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Abstract 

Purpose: Intermittent demand appears sporadically, with some time periods not even 

displaying any demand at all. Even so, such patterns constitute considerable proportions 

of the total stock in many industrial settings. Forecasting intermittent demand is a rather 

difficult task but of critical importance for corresponding cost savings. The current 

study examines the empirical outcomes of three heuristics towards the modification of 

established intermittent demand forecasting approaches.  

Design/methodology/approach: First, optimization of the smoothing parameter used 

in Croston’s approach is empirically explored, in contrast to the use of an a priori fixed 

value as in earlier studies. Furthermore, the effect of integer rounding of the resulting 

forecasts is considered. Lastly, we evaluate the performance of Theta model as an 

alternative of SES estimator for extrapolating demand sizes and/or intervals. The 

proposed heuristics are implemented into forecasting support system. 

Findings: The experiment is performed on 3,000 real intermittent demand series from 

the automotive industry, while evaluation is made both in terms of bias and accuracy. 

Results indicate increased forecasting performance. 

Originality/Value: The current research explores some very simple heuristics which 

have a positive impact on the accuracy of intermittent demand forecasting approaches. 

While, some of these issues have been partially explored in the past, the current research 

focuses on a complete in-depth analysis of easy to employ modifications to well 

established intermittent demand approaches. By this, we enable the application of such 

heuristics on an industrial environment, which may lead into significant inventory and 



production cost reductions and other benefits.  

 

Keywords: intermittent demand; smoothing parameters; rounding; theta method; 

empirical investigation 

 

1. Introduction 

Demand and inventory forecasts are required for virtually all decision making situations 

regarding future events, from short term forecasts dealing with inventories and 

scheduling to medium and long term ones needed for strategy and planning. Accurate 

forecasts are of great practical importance, linking inventory costs with revenues, 

customer satisfaction, stock-out costs and lead time (for example Huang et al., 2011). 

Intermittent demand patterns are characterized by infrequent demand arrivals coupled 

with variable demand sizes, whenever demand occurs. Intermittent demand items may 

be engineering spare parts or other items within the range of products offered by any 

organization and at any level of the supply chain. 

Sparse demand creates significant problems in the manufacturing and supply 

environment as far as forecasting is concerned. It is not only the variability of the 

demand size, but also the variability of the interval between demands that make 

intermittent demand so difficult to forecast. If the fact that slow moving items may 

constitute up to 60% of the total stock in any industrial setting (Johnston et al., 2003) 

is also taken into account, it becomes obvious that small improvements can instigate 

substantial cost savings. 

The current study examines three empirical heuristics used with established and 

commonly used forecasting approaches for intermittent demand (Croston, 1972; 

Syntetos and Boylan, 2001; Syntetos, 2001). Firstly, optimization issues, regarding the 

optimal smoothing parameters used, are looked into. Secondly, an intuitively attractive 

and practically indispensable heuristic is investigated: rounding of the final forecasts, 

as all demand sizes of SKUs are whole numbers. Lastly, an approach that combines 

Croston method for intermittent demand with Theta model (Assimakopoulos and 

Nikolopoulos, 2000) is thoroughly investigated. 

All three heuristics result in very promising results when applied to data characterized 

by intermittent demand patterns, where the presence of zero demand is evident. Taking 

into account that such data arise in many industries, it comes without saying that the 
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current research aims at improving settings and procedures by easy-to-implement 

modifications on conventional techniques. Furthermore, to our knowledge it is the first 

time that the effectiveness of independently selecting the smoothing values for the 

numerator and the denominator of each one of the series, via a widely used cost function 

(MSE), is being empirically investigated. Lastly, the full potential of utilizing the Theta 

model in Croston’s framework for the extrapolation of its components is analyzed and 

discussed.   

The remainder of the current paper is structured as follows. Firstly, a short literature 

review on widely used intermittent demand forecasting techniques is presented at 

Section 2, followed by the experimental structure of our research and the description of 

the data set used (Section 3). Empirical results regarding the three heuristics examined 

are presented and discussed in Section 4. The implementation of the proposed three 

heuristics is explored in Section 5, through a dedicated forecasting support system. 

Finally, some managerial implications are mentioned (Section 6), while conclusions are 

summed up and avenues for future work are proposed in Section 7. 

 

2. Intermittent demand forecasting approaches 

Intermittent demand data or count data are frequently observed in industrial and 

inventory settings. Williams (1984) introduced a number of classification rules in order 

for a spare part to be characterized as slow moving, intermittent or lumpy. According 

to Teunter and Sani (2009), it is not an easy task to forecast intermittent demand, 

basically due to its erratic, and sometimes lumpy, nature. Nevertheless, it is very 

surprising that so little work has been done on forecasting intermittent demand data 

(Gooijer and Hyndman, 2005), with several industries and organizations relying on the 

single exponential smoothing (SES) method in order to forecast demand in a routine 

stock control system (Brown, 1959). As first shown by Croston (1972), the use of SES 

generally leads to inappropriate stock levels. As an alternative, Croston proposed the 

decomposition of the original intermittent series into two separate series. The first one 

includes all non-zero demand sizes, while the second series consists of the respective 

intervals between two consecutive non-zero demands. Each line is extrapolated 

separately, while the final forecast is simply calculated as a ratio of the two. Assuming 

tẑ and tp̂ to be the forecasts of demand size and interval, respectively, for period t, 

Croston’s forecast is given by: 



 

In fact, later research  in this field is heavily based on this single research by Croston. 

Willemain et al. (1994) and Johnston and Boylan (1996) have undertaken accuracy 

comparisons between SES and Croston’s method, demonstrating the superiority of the 

latter, especially when the interval between demands exceeds 1.25 times the  update  

period. Syntetos and Boylan (2001) proved that Croston’s method is positively biased. 

Towards the correction of this behavior, they proposed a modification of the original 

Croston’s method (Syntetos and Boylan, 2005), better known as Syntetos and Boylan 

Approximation (SBA). This new estimator is given by: 
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where a is the value of the exponential smoothing constant used in the extrapolation of 

the intervals series. Syntetos, in his PhD Thesis (2001), proposed another unbiased 

estimator, which can be obtained as follows: 
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Previous empirical studies (Syntetos and Boylan, 2001) have shown that the biased 

behavior of Croston’s method is more apparent in the case of data with high 

intermittency (i.e. many periods with zero demand) when high smoothing values (a) 

are used. As a result, Croston’s method is not recommended to be used with a values 

above 0.15. This result was verified by Teunter and Sani (2009), who analyzed the 

circumstances under which Croston’s method and SBA approach tend to be biased. 

According to their findings, Croston’s original method presents smaller bias if few 

demands are zero, whereas SBA modification has a smaller bias if many demands are 

zero. Moreover, it is argued that forecasts derived from Syntetos method are 

outperformed in terms of forecasting variance by the SB method (Syntetos, 2001; 

Teunter and Sani, 2009). Teunter and Sani (2009) suggest the use of Syntetos method 

as an alternative to Croston and SBA methods, but their findings are only based on 

simulated data. 

In all three cases, the demand sizes and intervals are extrapolated using SES, while 

forecasts are updated only in periods with positive demand. The estimate of the demand 

under the SES method is given by (Makridakis et al., 1998):  
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Although a-smoothing values in the range [0.05 – 0.2] are viewed as realistic (Croston, 

1972; Willemain et al., 1994; Johnston and Boylan, 1996), most of the empirical studies 

investigating intermittent demand assumed a constant value for a. The use of a 

smoothing constant is not a usual technique in fast moving series, where an 

optimization procedure takes place towards the selection of an ‘optimal’ smoothing 

parameter which minimizes the in-sample MSE. Moreover, Snyder (2002) argued for 

the use of different smoothing parameters for the demand sizes and intervals, as well as 

proposed the use of other compatible models and methods. 

Recent research on intermittent demand forecasting has focused, other than forecasting 

performance in terms of accuracy, on the variability of intermittent demand estimates 

(Syntetos and Boylan, 2010), the importance of inventory obsolescence (Teunter et al., 

2011) and inventory performance under different types of information sharing (Ali et 

al., 2012). Another new research route has been the temporal, non-overlapping 

aggregation of intermittent demand data into time buckets so that the resulting series 

are more likely to be non-intermittent. This technique has proven to be very promising 

in terms of forecasting accuracy (Nikolopoulos et al., 2011) and customer service levels 

(Babai et al., 2012). However, despite any research during the last 40 years, Croston’s 

method is very often applied in practice (Fildes et al., 2008) and incorporated in 

commercial forecasting support systems. As a result, easy-to-apply modifications on 

the original framework that will lead in performance improvement are considered as 

beneficial.   

 

 

3. Empirical Data & Experimental Structure 

The empirical database used for the purposes of our research consists of the individual 

monthly demand histories of 3,000 SKUs from the automotive industry, over two years 

(24 consecutive monthly demand observations). The same database has been used in 

earlier studies (Syntetos and Boylan, 2005; Syntetos et al., 2005). Detailed descriptive 

statistics (to the second decimal place) on the demand data series characteristics are 

presented in Table 1. It is worth mentioning that the data in hand are considered as “fast 

intermittent”, where the intermittent demand intervals are at any time less than 2, with 



a median value at 1.26. The low degree of intermittence in this data set is coupled with 

low demand sizes with low degrees of variance. As a result, the data set is considered 

suitable as it contains series falling in all four classes of demand, according to Syntetos 

et al. (2005): erratic, lumpy, smooth or intermittent. At the same time, the empirical 

data are not to be related with issues regarding variability of the estimates and inventory 

obsolescence. This empirical dataset will not heavily affect the biased behavior of the 

Croston method, due to its low degree of intermittency. 

 

3,000 

SKUs 

Demand Sizes Demand Intervals Demand per period 

Mean StDev Mean StDev Mean StDev 

Min 1.00 0.00 1.04 0.21 0.54 0.50 

25% ile 2.05 1.14 1.10 0.30 1.46 1.32 

Median 2.89 1.76 1.26 0.52 2.33 1.92 

75% ile 5.00 3.36 1.41 0.73 4.17 3.50 

Max 193.75 101.42 2.00 1.60 129.17 122.75 

Table 1. Demand data descriptive statistics 

 

For the simulation purposes of the current research we held out the last 11 observations 

of each series, initializing all methods over the first 13 periods. We performed a sliding 

simulation (rolling evaluation) over the out-of-sample data via producing one-step-

ahead forecasts; thus we calculated 11 one-step-ahead errors for each series, for each of 

the forecasting methods considered.  

The evaluation of the results was performed by measuring the bias and accuracy of the 

examined methods. Mean Error (ME) offers a way to determine if an examined method 

is consistently positively or negatively biased, depending on the sign of the resulting 

value. ME can be calculated across all series using the following equation: 
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where 
s

tY and s

tŶ  are the actual and forecast values, respectively, of series s at time 

period t, n is the total number of series considered and h is the number of out-of-sample 

periods (horizon), thus n=3,000 and h=11. Accordingly, accuracy was calculated using 

average values of Mean as well as Median Absolute Scaled Error (MASE and MdASE 

respectively, Hyndman and Koehler, 2006). These two metrics are widely applicable, 

scale independent and easy to interpret: values of MASE greater than one indicate that 



forecasts are worse, on average, than in-sample one step forecasts of the Naive method. 

The average values of MASE and MdASE are given by: 
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where k is the number of in-sample periods, thus k=13. 

Three estimators were used in terms of benchmarking: Naive, SES and Simple Moving 

Average (SMA). Naive forecasts are equal to the last actual demand, so: 

tt YY 1
ˆ  

SES forecasts were generated using a constant level smoothing parameter, equal to 

0.05. Last, SMA at length of 13 periods was used because this was the estimation 

procedure employed by the software manufacturer that provided the empirical data 

series used in this research (Syntetos and Boylan, 2005). The estimate of the demand 

under the SMA(13) is given by: 
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4. Empirical Investigation & Discussion 

Bias and accuracy results for the three benchmarks are reported in Table 2. Results for 

intermittent demand methods are also presented, when a smoothing constant in the 

range [0.05 – 0.2] is selected, the same for demand sizes and intervals. Overall, the 

most unbiased method for the examined dataset would be SBA method with a=0.05, 

followed by Naïve and SES. Both in Croston and SBA methods, an increase in value 

of the a smoothing constant leads to a greater absolute value of ME, resulting in more 

biased forecasts. ME for Croston’s method is negative, denoting a positively biasing 

behavior, whereas in the case of SBA the bias has a negative direction. In terms of 

accuracy, SBA scores the lowest values for MASE and MdASE, at a=0.15 and 0.2, 

respectively. It is worth noting that, in contrast to bias, increased values of a smoothing 

constant have a positive effect on the measured (via MdASE) accuracy for both Croston 



and SBA methods. Furthermore, we should also note the overall good performance of 

SES method, which scored the same accuracy level with SBA at a=0.05. Empirical 

results of Table 2 indicate that Syntetos’ method is not suitable for the examined data, 

being outperformed from Croston and SBA in terms of both bias and accuracy. As a 

result, further analysis of the current research is basically based on the performance of 

the latter methods.  

 

Method 
BIAS ACCURACY 

ME MASE MdASE  

Naive -0.054 1.127 2.86E-04 

SMA(13) -0.106 0.893 2.46E-04 

SES(0.05) -0.076 0.889 2.44E-04 

Croston(0.05) -0.108 0.896 2.46E-04 

Croston(0.1) -0.120 0.893 2.47E-04 

Croston(0.15) -0.136 0.896 2.46E-04 

Croston(0.2) -0.153 0.901 2.45E-04 

SBA(0.05) 0.028 0.889 2.43E-04 

SBA(0.1) 0.151 0.880 2.39E-04 

SBA(0.15) 0.270 0.877 2.34E-04 

SBA(0.2) 0.387 0.878 2.28E-04 

Syntetos(0.05) -0.383 0.912 2.54E-04 

Table 2. Results of benchmarks and standard intermittent demand methods 

 

4.1. Optimizing a smoothing parameter 

The first heuristic of our research examines the optimization of a smoothing parameter, 

rather than using a constant value for demand sizes and intervals across all series. A 

linear optimization procedure takes place, where all values in the range [0.05 – 0.2] are 

examined separately using a step of 0.01, and the one minimizing the in-sample MSE 

is selected as the ‘optimal’, resulting in different a values for each series.  The value of 

the in-sample MSE is given by: 
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This linear optimization is a common practice for fast moving series, where smoothing 

parameters are selected in order to best fit the in-sample forecast model. In this case, 



the optimization procedure is applied directly and exclusively to the decomposed series, 

i.e. the demands sizes and intervals, which may lead to different ‘optimal’ a values, as 

suggested by Snyder (2002).  

 

Method  
BIAS ACCURACY 

ME MASE MdASE 

Croston(‘optimal’ a) -0.122 0.895 2.46E-04 

SBA(‘optimal’ a) 0.021 0.888 2.43E-04 

Syntetos(‘optimal’ a) -0.409 0.913 2.54E-04 

Table 3. Optimizing a smoothing value  

 

The results of this empirical heuristic for each intermittent demand method (Croston, 

SBA and Syntetos) are presented in Table 3. In terms of accuracy, the results are almost 

identical with those of the implementations of the methods where constant a smoothing 

value is set equal to 0.05 across all series. However, there is a significant reduction of 

the value of ME metric in the case of SBA method. The calculated bias drops to 0.021, 

which means a 25% error improvement. There is however not significant evidence that 

optimization benefits Croston and Syntetos methods.  

 

 
a-value 

Demands 

(numerator) 

Intervals 

(denominator) 

13 in-sample 

observations 

0.05-0.10 2897 96.5% 2547 84.9% 

0.11-0.15 17 0.6% 434 14.5% 

0.16-0.20 86 2.9% 19 0.6% 

18 in-sample 

observations 

0.05-0.10 2620 87.3% 2546 84.8% 

0.11-0.15 60 2.0% 286 9.6% 

0.16-0.20 320 10.7% 168 5.6% 

23 in-sample 

observations 

0.05-0.10 2499 83.3% 2597 86.6% 

0.11-0.15 169 5.6% 193 6.4% 

0.16-0.20 332 11.1% 210 7.0% 

Table 4. Distributions of optimal a-values 

 

Table 4 presents the distributions of the optimal a-values for both demand and intervals in 

three instances of the rolling procedure. In more detail, the number of time series selecting as 

optimal a-values in the ranges [0.05-0.10], [0.11-0.15] and [0.16-0.20] along with the relevant 



percentages are demonstrated. The three instances considered in this analysis were completed 

by 13, 18 and 23 in-sample observations respectively. A close observation of Table 4 makes it 

clear that smaller values of a are generally selected (inside the range [0.05-0.10]), especially in 

the case of short available history. As more observations become available, optimization 

enables a selective choice of greater a-values as well, for up to 17% of the time series.   

 

4.2. The effect of rounding 

When forecasting SKUs, providing decimal forecast values does not make much sense. 

This simple idea leads us to round the produced forecasts so that the reporting values 

would be whole numbers. Table 5 presents the results of the rounding effect, when 

indicative implementations of intermittent demand methods are used. In comparison 

with Table 2, the bias measured in all cases is almost at the same levels (if not even 

lower). Furthermore, there are notable improvements in terms of accuracy, as computed 

via MASE, where the calculated forecasts are approximately 2% more accurate for all 

methods tested. 

 

Method 
BIAS ACCURACY 

ME MASE MdASE 

Croston(0.1, Round) -0.112 0.878 2.50E-04 

SBA(0.1, Round) 0.152 0.866 2.41E-04 

SBA(0.2, Round) 0.379 0.861 2.35E-04 

Syntetos(0.05, Round) -0.382 0.897 2.50E-04 

Table 5. Rounding SKUs forecasts 

 

4.3. Combining Croston method with Theta model 

The use of SES method in order to extrapolate the decomposed Croston’s series has 

been criticized in many studies (see for example Snyder, 2002). We consider the use of 

an alternative, modern forecasting technique, the Theta model (the winner of M3 

forecasting competition, Makridakis and Hibon, 2000), introduced by Assimakopoulos 

and Nikolopoulos (2000). Theta method decomposes the original series in two (or 

more) separate series (the so-called theta lines), whose primary qualitative 

characteristic is the better approximation of the long-term behavior of the data or the 

augmentation of short-term features, depending on the value of the Theta coefficient. 



These theta lines are extrapolated separately. At the current study, we implement the 

Classic Theta model, as a three steps procedure: 

1. Each time-series is decomposed into two Theta lines, the linear regression line 

(which is referred also as Theta Line (Θ=0)) and the Theta Line (Θ=2), which 

is calculated as follows: 

ttt LRLYThetaLine  2)2(  

Where Yt refers to the t-th actual observation of the raw data, while LRLt denotes 

the t-th observation of the linear regression line, expressing the linear 

relationship between raw data and time.  

2. The linear regression line is extrapolated in the usual way while the second line 

is extrapolated via Single Exponential Smoothing. 

3. The forecasts produced from the extrapolation of the two lines are combined 

with equal weights. 

Thus, we investigate the use of Theta model, which can replace SES method in either 

numerator or denominator of Croston’s ratio, or even in both. Originally, the 

combination of Croston with Theta was proposed by Nikolopoulos et al. (2007), where 

Theta model was applied just for the extrapolation of the demand sizes (numerator). 

The intuition for using this combination was that Croston-Theta could pick up trends 

of non-stationary series, thus displaying more potent predictive power. 

 

Method 
BIAS ACCURACY 

ME MASE MdASE 

Croston-Theta(0.05, Num & Denom) -0.056 1.393 2.66E-04 

Croston-Theta(‘optimal’ a, Num & Denom) -0.046 1.392 2.66E-04 

Croston-Theta(‘optimal’ a, Denom) 0.011 1.200 2.55E-04 

Croston-Theta(‘optimal’ a, Num) -0.262 0.933 2.55E-04 

Croston-Theta(0.05, Num) -0.251 0.931 2.55E-04 

Croston-Theta(0.05, Num, Round) -0.253 0.916 2.50E-04 

Table 6. Combining Croston with Theta  

 

The results of Croston-Theta combination are presented in Table 6. Each row of the 

table displays the results for a separate implementation of the approach, in terms of the 

selected a smoothing value (0.05 or ‘optimal’, as discussed in Subsection 4.1), the level 

at which Theta was applied (numerator, denominator or both) and, last, the application 



(or not) of the rounding heuristic (as discussed in Subsection 4.2) at the final forecasts. 

The results indicate significant improvements in terms of bias, when Theta model is 

used for the extrapolation of intervals (denominator). Specifically Croston-

Theta(‘optimal’ a, Denom) implementation has the best bias performance in 

comparison to all other implementations presented in the current study, with an 

improvement close to 50% from the second best implementation (SBA(‘optimal’ a)). 

On the other hand, the Croston-Theta combination does not pay back in terms of 

accuracy. The results indicate worse out-of-sample accuracy performance than the in-

sample accuracy under Naïve, when Theta model is applied to the denominator. Lastly, 

the rounding effect seems to work once again as a simple self-improvement heuristic, 

offering notable improvements in the resulting accuracy metrics, while keeping the bias 

level constant. The moderate performance of Croston-Theta combination in terms of 

accuracy could be interpreted as lack of the trend component in the examined empirical 

dataset. Even if the trend component is almost zero for the majority of intermittent 

demand series, the presence of a deterministic trend would considerably favor the use 

of Theta model over SES. 

 

4.4. Discussion 

The use of different smoothing parameters for the demand and intervals has been 

previously suggested (Snyder, 2002). However,  appropriately choosing smoothing 

values independently for the numerator and the denominator of each one of the series, 

via a widely used cost function (MSE), has not been previously proposed nor 

investigated. In fact, this practice drives in considerable gains in terms of bias, while at 

the same time no negative impacts on accuracy are recorded. The most important 

observation, however, derives from comparing Tables 2 and 3. It is pretty clear, that as 

the static value of the smoothing parameter (a) raises from 0.05 to 0.20, there is a 

significant deterioration of the bias metric (measured as ME). However, selecting the 

most suitable smoothing value independently for each series , through minimizing in-

sample error, leads to significantly better results (up to 25%). This practically means 

that the use of a cost function for selecting the best smoothing parameters per series can 

make a difference.   

In many industrial applications, especially those involving time series of spare parts or 

SKUs, non-integer point forecasts are considered as non realistic. The impacts of 

rounding the final point forecasts derived from intermittent demand methods are 



empirically examined in this research. The most significant result is that this technique 

results in better accuracy levels (up to 2%) while at the same time no deterioration in 

terms of bias is recorded. As a result, we strongly recommend the use of this heuristic, 

which is regarded as appealing in both empirical and practical terms.  

Finally, an alternative to the traditional Croston’s method was examined in Subsection 

4.3. Originally, Croston proposed the use of SES as the extrapolation procedure for 

both decomposed series (demand and intervals). Given that both decomposed series 

represent sequences of non-zero values, we consider, for the first time, the full potential 

of using if the Theta model as the extrapolation technique of either the nominator, 

denominator or both. In fact, the choice of this model lies in its superior performance, 

as recorded in past major international forecasting competitions. This simple technique 

allows Croston’s framework act almost in an unbiased way (improvement up to 90% 

from the original approach), when Theta model is used for the extrapolation of the 

intervals between non-zero demands.  

 

5. The forecasting support system (FSS) 

In many applications, statistical forecasts are produced via dedicated and autonomous 

forecasting support systems (FSS). This direction serves multiple purposes. Firstly, 

managers and practitioners may not be familiar with the necessary statistical 

background. Secondly, an automated FSS can handle, pre-process and forecast 

thousands of time series (sales or orders for SKUs) in just a few seconds. Lastly, many 

features of the modern FSSs, such as statistical analysis, handling the impacts of special 

periods and integration of judgmental interventions, are regarded as necessary to the 

forecasting process of any industry. The needs of the empirical analysis of the current 

research led us to the design and development of a unique and dedicated forecasting 

support system for handling data of intermittent nature.  

The purpose of the current section is to give the general guidelines towards the 

implementation of a FSS that fully implements the proposed heuristics analyzed in the 

current research, so enabling the managers to have direct access to any gains derived 

through their practice in any manufacturing or industrial setting. Moreover, we aim to 

give insights to practitioners already utilizing customized software as to which 

directions of additional implementation or external modules should they target for 

exploiting these heuristics. 



The Intermittent Demand Forecasting System (IDFS) was designed following a three-

tier physical architecture (visualization, statistical/business and data). The main 

advantage of this architecture is that it is easily serviceable and expandable. The first 

layer of the architecture is the user interface, where both graphical and numerical 

interpretation of the data and the results are displayed. Furthermore, this layer enables 

users towards a detailed selection of the parameters related to the forecasting process 

(forecasting methods, horizons, hold-out samples, error metrics), along with the usage 

of the three heuristics presented in this paper. Figure 1 and Figure 2 show two typical 

screen displays of the proposed system. The second layer is the statistical/business tier. 

All the statistical and methodological procedures are modeled and implemented in the 

middle layer, which includes the functions related to the forecasting process. This layer 

includes all original forecasting methodologies (for example SES, Theta model, 

Croston, SBA and Syntetos) and also allows methods to interact with each other (for 

example, towards the formation of Croston-Theta). Additional adjustments, such as the 

use of optimized over contact smoothing values or the rounding of the final forecasts, 

are passing as external variables, through the interaction with the first layer. In addition, 

a middle tier is used to create the base for further extension with external software, 

encompassing interfaces, wrappers and web-services necessary for data exchange. 

Lastly, the third layer consists of the data tier of the application. The data base 

management system (database, views and relations) is lying on the data base server, a 

windows-based machine isolated from the internet in order to avoid threats and provide 

satisfactory response times. The data layer provides the statistics/business layer with 

the required historical data and stores any forecasts and accuracy results.  

 



 

Figure 1. Graphical visualization of the input data and parameter initialization 

 

 

Figure 2. Forecasting methods/parameters and graphical interpretation of the 

empirical results 

 



IDFS was developed using Microsoft’s Visual Basic .NET 2008 while the Dundas 

Chart, for Visual Basic .NET, was employed for the system implementation, in regards 

to its advanced charting functionality and superior graphic options. Finally, the 

Microsoft SQL Server 2008 R2 database is utilized by IDFS to store and retrieve the 

required information for the data analysis and forecasting. 

 

6. Managerial Implications 

Heuristics linked with the simplicity of spreadsheets are considered managerial 

appealing and flexible, especially in the case of slow-moving items and when dealing 

with problems of different sizes (Hummel and Jesse, 1990). As a result, optimizing a 

smoothing parameter and rounding final forecasts seem also to be interesting from a 

managerial point of view. Both heuristics can easily be implemented by managers and 

practitioners, while offering notable gains regarding accuracy and/or bias. 

To begin with, optimizing procedures for smoothing parameters of exponential 

smoothing methods are implemented and automated in major forecasting packages. In 

that sense, these procedures can easily be employed in a practical inventory setting, 

resulting in substantial improvements for the bias of SBA estimator (up to 25%), while 

scoring good accuracy levels (compared to SBA(0.05) implementation).  

Moreover, the task of rounding the final forecasts derived from any intermittent demand 

method can be easily done by use of ordinary spreadsheets. This simple heuristic offers 

remarkable improvements in measured forecasting accuracy, keeping, at the same time, 

bias at lower levels. Forecasts for intermittent demand SKUs call for rounding, so as to 

make forecasts interpretable and directly usable for real supply chain management 

applications, such as order placement. 

 

7. Conclusions & Perspectives 

The current study examined the empirical effectiveness of three empirical heuristics 

towards the modification of commonly used forecasting approaches for intermittent 

demand. We proposed the use of non-constant a smoothing parameter, via selecting the 

best a value for each series through in-sample optimization. Moreover, these values 

may be different for the demand sizes and the intervals (Snyder, 2002). The use of SES 

method for the extrapolation of the decomposed series in Croston’s framework is also 

examined. We considered as an alternative the Theta model, a technique that 



outperformed all exponential smoothing methods in the M3 forecasting competition. 

Lastly, an intuitively appealing heuristic, concerning the rounding of the final forecasts, 

was proposed.  

The results indicate that ‘optimal’ selection of a smoothing values results in almost 

identical accuracy levels, while in some cases there are significant improvements on 

the bias. Thus, model optimization is feasible and does pay back. Rounding seems to 

work surprisingly well, offering notable improvements in terms of accuracy and 

keeping bias constant. These results render this simple heuristic suitable in cases of data 

sets consisting of SKUs. Croston-Theta’s performance was moderate, as it performed 

well as far as bias is concerned, but seemed problematic in terms of accuracy. At last, 

a specialized FSS for intermittent demand data was proposed. 

Further research should involve the interaction of the rounding heuristic from a 

theoretical point of view. Moreover, all experiments of this study could be replicated 

with different data sets, so as to reach more general conclusions about the three 

proposed heuristics. Specifically, the Croston-Theta combination should be tested 

thoroughly with simulated and field trended data. Finally, it is recently argued (Syntetos 

et al., 2010) that in an inventory forecasting setting extrapolation methods should not 

only be evaluated with respect to their forecast accuracy but also in terms of their stock 

control implications, as measured through accuracy implication metrics (such as 

inventory costs and service levels achieved). Exploring the effects of the examined 

heuristics on stock control is an interesting line for further research and certainly 

worthwhile pursuing from a practitioner’s perspective. 

 

References 
Ali M.M., Boylan J.E. and Syntetos A.A. (2012), “Forecast errors and inventory 

performance under forecast information sharing”, International Journal of Forecasting, 

Vol. 28, pp. 830-841. 

Assimakopoulos V. and Nikolopoulos N. (2000), “The theta model: a decomposition 

approach to forecasting”, International Journal of Forecasting, Vol. 16, pp. 521-530. 

Babai M.Z., Ali M.M. and Nikolopoulos K. (2012), “Impact of temporal aggregation 

on stock control performance of intermittent demand estimators: Empirical analysis”, 

Omega, Vol. 40, pp. 713-721. 

Brown R. (1959) Statistical  Forecasting for  Inventory  Control,  McGraw-Hill, New 

York. 

Croston J.D. (1972), “Forecasting and Stock Control for Intermittent Demands”, 

Operational Research Quarterly, Vol. 23, pp. 289-303. 



De Gooijer J.G and Hyndman R.J. (2005), “25 years of time series forecasting”, 

International Journal of Forecasting, Vol. 22, pp. 443-473. 

Fildes R., Nikolopoulos K., Crone S.F. and Syntetos A.A. (2008) “Forecasting and 

operational research: A review”, Journal of the Operational Research Society, Vol. 59, 

pp. 1150-1172. 

Huang L.T., Hsieh I.C. and Farn C.K. (2011), “On ordering adjustment policy under 

rolling forecast in supply chain planning”, Computers and Industrial Engineering, Vol. 

60, pp. 397-410. 

Hummel J.W. and Jesse R.R. (1990), “A spreadsheet heuristic approach for the stocking 

and retention of slow-moving, obsolescent items”, Computers and Industrial 

Engineering, Vol. 18, pp. 163-173. 

Hyndman R.J. and Koehler A.B. (2006), “Another look at measures of forecast 

accuracy”, International Journal of Forecasting, Vol. 22, pp. 679-688. 

Johnston F.R. and Boylan J.E. (1996), “Forecasting intermittent demand: A 

comparative evaluation of Croston’s method”, International Journal of Forecasting, 

Vol. 12, pp. 297–298. 

Johnston F.R., Boylan J.E. and Shale E.A. (2003), “An examination of the size of orders 

from customers, their characterization and the implications for inventory control of 

slow moving items”, Journal of the Operational Research Society, Vol. 54, pp. 833-

837. 

Makridakis S., Wheelwright S.C. and Hyndman R.J. (1998), Forecasting: Methods and 

Applications (3rd ed.), Wiley, New York, NY. 

Makridakis S. and Hibon M. (2000), “The M3-Competition: results, conclusions and 

implications”, International Journal of Forecasting, Vol. 16, pp. 451-476. 

Nikolopoulos K., Syntetos A.A. and Babai M.Z. (2007), “A new intermittent demand 

approach via combining Croston’s methd and the Theta model”, paper presented at the 

22nd European Conference on Operational Research EURO XXII, July 8-11, 2007, 

Prague, Czech Republic. 

Nikolopoulos K., Syntetos A.A., Boylan J.E., Petropoulos F. and Assimakopoulos V. 

(2011), “An aggregate disaggregate intermittent demand approach (ADIDA) to 

forecasting: an empirical proposition and analysis”, Journal of the Operational 

Research Society, Vol. 62, pp. 544-554. 

Snyder R. (2002), “Forecasting sales of slow and fast moving inventories”, European 

Journal of Operational Research, Vol. 140, pp. 684–699. 

Syntetos A.A. and Boylan J.E. (2001), “On the bias of intermittent demand estimates”, 

International Journal of Production Economics, Vol. 71, pp. 457-466. 

Syntetos A.A. (2001), Forecasting for Intermittent Demand. Brunel University: 

Unpublished Ph.D thesis. 

Syntetos A.A. and Boylan J.E. (2005), “The accuracy of intermittent demand 

estimates”, International Journal of Forecasting, Vol. 21, pp. 303–314. 

Syntetos A.A., Boylan J.E. and Croston J.D. (2005), “On the categorization of demand 

patterns”, Journal of the Operational Research Society, Vol. 56, pp. 495-503. 



Syntetos A.A and Boylan J.E. (2010), “On the variance of intermittent demand 

estimates”, International Journal of Production Economics, Vol. 128, pp. 546-555. 

Syntetos A.A., Nikolopoulos K. and Boylan J.E. (2010), “Judging the judges through 

accuracy-implication metrics: the case of inventory forecasting”, International Journal 

of Forecasting, Vol. 26, pp. 134-143. 

Teunter R. and Sani B. (2009), “On the bias of Croston’s forecasting method”, 

European Journal of Operational Research, Vol. 194, pp. 177-183. 

Teunter R.H., Syntetos A.A. and Babai M.Z. (2011), “Intermittent demand: Linking 

forecasting to inventory obsolescence”, European Journal of Operational Research, 

Vol. 214, pp. 606-615. 

Willemain T.R., Smart C.N., Shockor J.H. and DeSautels P.A. (1994), “Forecasting 

intermittent demand in manufacturing: A comparative evaluation of Croston’s 

method”, International Journal of Forecasting, Vol. 10, pp. 529–538. 

Williams T.M. (1984), “Stock control with sporadic and slow-moving demand”, 

Journal of the Operational Research Society, Vol. 35, pp. 939–948. 


