Countering Code Injection Attacks: A Unified
Approach

Dimitris Mitropoulos Vassilios Karakoidas
Panos Louridas
Diomidis Spinellis
Department of Management Science and Technology
Athens University of Economics and Business
{dimitro, bkarak, louridas, dds}@aueb.gr

December 7, 2012

Abstract

Code injection exploits a software vulnerability through which a mali-
cious user can make an application run unauthorized code. Server appli-
cations frequently employ dynamic and domain-specific languages, which
are used as vectors for the attack. We propose a generic approach that
prevents the class of injection attacks involving these vectors: our scheme
detects attacks by using location-specific signatures to validate code state-
ments. The signatures are unique identifiers that represent specific char-
acteristics of a statement’s execution. We have applied our approach suc-
cessfully to defend against attacks targeting SQL, XPath and JavaScript.

1 Introduction

Most software vulnerabilities derive from a relatively small number of common
programming errors that lead to security holes [55, 37, 27, 50]. According to
SANS (Security Leadership Essentials For Managers)! two programming flaws
alone were responsible for more than 1.5 million security breaches during 2008.

Although computer security is nowadays standard fare in academic curricula
around the globe, few courses emphasize secure programming techniques [47].

Information Management and Computer Security, 19:177-194, 2011.

This is a machine-readable rendering of a working paper draft that led to a publication.
The publication should always be cited in preference to this draft using the reference in the
previous footnote. This material is presented to ensure timely dissemination of scholarly
and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author’s copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.

lhttp://www.sans.org/

For instance, during a standard introductory C course, students may not learn
that using the gets function could make code vulnerable to an exploit [43, 33].
The situation is similar in web programming. Programmers are not aware of
security loopholes inherent to the code they write; in fact, knowing that they
program using higher level languages than those prone to security exploits, they
may assume that these render their application immune from exploits stemming
from coding errors.

One common trap into which programmers fall concerns user input, assum-
ing, for example, that only numeric characters will be entered by the user, or
that the input will never exceed a certain length. Programmers may think, cor-
rectly, that a high-level (usually scripting) language in a web application will
protect them against buffer overruns. Programmers may also think, incorrectly,
that input is not a security issue any more. That is wrong. Their assumptions
can lead to the processing of invalid data that a malicious user can introduce
into a program and cause it to execute malicious code. This class of exploits are
known as code injection attacks (C1As). In this article we present an approach
that counters a specific class of CIAs in a novel way.

2 Code Injection Attacks

Code injection is a technique to introduce code into a computer program or
system by taking advantage of unchecked assumptions the system makes about
its inputs. Code injection attacks are one of the most damaging class of attacks
[20, 46, 42, 38, 41] because:

e they can occur in different layers, like databases, native code, applications,
libraries and others; and

e they span a wide range of security and privacy issues, like viewing sensitive
information, destruction or modification of sensitive data, or even stopping
the execution of the entire application.

Despite many countermeasures that have been proposed the number of CiAs
has been increasing.?2 Malicious users seem to find new ways to introduce com-
promised embedded executable code to applications by using a variety of lan-
guages and techniques.

Figure 1 presents a taxonomy of CIiAs, divided in two basic categories. The
first involves binary code and the second executable source code.

2.1 Binary Code Injection

Binary code injection involves the insertion of binary code in a target application
to alter its execution flow and execute inserted compiled code. This category
includes buffer-overflow attacks [19, 33], a staple of security problems. These

2http://www.sans.org/top-cyber-security-risks/, http://cwe.mitre.org/top25/,
http://www.owasp.org/index.php/Category: OWASP_Top_Ten_Project

Code Injection

Attacks
Binary Attacks Execu:tlg:kssource
Buffer Overflow Dynamic Language Domain-Specific
Attacks Attacks Language Attacks
VAN VAN
Javascript
PHP Attacks Attacks SQL Attacks XML Attacks

Figure 1: A taxonomy of code injection attacks

attacks are possible when the bounds of memory areas are not checked, and
access beyond these bounds is possible by the program. By taking advantage
of this, attackers can inject additional data overwriting the existing data of
adjacent memory. From there they can take control over a program, crash it or,
even take control of the entire host machine.

C and C++ are vulnerable to this kind of attacks since typical implemen-
tations lack a protection scheme against overwriting data in any part of the
memory. Specifically, they do not check if the data written to an array is within
its boundaries. In comparison, Java guards against such attacks by preventing
access beyond array bounds, throwing a runtime exception.

2.2 Source Code Injection

Code injection also includes the use of source code, either of Domain-Specific
Languages (DSLs) or Dynamic Languages.

DSL injection attacks constitute an important subset of code injection, as
DSL languages like SQL and XML play an important role in the development of
web applications. For instance, many applications have interfaces where a user
enters input to interact with the application’s data, thereby interacting with the
underlying relational database management system (RDBMS). This input can
become part of a SQL statement and executed on the target RDBMS.

A code injection attack that exploits the vulnerabilities of these interfaces
is called an “sQL injection attack” [26, 8, 2]. One of the most common forms
of such an exploit involves taking advantage of incorrectly filtered quotation
characters. For instance, in a login page, besides the user name and password
input fields, there is often a separate field where users can input their e-mail
address, in case they forget their password. The statement that is executed can
have the following form:

SELECT password FROM users WHERE email = ’john@example.com’;

If a sloppy programmer builds the SQL statement on the fly by piecing together
a template of the form:

SELECT password FROM users WHERE email = ’<user_input>’

then an attacker could view every password in the table by using the string
anything’ OR ’x’=’x as input. Savvy programmers could use a language’s
libraries, like PHPs mysql_real_escape_string() and detect malformed input;
or they could use prepared SQL statements, instead of statement templates.
Unfortunately, the number of SQL injection attacks suggest that programmers
are not always that careful.

Dynamic languages pose a related problem [44, 16]. Python, Perl, JavaScript,
and PHP are languages that have the capability of interpreting themselves and
execute code through a method called eval. A simple example of a dynamic
language-driven attack is an input string that is fed into an eval() function
call, e.g., in Pup:?

$variable = $_GET[’var’];
$input = $_GET[’value’];
eval (’$variable = ’ . $input . ’;’);

The user may pass into the value parameter code that will execute in the server.
If value is 10 ; system(’’touch foo’’); then a file will be created on the
server; it is easy to imagine more detrimental instances.

3 Tools and Current Approaches

There are two basic approaches that detect injection vulnerabilities, static and
dynamic. A taxonomy of CIAs countermeasures appears in Figure 2.

3.1 Static Methods

Static analysis involves the inspection of computer code without actually exe-
cuting the program. The main idea behind static analysis is to identify software
defects during the development phase. Currently, there are many modern soft-
ware development processes that use static checkers for security as their integral
parts [6, 21, 18].

Shttp://seclists.org/lists/fulldisclosure/2006/May/0035.html

Code Injection Attacks
Countermeasures

/

Context Free I
Grammars [52, 53] ~ Q”e‘{AM;d""ga""”
Static Methods Dynamic Methods <7 -
Vv <7
Secure Coding
Practices [27, 37, 50] Learning [15, 32, 48]
Intrusion Set
Lexical Analysis Randomization
[9, 10, 49, 54] [3,28, 31]

Hybrid
[24, 25, 35]

Runtime Tainting
[22, 29, 42, 56]

Data-Flow Analysis Data-Flow Analysis

Syntax Embeddings
[5] 17, 30]

New APIs [13, 36] ’

Figure 2: A taxonomy of CIAs countermeasures

The most straightforward and sensible approach is the adoption of secure
coding practices [27, 50, 37], like the ones we mentioned above to prevent SQL
code injection. However, this does not always happen, as programmers may not
be aware of them, or time schedules may be tight, encouraging sloppy practices
instead.

Lexical analysis is a flexible method extensively used to detect buffer overflow
vulnerabilities. To do so, a lexical analyzer recognizes character sequences and
transforms them into tokens. Then, the resulting tokens are associated with
vulnerable function calls susceptible to buffer overflows like gets, strcpy and
scanf. This approach is taken by security utilities like 1784,* Flawfinder® and
RATS® [54, 10, 9, 49]. However, these tools suffer from several false positive and
negative reports [11, 14].

Another static method that is tailored to localize injection vulnerabilities is
data flow analysis. Based on control-flow graph (CFG), data flow analysis can be
applied to connect unchecked user input with the execution of a code statement
that is based on this input and issue a notification about the vulnerability. Pixy
and Splint are data flow analysis tools used to detect code injection vulnerabil-
ities in web applications [30, 17]. Data flow analysis exhibits less false positives
and negatives than lexical analysis but it suffers from a distinct runtime over-
head [1].

Wassermann and Su have proposed an approach that deals with static anal-
ysis and coding practices [52, 53]. Specifically, they automatically analyze the
application’s source code to locate SQL statement invocations that are considered
unsafe. To analyze the code they utilize context free grammars and language

“http://www.cigital.com/its4/
Shttp://www.dwheeler.com/flawfinder/
Shttp://www.fortify.com/security-resources/rats.jsp

transducers [39].

An approach to detect DSL-driven injection attacks involves the introduc-
tion of type-safe programming interfaces, like DOM SQL [36] and the Safe Query
Objects [13]. Both eliminate the incestuous relationship between untyped Java
strings and sQL statements, but don’t address legacy code, while also requiring
programmers to learn a radically new API.

Syntazx embeddings have also been proposed to detect code that is susceptible
to various kinds of code injections [5]. This approach embeds the grammar of a
DSL language into that of a host language and automatically reconstructs code
statements by adding functions that provide security layers. Such an approach
is quite interesting since it introduces security features at a very early stage of
software development.

Apart from the aforementioned methods, there are also some more practical
techniques introduced to prevent code injection attacks. Livshits et al. [34]
protects browsers from JavaScript injection by introducing specific modifications
to the browser’s same-origin policy.

3.2 Dynamic Methods

Dynamic analysis can be seen as the next logical step of static analysis. It
inspects the behavior of a running system and does not require access to the
internals of the system.

On the dynamic front, runtime tainting enforces security policies by mark-
ing untrusted data and tracing its flow through the program. For instance, the
system by Haldar et al. [56] covers applications whose source code is written in
Java, while the work by Xu et al. [22] covers applications whose source code is
written in C. A dynamic checking compiler called WASC includes runtime taint-
ing to prevent sQL and script injection [42]. To counter similar attacks, sMask
identifies tainted code by automatically separating user input from legitimate
code [29]. This is done by introducing specific syntactic constructs that handle
server-side languages used for data management separately. Such approaches
generally require significant changes to the compiler or the runtime system.

Instruction-set randomization (ISR) is another technique that defends against
most application-level binary code injection attacks. This technique employs the
notion of encrypted software. Kc et al. [31] used ISR to counter different kinds
of injection. Their approach is based on the fact that a CIA only succeeds if
the injected code is compatible with the execution environment that is created
by using a randomization algorithm. The attacker does not know the key to
the algorithm and his injected code will not succeed. Hu et al. [28] proposed
a software dynamic translation-based implementation of ISR to fortify applica-
tions against binary injection attacks. A similar approach was also proposed by
Barrantes et al. [3].

Another dynamic approach that protects applications from sSQL attacks in-
volves query modification. Here the modified statement is either reconstructed
at runtime using a cryptographic key that is inaccessible to the attacker [4], or
the user input is tagged with delimiters that allow an augmented SQL grammar

to detect the attacks [7, 46]. Both approaches require significant source code
modifications though.

Dynamic data-flow analysis is also used to protect applications from CIAs.
SigFree is a tool that follows this approach to block binary code injection attacks
by detecting the presence of malicious code [51]. This is motivated by the fact
that buffer overflow attacks typically contain executables while legitimate client
requests never contain executables in most services. Still, this is not always true
and this is because the tool suffers from false positives.

Finally, some approaches combine static analysis with runtime monitoring.
A general hybrid approach involves the identification of SQL injection attacks
using the program query language PQL [35]. The PQL queries are evaluated
through both a static analysis and the dynamic monitoring of instrumented
code. AMNESIA, a tool that also detects SQL injection attacks, associates a query
model with the location of each query in the application and then monitors the
application to detect when queries diverge from the expected model [25, 24].
This idea is related to training approaches, based on the ideas of Denning’s
original intrusion detection framework [15]. Training approaches record and
store valid code statements and thereby detect attacks as outliers from the set
of valid statements. An early approach called DIDAFIT recorded all database
transactions [32]. Subsequent refinements tagged each transaction with the
corresponding application [48].

In this paper, we propose a novel and generic approach of preventing code
injection attacks. Our approach can be seen as an improvement of the training
approach. To specify if an application is under attack we use a blend of features
that is unique for every vulnerable code statement. The key property that dif-
ferentiates our scheme is that these features do not depend entirely on the code
statement, but also take into account elements from its execution context. At
the end of the training phase, a model of all legitimate statements is produced.
This entails almost zero false positive and false negative rates making our ap-
proach robust and effective: at runtime, our scheme checks all code statements
for compliance with this model and can thus block the statements that contain
additional injected elements. Another distinct advantage of our approach is
that it can be easily retrofitted to any system and it does not depend on the
entity that is protected. We have applied our scheme in three different cases
with promising results.

4 Approach

Following our classification, we present an approach that protects against two
kinds of source code injection attacks: those that use an application library to
execute DSL code and those that exploit the eval function in dynamic languages.
Algorithm 1 illustrates our proposed approach. A proxy application library
accepts the request to execute code from the application. The code is examined
and if it contains injected elements the library issues an alarm.
The proxy library operates in two modes, training and production. During

Algorithm 1 Algorithm of the Proposed Approach

1: function SECUREFUNCTION(code, training_mode)

2 strippedCode + AnalyzeCode(code) // remove user input
3 executionContext Elements < AnalyzeExecution Environment()

4 // get elements related to the execution context
5: s + GenerateSignature(strippedCode, executionContext Elements)

6 if training-mode = true then // We are in training mode
7 RegisterSignature(s)

8 else // We are in production mode
9 if ValidateSignature(s) then // Signature is valid
10: r < ExecuteCode(code) // Execute the code
11: return r
12: else // Signature is not valid
13: LogPossible Attack(code)
14: return
15: end if
16: end if

17: end function

training, every vulnerable code statement is associated with a location-specific
signature. This signature is a unique identifier that during production mode will
determine if a CIA is taking place. Before generating and storing a signature the
proxy library analyzes the code. Code analysis involves the complete removal
of what is expected as user input, i.e., string literals and numbers, so that the
signature is a template, and representative, of a class of user inputs, omitting
only the actual input received—in which case it would be useless as a predictor.
Then specific features related to the execution context are combined to create
the signature identifier, which is registered as valid in a auxiliary table where all
known valid signatures are stored. We describe these features in Section 5. After
the signature generation, the application’s normal execution flow continues.

If the proxy application library is in production mode, the first two steps
are the same with the training mode. The code is analyzed in the same manner
and a signature is generated again. After the generation of the signature, the
library validates it by checking if it exists in the table of valid signatures. If it
does not, it means that an injection attack is taking place. The library prevents
the execution of the injected code and specific details regarding the invalid call
are logged.

5 Location-Specific Signatures

A key element of our approach is the efficient generation of location-specific
signatures. The legitimate signatures produced in the training mode are based
on features that when combined provide a unique identifier. Some of these
features depend entirely on the code statement that is about to be executed.

These include sQL keywords in the case of an SQL statement, XML attributes
in the case of an XML code fragment, etc. Other features are independent of
the code statements, but depend on the execution flow and environment: these
include the caller method, its class name, the connection between the application
and the database, the line number of the file that triggers an execution, and
others.

The various features must be selected in such a way that every legitimate
vulnerable code statement at execution time is associated with one signature
in an injective relation; that is, every legitimate vulnerable code statement is
associated with at most one signature. Literally, if C is the set of all legitimate
code statements of an application, S is the set of the legitimate signatures and
C and S are disjoint sets, the following expression must stand:

f:J — S is an injecton (1)

If it does, when a malicious user attempts an attack the injected code will
lead to a signature that does not exist in the table and the attack will be inter-
cepted. This requires the removal of actual user input from the signature gen-
erating function. As presented in Algorithm 1, this is done by the AnalyzeCode
function. For this removal to take place the AnalyzeCode function follows the
steps listed in Algorithm 2.

Algorithm 2 User Input Removal

1: function AnalyzeCode(code)

2 stringsFreeCode < removeQuotedStrings(code)

3 // remove quoted strings
4 numbersFreeCode <+ removeNumbers(stringsFreeCode)

5: // remove numbers given as input
6 strippedCode < removeComments(numbersFreeCode)

7 // remove comments
8 return strippedCode

9: end function

Signature creation also requires the retrieval of the elements that are re-
lated to the execution context. As illustrated in Algorithm 1 this is done by
the AnalyzeExecutionEnvironment function. Depending on the attack, the
elements extracted from this function may vary. Hence it is implemented dif-
ferently depending on the type of the attack and the execution context. Based
upon the above, a valid signature is defined by the following, where + stands
for string concatenation:

S = AnalyzeCode(code) + AnalyzeExecutionEnvironment|() (2)

To facilitate the handling of the signatures and ensure that they are not
manipulated in any way, a hash function is applied to the combined elements
before they are stored in the signature storage table.

Generates thek

signature and checks

if it is valid
Malicious User ;
l 1: Inject 1.1: Request for !
malicious code execution of 1 1.2: Check if the
in user-input malicious DSL code i signature is valid
_—> _—>
;Application :Secure ;Singature Table
[— Wrapper A
-~

T

i 1.3: Could not find
! 1.4: Malicious code signature
i

1

execution is blocked

;DSL Application
Library

application on ;Data Storage

the server side

A database, XML
files, etc

Implements the
DSL functionality

Figure 3: DSL-driven injection attack interception scenario

6 Domain Specific Language Support

In earlier work, we demonstrated the validity of our approach for guarding
against injection attacks on DsSLs. Specifically, we showed how it can guard ap-
plications against two of the most common DSL-driven injection attacks, namely
sQL and Xpath [41, 40]. The general architecture behind both mechanisms is
presented as a UML communication diagram in Figure 3.

In the case of SQL, our mechanism, “sbriver/sQL”, is a JDBC (Java Database
Connectivity) driver” that adds the security properties of our approach against
SQL injection. It acts as a wrapper around other connectivity drivers and it
depends neither on the application nor on the RDBMS.

To protect applications against XPath injection we implemented an XpPath
proxy library called spriver/xpPath. The proxy library depends on the java.xml.
xpath2 package which provides an API for the evaluation of XPath expressions
and access to the evaluation environment. In essence, sbriver/Xpath wraps the
default implementation of XPath and adds our security features. The library is
application-independent, just like its SQL counterpart. Both mechanisms can be
easily used by existing programs: a programmer needs to make only one change
in the application’s code to protect it.

"http://java.sun.com/products/jdbc/driverdesc.html

10

In our implementations, the signatures created during the training mode
involve the stripped down statement (as presented in Algorithm 2) and a critical
element of the execution context of the application, the method invocation stack
trace. The stack trace is retrieved following Algorithm 3 (which is practically
the implementation of the AnalyzeExecutionEnvironment function in the DSL
context) and it includes the details of all methods and call location, from the
method where a code statement is executed down to the target method of the
connectivity driver or the Xpath package.

The stack trace is essential for the signature in order to differentiate between
valid and invalid calls. For example, consider an application that will send the
password for a forgetful user via email by executing:

SELECT password from userdata WHERE id = ’Alice’

This same application could allow users to lock their terminal, but allow the
unlocking either with the user’s password or with the administrator password
(the 4.3 BSD lock command behaved in this way). The corresponding query to
verify the password on the locked workstation would be as follows.

SELECT password from userdata WHERE id = ’Alice’ OR id = ’admin’

It is now easy to see that a malicious user could obtain the administrator’s pass-
word by email by entering on the password retrieval form the string anything’
OR ’x’=’x as his user identifier. Without the the differentiating factor of a stack
trace, the preceding query would have the same signature as the one used for un-
locking the terminal, and would escape a traditional signature-based protection
system.

Algorithm 3 Traversing The Call Stack

1: function GETSTACKTRACE(frame)

2 while frame # bottomFrame do

3 // check if we are in the bottom of the stack
4 frame < frame.caller // obtain the caller frame
5: s < getFrameDetails(frame)

6 // retrieve class name, method name etc.
7 stackTrace < stackTrace + s

8 // append the details to form the stack trace
9 end while
10: return stackTrace

11: end function

We have evaluated our tools in terms of detection accuracy and operation
cost. For the accuracy testing we used simple synthetic benchmarks,® notori-
ously vulnerable applications,’ and a bundle of previously evaluated real-world

80ur testing was based on standard scenarios as described in http://cwe.mitre.org/data/
definitions/643.html and http://projects.webappsec.org/XPath-Injection.
9Daffodil can be obtained from http://www.daffodildb.com/crm/

11

applications!® [23, 46]. We attempted a wide variety of attacks based on in-
correctly filtered quotation characters, incorrectly passed parameters, untyped
parameters, tautologies, and others [2, 26]. Our mechanisms successfully pre-
vented all the attacks without suffering from false positives or negatives.

To calculate the operation cost of sDriver/sQL, we measured the overhead
by executing a complex SQL statement, with and without the mechanism. The
operation cost measures the cost of the query execution inside the Java Virtual
Machine, and not the cost of the execution in the database. During production
mode it is below 35%; as the actual query execution time comprises the time
spent in the database (and the transfer to and from it), the effective overhead
to the user will be lower, depending on the complexity of the query.

The spriver /XPath library was tested for operation cost against the standard
XpPath library shipped with the Java Development Kit (JDK). To use the xpath
library one must compile the XPath expression and then run it on the XML data.
The results are returned as a list of XML nodes. Our approach adds the extra
overhead only to the compilation phase, which is usually executed only once,
if the developer follows good coding practices. The benchmark results showed
that the library performed in average 93% slower in the compilation phase than
the standard Xpath library; similarly with SQL injection protection, depending
on the complexity of the query and how compilation fares against execution,
the relative delay experienced by the user will be less.

Our scheme can be applied to all DSLs that are integrated into GPLs using
the pattern Implementation: Embedding as proposed by Mernik et al [38]. This
is because this pattern includes all DSLs that are using an application library as
their implementation scheme.

A drawback of our approach in both mechanisms is the need for retraining
after a new release. If the application’s code is altered, the new source code
structure invalidates existing query signatures. This is because stack elements
contain information about a method invocation including the method name, the
package, the file, and the line number. This necessitates a new training phase.

7 Dynamic Language Support

To demonstrate that our scheme is applicable in the dynamic language-driven
injection context we experimented with the JavaScript engine of Firefox in order
to protect users from JavaScript injection attacks. Although we are still protect-
ing against code injection attacks, we are now guarding the user’s web browser
and not a server-side application as was the case in the previous two examples.
JavaScript is executed as a browser component, usually resulting on compromis-
ing its resources for malevolent purposes. With a JavaScript injection attack, a
malicious user can follow the recent browsing history of an unsuspecting user,
steal tracking cookies and modify the browsers behavior. JavaScript injection
is considered a critical issue in web application security mainly because it is
associated with major vulnerabilities like cross-site scripting (Xss) [12, 57].

10The applications can be obtained fromhttp://www.gotocode.com/

12

A large number of C1As in JavaScript exploit the eval function [16, 45, 57].
Such attacks take advantage of the fact that eval executes the code passed to
it in the same execution environment as the function’s caller. Attackers can
also utilize eval to put together strings and form a pattern that the protecting
mechanisms of a web page consider dangerous and would normally strip out
[58, 45]. As a result, if a malicious user caches this function in a hidden script
of a web page, she can essentially manipulate the browser as she chooses. A
known way to do this, is by taking advantage the poor €SS rendering of various
browsers.!! For example, with the following code fragment hidden in the css of
a web page:

<div id=mycode style="background:url(’java
script:eval(document.all.mycode.expr)’)"
expr="alert (document.cookie)"></div>

an attacker will maneuver the user’s browser to execute the code contained in the
expr variable. Such an attack was used in the MySpace Samy XSS attack, which
utilized eval to bypass the security measures taken by the community creators
and automatically add the attacker to the victim’s friends, while altering the
victim’s profile to add a copy of the attack code.

Firefox uses a JavaScript engine called SpiderMonkey.'? We modified the
engine to prevent attacks that exploit the eval function. To do so, when the
eval function is called we obtain the complete path of the file that called the
eval function (with the website’s URL included) and the JavaScript stack trace.
By combining the two features we can generate a robust signature that can
detect attacks that include the eval function in their injected code. Since there
are no elements from the eval feed included in the signature for this case study
code analysis is not needed. Hence a signature can be defined by the following:

S = AnalyzeExecutionEnvironment() (3)

The implementation of the stack traversal follows the same steps shown in
Algorithm 3.

Figure 4 illustrates a typical JavaScript injection attack scenario as a UML
communication diagram. The scenario includes a web browser making an HTTP
request to a manipulated web page that contains a well-hidden script. After the
request, the page is downloaded in the user’s browser and the script is loaded
and executed by the JavaScript engine. If the malicious code contains the eval
function the attack is intercepted because the method will be called from an
unrecorded file or with a different stack trace.

To evaluate our prototype in terms of operation cost we added timers and
measured the execution time of our added functionality. Since the feed of the
eval function is not included in a legitimate signature and hence it does not
affect our prototype, for a fixed script fed to the eval function, we measured the
execution time for different stack depths, from a direct call to eval up to a stack

11ht‘cp ://www.alistapart.com/articles/secureyourcode2/
2http://www.mozilla.org/js/spidermonkey/

13

Contains
HTML, CSS,
JavaScript
1
| 1.1: Send Data Containing 1.2: Unauthorized
i Malicious Code eval() call
:Web Server ;Browser Client wJavaScript
Engine
AV4
! 1: HTTP Request N .
i ’ L 1.3: Response H
i Blocked !
Contains also a With the
ici i Secure eval()
Malicious Script | |
mplementation

Figure 4: JavaScript injection attack interception scenario

depth of 20. As a result we had twenty one measurements for twenty one stack
depths. The execution time is linear to the JavaScript stack (¢t = 17.68 + 4d,
p < 0.05, r? = 0.9939, where d is the stack depth).

To check the accuracy of our module we consulted Xssed.com'3 to find vul-
nerable, real-world web pages and attack them by utilizing eval. We performed
tests on 3 top ranking sites namely: cnn.com'*, dhl.com!® and reuters.com!S.
In all cases our mechanism prevented the attack without encountering any false
positives or negatives.

An advantage of the scheme compared to the one proposed for the DSL
context is the fact that the need for retraining is not so frequent, as it is only
required after a change in the code that alters the method call sequence. The
training itself is not carried out by the user since the user cannot be sure that
during the training the browser is executing legitimate code. A possible way to
avoid this is to create the signatures server-side and pass them on the user-side
during the users’ first site visit via HTTPS.

8 Conclusions and Future Work

Unless an application is severely flawed, its vulnerabilities are likely to be lo-
cated in a few places, and attackers wishing to exploit them are likely to try
to “play around the rules”. Such opportunities are rare, and their exploita-
tion entails forcing an application to do something outside the normal course
of events. Exactly because such abnormal behavior stands out from the appli-

13nttp://www.xssed. com/

http://www.xssed.com/mirror/72143/
Bhttp://wuw.xssed.com/mirror/72233/
6http://www.xssed.com/mirror/71974/

14

cation’s normal conduct, it is possible to detect it and take protective action
when it occurs.

Our application takes advantage of this in order to prevent a broad class
of injection attacks. To distinguish between normal and abnormal events, we
identify and register vulnerable code statements using unique signatures that we
generate during a training phase. Then, at runtime, our framework checks all
statements for compliance with the trained model and can thus block code state-
ments containing additional maliciously injected elements. The training phase
can take place during regression and user acceptance testing prior to release,
so that developers do not need to alter their working processes significantly.
The approach introduces a runtime overhead, but the overhead compares favor-
ably when related to the full execution cost of the protected statements; with
complex statements, it will be negligible.

The applicability of our approach to any GPL with eval capabilities hints at
a possible generalisation to any GPL that is able to execute its own programs.
For instance, there is no distinction between program and data in Lisp and its
dialects. Although we are not aware of attacks on these languages, their variants
are increasing in popularity.

A disadvantage of our scheme is that when a signature feature is altered, a
new training phase is necessary. However, with the increased adoption of test-
driven development, and use of automated testing frameworks like JUnit, this
training phase can be easily repeated.

Despite warnings and advice for many years now, insecure software is still
released. One reason is that developers are wary of incorporating into their prac-
tice cumbersome methods and unyielding tools. Countering that, our approach
is easy to use, requiring minimal changes in existing code. Moreover, it can be
extended to more domains and languages than the three shown here. The im-
plementations of our libraries are available at http://istlab.dmst.aueb.gr/
~dimitro/ssuite/.

Acknowledgements

We would like to thank Chuan Yue and Haining Wang for sharing with us details
of their SpiderMonkey instrumentation efforts. We would also like to thank
Konstantinos Stroggylos, Georgios Gousios and Titika Konstantinopoulou for
their insightful comments during the writing of this paper.

This research has been co-financed by the European Union (European Social
Fund - ESF) and Greek national funds through the Operational Program ”Ed-
ucation and Lifelong Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge
society through the European Social Fund.

15

References

[1]

Ashish Aggarwal and Pankaj Jalote. Integrating static and dynamic anal-
ysis for detecting vulnerabilities. In COMPSAC ’06: Proceedings of the
30th Annual International Computer Software and Applications Confer-
ence (COMPSAC’06), pages 343-350, Washington, DC, USA, 2006. IEEE
Computer Society.

C. Anley. Advanced SQL Injection in SQL Server Applications. Next Gen-
eration Security Software Ltd., 2002.

E. Barrantes, D. Ackley, S. Forrest, T. Palmer, D. Stefanovic, and D. Zovi.
Randomized instruction set emulation to disrupt binary code injection at-
tacks. In CCS 2003: Proceedings of the 10th ACM Conference on Computer
and Communications Security, pages 281-289, October 2003.

S. Boyd and A. Keromytis. SQLrand: Preventing SQL injection attacks. In
M. Jakobsson, M. Yung, and J. Zhou, editors, Proceedings of the 2nd Ap-
plied Cryptography and Network Security (ACNS) Conference, pages 292—
304. Springer-Verlag, 2004. Lecture Notes in Computer Science Volume
3089.

Martin Bravenboer, Eelco Dolstra, and Eelco Visser. Preventing injection
attacks with syntax embeddings. In GPCE ’07: Proceedings of the 6th
international conference on Generative programming and component engi-

neering, pages 3—12, New York, NY, USA, 2007. ACM.

Mason Brown and Alan Paller. Secure software development: Why the
development world awoke to the challenge. Inf. Secur. Tech. Rep., 13(1):40—
43, 2008.

G. Buehrer, B.W. Weide, and P.A. Sivilotti. Using parse tree validation
to prevent SQL injection attacks. In Proceedings of the 5th international
Workshop on Software Engineering and Middleware, pages 106-113. ACM
Press, September 2005.

CERT. CERT vulnerability note VU282403. Online http://www.kb.cert.
org/vuls/id/282403, 2002. Accessed, January 7th, 2007.

Karl Chen and David Wagner. Large-scale analysis of format string vulner-
abilities in debian linux. In PLAS ’07: Proceedings of the 2007 workshop on
Programming languages and analysis for security, pages 75-84, New York,
NY, USA, 2007. ACM.

Brian Chess and Gary McGraw. Static analysis for security. IEEE Security
and Privacy, 2(6):76-79, 2004.

Brian Chess and Jacob West. Secure programming with static analysis.
Addison-Wesley Professional, 2007.

16

[12]

[17]

[18]

[19]

[21]

22]

[23]

Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for javascript. In PLDI ’09: Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and implementa-
tion, pages 50-62, New York, NY, USA, 2009. ACM.

W.R. Cook and S. Rai. Safe query objects: statically typed objects as
remotely executable queries. In ICSE 2005: 27th International Conference
on Software Engineering, pages 97-106, 2005.

Crispin Cowan. Software security for open-source systems. IEEE Security
and Privacy, 1(1):38-45, 2003.

Dorothy Elizabeth Robling Denning. An intrusion detection model. IEEE
Transactions on Software Engineering, 13(2):222-232, February 1987.

Manuel Egele, Peter Wurzinger, Christopher Kruegel, and Engin Kirda.
Defending browsers against drive-by downloads: Mitigating heap-spraying
code injection attacks. In DIMVA ’09: Proceedings of the 6th International
Conference on Detection of Intrusions and Malware, and Vulnerability As-
sessment, pages 88—106, Berlin, Heidelberg, 2009. Springer-Verlag.

David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. IEEE Softw., 19(1):42-51, 2002.

Michael Fagan. Design and code inspections to reduce errors in program
development. pages 575-607, 2002.

James C. Foster, Vitaly Osipov, and Nish Bhalla. Buffer Overflow Attacks.
Syngress Publishing, 2005.

Aurélien Francillon and Claude Castelluccia. Code injection attacks on
harvard-architecture devices. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security, pages 15—26, New
York, NY, USA, 2008. ACM.

Johan Gregoire, Koen Buyens, Bart De Win, Riccardo Scandariato, and
Wouter Joosen. On the secure software development process: Clasp and sdl
compared. In SESS ’07: Proceedings of the Third International Workshop
on Software Engineering for Secure Systems, page 1, Washington, DC,
USA, 2007. IEEE Computer Society.

Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint propa-
gation for Java. In ACSAC ’05: Proceedings of the 21st Annual Computer
Security Applications Conference, pages 303-311, Washington, DC, USA,
2005. IEEE Computer Society.

W. G. Halfond and A. Orso. AMNESIA: analysis and monitoring for neu-
tralizing SQL-injection attacks. In Proceedings of the 20th IEEE/ACM
international Conference on Automated Software Engineering, pages 174—
183. ACM Press, November 2005.

17

[24]

[25]

[26]

[27]

[28]

[30]

W. G. Halfond and A. Orso. Preventing SQL injection attacks using AM-
NESIA. In ICSE 2006: Proceedings of the 28th International Conference
on Software Engineering, pages 795-798. ACM Press, May 2006.

William G. J. Halfond and Alessandro Orso. Combining static analysis
and runtime monitoring to counter SQL-injection attacks. In WODA °05:
Proceedings of the Third International Workshop on Dynamic Analysis,
pages 1-7, New York, NY, USA, 2005. ACM Press.

William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A classifica-
tion of SQL-injection attacks and countermeasures. In Proceedings of the
International Symposium on Secure Software Engineering, March 2006.

Michael Howard and David LeBlanc. Writing Secure Code. Microsoft Press,
Redmond, WA, second edition, 2003.

Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson,
David Evans, John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowan-
hill. Secure and practical defense against code-injection attacks using soft-
ware dynamic translation. In VEFE ’06: Proceedings of the 2nd international

conference on Virtual execution environments, pages 2—-12, New York, NY,
USA, 2006. ACM.

Martin Johns and Christian Beyerlein. Smask: preventing injection attacks
in web applications by approximating automatic data/code separation. In
SAC ’07: Proceedings of the 2007 ACM symposium on Applied computing,
pages 284-291, New York, NY, USA, 2007. ACM.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static
analysis tool for detecting web application vulnerabilities (short paper). In
SP ’06: Proceedings of the 2006 IEEE Symposium on Security and Privacy,
pages 258-263, Washington, DC, USA, 2006. IEEE Computer Society.

Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering
code-injection attacks with instruction-set randomization. In CCS ’03:
Proceedings of the 10th ACM conference on Computer and communications
security, pages 272-280, New York, NY, USA, 2003. ACM.

Sin Yeung Lee, Wai Lup Low, and Pei Yuen Wong. Learning fingerprints
for a database intrusion detection system. In Dieter Gollmann, Giinter Kar-
joth, and Michael Waidner, editors, ESORICS ’02: Proceedings of the 7th
FEuropean Symposium on Research in Computer Security, pages 264-280,
London, UK, 2002. Springer-Verlag. Lecture Notes In Computer Science
2502.

Kyung-Suk Lhee and Steve J. Chapin. Buffer overflow and format string
overflow vulnerabilities. Software: Practice and Ezperience, 33(5):423-460,
2003.

18

[34]

[35]

[39]

[40]

Benjamin Livshits and Ulfar Erlingsson. Using web application construc-
tion frameworks to protect against code injection attacks. In PLAS ’07:

Proceedings of the 2007 workshop on Programming languages and analysis
for security, pages 95-104, New York, NY, USA, 2007. ACM.

Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding applica-
tion errors and security flaws using PQL: a program query language. In
OOPSLA ’05: Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object Oriented Programming, Systems, Languages, and Applications,
pages 365-383, New York, NY, USA, 2005. ACM Press.

Russell A. McClure and Ingolf H. Kriiger. SQL DOM: Compile time check-
ing of dynamic SQL statements. In ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering, pages 88-96, 2005.

Gary McGraw. Software Security: Building Security In. Addison-Wesley
Professional, 2006.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Computing Surveys, 37(4):316—
344, 2005.

Yasuhiko Minamide. Static approximation of dynamically generated web
pages. In WWW ’05: Proceedings of the 14th international conference on
World Wide Web, pages 432-441, New York, NY, USA, 2005. ACM.

Dimitris Mitropoulos, Vassilios Karakoidas, and Diomidis Spinellis. Forti-
fying applications against XPath injection attacks. In A. Poulymenakou,
N. Pouloudi, and K. Pramatari, editors, MCIS 2009: 4th Mediterranean
Conference on Information Systems, pages 1169-1179, September 2009.

Dimitris Mitropoulos and Diomidis Spinellis. SDriver: Location-specific
signatures prevent SQL injection attacks. Computers and Security, 28:121—
129, May/June 20009.

Susanta Nanda, Lap-Chung Lam, and Tzi-cker Chiueh. Dynamic multi-
process information flow tracking for web application security. In MC "07:
Proceedings of the 2007 ACM/IFIP/USENIX international conference on
Middleware companion, pages 1-20, New York, NY, USA, 2007. ACM.

Robert Seacord. Secure coding in C and C++4: Of strings and integers.
IEEE Security and Privacy, 4(1):74, 2006.

Nuno Seixas, José Fonseca, Marco Vieira, and Henrique Madeira. Looking
at web security vulnerabilities from the programming language perspective:
A field study. In ISSRE ’09: Proceedings of the 2009 20th International
Symposium on Software Reliability Engineering, pages 129-135, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

19

[45]

[46]

H. Shahriar and M. Zulkernine. Mutec: Mutation-based testing of cross
site scripting. In IWSESS ’09: Proceedings of the 2009 ICSE Workshop on
Software Engineering for Secure Systems, pages 47-53, Washington, DC,
USA, 2009. IEEE Computer Society.

Zhendong Su and Gary Wassermann. The essence of command injec-
tion attacks in web applications. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
POPL 06, pages 372-382. ACM Press, January 2006.

Marianthi Theoharidou and Dimitris Gritzalis. Common body of knowledge
for information security. IEEE Security & Privacy, 5(2):64-67, 2007.

Fredrik Valeur, Darren Mutz, and Giovanni Vigna. A learning-based ap-
proach to the detection of SQL attacks. In Klaus Julisch and Christopher
Kruegel, editors, Intrusion and Malware Detection and Vulnerability As-
sessment: Second International Conference, DIMVA 2005, pages 123-140,
July 2005. Lecture Notes in Computer Science 3548.

John Viega, J. T. Bloch, Tadayoshi Kohno, and Gary McGraw. Token-
based scanning of source code for security problems. ACM Trans. Inf.
Syst. Secur., 5(3):238-261, 2002.

John Viega and Gary McGraw. Building Secure Software: How to Avoid
Security Problems the Right Way. Addison-Wesley, Boston, MA, 2001.

Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun Zhu. Sigfree: A
signature-free buffer overflow attack blocker. IEEFE Trans. Dependable Se-
cur. Comput., 7(1):65-79, 2010.

Gary Wassermann and Zhendong Su. An analysis framework for security in
web applications. In SAVCBS 2004: Proceedings of the FSE Workshop on
Specification and Verification of Component-Based Systems, pages 70-78,
2004.

Gary Wassermann and Zhendong Su. Sound and precise analysis of web
applications for injection vulnerabilities. In PLDI °07: Proceedings of the
2007 ACM SIGPLAN conference on Programming language design and im-
plementation, pages 32—41, New York, NY, USA, 2007. ACM Press.

John Wil and Marjam Kamkar. A comparison of publicly available tools for
static intrusion prevention. In In Proceedings of the 7th Nordic Workshop
of Secure IT Systems, 2002.

Glenn Wurster and P. C. van Oorschot. The developer is the enemy. In
NSPW ’08: Proceedings of the 2008 workshop on New security paradigms,
pages 89-97, New York, NY, USA, 2008. ACM.

20

[66] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy enforce-

[58]

ment: A practical approach to defeat a wide range of attacks. In Security
’06: Proceedings of the 15th USENIX Security Symposium, pages 121-136,
Berkeley, CA, August 2006. USENIX Association.

Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. Javascript
instrumentation for browser security. In POPL ’07: Proceedings of the
34th annual ACM SIGPLAN-SIGACT Symposium on Principles of pro-
gramming languages, pages 237-249, New York, NY, USA, 2007. ACM.

Chuan Yue and Haining Wang. Characterizing insecure javascript practices
on the web. In WWW °09: Proceedings of the 18th International Conference
on World wide web, pages 961-970, New York, NY, USA, 2009. ACM.

21

