Harmonic analysis and applications
Abstract
Purpose
The purpose of this paper is to survey briefly how harmonic analyis started and developed throughout the centuries to reach its modern status and its surprisingly wide range of applications.
Design/methodology/approach
The author traces applications of harmonic analysis back to Mesopotamia, ancient Egypt and the Indus Valley, showing how the Greeks have applied trigonometry and influenced its birth, then the important developments in India in the sixth century laying the first brick to modern trigonometry with the definition of the sinus, then medieval India founding modern mathematical analysis. Trigonometry was developed further by the Arabs until the fourteenth century, then by the Europeans. The eighteenth century in France was particularly important when Bernoulli solved, with an infinite trigonometric series, the vibrating string problem, then Fourier, who studied these series extensively. The author goes on to harmonic analysis on locally compact groups, and ends up with a quick personal view on harmonic analysis nowadays. The last section of the paper presents some of the modern applications. Harmonic analysis is, of course, still used for navigation but also has many other very surprising applications such as signal processing, quantum mechanics, neuroscience, tomography, etc.
Findings
The power of harmonic analysis lies in giving the solutions to various problems as infinite series of basic functions, so to be able to produce algorithms for FFT boxes, it must be understood how these series came about and the convergence of these series.
Originality/value
The review should be useful to people interested in studying and/or applying harmonic analysis.
Keywords
Citation
Filali, M. (2012), "Harmonic analysis and applications", Kybernetes, Vol. 41 No. 1/2, pp. 129-144. https://doi.org/10.1108/03684921211213160
Publisher
:Emerald Group Publishing Limited
Copyright © 2012, Emerald Group Publishing Limited