. 24-26% (see fig 25b). The size of the keyword file

actually increases with more inverted file partitions (see fig 25a), but this increase is not

significant and is absorbed by the increase in size of the replaced document map. We state

that there is little extra cost in having words replicated across different fragments for DocId

partitioning on this type of collection (Web data). For TermId indexes the size of the keyword

file was constant irrespective of term allocation method, and if the map data is included in

costs the significance of the keyword file with respect to the total index size gradually

decreases (see figs 25a and 25b).

Collection

W
o

rd
 F

il
e
 S

iz
e
:

M
B

0

50

100

150

200

250

BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

POS

NPOS

Fig 24a. BASE1-BASE10 local build

[DocId]: index space costs in megabytes for

keyword file

Collection

%
 o

f
in

d
e
x

0

5

10

15

20

25

30

BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

POS

NPOS

Fig 24b. BASE1-BASE10 local build

[DocId]: index space costs in % of index for

keyword file

Worker Nodes

W
o

rd
 F

il
e
 S

iz
e
:

 M
B

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7

DocId NPOS

 DocId POS

TermId NPOS

 TermId POS

Fig 25a. BASE1 Distributed Build: space

costs in megabytes for keyword file

Worker Nodes

W
o

rd
 F

il
e
 S

iz
e
:

 M
B

0

5

10

15

20

25

1 2 3 4 5 6 7

DocId NPOS

 DocId POS

TermId NPOS

 TermId POS

Fig 25b. BASE1 Distributed Build: index

space costs in % of index for keyword file

9.3 File Load Imbalance

 We use the concept of load imbalance (LI) but apply it to file sizes instead, i.e.

maximum file size / average file size. We wish to ensure that index data is fairly distributed

amongst nodes, e.g. it would not be desirable for one index partition to exceed the space

available on a physical disk. The index time LI results are included in the figs 26 to 28 for

comparative purposes. The space imbalance for text space costs was in general fairly stable

being in the range 1.04 to 1.02 for all local build indexing runs (see fig 26). In comparison

the inverted file imbalance was much higher, particularly for the smaller collections. Clearly

the imbalance stems not from the size of the text, but from aspects of the text such as the

number of documents and total word length of the text. In contrast the space imbalance for

distributed build on DocId partitioning was small for any type of inverted file data storage

(see fig 27). There is no significant difference between the space imbalance of inverted files

and LI for indexing times with DocId partitioning. The file space imbalance figures further

proof of the validity of the farming method for balancing load for DocId partitioning.

Position Data (POS) Indexes

Collection

L
I

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

Text LI

Index LI

AP3000 LI

ALPHA LI

Postings Only (NPOS) Indexes

Collection

L
I

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

Text LI

Index LI

AP3000 LI

ALPHA LI

Fig 26. BASE1-BASE10 local build [DocId]: index space imbalance on files

Position Data (POS) Indexes

Worker Nodes

L
I

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2 3 4 5 6 7

Index LI

AP3000 LI

ALPHA LI

Postings Only (NPOS) Indexes

Worker Nodes

L
I

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2 3 4 5 6 7

Index LI

AP3000 LI

ALPHA LI

Fig 27. BASE1 distributed build [DocId]: index space imbalance on index files

Position Data (POS) Indexes

Worker Nodes

L
I

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

Index LI WC

AP3000 LI WC

ALPHA LI WC

Index LI CF

AP3000 LI CF

ALPHA LI CF

Index LI TF

AP3000 LI TF

ALPHA LI TF

Postings Only (NPOS) Indexes

Worker Nodes

L
I

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2 3 4 5 6 7

Index LI WC

AP3000 LI WC

ALPHA LI WC

Index LI CF

AP3000 LI CF

ALPHA LI CF

Index LI TF

AP3000 LI TF

ALPHA LI TF

Fig 28. BASE1 distributed build [TermId]: index space imbalance on index files

 The situation for TermId varies depending on the type of word distribution method

used (see fig 28). For the word count (WC) distribution space imbalance was generally very

poor, with the worst being indexes with position data on 6 worker nodes: an imbalance of

1.52 was recorded (interestingly the worst imbalance for indexing times, see fig 28). The

figures for the collection frequency distribution method (CF) are much better with an

imbalance range of 1.02 to 1.07 for all builds. In the term frequency (TF) method the

imbalance was erratic being very poor at 5 and 6 worker nodes for any index builds, but good

on all other runs. Any imbalance in space does not affect computational imbalance adversely.

None of the TermId space imbalance results are as good as the DocId for space costs on

distributed builds, as it is much harder to derive a good data distribution method for TermId

indexes (the allocation of terms to nodes is a more difficult problem than allocating

documents to nodes). None of the methods implemented affect space imbalance such that an

index partition exceeds the physical disk of any node.

9.4 Summary of Space Costs for Indexing

 Overall space overhead for the indexing is state of the art and comparable with the

results give by VLC2 participants: at least for indexes with postings only. The Distributed

Build DocId results show that the cost of storing keywords does grow with increasing the

fragmentation, but given that local build results show that space costs decrease with database

size we do not see this a serious overhead for the DocId partitioning method. The space costs

imbalance for local build is generally quite stable, but the generated inverted files vary more.

Clearly the consideration of the number of files on its own is not sufficient to ensure very

good balance. For distributed builds space imbalance was much smaller, except for some

TermId indexes where distribution methods are more difficult to derive: no index partition

exceeds the size of a node's local disk.

10. CONCLUSION

 The results produced in this paper show that of the partitioning methods, DocId

partitioning using any build has by far the most promise and would in most circumstances be

the method chosen for indexing. This would be the case particularly if the collection under

consideration needed frequent re-builds. We have used the DocId method to good effect in

the Web track for TREC-8 on the full 100 Gigabyte VLC2 collection (MacFarlane et al,

2000). Where disk space was limited, the local build method could be used to good effect: we

used this build method on the BASE10 as we did not have sufficient space to do distributed

builds on that collection. We have demonstrated that indexing is state of the art in both

compute and space terms by comparing our space and time results with those given at VLC2

(Hawking et al, 1999) and the TREC-8 Web Track (Hawking et al, 2000). Although we did

not produce the best results for all measures, no group at VLC2 did either. Our indexing time

for the full 100Gb collection was the best in the Web Track (MacFarlane et al, 2000).

 A clear distinction must be made between DocId and TermId partitioning methods.

Distributed build DocId out-performs TermId in all areas of time cost metrics and would

therefore always be preferred if indexing was of primary concern. We state this irrespective

of the type of inversion or algorithms/methods used if cluster computing is utilised. We

would recommend that TermId only be used if two main criteria are met. One is that a high

performance network is available to reduce time spent on transferring data during the global

merge process. The other is that some other benefit must accrue from the use of TermId

partitioning which in essence would be some advantage in search performance or index

maintenance criterion over the DocId method.

11. Acknowledgements

This work is supported by theArts and Humanities Research Board (AHRB) under grant

number IS96/4203. We are also grateful to ACSys for awarding the first author a visiting

fellowship at the Australian National University in order to complete this research and use of

their equipment. We are particularly grateful to David Hawking for making the arrangements

for the visit to the ANU.

REFERENCES

Bowler, K. C., Kenway, R. D., Pawley, G. S., Roweth, D & Wilson, G. V. (1989). An

introduction to Occam-2 programming: 2nd Edition, Chartwell-Bratt.

C.L.A.Clarke, G.V.Cormack & C.R.Palmer, An overview of MultiText, SIGIR Forum Vol

32, No 2, Fall 1998, 14-15.

Cowie, A.P. (Ed), (1989). Oxford Advanced Learner's Dictionary of current English, Fourth

Edition, Oxford University Press.

DeWitt, D. & Gray, J. (1992). Parallel database systems: the future of high performance

database systems, Communications of the ACM, Vol 35, No 6, 85-98.

Fox, C. (1990). A stop list for general text, SIGIR FORUM, ACM Press, Vol 24, No 4,19-35.

Hawking D. (1995). The design and implementation of a parallel document retrieval engine.

Technical Report TR-CS-95-08, Department of Computer Science. Canberra: Australian

National University.

Hawking, D. (1997). Scalable text retrieval for large digital libraries. In: C. Peters and C.

Thanos, eds., Proc. first European Conference on Digitial Libraries, Vol 1324, LNCS,

Spinger-Verlag, 127-146.

Hawking, D., Craswell, N., & Thistlewaite, P. (1999). Overview of TREC-7 Very Large

Collection Track, In: D.K.Harman, ed, Proceedings of the Seventh Text Retrieval Conference,

Gaithersburg, U.S.A, November 1998, Gaithersburg, NIST SP 500-242, 257-268.

Jeong, B., & Omiecinski, E. (1995). Inverted file partitioning schemes in multiple disk

systems, IEEE Transactions on Parallel and Distributed Systems, 6 (2), 1995, 142-153.

MacFarlane, A. (2000). Distributed Inverted files and performance: a study of data

distribution methods and parallelism in IR, PhD Thesis, City University.

MacFarlane, A., Robertson, S.E., & McCann, J.A. (1997). Parallel computing in information

retrieval - an updated review, Journal of Documentation, Vol. 53, No. 3, 274-315.

MacFarlane, A., Robertson, S.E., & McCann, J.A. (1999). PLIERS at VLC2, In:

D.K.Harman, ed, Proceedings of the Seventh Text Retrieval Conference, Gaithersburg,

U.S.A, November 1998, Gaithersburg, NIST SP 500-242, 327-336.

MacFarlane, A., Robertson, S.E., & McCann, J.A. (2000). PLIERS AT TREC8, In: E.

Voorhess, ed, Proceedings of the Eight Text Retrieval Conference, Gaithersburg, U.S.A,

November 1999, Gaithersburg, NIST SP 500-246, 241-252.

Rungsawang, A., Tangpong, A. & Laohawee, P. (1999). Parallel DISR text retrieval system.

In: Dongarra, J., Luqueu E. and Margalef, T., eds. Proceedings of 6th European PVM/MPI

Users' Group Meeting, Barcelona, Lecture Notes in Computer Science 1697, (Berlin:

Springer-Verlag): 325-332.

 Documents

 1 2 3 4

 a x x x

 b x x

Terms

 c x

 d x x

 e x x

DocId partitioning

 Documents

 1 2 3 4

 a x x x

 b x x

Terms

 c x

 d x x

 e x

x

TermId partitioning
Key:

 Division of data between nodes in a parallel machine.

 x Document/Term pair occurrence

Appendix 1 - An example of how Partitioning methods for Inverted Files distributes data

Distributed build

Local build

Key:

 A node in the parallel machine

 Indicates presense of text files on a node

 Inverted file partition on a node

 Network connection between nodes

Appendix 2. Examples of build methods for distributed inverted files

Glossary

CF allocation Method of term allocation in TermId to partition using a

collection frequency criterion.

Distributed

Build

Method of building indexes where text is distributed from a single

node.

DocId Parititioning method which assigns all document data for a given

document to one index partition

Efficiency Measure of the effective use of processors. Definition:

Speedup on n processors/n processors

Elapsed time Time to build an index.

Farmer Process which distributes text to nodes.

Global Merge Process which exchanges data between nodes in order to create a

distributed TermId inverted file.

Indexer process Process in local build which analyses text and builds inverted file

to the local disk.

LI A measure of the amount of load imbalance on n processors:

max time on n processors/average time on n processors

Local Build Method of indexing where all processing is kept local to the node.

Merge Costs Percentage of time spent merging over all the processors. Definition

 average merging time on all P Processors

 --- * 100

 average elapsed time on all P processors.

Mhz Megahertz: processor clock speed.

Partition Fragment of Inverted file on a nodes disk.

Position Data

Extra Cost

Ratio = Elapsed Time for a given task on an index with position data

 Elapsed Time for the same task on an index with postings

only

Scalability A measure of how well the algorithm scales on the same

equipment. Definition:
 Time on small collection Size of large collection

 -------------------------------- * -----------------------------

 Time on large collection Size of small collection

Scaleup We define scaleup as the comparison metric [11]:

 elapsed time on P processors indexing small problem DB

 elapsed time on P' processors indexing big problem DB'
where P' > P and DB' > DB

Speedup Measure of speed advantage of parallelism. Definition:

Time on 1 processors / Time on n processors.

TermId Parititioning method which assigns all term data for a given term

to one partition

TF allocation Method of term allocation in TermId to partition using a term

frequency criterion.

Timing Process Process which times local build indexing elapsed time.

Throughput Gigabytes of text processed per hour.

TREC Annual Text Retrieval Conference run by the National Institute of

Standards and Technology in the United States.

VLC Very Large Collection: Collection of 100 GB web data used in

the TREC-7 VLC2 sub-track.

WC allocation Method of term allocation in TermId to partition using a word

count criterion.

Web Track Sub track of TREC-8.

Worker Process which creates index data from raw text.

Zipf distribution Distribution which suggests that a few words will occur in many

documents, while many words will occur in few documents.

