Emerald

The design of a reliable
multipeer protocol for
DVEs

Gunther Stuer
Fan Broeckhove and
Frans Arickx

The authors

Gunther Stuer is a Research Assistant and

Jan Broeckhove and Frans Arickx are Professors, all at the
Department of Mathematics and Computer Sciences,
University of Antwerp, Antwerp, Belgium.

Computer languages, Computer simulation,
Error cause identification, Computer programming,
Networks

Abstract

We present the design and implementation of a reliable
multipeer protocol (RMPP). This protocol is suitable for
applications in the area of distributed virtual environments.
RMPP is written in Java because this language has many
interesting features for DVE-builders. Motivation, protocol
classification, design goals and the error recovery algorithm
are discussed. Furthermore, some implementation issues are
listed. This paper concludes by presenting two possible
applications of the RMPP.

Electronic access

The Emerald Research Register for this journal is available at
http://www.emeraldinsight.com/researchregister

The current issue and full text archive of this journal is
available at
http://www.emeraldinsight.com/1066-2243.htm

Internet Research: Electronic Networking Applications and Policy
Volume 13 - Number 2 - 2003 - pp. 80-85

© MCB UP Limited - ISSN 1066-2243

DOI 10.1108/10662240310469024

80

Introduction

One of the main bottlenecks in virtual
environments has always been the availability of
sufficient network bandwidth to allow the
participating objects to communicate with each
other (Zyda, 1996). With the introduction of
multicasting this problem was partly solved, but
traditional multicast protocols are all based on
best effort approaches, i.e. message delivery is
not guaranteed. In order to achieve this
guarantee, reliable multicast protocols were
introduced (Hall, 1994). Although there are
already many such protocols, none is optimised
for distributed virtual environments (DVE)
(Birman, 1999). The most important problem
is that in a typical DVE many nodes are
simultaneously sending and receiving each
other’s information (Sato et al., 1999) and
classic reliable multicast protocols are not
designed to handle this situation. For this
reason, the development of a reliable multipeer
protocol (RMPP) is an important contribution
to the development of large DVEs. The RMPP
is a member of the multipeer protocol family.
This family generalizes the traditional multicast
(one sender), many receivers to the situation of
many senders as well as many receivers
(Wittman and Zitterbart, 2000).

This paper describes the RMPP, in particular
the algorithms involved in the protocol and a
number of aspects of its design and
development. In addition, some applications of
the RMPP are discussed.

Protocol classification

In the classification of reliable multicast
protocols (Obraczka, 1998), the one presented
here is most closely-related to the Transport
Protocol for Reliable Multicast (TPRM)
(Sabata ez al., 1998). RMPP is a message based
protocol which means that there is no stream
between sender and receivers, but rather that a
number of independent messages are
transmitted. Every message consists of one or
more packets, each one transmitted as a UDP
datagram. The most important difference with
TRPM is that RMPP is a multipeer protocol.
If one classifies on error correction schemes,
RMPP is a receiver initiated protocol (Levine and

The design of a reliable multipeer protocol for DVEs

Internet Research: Electronic Networking Applications and Policy

Gunther Stuer, Jan Broeckhove and Frans Arickx

Garcia Luna Aceves, 1998), i.e. possible errors are
detected by the receiver which informs the sender
hereof through a negative acknowledgement
(NACK). On reception the sender will retransmit
the erroneous or missing packets.

This type of protocol has two important
drawbacks. The first one is the danger of a
NACK implosion which can happen when
multiple recipients detect that a packet is missing.
They will all send a NACK for the same packet
with a serious regression in network performance
as a result. This problem can be solved by
making all receivers wait a random amount of
time before actually sending the NACK. If,
during this delay, they receive a NACK sent by
another receiver, they drop their own request. A
consequence of this solution is that all NACK
requests and NACK responses have to be
multicasted to warn all interested recipients.

The second problem is that in theory these
protocols need an infinite amount of memory
because you never can be sure whether all
receivers correctly received a certain datagram.
This problem is solved heuristically by assuming
that in a virtual environment old messages have
lost their importance and can be dropped.

The opposite of receiver-initiated protocols
are sender initiated protocols where the sender
is responsible for handling errors or missing
packets. To do this, the sender maintains a list
of all clients and after each transmission every
client has to send an acknowledgement (ACK).
If one is missing, an error has occurred and
unacknowledged datagrams are retransmitted.
This type of protocol does not exhibit the two
problems stated above, but is not very scalable
due to the large amount of ACKs.

The protocol

When one wants to recover from an erroneous
or missing packet, it is very important to have a
way to uniquely identify this packet. In the
RMPP this is done in three steps.

The first one is at the level of the VR
participants. Each one is identified by a unique
ID, which is basically a random 32-bit number
generated during construction. Every datagram
transmitted will contain this ID. In this way, the
receiver can determine which VR participant
sent the datagram. Every datagram also contains

81

Volume 13 - Number 2 - 2003 - 80-85

a message sequence number (MSN) which
uniquely identifies every message sent by a given
participant. So, the combination (nodelD,
MSN) uniquely identifies every message in the
system. The third level of identification is
“packetNr”. This one uniquely identifies every
packet within a message. As such, the 3-tuple
(nodeID, MSN, packetNr) uniquely identifies
every datagram in the system.

Whenever a gap is detected between messages
received from the same node, or between two
packets from the same message, a NACK-
request is sent for every message involved.
When a whole message is missing, the NACK-
request contains its MSN, and the requested
packetNr is set to one, since there is always at
least one packet in every message. When one or
more packets from a certain message are
missing, the NACK-request contains this
messages MSN and a list of all missing
packetNrs. The sender will re-transmit all
packets it receives a NACK-request for. These
are known as NACK-response packets.

When the first packet of a given message
arrives, a new empty message is created at the
receiver side and its timer is set to
receiveTimeout. Whenever another packet for
this message arrives, it is added to the message
and the timer is reset. When the timer reaches
zero, the RMPP assumes all unaccounted
packets lost and sends a NACK-request for
them. If however all packets were received, the
message is considered to be complete.

When a NACK-request is sent, the timer of
the error producing message is set to
nackTimeout. If no NACK-response is received
before the timer ends, another NACK-request is
sent. This goes on until maxRequests NACK-
requests have been transmitted after which the
message is considered lost and removed from the
system. If, on the other hand, a NACK-response
is received, the timer is reset to recvIimeout and
the algorithm starts all over again.

The sender keeps every message in memory for
sendTimeout seconds. This timer is reset with
every incoming NACK-request. When it reaches
zero, the sender assumes that all receivers did
receive the message correctly and removes it from
memory. Figure 1 describes the protocol.

Each of the timers RecvTimeout, NackTimeout
and SendTimeout is responsive to the frequency
with which timeouts occur. If timeouts are

The design of a reliable multipeer protocol for DVEs

Internet Research: Electronic Networking Applications and Policy

Gunther Stuer, Jan Broeckhove and Frans Arickx

Figure 1 The protocol

Volume 13 - Number 2 - 2003 - 80-85

L
5

derver
] 1: send Msg 1, packet 1/7

3: send Msg 1; packet 5/7
4: send Msg 1, packet 7/7

6: send NACK-respons Msg 1, Packet 2
7: send NACK-respons Msg 1, Packet 4

9: send NACK-resons MSG 1, Packet 6

2: send Msg 1; packet 3/7
\

\

e]

-]

-]

-> sent NACK-req

5: send NACK-request 1 for Msg1; Packets 2,4,6 Receive timeout ebpsﬁ

8: send NACK-request 2 for Msg 1; Packet 6 NackTimeout elapsed BI
I AR

-> resent NACK-req

Message complete [\

frequent the timeout interval is lengthened. If, on
the other hand, the timer is frequently reset while
there is a significant amount of spare time left, the
timeout interval is shortened. This approach
matches the timeout interval to current operating
conditions and optimized responsiveness. This is
also the technique that ensures that fluctuations in
the responsiveness of Java due to garbage
collection and datastructure optimizations do not
destabilize the protocol.

Design goals

The primary goal of this research project was the
creation of a reliable multipeer system optimized
for distributed virtual environments written in
Java. As a reference platform we used VEplatform
(Demuynck, 2000), a 100 percent distributed VR
framework developed in C++ at the university of
Antwerp. Note that the 100 percent
distributability rules out the use of tree based
reliable multicast protocols like TRAM developed
by Sun Labs (Chiu ez al., 1998) which is a part of
Sun’s JRMS project (Hanna ez al., 1998). The
secondary goal was to emphasise good design. We
considered the architectural aspect to be more
important than top-notch performance. To

82

achieve this, we extensively used object oriented

techniques, UML (Booch ez al., 1999) and design

patterns (Grand, 1998).

The fact that this protocol is tuned for virtual
environments has three interesting consequences:
(1) The frequency with which VR nodes send

updates has a maximum of 30 messages a
second (Brutzman ez al., 1995) because this
implies one message for every screen
update. When one uses dead reckoning
algorithms it is possible to reduce the
update frequency to an average of one
message a second (Demuynck ez al., 1998).
This maximum and average value allows
for the optimization of the data structures.

(2) The size of a typical VR message is usually

less than 1 KB because only the position,

orientation and some state information is
transmitted. This made it possible to
optimize buffer sizes.

(3) After a certain amount of time, an update
message is of no importance anymore since
the object that sent it probably already altered
one or more of the transmitted parameters.
This is why old messages may be dropped.

As an implementation language we had to choose
between C++, the language used to implement

The design of a reliable multipeer protocol for DVEs

Internet Research: Electronic Networking Applications and Policy

Gunther Stuer, Jan Broeckhove and Frans Arickx

VEplatform, and Java. After carefully considering
the benefits and drawbacks of both, we chose
Java. Its benefits are:

Java is a very expressive language with many
standard class libraries. This allows for the
construction of complex applications with
much less code than C++.

Javas syntax and semantics are much more
clear than those of C++ which enhances the
quality of the produced code.

Java has built in features such as threading
and dynamic class loading that are

extensively used in our design.

The drawbacks of using Java are:

Java applications are not the most
performant. Although serious advances
have been made, C++ is still faster. It is,

however, our belief that this obstacle will
slowly resolve as better compilers and
interpreters become available.

Java was never intended for real-time
applications. This can be observed when
monitoring the behaviour of the garbage
collector and the collections framework.
The RMPP depends heavily on timers to
decide when to take action. Java, however,
gives no guarantees whatsoever about their
correct behaviour. The specifications state,
e.g. that the method sleep(x) will cause the
thread to sleep at least x milliseconds. In
situations where one needs an immediate
response to some action, such as handling a
NACK, the garbage collector and
collections framework overhead can be very
problematic. However, a solution to this
problem has been found and will be
discussed in the next section

Implementation problems and solutions

In this section, the different pitfalls one can
encounter when constructing an RMPP will be
described. In four subsequent revisions, design
and implementation solutions to problems
encountered were accounted for. The current
version seems to perform as expected.

Initial design
The very first design was conceptually the most
pure one. Every message had its own thread

83

Volume 13 - Number 2 - 2003 - 80-85

(Kleiman et al., 1996) which took care of this
objects’ timer. The strongest points of this
design were its pureness and transparency. But
unfortunately, some problems were
encountered that led to erratic behaviour.

The first one is that the creation of a Java
thread takes about 1.5 ms (Lewis and Berg,
2000). Let st be the sendTimeout, msi the
maxSending value of node i, n the amount of
nodes and rt the receive Timeout, then the
following formula tells us how many threads there
are, at any given moment, active in the system.

A very plausible situation is that there will be
ten nodes, each sending 30 messages a second.
Typical values for sendTimeout and
recvTimeout are respectively 30 seconds and one
second. One can see that, in this case, the system
contains 1,200 threads, of which each second
330 die and 330 new ones are created. If it takes
1.5 ms to create a single thread, the RMPP
spends half of its time constructing threads.

The second problem is that there are many
differences between threading libraries on different
platforms. The most important differences are in
the area of thread scheduling. Since the protocol
depends on quick responses when e.g. a NACK-
request is sent, this can have a devastating effect
on protocol stability.

This is why this initial design attempt can best
be seen as a proof of concept implementation
(Stuer ez al., 1999).

The thread pool

To solve the thread creation problem mentioned
above, a thread pool was used. When the
application starts, the size of the thread pool is
determined and it is populated with sleeping
threads. Whenever a thread is needed, one is
removed from the pool and reinserted when no
longer needed. When additional threads are
requested, the pool is expanded.

With these changes, the RMPP became much
faster (Stuer er al., 2001a), but stability
remained an issue. Whenever the protocol was
tuned for one OS, its behaviour was
problematic on other platforms.

A new design

To solve the stability problem, a whole new
design was necessary (Stuer et al., 2001b).
Instead of assigning one thread to each
message, the RMPP now has a Timer Thread.

The design of a reliable multipeer protocol for DVEs

Internet Research: Electronic Networking Applications and Policy

Gunther Stuer, Jan Broeckhove and Frans Arickx

All messages wanting to be notified after some
period of time can register themselves with this
timer. When the requested period is over, they
are informed of this using a call back
mechanism. However, this timer turned out to
be a bottleneck because the data structures used
to construct it were not fast enough to handle
the large amount of requests needed.

With this new design, the protocol was stable
under all tested operating systems, but due to
the bottleneck not as performant as it could be.
The drawback is that part of the original design
elegance is gone.

A final optimization

By taking into account the fact that most VR
messages are small and fit in a single datagram,
a final and important optimization could be
achieved. On reception of such a message, the
recvTimeout notification can be omitted since
we already have the complete message. By
doing this, the last remaining bottle neck is
solved because the load on the Timer Thread is
now significantly reduced.

Applications

In this section we will discuss two possible
applications of the RMPP. Both are
components to be used in a highly dynamical
distributed virtual environment.

Probe classes
The best technique to make a virtual
environment scalable is to make sure that each
participant only receives the information it is
interested in. One way to do this is to divide the
world in regions where each region has its own
multicast group (Morse, 1996). All objects in the
same region transmit their updates on the same
multicast group. Another, still experimental, but
better method is described in what follows.
Consider a virtual world that is not divided in
fixed regions, but where objects cluster
dynamically dependent on some criteria. This
can be implemented using a fuzzy clustering
algorithm (Looney, 1999). Each cluster then
corresponds to one multicast group.
Participants decide periodically which set of
objects they are interested in, and thus to which
multicast groups they should listen.

84

Volume 13 - Number 2 - 2003 - 80-85

The technique that makes this approach
possible is that of probe classes. The protocol is
described in Figure 2. An object (A) multicasts
a probe class (1) to all participating objects (B).
The probe class gives B information about A so
that B can decide whether it wants to listen to A
(3) or not. After this, the probe class receives
information from B so it can decide whether A
would be interested in B or not. If so, the
multicast address of B is transmitted to A (5)
and A starts listening (6). This technique allows
for asymmetric interests, e.g. it is possible for A
to listen to B, but not the other way around.

Every time a parameter used in the decision
making process changes out of a preset range,
an updated probe class is fired to notify all
objects of the change in state. As an example
one can assume a three-dimensional system.
Two objects are interested in each other when
their distance is less than 100 units. An object
launches a new probe whenever it moved ten
units from its previous launch position. An
example of an asymmetric interest would be
when one participant is looking through a
binocular while the other is not.

Object mirroring
Object mirroring is a possible strategy to minimize
communications in a distributed virtual
environment. One can use the RMPP to multicast
the VR objects to all interested nodes. With the
use of Java class loading it is possible to create a
local object from this stream of bytes. This local
object serves as a proxy for the original one.
Figure 3 illustrates this principle where object A
gets replicated to objects A at the receiver sides.
All communication between the original object
and its proxies also relies on the RMPP system.
An XML message is transmitted which consists

Figure 2 Probe classes

The design of a reliable multipeer protocol for DVEs

Internet Research: Electronic Networking Applications and Policy

Gunther Stuer, Jan Broeckhove and Frans Arickx

Figure 3 Object mirroring

Volume 13 - Number 2 - 2003 - 80-85

Receiver 1

A 7
V*{Rl\/IPP .

Receiver 2

IZ‘\W
.

Sender

/ 7/\\

of two parts. The first one identifies the target
object and the second part contains the actual
message. Using this technique, the virtual world
is extremely expandable because each type of
object (e.g. table, avatar, room, ...) can define its
own message scheme. This way one does not
need to specify the complete protocol when
designing the virtual environment.

Conclusions

Our contribution in this paper has been to
develop a reliable multipeer protocol (RMPP).
This protocol is geared towards applications in
the area of multi user DVEs. To achieve our
design goals, particularly in scalability and 100
percent distributability, a receiver initiated
protocol was used. We have found that the
advantages of implementing the RMPP in Java
outweigh the disadvantages. The performance
penalty was well within the targeted limits.

References

Birman, K.P. (1999), “A review of experiences with reliable
multicast”, Software Practice and Experience, Vol. 29
No. 9, pp. 741-74.

Booch, G., Rumbaugh, J. and Jacobson, 1. (1999), The
Unified Modeling Language User Guide, Addison
Wesley, Reading, MA.

Brutzman, D.P., Macedonia, M.C. and Zyda, M.J. (1995),
“Internetwork infrastructure requirements for virtual
environments”, Proceedings of the 1995 Symposium
on Virtual Reality Modeling Languages.

Chiu, D.M., Hurst, S., Kadansky, M. and Wesley, J. (1998),
TRAM: A tree based Reliable Multicast Protocol,

Sun Research Technical Report TR 98 66.

Demuynck, K. (2000), “The VEplatform for distributed virtual
reality”, PhD thesis, University of Antwerp, Antwerp.

Demuynck, K., Arickx, F. and Broeckhove, J. (1998), “The
VEplatform system: a system for distributed virtual

85

reality”, Future Generation Computer Systems, No. 14,
pp. 193-8.

Grand, M. (1998), Patterns in Java, Vol. 1, John Wiley &
Sons, New York, NY.

Hall, K.A. (1994), “The implementation and evaluation of
reliable IP Multicast”, Master of Science thesis,
University of Tennessee, Knoxville, TN.

Hanna, S., Kadansky, M. and Rosenzweig, P. (1998), The
Java Reliable Multicast Service: A Reliable Multicast
Library, Sun Research Technical Report TR 98 68.

Kleiman, S., Shah, D. and Smaalders, B. (1996),
Programming with Threads, SunSoft Press.

Levine, B.N. and Garcia Luna Aceves, J.J. (1998), “A
comparison of reliable multicast protocols”,
Multimedia Systems, Vol. 6, pp. 334-48.

Lewis, B. and Berg, D.J. (2000), Multithreaded Programming
with Java Technology, Sun Microsystems Press.

Looney, C. (1999), “Fuzzy clustering: a new algorithm”,
Proceedings of INCOSE 99.

Morse, K.L. (1996), Interest Management in Large Scale
Distributed Simulations, Technical Report ICS TR
96 27, University of California, Irvine, CA.

Obraczka, K. (1998), “Multicast transport protocols: a survey
and taxonomy”, IEEE Communications Magazine,
pp- 94-102.

Sabata, B., Brown, M.J. and Denny, B.A. (1998), “Transport
protocol for reliable multicast: TRM", Proceedings
of IASTED International Conference on Networks,
pp. 143-5.

Sato, F., Minamihata, K., Fukuoka, H., Mizuno, T. (1999), “A
reliable multicast framework for distributed virtual
reality environments”, Proceedings of the 1999
International Workshop on Parallel Processing.

Stuer, G., Broeckhove, J. and Arickx, F. (1999), "A message
oriented reliable multicast protocol for a distributed
virtual environment”, Proceedings of Incose 99.

Stuer, G., Broeckhove, J. and Arickx, F. (2001a), “Design and
Implementation of a reliable multicast protocol for
distributed virtual environments written in Java”,
Proceedings of EuroMedia2001.

Stuer, G., Broeckhove, J. and Arickx, F. (2001b),
“Performance analysis of a reliable multicast protocol
for virtual environments in Java”, Proceedings of the
2001 International Conference on Parallel and
Distributed Processing Techniques and Applications.

Wittmann, R. and Zitterbart, M. (2000), Multicast
Communications, Ch. 2., Academic Press, New York, NY.

Zyda, M.J. (1996), “Networking large scale virtual
environments”, Proceedings of Computer Animation 96.

