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Abstract 

Purpose- To compare the quality and efficiency of five methods for solving the path planning problem of industrial 
robots in complex environments 
Design/methodology/approach- Five methods are presented for solving the path planning problem and certain 
working parameters have been monitored using each method. These working parameters are the distance travelled by 
the robot and the computational time needed to find a solution. A comparison of results has been analyzed. 
Findings-After this study, it could be easy to know which of the proposed methods is most suitable for application in 
each case, depending on the parameter the user wants to optimize. The findings have been summarized in the 
conclusion section. 
Research limitations/implications- Five techniques have been developed which yield good results in general. 
Practical implications- The algorithms introduced are able to solve the path planning problem for any industrial 
robot working with obstacles. 
Social implications- The path planning algorithms help robots perform their tasks in a more efficient way due to the 
fact that the path followed has been optimized and therefore they help humans work together with the robots in order 
to obtain the best results from them. 
Originality/value- The paper shows which algorithm offers the best results depending on the example the user has 
to solve and the parameter to be optimized. 
Keywords: Path Planning; Collision avoidance; Off-line Programming; Kinematics; Multi-arms robot; 

 

1. Brief introduction 

It is a fact that the number of robots in industry has increased year after year worldwide and it is estimated that 
the percentage will increase in the coming years. This fact makes us reflect on the importance of robotics, not only in 
its application to production processes but also in the field of research and innovation. 

Although the most important sector is the automotive one, the robot has spread to others such as services, 
construction, medicine, food, home automation, defense, aerospace, etc. 

The ultimate goal is to increase productivity, reduce accidents and enhance quality and flexibility. In this context 
the importance of industrial robot programming should be emphasized. Path planning is a tool that helps the robot to 
perform the required tasks efficiently. 

In recent years there have been many researchers that in one way or another have contributed to the development 
of techniques and methods to solve the motion problem and in particular the path planning problem. 

It´s not an easy task to make a list of the most important events that have marked the evolution of path planning 
over the years since there is the risk of overlooking researchers who have made a contribution. In any case, in the 
following paragraphs some of those studies that are widely recognized by the scientific community will be 
mentioned. 
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Nilsson addressed the problem of finding the shortest path in large workspaces by introducing heuristic search 
techniques (Nilsson et al., 1968). Lozano-Perez introduced the concept of configuration space (Lozano-Perez, 1983). 
That same year he introduced the method of approximate cell decomposition (together with Brooks, Brooks et al., 
1983). O'Dúnlaing and Yap introduced the method of shrinkage. Their approach is based on the use of the 
Generalized Voronoi diagram (Ó’Dúnlaing et al., 1985). 

Moreover, the work done by Brooks, 1983, Schwartz et al., 1983, Dubowsky et al., 1984 and Khatib, 1985 in the 
eighties should not be forgotten which leads to those methods based on probabilistic planners (PRMs) (Kavraki, 
1994 and Hsu, 2002), where a graph called the probabilistic roadmap is obtained. Afterwards, the roadmap is 
analyzed (Kavraki, 1996 and 1998) in search of the path that connects the initial and final configuration. Other 
probabilistic techniques for solving the path planning problem have also appeared (Lavalle, 2000), for example the 
algorithm based on Rapidly-Exploring Random Trees (RRTs). The planner proposed by Valero et al., 1997, in which 
all the workspace is analysed, is also worth mentioning. Besides the methods already mentioned, genetic algorithms 
have also been implemented successfully for the path planning problem (see Monteiro et al., 1999, Davidor, 1991 
and Yang et al., 2008.  

There are many authors who have made a historical review of these algorithms over the years. Some examples 
are Kavraki and Latombe, 1998, Isto, 1996, LaValle, 1996 and 2000, Gupta, 1998, etc. a historical approach to 
genetic algorithms is presented by Fares, 2007. 

Rubio et al., 2009 presented an approach in which the search of the path is made in the state space of the robotic 
system (direct approach), and it makes use of the information generated about the characteristics of the process and 
the techniques for introducing a branching graph. 

In previous studies by this author (Rubio, 2006), it can also be found the most recent records used to develop the 
path planning algorithms that we present in this paper. This paper will analyze the results obtained using the five 
methods. These are: 

A. Indirect algorithm, also called "sequential" because it calculates the path sequentially: first it generates the 
subspace of the robot´s configuration space by searching the discretized workspace, and then it eventually finds an 
optimal path in this space. 

B. Direct algorithm, also called "simultaneous". This algorithm analyzes the configuration space of the robotic 
system. It is characterized by finding a solution at the same time as the robot reaches the goal, that is, when it reaches 
the final configuration. While the robot is moving to the final configuration it will simultaneously generate a path. 
Three variants have been introduced, depending on the characteristics of the cost function that is used to guide the 
search of the path: 

Option 1: Cost function A* 
Option 2: Uniform Cost Function 
Option 3: Greedy Cost function  
C. Genetic algorithm, based on the characteristics of genetic algorithms applied to robotics. 
The five algorithms have been applied to the same PUMA 560 robot, which has been modelled in wired format, 

see Rubio et al., 2009. To obtain collision-free configurations, obstacles have been modelled using patterned 
obstacles: spheres, cylinders and planes (see also Rubio et al., 2009). 

In the following sections the most important points related to the mentioned algorithms will be discussed. Special 
attention should be paid to the application examples section. 

2. Robot modelling and collision avoidance 

The robotic system is common to the different algorithms. It is represented using its wired model. Any robot 
configuration C j = C j (αi

j, pk
j) can be expressed unequivocally by means of the Cartesian coordinates of significant 

points of the robot αi
j = (αxi

j, αyi
j, αzi

j). Any other point of interest in the robot, pk
j, will also be expressed in Cartesian 

coordinates, i.e, pk
j = (pxk

j, pyk
j, pzk

j), calculated from the significant points, namely, pk
j = pk

j (αi
j).  

For the PUMA 560 robot, seven significant points are used (α1, α2, α3 ,α4, α5, α6    and α7 ) along with five 
additional points of interest (p1 … p5) called auxiliary points which are calculated from the significant points (see 
Fig. 1). Cartesian coordinates are justified to calculate distances and avoid collisions. 
The genetic algorithm uses both joint coordinates and Cartesian coordinates and the rest of the algorithms only use 
Cartesian coordinates.  
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Figure 1 Robot and its wired model 

Note: Significant points and points of interest 
 

To prevent collisions, three different and basic patterned shapes of obstacles have been used: spheres, cylinders 
and prisms. Any real obstacle can be modelled by adding patterned obstacles. The robot links are also modelled as 
cylinders so as to avoid collisions the algorithm control the distances between the robot´s links and the obstacles. 
Distances are constraints in the optimization problem so the algorithms calculate collision-free adjacent 
configurations (see Section 7). Further details on robot modelling and collision avoidance can be found in  Valero et 
al., 1997 and Rubio et al., 2009. 

3. Generation of Adjacent Configurations. 

Configuration space is obtained by generating adjacent configurations (see Rubio et al., 2009). Given a feasible 
configuration C k, it is said that a new configuration C p is adjacent to it if it is also feasible (i.e. it meets the 
characteristics of the robot while avoiding collisions), and in addition the following three properties are fulfilled: 
1. The position of the end-effector of configuration Cp is at a distance of one unit with respect to the position of the 

end-effector of configuration C k.  
2. There are no obstacles between adjacent configurations C k and C p. 
3. Configuration C p should minimize this objective function: 
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where C f  is the final configuration 
 

4. An improved method to calculate distances 

By controlling the distance from the different patterned obstacles to the cylinders that cover the robot links, 
collision avoidance between the robot and the obstacles is possible. Distances are constraints in the optimization 
problem. They serve to calculate collision-free adjacent configurations. 

The application of the procedure between link i of the robot, modelled as a cylinder ( )RC
i

RC
i2

RC
i1i r,c,cRC =  and the 

patterned obstacle j (which may be a cylinder, sphere or planar surface), can give rise to three different cases to 
prevent collisions:  

A) Cylinder-Sphere:  



Here we compute the distance between a line segment (cylinder) to a point (centre of the sphere). Let AB be a line 
segment specified by the endpoints A and B. Given an arbitrary point C, the problem is to determine the point P on 
AB closest to C. Then we calculate the distance between these two points. 

Projecting C onto the extended line through AB provides the solution. If the projection point P lies within the 
segment, then P itself is the correct answer. 

If P lies outside the segment, then the segment endpoint closest to C is instead the closest point (A or B).  
See Fig. 2. 

B) Cylinder-Cylinder 
Here we compute the distance between two line segments. 

The problem of determining the closest points between two line segments S1 (P1Q1) and S2 (P2Q2) (and therefore 
the distance) is more complicated than computing the closest points of the lines L1 and L2 of which the segments are 
a part. Only when the closest points of L1 and L2 happen to lie on the segments does the method for closest points 
between lines apply. For the case in which the closest points between L1 and L2 lie outside one or both segments, a 
common misconception is that it is sufficient to clamp the outside points to the nearest segment endpoint. It can be 
shown that if just one of the closest points between the lines is outside its corresponding segment, that point can be 
clamped to the appropriate endpoint of the segment and the point on the other segment closest to the endpoint is 
computed. 

If both points are outside their respective segments, the same clamping procedure must be repeated twice.  
See Fig. 2 

C) Cylinder-Planar Surface. 
The surface is divided into triangles. In this case we compute the distance between a line segment and a triangle.  
See Fig. 2. 

The closest pair of points between a line segment PQ and a triangle is not necessarily unique. When the line 
segment is parallel to the plane of the triangle, there may be an infinite number of equally close pairs. However, 
regardless of whether the segment is parallel to the plane or not, it is always possible to locate a point such that the 
minimum distance falls either between the end point of the segment and the interior of the triangle or between the 
segment and an edge of the triangle. Thus, the closest pair of points (and therefore the distance) can be found by 
computing the closest pairs of points between the following entities: 

-Segment PQ and triangle edge AB. 
-Segment PQ and triangle edge BC. 
-Segment PQ and triangle edge CA. 
-Segment endpoint P and plane of triangle (when P projects inside ABC) 
-Segment endpoint Q and plane of triangle (when Q projects inside ABC). 
The number of tests required to calculate the distance can be reduced in some cases.  

 
Figure 2 Three different cases to prevent collisions 

 

 



5. Characteristics of the five algorithms 

5.1 Sequential algorithm 

The path consists of a sequence of configurations, which are between the initial and final ones. The set of 
intermediate configurations that are part of the path, so that the robot goes from one place to another, is calculated 
sequentially. In the first part, the configuration space is generated from the initial configuration by calculating 
adjacent configurations. The robot end-effector must visit all the nodes that are part of the discretized workspace (see 
Rubio et al., 2009) until the final configuration is reached. Having calculated the configuration space, a weighted 
graph is created. Each node in the graph stores a configuration of the robot, and the arcs between nodes represent the 
distance between adjacent configurations.  

The weight corresponding to the arc that goes from node k ( C k robot configuration) to node p ( C p robot 
configuration), can be given as:  
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where that C k and C p are adjacent configurations, n is the number of Cartesian coordinates used in the wired model and 
p

ix  and k
ix

 
are the Cartesian coordinates of the significant points corresponding to configurations C k and C p 

respectively. In addition C k and C p must satisfy: 

1. Collision avoidance within the robot workspace therefore Constraints type (d) avoiding the obstacles between 
configurations; 

2. Constraints on the mobility of robot joints, takink into account the limits to each actuator´s motion. 

If the configurations are not adjacent (one of the properties defined in the previous section is not met) the weight 
is considered as 

∞=),( pka   (3) 

In the second part, the searching is started in the weighed graph with the path that joins the node corresponding to 
the initial configuration to the node corresponding to the goal configuration. The aim is to join the initial and final 
configuration through a path (sequence of configurations) of minimum distance. Since the arcs meet that a(k,p) ≥ 0, 
the Dijkstra’s algorithm is used in order to obtain the path that minimizes the distance between the initial and goal 
configurations. If this path exists, that means there is a solution, the algorithm can find the sequence of configurations 
that must follow the robot. 

5.2 Simultaneous algorithm and its variants 

This algorithm has three variants depending on the cost function used. This algorithm simultaneously calculates 
the configuration space and the shortest path as the algorithm evolves looking for the solution. It is necessary to 
define the objective function to guide the search for new adjacent configurations. The objective function is defined in 
terms of the distances that the robot must travel between configurations. To calculate the distances it is necessary to 
attach a node to each configuration of the robot. Initially there are only nodes corresponding to the initial and final 
configurations. Then a graph is generated that will be completed as new configurations are obtained. Each node in 
the graph represents a possible configuration of the robot, and the arcs between nodes represent the distance traveled 
by the significant points of the robot between these configurations. 

The branching process that creates new adjacent configurations from a given one is as follows: first adjacent 
configurations are obtained from the current node; secondly, the adjacent configurations generated are evaluated 
using a cost function associated with the distances travelled by the significant points of the robot. This cost function 
is different from the objective function used in the generation of adjacent configurations. Finally, we evaluate the 
new nodes obtained and the branching process will continue from that which is most promising, i.e. that which 
presents a lower cost function. 

We present three different cost functions to evaluate the branch nodes, therefore it gives three different 
algorithms: 



2.1. Option 1: The cost function associated with the algorithm A *. It corresponds to the uniform cost function 
augmented by the estimated cost of moving from the current configuration to the final. If the node p (corresponding 
to the configuration adjacent to C p  ) has been generated from the node k (configuration C k), the cost function f (p) 
associated with the algorithm A * can be broken down as follows: 

f(p)= f(k)+ c(k,p)+ h(p,f)   (6)  

The term f (k) is indicative of the cost of reaching the node k, and it is a known value (since configuration C k has 
already been reached). 
The term c (k, p) is indicative of the cost of moving from an adjacent configuration C k to another C p  . It is obtained: 
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where n is the number of significant points of the robot. 
The term h (p, f) corresponds to an estimate of the cost of moving from the configuration adjacent C p  to the final 
configuration C f. It is calculated: 
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where n = 7, C p is the adjacent configuration generated and C f is the final configuration.  
2.2. Option 2: Uniform cost function. If the node p (corresponding to the configuration adjacent C p) has been 
generated from the node k (C k), the cost function f (p) associated with node p, can be broken down as follows: 

f(p)= f(k)+ c(k,p)   (4)  

The term f (k) is indicative of the cost of reaching node k from the initial configuration. Its value is known as 
configuration C k has been reached. It is calculated recursively. 
The term c (k, p) is indicative of the cost of moving from an adjacent configuration C k  and C p. It is obtained: 
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where αi
p  and αi

k are the significant points of configurations C p and C k respectively, and n = 7 is the number of 
significant points of the robot. 
2.3. Option 3: The cost function associated with a greedy search: it only takes into account the estimated cost of 
moving from the actual configuration to the final configuration or objective. The total cost function associated with 
the greedy algorithm can be highlighted as follows: 

f(p)= h(p,f)   (9) 

h (p, f) representing the estimated cost of going from configuration C p to the final configuration C f . 
Knowing the cost function implemented in the algorithm, it is possible to branch out. First, a node has to be 

selected from all the nodes generated (corresponding to new configurations). The one that raises expectations of 
producing the optimal solution (shortest path) is selected. Thus, among the nodes accumulated so far which have not 
yet been branched out, the node whose cost function is the smallest for further branching will be chosen. 

This process is repeated indefinitely, branching out the nodes obtained until reaching the final configuration. 
Simultaneously with this branching process, the path followed is stored, until reaching the goal node (or final 
configuration). When the above process has come to an end, we will also have the sequence of valid configurations 
between the initial and final configuration and therefore a solution to the path planning problem. Most of the time, it 
is not necessary to evaluate the entire workspace to obtain a solution. 



5.3 Genetic algorithm 

GAs are search algorithms based on mechanics of natural selection and natural genetics. They combine survival 
of the most fitting among the string structures with randomized yet structured information exchange to form a search 
algorithm with innovative flair of natural evolution. 

They have recently found an increasing use in machine learning, robot motion planning, scheduling, pattern 
recognition, image sensing and many other engineering applications. GAs are search algorithms based on mechanics 
of natural selection and natural genetics. They combine survival of the most fitting among the string structures with 
randomized yet structured information exchange to form a search algorithm with innovative flair of natural 
evolution. In this paper a genetic algorithm is applied to path planning to obtain a path of minimum distance from 
two configurations (initial and final) given by the user.  

The genetic algorithm (GA) solves such problem by minimizing the traveling distance of the end-effector and the 
significant points between the initial and final configurations avoiding obstacles. The workspace will be modeled in 
such way to provide a discrete configuration space based on the positions of the end-effector between the initial and 
final configurations of the robot. 

In this procedure, two optimization processes using genetic algorithms are involved. The first one is an 
optimization process for obtaining the adjacent configurations. The order in which the adjacent configurations are 
generated will condition the Space of Configurations generated and, therefore, the path to be obtained. The second 
optimization process is used for the obtaining of the path, which consist of a set of adjacent configurations. This 
algorithm is applied on an industrial robot Puma 560 modeled with six degree of freedom. 

5.3.1 Obtaining the Configuration Ck 

In the building process of the path, a random search procedure will be applied to search from the C i for the next 
adjacent configuration and so on until it reaches the C f. The main concern in this part is finding a sequence of robot 
configurations between the initial and final configurations that fulfils the early listed three conditions.  

A Steady State Genetic Algorithm (SSGA) procedure is used to obtain a robot configuration C k adjacent to a 
given one C P. 

The individual or the chromosome represents the robot configuration. Each chromosome consists of six genes; 
the robot generalized coordinates (qi; i = 1, 2, …, 6). 

 { }654321 ,,,,, qqqqqqIndividual =   (10) 

The initial population consists of a defined number of individuals. The initial values of each gene in the 
individual are selected randomly between the two limits of the generalized coordinates for that gene.  

A roulette-wheel selection method is applied to select individuals for crossover and mutation. This method is 
based on the magnitude of the fitness score of an individual relative to the rest of the population. The higher score, 
the more likely an individual will be selected. 

The crossover operator defines the procedure for generating a child from two selected parents. A single point 
crossover is used in this procedure. See Fig. (3). 

The mutation operator defines the procedure for mutating each genome. In this procedure, one gene mutation is 
used. An offspring will be selected randomly and then a gene will be selected randomly from that offspring. 
Afterwards, a gene will be mutated  



 
 

Figure 3 Adjacent configuration crossover and mutation 

Using mechanisms of crossover and mutation, a new generation of solutions is obtained from which a subset is 
selected to form the basis for creating a new generation that is characterized by the fact that its properties (distance 
travelled) have been improved. This is an iterative process that continues until the optimal solution has been found 
acceptable when the number of generations has reached a predetermined level. 

The objective of this GA procedure is to minimize the distance between significant points of the two adjacent 
configurations in order to find the optimal path between the initial and final configurations of the robot. The shortest 
path will be calculated by minimizing the sum of the straight line segments of the corresponding significant points of 
the robot from the initial to the final configuration.  
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where: j is the number of significant points of the robot, and m = 4 for the robot Puma 560 (when using this 
algorithm) and i = 1, 2, …, n is the number of robot configurations included in the path. 

5.3.2 Obtaining the path 

The genetic algorithm for path planning uses parallel populations with migration technique. The genetic 
algorithm has multiple, independent populations. The master population is updated each generation with best 
individual from each population. 

In the GA based solution procedure, a number of new individuals are created at each iteration. The remaining 
individuals are obtained by deterministically copying the individuals with the top fitness from the previous 
generation. 

The individual or the chromosome is composed of set of intermediate points (end-effector positions) including 
end points (initial and final position of the end effector). This means that each chromosome represents a complete 
path between initial and final configurations. 

The first point of each individual is the initial position of the end-effector of C i. The second point will be 
selected randomly from the discretized workspace without repetition in one of seven directions: X-, Y-, Z-,  
XY-, XZ-, YZ-, and XYZ-direction. This strategy will be repeated for the next point and so on until the goal position 
is achieved. Note that this definition is based on the number of intermediate points that constitute the path, which 
means that paths do not have equal lengths, which leads to more complexity in crossover and mutation. 

The objective of this optimization problem is to find the optimal path between initial and final positions of a 
robot end-effector by minimizing the sum of the straight-line segments of the corresponding significant points of the 
robot, from the initial to the final point.  

The selection operation is made using the roulette-wheel method. 
The crossover is made through the exchange of a part of the path (chromosome) between two selected paths 

through the selection operation mentioned earlier; being that, it is executed only if the probability of the crossover is 
satisfied. For more details please refer to Fares, A.D. et al. (2007). 

Single-Point 
Crossover 

Single-Point 
Mutation 



The mutation is done by selecting a configuration (gene) randomly from a selected path (chromosome). The first 
and the final configurations are not considered for mutation. For more details please refer to Fares, A.D. et al. (2007). 

6. Comparing the efficiency of the algorithms 

6.1 Introduction 

The examples that appear in this section have been solved using an Intel (R) Core (TM) 2 Quad computer with 
2.83 GHz and 4 GB of RAM. 

We are going to analyze the quality and efficiency of the five proposed algorithms: the algorithm called 
sequential (referred to as SEQ), the simultaneous algorithm with cost function A* (referred to as A*), the 
simultaneous algorithm with uniform cost function (referred to as UC), the simultaneous algorithm with greedy cost 
function (referred to as G) and the genetic algorithm (referred to as GA). We will also compare the results between 
them. 

To do this study we apply the algorithms on a set of eleven examples and we will monitor two important 
operating parameters: the computational time required to generate a solution and the distance travelled by the robot. 

6.2 Examples 

A set of eleven examples has been solved using the PUMA 560 robot (with and without obstacles), and up to 
three sets of differently patterned obstacles in each example have been introduced sequentially: the first one a 
spherical obstacle, then a second cylindrical obstacle interfering with the previous path and requiring the calculation 
of a new path for the algorithm and a third prismatic obstacle trying to obstruct as much as possible the new previous 
path obtained. In each example the robot tends to go from the initial C i to the final C f configuration. In general, 
obstacles in the workspace are modeled using patterned obstacles: spheres, cylinders and prims. 

Each of the eleven examples starts from different initial and final configurations and were solved initially by 
considering that there were no obstacles in the environment. All the algorithms developed generate a solution with 
their own properties (mainly distance travelled and computational time employed). Once we know the path to be 
followed by the robot´s end-effector, the first obstacle (sphere) was introduced, which hinders the realization of that 
path. Then the problem with this new obstacle is solved again, and new solutions are found that prevent the robot´s 
passage through the area occupied by the obstacle. The properties of new solutions obtained with different 
algorithms are analyzed again. With the new path calculated for the second time, a second obstacle (a cylinder) is 
introduced which hinders the realization of that path. With the new obstacle´s data, the path planning problem was 
solved again (now with two obstacles) and a new path was found that prevents collision with the obstacles. Finally, 
we introduce a third obstacle (a prism) which hinders the previous path and the algorithms look for a new path and 
they find it. 

Having found the new solution, its properties are analyzed. The characteristics of the different paths have been 
recorded and displayed in the corresponding graphs. 

6.3 Algorithms and obstacles used to solve the examples 

Each example has been resolved following this system: 

Example Obstacles Algorithm 

nº i 

(i=1.. 11) 

1 With 0 obstacles in the work 
environment 

1.1. Sequential algorithm (SEQ). 
1.2. Simultaneous algorithm A* (A*). 
1.3. Simultaneous algorithm with Uniform cost (UC). 
1.4. Simultaneous algorithm with Greedy cost (G). 
1.5. Genetic algorithm (GA). 

2 With 1 obstacles in the work 
environment (spherical obs.) 

2.1. Sequential algorithm (SEQ). 
2.2. Simultaneous algorithm A* (A*). 
2.3. Simultaneous algorithm with Uniform cost (UC). 
2.4. Simultaneous algorithm with Greedy cost (G). 



2.5. Genetic algorithm (GA). 

3 With 2 obstacles in the work 
environment (spherical and cylindrical 
obs.) 
 

3.1. Sequential algorithm (SEQ). 
3.2. Simultaneous algorithm A* (A*). 
3.3. Simultaneous algorithm with Uniform cost (UC). 
3.4. Simultaneous algorithm with Greedy cost (G). 
3.5. Genetic algorithm (GA). 

4 With 3 obstacles in the work 
environment (spherical, cylindrical and 
prismatic obs.) 

4.1. Sequential algorithm (SEQ). 
4.2. Simultaneous algorithm A* (A*). 
4.3. Simultaneous algorithm with Uniform cost (UC). 
4.4. Simultaneous algorithm with Greedy cost (G). 
4.5. Genetic algorithm (GA). 

The information generated during the resolution process is stored. What has mainly been analyzed is the 
computational time needed to obtain each solution and the distance travelled by the significant points of the robot. 
With this information, graphs 1 to 4 have been prepared. 

Example nº 1 

Next we describe in detail the process for the resolution of example n º 1 using two algorithms: the simultaneous 
one with greedy cost function (G) and the genetic algorithm (GA).  
Fig. 4 shows the robot with the initial C i and final C f configurations.  
 

 

Initial Configuration 
 

Final Configuration 
Figure 4 Initial and final configurations of the robot 

Table 1 shows the joint coordinates for the PUMA 560 robot for initial C i and final C f configurations.  
Table 2 shows the locations of the obstacles placed in the workspace for this example. 

    Table 1: Configurations to be joined (example nº 1) 
Joint Nº Initial Configuration Final Configuration 

1 -23.79º 35.02º 
2 -21.69º -60.82º 
3 106.18º 122.27º 
4 -0.11º 162.92º 
 0.0º 4.51º 

6 0.0º -159.88º 
7 0.0 mm 0.0 mm 

 
 
 
 
 
 
 



Table 2: Obstacle Location (in m.) (example nº 1) 

1 obst. Sphere ( )1.0 0.3,- 0.8,-1 =SOc   15.01 =COr   

2 obst.  Cylinder ( )0 0.3, 0.7,11 =COc  ( )1.1 0.3, 0.7,21 =COc  15.01 =COr   

3 obst. Prismatic ( )1.5 0.1, 0.1,-3 =POa  ( )1.7 0.1, 0.1,-13 =POq  ( )1.5 0.1, 0.5,23 =POq  ( )1.5 0.2,- 0.1,-33 =POq  

(The sphere is defined using the Cartesian coordinates of its centre SOc1 and the radius SOr1 . The cylinder is defined 
using the Cartesian coordinates of the centres of its bases COc11 and COc21  and the radius COr1 . The prismatic obstacle is 
defined using the Cartesian coordinates of four points corresponding to its vertexes POa3 , POq13 , POq23 and POq33 ). 

Fig 5 and Fig. 6 shows the solution obtained with algorithm G and GA respectively when no obstacles have been 
considered in the workspace. 

 

 
Initial Configuration 

 
Final Configuration 

Figure 5 Path obtained using algorithm G 

 
Initial Configuration  

 
Final Configuration 

Figure 6 Path obtained using algorithm GA 

A spherical obstacle is then introduced into the workspace, trying to burden the path obtained previously. This is 
shown in Fig. 7 for algorithm G.  

 
Figure 7 Obstacle introduced obstructing the path (algorithm G) 

In Fig. 8 and Fig. 9 we can see the new solutions (new paths). We can observe how the new paths avoid the 
obstacle: 



 
 

Initial Configuration 

 
 

Final Configuration 

 
Figure 8 New path obtained using algorithm G 

 
 

Initial Configuration 

 
 

Final Configuration 

 
Figure 9 New path obtained using algorithm GA 

Next, a second cylindrical obstacle is introduced, trying to obstruct the path obtained. This is shown in Fig. 10 for 
algorithm G.  

 
 

Figure 10 Second obstacle introduced, obstructing the previous path (algorithm G) 

The problem is solved again. The new solutions obtained using algorithms G and GA are shown in Fig. 11 and 
12. 

 
Initial Configuration 

 
Final Configuration 

 
Figure 11 New path obtained using the algorithm G 



 
Initial Configuration 

 
Final Configuration 

 
Figure 12 New path obtained using the algorithm GA 

Finally, the third obstacle (a prism) is introduced. See Fig. 13.  
 

 
Figure 13 Third obstacle introduced obstructing the path (algorithm G) 

The problem is solved again. The new solutions obtained using algorithms G and GA are shown in Figs. 14 and 
15. 

 
Initial Configuration 

 
Final Configuration 

Figure 14 New path obtained using algorithm G 

 
Initial Configuration 

 
Final Configuration 

Figure 15 New path obtained using algorithm GA 

 

 



The numerical results obtained for example nº 1 are shown in Tables 3 and 4. 

Table 3 

Example 1  

Fixed-based Robot 
 

Distance Travelled (in m.) 

Indirect 
Algorithm: Seq 

Simultaneous 
Algorithm: A* 

Simultaneous 
Alg.: Uniform 

Cost  

Simultaneous 
Algorithm: 

Greedy  

Genetic 
Algorithm 

With 0 obstacles 3,73 3,55 3,55 3,65 3,1425 
With 1 obstacle. 3,72 3,44 3,44 3,55 3,1671 
With 2 obstacles 

 
4,50 4,86 4,86 5,12 3,4890 

With 3 obstacles 5,42 5,41 3,55 6,83 3,6139 

Table 4 

Example 1  

Fixed-based Robot 
 

Computational Time (in s.) 

Indirect 
Algorithm: Seq 

Simultaneous 
Algorithm: A* 

Simultaneous 
Alg.: Uniform 

Cost  

Simultaneous 
Algorithm: 

Greedy  

Genetic 
Algorithm 

With 0 obstacles 36,19 253,05 773,67 1,20 4442 
With 1 obstacle. 8,83 57,44 214,81 0,86 4034 
With 2 obstacles 

 
15,27 78,48 237,59 3,04 16166 

With 3 obstacles 30,73 110,51 148,75 24,68 6991 

6.4 Results obtained for all the examples 

Next, we show the graphs generated for all the examples, computing the computational time required and the 
distance travelled by the robot. 

Graph 1 and Graph 2 show the distance travelled by the robot in two different formats. Note that the genetic 
algorithm (GA) yields the best results. 
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Graph 1  Distance travelled by the robot 

 
It shows that the genetic algorithm search scheme produces the lowest distance travelled. We can see these data 

from another point of view in Graph 2.  



0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
Examples

Tr
av

el
le

d 
D

is
ta

nc
e 

(m
)

G A* UC Seq GA

G   avg.  = 6,0434 m
A* avg.  = 5,0965 m
UC avg.  = 5,0519 m
Seq avg. = 5,3416 m
GA avg.  = 3,9906 m

 

Graph 2  Distance travelled in bar format 
Graph 3 and Graph 4 show the computational time required to get a solution in two different formats. Note that the 

greedy algorithm (G) yields the best results that are the lowest computational times. 
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Graph 3 Computational time required 
It shows that the greedy algorithm search scheme yields the lowest computational time required to get a solution. 

We can see the these data from another point of view in the Graph 4  
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G   avg.  = 7,3469 s      A* avg.  = 502 s
UC avg. = 1012 s         Seq avg. = 80 s
GA avg. = 11990 s

 

Graph 4 Computational Time required in bars format 

6.5 Industrial Application Example 

Next we present an industrial application. We can see the robot in the workspace with different initial and final 
configurations and the obstacles: 

 
Initial Configuration 

 
Final Configuration 

Figure 16 Distance travelled by the robot 
 

 
Initial Configuration 

 
Final Configuration 

 
Figure 17 Distance travelled in bar format 

  

 



Table 5: Configurations to be joined (example nº 2) 
Joint Nº Initial Configuration Final Configuration 

1 -27.57º 24.04º 
2 -28.26º -28.26º 
3 148.61 140.78 
4 0.5º 0.5º 
5 -31.96 -31.96º 
6 0.0º 0.0º 
7 0.0 mm 0.0 mm 

Table 6: Obstacle Location (in m.) (example nº 2) 

1 Obst. Prismatic ( )0.6,1.1- 1.3,1 =POa  ( )1.1 0.6,- 0.7,11 =PO  ( )0.9,1.1 1.3,21 =POq  ( )0.9 0.6,- 1.3,31 =POq  

2 Obst.  Prismatic ( )0.5 0.6,- 1.3,2 =POa  ( )0.5 0.6,- 0.7,12 =POq  ( )0.5 0.9, 1.3,22 =POq  ( )0.4 0.6,- 1.3,33 =POq  

3 Obst. Prismatic ( )0.5 0.1, 1.3,3 =POa  ( )50.7,0.1,0.13 =POq  ( )11.3,0.1,1.23 =POq  ( )41.3,0.1,0.33 =POq  

 

7. Conclusions 

In this paper: 

1. Authors summarize the characteristics of five algorithms to solve the path planning problem for industrial 
robots operating in 3D complex environments.  

2. A comparison between those five algorithms has been presented to analyze their performance, determining 
which algorithm gives the best results through the analysis of the working parameters. 

3. The first algorithm is an indirect method (called the sequential algorithm), the next three algorithms (A*, 
Uniform Cost and Greedy) are based on a direct approach and finally the fifth algorithm is based on genetic 
techniques.  

4. These algorithms can be applied to any industrial robotic systems (by changing the significant points which 
serve to define the robot) and can solve the path planning problem. 

5. The application examples have been developed using a PUMA 560 robotic system. 

An analysis of the results indicates the following points: 

a) The new procedure introduced in this paper (the genetic algorithm) yields the best results from the point of 
view of the distance travelled. However, the values of the computational time needed to obtain a solution 
are greater than values obtained using the rest of algorithms. This is not a drawback when the robot 
programing is off-line.  

b) With regard to computational time, it is worthy pointing out the excellent results obtained by the greedy 
algorithm. However this algorithm doesn´t gives the best results from the point of view of the distance 
travelled. 

Depending on the working parameter (computational time or distance travelled) used to generate the path, the 
greedy algorithm or the genetic algorithm will be chosen. 
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