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ABSTRACT 

Purpose: Terminology is the set of technical words or expressions used in 

specific contexts, which denotes the core concept in a formal discipline and is 

usually applied in the fields of machine translation, information retrieval, 

information extraction and text categorization, etc. Bilingual terminology 

extraction plays an important role in the application of bilingual dictionary 

compilation, bilingual Ontology construction, machine translation and 

cross-language information retrieval etc. This paper addresses the issues of 

monolingual terminology extraction and bilingual term alignment based on 

multi-level termhood.  

Design/methodology/approach: A method based on multi-level termhood is 

proposed. The new method computes the termhood of the terminology candidate 

as well as the sentence that includes the terminology by the comparison of the 

corpus. Since terminologies and general words usually have differently 

distribution in the corpus, termhood can also be used to constrain and enhance 

the performance of term alignment when aligning bilingual terms on the parallel 

corpus. In this paper, bilingual term alignment based on termhood constraints is 

presented. 

Findings: Experiment results show multi-level termhood can get better 

performance than existing method for terminology extraction. If termhood is 

used as constrain factor, the performance of bilingual term alignment can be 

improved. 

Originality/value: The termhood of the candidate terminology and the sentence 

that includes the terminology is used to terminology extraction, which is called 
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multi-level termhood. Multi-level termhood is computed by the comparison of the 

corpus. The experiment results show that the multi-level termhood can get 

better performance than standard method. Bilingual term alignment method 

based on termhood constraint is put forward and termhood is used in the task of 

bilingual terminology extraction. Experiment results show that termhood 

constraints can improve the performance of terminology alignment to some 

extent. 

 

KEYWORDS:  Bilingual Terminology Extraction, Multi-level Termhood, Corpus 

Comparison, Bilingual Terminology Alignment 

 

1. INTRODUCTION 

Terminology is the product of scientific and technological development. It is the set of 

technical words or expressions used in specific contexts, which denotes the core concept 

in a formal discipline. It can be applied in the research area of natural language processing 

(NLP), information retrieval, machine translation and data mining. There are two 

characters of terminology. On the one hand, terminology denotes the core concept in a 

discipline so the usage and the users are limited. General words are more acceptable and 

recognizable in different areas than terminology. On the other hand, compared to general 

words, terminology always has a single meaning in specific domain. These two characters 

of terminology can be computed by termhood. The higher the termhood is, the higher 

capability of distinguishing different domains the terminology has. 

In the previous works about terminology extraction, only the termhood of a terminology 

candidate is considered, but not other aspects. In this paper, the termhood of the 

candidate terminology and the sentence that includes the terminology is used to 

terminology extraction, which is called multi-level termhood. Multi-level termhood is 

computed by the comparison of the corpus. The experiment results show that the 

multi-level termhood can get better performance than standard method. 

Bilingual terminology extraction is composed of two steps: 1. extracting monolingual 

terms from monolingual document or sentence; 2. aligning the bilingual terms. Different 

from traditional word alignment, extracting and aligning bilingual terms from parallel 

sentences aims at extracting and aligning not all words but candidate terms in sentences. 

Therefore traditional word alignment methods can not directly applied to bilingual term 

alignment task. For those differently distributed terms and general words on corpus, 

result of traditional word alignment methods can be optimized or constrained with 

termhood during the process of term alignment to enhance the performance of term 

alignment. Bilingual term alignment method based on termhood constraint is put forward 

and termhood is used in the task of bilingual terminology extraction. Experiment results 

show that termhood constraints can improve the performance of terminology alignment to 

some extent. 

The rest of this paper is organized as follows. The next section reviews some related 

work on bilingual terminology extraction. In section 3, a detailed description of 



terminology extraction based on multi-level termhood is presented. In section 4, the 

method of bilingual terminology alignment based on termhood constraints is described. 

The paper is concluded with a summary and directions for future work. 

 

2. RELATED WORK 

2.1. Terminology Extraction 

With the enrichment of language resources and the development of NLP, many 

terminology extraction systems have been developed (Kit & Liu, 2008). The most 

commonly used terminology extraction methods include linguistic, statistics and hybrid 

approach. 

(1) Linguistic Approach 

Linguistic features are used to restrain the candidate terminology, that is, terminology is 

filtered by linguistic features (Ido and Ward, 1994). Linguistic methods exploit 

part-of-speech Tagging and shallow parsing to filter the terminology. (Bourigault, 1992) 

used shallow parsing to extract noun phrase that is a terminology. (Ido and Ward, 1994) 

limited the candidate terminology to a string that represents the pattern of noun 

sequences. (Justeson and Katz, 1995) used the prefix of terminology and selected strings 

whose prefix is noun to be candidate terms. Good results can be achieved in small corpora 

using linguistic methods, yet the recall rate is low for the shortage of patterns and the 

adaptability of fields and languages. 

(2) Statistical Approach 

Statistical approaches are based on the statistical information, such as the frequency of 

terms appearing in the corpora, to extract terms, including TF*IDF (Maedche & Staab, 

2000), KF*IDF (Xu et al, 2002), C-value/NC-value (Frantzi et al, 2000) and so on. 

Termhood extraction relates to two basic statistical variables, that is, Unithood and 

Termhood of terminology. Statistical method is usually used to compute these two 

variables. For unithood, the approaches includes MI (Church & Hanks, 1990), LogL 

(Dunning, 1993) and left/right entropy (Patry & Langlais, 2005). When computing 

termhood, methods such as TF*IDF (Maedche & Staab, 2000), DR-D (Velardi, 2001)、

C-value/NC value (Frantzi et al, 2000), inter-domain entropy (IDE) (Chang, 2005) and 

Domain Component Feature Set (DCFS) (Zhang et al, 2003) are employed. 

(3) Hybrid Approach 

Linguistics and statistics have their own advantages and disadvantages, and they are 

usually integrated to extract terminology. There are two ways to combine them. One way 

is to extract candidate terms with linguistics methods and then with the statistics 

methods. The other way is to obtain candidate terms using statistics methods first and 

then use linguistic methods to abandon those terms inconsistent with linguistic patterns. 

(Daille, 1996) used the linguistic methods to get candidate terms and set them as the 

input of statistical models. Then statistical methods such as MI and LogL are used to get 

final terms. (Maynard & Ananiadou, 2000) did some research about the extraction of 



multi-word term using thesaurus and semantic Web to get the semantic and category 

information, and then integrated it with the statistical and syntactic information in the 

corpora. 

Different terminology extraction toolkits can also be integrated to extract terminology 

besides the integration of linguistics and statistics methods (Kit & Liu, 2008).  (Vivaldi & 

Rodríguez, 2000) integrated different term extraction tools by simple voting and the 

result is better than single term extraction tools. (Vivaldi & Màrquez, 2001) improved the 

above voting approach, got the best integration strategy by Boosting algorithm and 

enhanced the performance of terminology extraction based on hybrid approach. 

 

2.2. Optimization of Bilingual Terminology Extraction 

(Wu & Wang, 2004; Wu et al, 2005) did some research about optimization of domain 

terms alignment with large general parallel corpus. (Wu & Wang, 2004) trained models for 

word alignment using domain specific and general corpus separately and employed the two 

models to improve performance of word alignment. (Wu et al, 2005) further optimized 

their method further, changed self-adaptive methods into statistical models and 

improved the performance of word alignment. 

It’s important to note that domain term alignment optimization methods adopted by 

(Wu & Wang, 2004; Wu et al, 2005) rely on the availability of large domain and general 

parallel corpus. Their method has limitation when a large parallel corpus is not available. In 

this paper, termhood of terms in parallel sentences will be used instead of large general 

parallel corpus. General corpus of different languages is employed to compute termhood 

and results of term alignment can be optimized with termhood. So methods presented in 

this paper are expansive. (Wu & Wang, 2005; Wu et al, 2006) used integrated learning 

methods (including Bagging, Boosting and semi-supervised Boosting) to improve the result 

of word alignment. 

Relevant research includes the study on confidence measurement of word alignment by 

(Huang, 2009). He introduced sentence alignment confidence measure and alignment links 

confidence measure to improve performance of word alignment by selecting aligned 

sentence and linked word with high confidence. 

Some illegal sentence pairs (including some incorrect alignment result or partial 

alignment result) can be found by measuring termhood of sentences and evaluating 

alignment quality of parallel sentences pairs. Constraining results of term extraction with 

termhood can improve the performance of term extraction and alignment. 

When studying evaluation method of word alignment, (Huang et al, 2009) pointed out 

that lack of links is less important than wrong links when aligning words. So it’s valuable to 

find wrong results among results of word alignment. 

 

3. TERMINOLOGY EXTRACTION BASED ON MULTI-LEVEL 

TERMHOOD 

3.1. Features used in Terminology Extraction 



In this section, CRF model is used to extract terminology from documents. CRF is a model 

of probability graph proposed by (Lafferty, 2001) which is widely used in word 

segmentation, part-of-speech tagging, chunking recognition, named entity recognition and 

so on. The features used in CRF model are shown in Table1. 

In this paper, Segtag (a tool with function of Chinese segmentation and POS tagging, it 

downloaded from http://www.nlp.org.cn) will be used to segment Chinese documents and 

tag POS with a general word segmentation lexicon. Since the linguistics and statistics 

methods are integrated in the tool, words, POS and termhood will be used as features of 

CRF and models will be trained with training data. 

Note that the above-mentioned POS refers to results of POS tagging of each 

segmented unit. These units may be part of a terminology or even not be a terminology.  

CRF++ (http://crfpp.sourceforge.net) will be used in this paper to train and test the 

terminology extraction models. Statistical feature employed in this model, that is 

termhood of terminology and the sentence including this term will be illustrated. 

 

3.2. Multi-level Termhood for Terminology Extraction 

The linguistics and statistics features of candidate terminology will be integrated in this 

paper. Termhood of candidate terminology and sentences containing these terms will be 

considered synthetically. 

(1) Termhood of Candidate Terminology 

In this paper, CRF model will be used to extract terms on manual-tagged corpus with 

10-fold cross-validation. Results show that methods based on frequency difference is 

better than those based on frequency rank difference. Both of them are dependent on 

the size of domain and general corpus. Therefore, next step is to find corpus comparison 

method based on frequency difference or rank difference. 

Different from (Kit & Liu 2008), terminology extraction here is not limited to 

mono-word term extraction in this paper. When using CRF to extract terms, after text 

segmentation, part-of-speech tagging and computation of termhood, all of these features 

will be as input of CRF, including extraction of mono-word and multi-word terms. 

In this paper, termhood is used to extract terminology. According to the research 

result of (Liu & Kit, 2008) about termhood computing of mono-word term and our 

preliminary experiment result, we compute termhood based on the frequency difference 

and rank difference between domain and general corpus. The brief description of the 

method is as follows. 

Assumption: candidate term is w, corpus is x, total number of words in corpus x (size of 

lexicon generated by x) is xV
, 

)(wxf
is the relative frequency of candidate term w 

occurred in x, 
)(wxc
 is the absolute frequency of candidate term w occurred in x, and 

)(wxf can be calculated by formula (1) (Liu & Kit, 2009). 

∑
∈

=

xVw

xx wcwcwxf
'

'
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Frequency difference of candidate term w occurred in domain corpus d
x

 and general 

corpus b
x

 is computed by formula (2) (Liu & Kit, 2009). 

)()()( wfwfwf
bd

−=∆                                               (2) 

Rank difference of candidate term w occurred in domain corpus d
x

 and general corpus 

b
x

 is computed by formula (3) (Liu & Kit, 2009). 

)()()( wrwrwr
bd

−=∆                                                    (3) 

And, 
)(wr

d 、
)(wr

b  are the rankings of frequency of term w occurred in domain 

corpus d
x

and general corpus b
x

 (Liu & Kit, 2009) (ranking can be reversed, that is, the 

higher the ranking is, the larger the number is (Kit & Liu, 2008)). In this paper, tagged 

data of People’s Daily (http://www.people.com.cn/) from January to June 1998 are used as 

general corpus to extract terms. 

On the basis of rank difference, number-intensified is done by formula (4) (Liu & Kit, 

2009) to get new rank difference after the enhancement. 

))()(()()( wrwrwcwr
bddc

−⋅=∆                                        (4) 

(2) Termhood of Sentences Containing Candidate Terminology 

Termhood of sentences refers to mean value of termhood of all words which are in the 

same sentences as the candidate terms. In this paper, corpus such as journal article title, 

journal article abstract, patent title, patent abstract, news title, news article, MARC 

(Machine-Readable Catalogue) title and MARC summary is used as statistical sample to 

compute termhood and average sentence termhood of diverse corpus. 

As shown in table2, from the perspective of title, ranking of termhood of different 

corpus is: patent corpus> journal article corpus > MARC corpus > news corpus. 

From the perspective of full text or abstract, ranking of termhood of different corpus 

is: MARC corpus > journal article corpus > patent corpus > news corpus. 

Previous research results about automatic keyword extraction show that title 

contributes more than abstract and full texts for keyword extraction (Hou et al, 2005). 

But term extraction and keyword extraction are two different tasks. Keyword extraction 

aims at extracting 6 to ten words that mostly represent the content of the document. 

However, term extraction extracts terms in certain documents or collections and the 

number of extracted terms depends on the document itself without any restriction. 

Compared to abstract and full text, title is the summary of full text, and contains less 

terms in order to increase readability. Abstract is the summary of key points of the 

document, so abstracts and full texts contain more terms. Results of sampling statistics 

also demonstrate this point. What’s more, the difference between title and abstract is 

more significant in MRAC than in dissertation. In future, more data will be used as 
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statistical samples to analyze termhood differences of titles, abstracts and full texts. 

As shown in the statistical result, the sentence termhood of title and full text in news 

is lower than that of specific domain. In real texts, professional literature usually 

contains more terms while news has more general words. So when extracting terms, 

termhood of sentence can be integrated into term extraction model as part information 

of candidate term. 

Termhood of term itself and that of sentences or articles containing this term can 

complete mutual learning, that is, the higher termhood of sentences or articles is, the 

more likely that they contain terms and the higher termhood of a term is, the higher 

termhood of sentences or article containing this term is. The two kinds of information can 

be mutually learned through interaction to enhance the quality of term extraction. What’s 

more, terms are more likely to appear in sentence whose termhood is high. Termhood of 

all sentences which contain this term in corpus can be used as a global feature to complete 

data training. 

It’s important to note that recently mutually reinforcing relationship between domain 

sentences and domain terms are studied by (Yang et al, 2010) to extract terms. They 

implemented this mutual reinforcing relationship by Link Analysis. Different from their 

work, in this paper, multi-level termhood such as term termhood and sentence termhood 

is integrated in the term extraction model trained by CRF model. 

3.3. Experiment and Result Analysis 

(1) Training Data and Evaluation Method 

For lack of tagged English corpus, we only did experiment on Chinese text corpus to 

extract term with CRF model and several factors that influence the performance of term 

extraction is tested and analyzed. 

Tagged Chinese corpus used in this paper is mainly article about computer and it is 

manually tagged with BIO (Begin, In, Out) tag, containing 1334 sentences, 15172 words 

and punctuations. There are 1910 manual-tagged terms (including repeated terms).  

The common used evaluation merit for term extraction is precision, recall and F1 value. 

Assuming that there are n words in test set, extraction result can be represent as shown 

in table 3. This experiment splits manually-tagged results into two groups, that is terms 

manually tagged (word or phrase responsive to tag sequence “B-I-…”) and non-terms 

tagged manually (word or phrase before label “O”). 

� Precision 

ba

a
P

+
=                                                                (5) 

Precision P is the precision ration of term extraction. Precision indicates the ability of 

term extraction to get correct terms. The higher precision is, the less likely a term is a 

non-term. 

� Recall 

ca

a
R

+
=                                                                (6) 

Recall R is the ratio of tagged term and it indicates the ability of the term extraction 

system to find terms. The higher recall is, the less terms are untagged.  



� F1 value 

RP

PR
RPF

+
=

2
),(1                                                          (7) 

F1 measurement is presented by van Rijsbergen which is the harmonic-mean of precision 

and recall (van Rijsbergen, 1979).  

10-fold cross-validated method is used in the experiment and P, R and F1 are employed 

for evaluation. 

(2) Experiment Results and Analysis 

� Result and Analysis of Multi-level Termhood 

Table 4 is the result of term extraction experiment that integrates multi-level termhood 

features. 

Table 4 shows that precision is improved when termhood of words in term is 

considered. 

When the simplest corpus comparison method, which uses frequency to compare domain 

and general corpus, is used, precision is 4% higher, and recall is 1% higher. When ranking 

value based corpus comparison method is used, the precision is 3% higher while recall 

drops greatly. When the way of difference is considered, corpus comparison method 

based on frequency and ranking is improved. 

The performance of term extraction can also be improved but not significantly when 

ranking value is enhanced by number.  

Table 4 shows that on the basis of frequency difference or rank value difference, when 

termhood of sentence (∆Freq_Sen or ∆Rank_Sen) which contains current candidate term 

is employed, F1 has no obvious change, yet recall is 1% higher. This illustrates that more 

terms can be found when termhood of sentences are considered as well as termhood of 

terms. And, among all termhood methods, the one which employs frequency difference of 

candidate terms and cumulative frequency difference of sentences which contains 

candidate terms get the highest F1 value and best performance. 

Precision of term extraction improves slightly when frequency or ranking value of the 

candidate term on domain and general corpus was integrated with their difference. 

Among all termhood methods, the one that integrates frequency difference,  ranking 

difference of candidate term in domain and general corpus, and cumulative frequency 

difference and ranking difference of the sentences that  contains the candidate terms 

get the highest recall. 

Experiment result shows that termhood can enhance the performance of term 

extraction. Multiple differences can improve the precision of term extraction. Recall can 

be improved when termhood of sentences is employed. 

� Result and Analysis of Different Features and Combination of Features 

Table 5 shows the result getting from different feature combination. It illustrates that 

the method employing word as the only feature performed the worst considering 

precision and recall. When POS was integrated, the results were improved. The 

performance was enhanced significantly when the frequency of word appearing in the 

domain and general corpus was considered.  

Among all feature combinations, the methods employed POS, frequency, frequency 

difference and ranking difference of candidate terms on domain corpus and general 



corpus has the highest precision. The methods employed frequency difference and 

ranking difference of candidate terms on domain corpus and general corpus, and 

cumulative frequency difference and ranking frequency of sentences which contains 

candidate terms achieved the highest recall. When frequency difference of candidate 

terms and cumulative frequency difference of sentences which contains candidate terms 

was used in extraction model, the corresponding F1 value is the highest. 

 

4. BILINGUAL TERMINOLOGY ALIGNMENT BASED ON TERMHOOD 

CONSTRAINTS 

4.1. Using Termhood to Optimize the Bilingual Terminology Alignment 

The key idea of extracting bilingual terms from bilingual sentences-aligned corpus is that 

relevance is computed on the basis of co-occurrence of bilingual terms in a bilingual 

sentence-aligned corpus. POS and word frequency are often used in the process of 

bilingual word alignment to filter bilingual candidate terms. If the term in one language 

has high termhood, the corresponding term in other languages should also have high 

termhood. 

According to this assumption, termhood of Chinese and English candidate terms are 

used as constraints to study the alignment of Chinese-English terms. When computing 

relevance of bilingual terms, termhood and termhood ratio of Chinese-English terms are 

added as weights to compute the results of relevance. 

Assume Chinese word c, English word e, and their termhood, i.e. Termhood(c) and 

Termhood(e), after termhood ratio is integrated, their relevance which denoted as 

Association(c, e), turns to:               

)(*)(*

}
)(

)(
,

)(

)(
{

),(
)',( eTermhoodcTermhood

eTermhood

cTermhood

cTermhood

eTermhood
Max

ecnAssociatio
ecnAssociatio =         

(8) 

Given threshold θ, word pairs which satisfy )',( ecnAssociatio  ≥θ or )',( ecnAssociatio  

are among the first k one is set to be the candidate term pairs. 

The procedure of bilingual term alignment based on termhood constraints is as follows: 

After extracting bilingual terms from a domain parallel corpus, termhood is computed 

with Chinese-English bilingual general corpus and the relevance of Chinese-English terms 

is computed using termhood and termhood ratio as weights, and the alignment results with 

the first N relevance are the candidate bilingual term pairs. Bilingual termhood ratio can 

be used to constrain further on the basis of bilingual term alignment to filter candidate 

term pairs with termhood difference.  

 

4.2. Result and analysis of term extraction 



(1) Test Corpus and Evaluation Method 

The general corpus used in this experiment was the same one used in the project that 

tagged data from People’s Daily between Jan 1998 and Jun 1998 and English news corpus 

of NTCIR (http://research.nii.ac.jp/ntcir/) in 1998-2001. Domain corpus contains 

disserations in the infomation technology domain. More detail about corpus is shown in 

table 6. 

The evaluation measure used in this paper is precision at first N words, denoted as P@N. 

As shown in formula (9), P@N examines the ratio of correct alignments in the first N 

word alignment results 

N

result alignment N first the of alignment correct of Number
P@N =            (9) 

Two types of checks were manually performed on the first N alignment results. First, 

four groups of bilingual term extraction experiments were conducted using 1000, 2000, 

5000, and 10000 sentence pairs separately extracting from IT parallel corpus. In each 

group, extraction models used included N-Gram and CRF model (both of them are 

employed in Chinese term extraction and only N-Gram is used in English term extraction). 

Statistical relevance of bilingual terms was computed using Log likehood ratio (Dunning, 

1993) and term-weighted Log likehood ratio.  

Relevance of bilingual candidate terms was computed by LogL likehood ratio. Given 

Chinese word c, English word e and relevance LogL(c, e), term-weighted LogL is 

)(*)(*

}
)(

)(
,

)(

)(
{

),(
)',( eTermhoodcTermhood

eTermhood

cTermhood

cTermhood

eTermhood
Max

ecLogL
ecLogL =     (10) 

Second, the results of Chinese-English term alignment and Chinese term extraction of 

terms with the first 500 relevance were manually annotated by four volunteers. The 

annotation was performed on the results of bilingual term extraction in the four corpora 

with different sizes. Based on the manual annotation, if the Chinese word is a term, the 

alignment of Chinese-English words was added and normalized, and precision P@N of 

Chinese-English term extraction was computed. 

(2) Analysis of Experiment Result 

Experiments in this section were carried out according to each scheme to obtain 

bilingualterm extraction and alignment results. Results of differnet scheme were 

manually evaluated according to the above-mentioned methods, and were compared and 

analyzed from two sides. 

Table 7 shows the precision of word alignment on parallel corpus with different sizes. 

Without termhood constraints, precision of word alignment using N-Gram model is 

actually better. However, termhood constraints have opposite effect on CRF model. It 

shows that the precision of alignment can be enhance by weighted termhood. By analyzing 

extraction results, we found that N-Gram model extracted more non-term words. 

 

5. CONCLUSION AND FUTURE WORKS 

http://research.nii.ac.jp/ntcir/


This paper discusses an innovative method for extracting bilingual terminology based 

on multi-level termhood. The multi-level termhood includes termhood of the 

terminology candidates and the sentence, and it is computed by the comparison of 

the corpus. This paper also put forward bilingual word alignment based on termhood 

constraint, and the termhood is used in the task of bilingual term extraction and 

alignment. Experiment results show that termhood constraints can enhance performance 

of term alignment. 

The future work include: finding a method to compare corpora that are not limited 

by domain and background in computing termhood of candidate terminology; adding 

more features such as mutual information among words, chunking and semantics 

information to improve the precision of terminology extraction; using the Web to 

obtain background corpora to compute termhood and improve the recall of certain 

domain; employing integrated learning methods in the process to enhance the 

performance of terminology extraction system. 

The future work that will be done about bilingual terminology alignment based on 

termhood constraint includes: optimizing results of bilingual term alignment with 

multi-level termhood; using more statistical relevance methods in computing multiple 

relevance of bilingual terms to have an integrated method for improving the precision of 

bilingual term alignment. 
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Table1. Features of candidate terminology 
N
o. 

Type of 
feature 

Tag of 
feature 

Meaning of feature 

1 Word Word itself 
2 Len Length of Word 
3 POS Part-of-speech of Word 
4 Count Number of words of the sentence including Word 
5 Freq_D Frequency of Word in domain corpora 
6 Freq_B Frequency of Word in background corpora 
7 Rank_D Rank value of frequency of Word in domain corpora 
8 Rank_B Rank value of frequency of Word in background 

corpora 
9 Freq_Sen_D Sum of frequency of words which are in the same 

sentence with Word in domain corpora 
10 Freq_Sen_B Sum of frequency of words which are in the same 

sentence with Word in background corpora 
11 Rank_Sen_D Sum of rank value of words which are in the same 

sentence with Word in domain corpora 
12 

 
 
 
 
 
Basic 
feature 

Rank_Sen_B Sum of frequency of words which are in the same 
sentence with Word in background corpora 

13 ∆ Freq Freq_D- Freq_B 

14 ∆Rank Rank_D- Rank_B 

15 ∆Freq_Sen Sum of frequency difference of words which are in 
the same sentence with Word between domain 
corpora and background corpora 

16 

 
 
Combine
d 
feature 

∆Rank_Sen Sum of rank value difference of words which are in 
the same sentence with Word between domain 
corpora and background corpora 



 

 

Table2. Comparison of sentence termhood of different domain corpus 

Document 
Type 

Type of 
domain 

Number 
of 

sentences 

Average 
Frequency of 
domain corpus 

Average 
Frequency of 
general corpus 

Mean 
Termhood 

(↓↓↓↓) 
Summary of 
MARC 

economics 2000 237.7135897 52613.96954 0.004518070 

Abstract of 
journal article 

Social 
science 

1050 95.75946343 33699.52687 0.002841567 

Abstract of 
patent 

electric 
elements 

1070 87.4899300 30917.43000 0.002829793 

Abstract of 
dissertation 

Information 
technology 

2000 123.4161849 45835.41233 0.002692595 

Title of 
dissertation 

Information 
technology 

2000 135.1281599 50860.22811 0.002656853 

Title of 
patent 

New energy 
automobiles 

1000 109.8355309 41619.10867 0.002639065 

Title of 
journal article 

Social 
science 

1000 100.7394858 41837.64822 0.002407867 

Full text of 
news 

news 2000 104.0241397 47291.66036 0.002199630 

Title of MARC economics 2000 81.75716858 41466.33512 0.001971652 

Title of news news 1000 61.81313494 34242.90108 0.001805137 

 

 

 

Table3. Contingency table for evaluation of tagged result 

 Term tagged manually Non-term tagged manually 

Term tagged by extraction system a b 

Non-term tagged by extraction system c d 

 

 

 

Table4. Effect of different termhood computing methods for terminology extraction 

Measurement of Termhood P R F1 

No Measurement of Termhood 0.80098 0.7422 0.76851 
Freq_D, Freq_B 0.83870 0.75184 0.79126 
Rank_D, Rank_B  0.82822 0.63861 0.71749 
Freq_D, Freq_B, Rank_D, Rank_B 0.84265 0.74458 0.78806 
∆ Freq  0.84098 0.75443 0.79385 
∆Rank 0.84036 0.75225 0.79221 
Number-intensified ∆Rank 0.84144 0.75648 0.79508 
∆ Freq, ∆Freq_Sen 0.83275 0.76563 0.79638 
∆Rank, ∆Rank_Sen 0.82371 0.76247 0.7904 
Freq_D, Freq_B, ∆ Freq, ∆Rank 0.84326 0.74787 0.79118 

Rank_D, Rank_B, ∆ Freq, ∆Rank 0.84137 0.74107 0.78642 
∆ Freq, ∆Rank, ∆Freq_Sen, ∆Rank_Sen 0.83007 0.76755 0.79626 

 

 



 

Table5. Effect of different features and combination of feature to terminology 

extraction 

Features P R F1 

Word 0.80098 0.7422 0.76851 
Word, POS 0.81183 0.63934 0.71136 
Word, Freq_D, Freq_B 0.81183 0.63934 0.71136 
Word, Freq_D, Freq_B, POS 0.83870 0.75184 0.79126 
Word, ∆ Freq, ∆Freq_Sen, POS 0.83275 0.76563 0.79638 
Word, Freq_D,  Freq_B, ∆ Freq, ∆Rank ,POS 0.84326 0.74787 0.79118 
Word, ∆ Freq, ∆Rank, ∆Freq_Sen, ∆Rank_Sen, 
POS 

0.83007 0.76755 0.79626 

 

 

 

Table6. Test Corpus for bilingual terminology extractor and alignment 

Type of Corpus Description  Total 

documents 

Total words Total of 

different words 

Domain disserations in IT 20, 000 7, 795, 569 74, 308 

Chinese Back- 

ground 

People’s Daily 

(Jan~Jun, 1998 

18, 670 7, 286, 875 141, 989 

Domain disserations in IT 20, 000 6, 953, 675 169, 491 

English Back 

-ground 

News corpus of 

NTCIR (1998-2001) 

75, 007 34, 016, 881 433, 496 

 

 

 

Table7. Precision of bilingual term alignment is P@500 

LogL Relevance 
LogL relevance with 

weighted termhood 

         Model 

 

Number of sentence) N-Gram CRF N-Gram CRF 

1, 000 0.5140 0.3750 0.4450 0.4702 

2, 000 0.4840 0.3690 0.4460 0.4130 

5, 000 0.5690 0.3500 0.4830 0.3739 

10, 000 0.6840 0.4820 0.6610 0.5500 

 


