
Mobile Agents for Web-based
Systems Management

Paolo Bellavista, Antonio Corradi, Fabio Tarantino
Dipartimento di Elettronica, Informatica e Sistemistica

Università di Bologna
Viale Risorgimento 2, 40136 Bologna, Italy

Ph.: +39-051-2093001; Fax: +39-051-2093073
{pbellavista, acorradi, ftarantino}@deis.unibo.it

Cesare Stefanelli
Dipartimento di Ingegneria

Università di Ferrara
Via Saragat 1, 44100 Ferrara, Italy

Ph.: +39-0532-293831; Fax: +39-0532-768602
cstefanelli@ing.unife.it

Keywords: Mobile Agents, Network and Systems Management, Security,
Interoperability, Web-based accessibility.

Work carried out under the financial support of the Ministero dell’Università e della Ricerca
Scientifica e Tecnologica (MURST) in the framework of the Project “MOSAICO, Design
Methodologies and Tools of High Performance Systems for Distributed Applications”.

1

Mobile Agents for Web-based
Systems Management

Abstract
The increasing dimension and heterogeneity of global Web systems make
harder their management with tools based on the client/server model. The
Mobile Agent technology overcomes the limits of traditional approaches
and proposes solutions that are suitable for the management of distributed
and heterogeneous Internet-based systems. The paper describes the MAMAS
environment and its implementation with a Mobile Agent technology.
MAMAS has the goals of monitoring the whole system, introducing dynamic
corrective actions and modifying system policies at run-time. MAMAS
achieves these objectives by answering the guidelines of both security and
compliance to standards. The choice of Java as the implementation
language has permitted to achieve portability, to exploit the language
security features, and to provide Web accessibility. The MAMAS compliance
with CORBA ensures interoperability with legacy management platforms.

Keywords: Mobile Agents, Network and Systems Management, Security,
Interoperability, Web-based accessibility.

Introduction

Many organisations face the problem of managing their distributed and

heterogeneous systems that are composed by a large number of multi-vendor

computing resources integrated in Intranet/Internet environments. This problem

has leveraged the interest in general solutions for management: the goal is to

efficiently handle the information about the whole system and to eventually

control it. In this area, several organisations have produced a wide range of

solutions. IETF and OSI have proposed a model of management based on the

Client/Server (C/S) interaction (Case, 1990; Dickson, 1992). The interaction is

usually statically decided, roles are a priori assigned and immutable, and the

clients and the servers can only exchange data information. Decentralised

2

solutions can achieve a more scalable design of management systems, by

extending the model with a hierarchy abstraction. In addition, the employment of

Web-based interfaces has also improved the accessibility of several management

tools and environments.

New execution models based on mobile entities (Fuggetta, 1998) have

suggested novel approaches to network and systems management to face the

increasing complexity of current distributed and heterogeneous systems (Yemini,

1996; Bieszczad, 1998). In particular, this paper describes a Mobile Agent (MA)

approach to network and systems management. The proposed environment, called

MAMAS (Mobile Agents for the Management of Applications and Systems),

provides some distinguished properties: flexibility, dynamicity, Web accessibility,

security, and interoperability (Bellavista, 1999).

The MAMAS management environment can adapt to very different

organisation structures, in terms of either architectures or management policies. It

provides a set of abstractions to model physical resources, because only different

abstractions can suit the common localities of the Internet. The place, where

agents can execute, represents the execution node. The domain represents the set

of nodes in a common department. The gateway is the abstraction for

interconnecting different domains to model a whole organisation composed by

several departments.

In addition, MAMAS can suit different management structures to implement

distributed and co-ordinated strategies, from the case of one central administrator

in charge of the management of all resources, to the one of a group of

administrators with distinguished responsibilities on different resources. Any

administrator is associated with one or several roles (Lupu, 1997). Individual users

may be dynamically associated and disassociated with roles, to enable rapid and

flexible organisation changes, without altering the specification of the policies.

MAMAS administrators can configure and control the entire managed system

from any node by exploiting Web-based Graphical User Interfaces (GUI) that are

3

available via any Web browser. MAMAS also permits to introduce automatic

responses to management problems and to dynamically inject new behaviour into

the system, either to solve unforeseen situations or to adapt to new requirements.

MAMAS considers security a crucial aspect of the design, and integrates it at

any system layer. Only this pervasive approach can achieve a quality level

different from the minimal one obtained by systems that add a security strategy a

posteriori. Our management environment makes available a wide range of security

mechanisms and tools, to grant security to both agents and execution nodes.

Administrators can choose the most suitable security level, taking into

consideration the cost of the selected tools in terms of performance.

In addition, interoperability has guided the MAMAS project in recognising the

importance of the Internet standards and in offering services integrated with them.

This guideline has led to take into account TCP/IP services, and to implement

CORBA compliance (OMG, 1995). We have selected the MASIF proposal

(GMD, 1998) to enhance MAMAS interoperability with CORBA-based

management tools (TIVOLI, 1997).

MAMAS is based on the MA model: mobile agents act on behalf of

administrators and can move in the network to operate locally to resources and

manage the distributed system (MAMAS is available at http://www-

lia.deis.unibo.it/Software/MA/). From the implementation point of

view, MAMAS has inherited from the support, realised in the Java language

(Gosling, 1996), the properties of portability, interoperability, rapid prototyping,

and easy integration with the Web scenario.

The paper gives an overview of the solutions in the field of network and

systems management and presents our MA-based approach to management.

Finally, we present and evaluate the performance of the MAMAS mechanisms.

4

A Comparison of Systems Management Approaches

The OSI committees are still engaged in the definition of standards in the

management area. The handling of large and heterogeneous distributed systems is

complex, and it still raises discussions at either the committee level or the

industrial one, e.g., OSI (Dickson, 1992), TMN (Glitho, 1995), TINA (Inoue,

1998), IETF (Case, 1990).

Standard Management Approaches

The most common solution to the management problem derives from the Internet

widespread protocol, SNMP (Case, 1990), a very basic protocol to exchange

management information. Several SNMP-based products give a central view of

the state of a distributed system: OpenView (HP, 1992), NetView (IBM, 1997),

NetManager (SUNSOFT, 1994) give the operator complete information about the

managed LANs and their interconnections. Only a limited possibility of automated

actions is available: most of the installations require the presence of an operator to

take real-time decisions. In addition, they are closed tools, in the sense that

changes in the organisation policies can be difficult to accommodate. More recent

products (TIVOLI, 1997) start addressing these issues and define the interaction

according to new standards, such as CORBA (OMG, 1995).

In general, the tools above are good examples of design, but they are based

upon the C/S model, intrinsic to SNMP: a central manager controls several remote

agents. The central manager provides a proprietary user interface to the system

administrator and interacts with the entities that run on remote nodes to manage

the local management information. The interaction uses a fine-grained C/S

management protocol, and is likely to introduce overhead, the so-called micro-

management problem: a high volume of traffic is generated around the central

manager node, also overloaded in controlling the whole computation.

While SNMP agents are very simple computational entities that reside one for

each network node, our mobile agents can become powerful computation entities

that can move autonomously from node to node, acting on behalf of the system

5

administrator. MAMAS agents can not only collect the network node information

in order to show the overall situation to the system administrator but also perform

complex administration tasks on the managed nodes. Agents can work to back-up

file systems, shutdown either predefined or dynamically determined nodes, install

new network services, etc. The decentralisation intrinsic to the MA model can

avoid the central manager bottleneck of traditional approaches.

Management Approaches Based on UNIX and Script Languages

Several Unix-based management tools start from scratch to provide management

features, instead of using standard protocols. The goal is to give to a central

operator a general view of the current system state, with a limited possibility of

automatic and manual intervention (Finkel, 1997). These projects define a

scenario for rapid development, by using implementation languages such as Perl

(Wall, 1990) and Tcl/Tk (Welch, 1997). While the advantages of shell languages

are mainly concentrated on the possibility of rapid application development, their

usage makes difficult to integrate all the realised features in a unique environment

able to solve the management problems of one organisation.

Novel Management Approaches

In the last few years, several researches have focused on the possibility for

distributed systems to host mobile and dynamic entities. Different answers to

systems management come from these new models of execution (Fuggetta, 1998;

Stamos, 1990; Baldi, 1997; Leppinen, 1997).

Management by Delegation (MbD) represents a clean effort toward

decentralisation and increased flexibility of management functionality (Yemini,

1996; Goldszmidt, 1995). MbD dynamically distributes network management

components to extensible remote managers that can learn new modes to handle

resources. MbD can also integrate with existing management protocols, like

SNMP. While the MbD is shaped after the Remote Evaluation programming

6

model, the MA model has broader capacity in describing mobility and subsumes

MbD (Fuggetta, 1998).

Another innovative approach to network management has the goal of obtaining

plug-and-play networks (Bieszczad, 1998). This research proposes the use of

mobile code for dynamic network configuration and presents several applications

of mobile code. The infrastructure includes Java-based mechanisms for code

mobility, security management and communication. There are many similarities

between that framework and MAMAS. We stress the mobile agent approach, by

providing a general MA-based support with a proper security model suited to

many interconnected environments and with the goal of interoperability, as

described in the following sections.

The MAMAS Environment for Management

Different organisations have different management policies and have to deal with

different distributed system architectures. Management policies derive from the

organisational attitude about security, service availability, fault tolerance, quality

of service, etc. The available configurations vary from systems of one simple LAN

to systems composed of several LANs variously interconnected by bridges,

routers, gateways, and firewalls.

One organisation may consist of several departments, even geographically

distributed over the Internet. Each department with its own LANs and resources

should interact via gateways with other departments. When departments have to

communicate via the Internet, the same levels of security and QoS as in Intranet

communication should be granted. From an administration perspective, while

simple traditional approaches tend to identify a central administrator in charge of

managing all resources, many organisations are better suited to distributed and co-

ordinated strategies, with several administrators in charge of different

responsibilities on different resources.

7

The MAMAS environment exploits the MA technology to realise a flexible

solution to the systems management problems. MAMAS originally contributes to

the management area because of its intrinsic capacity of moving execution entities

to the part of the system to be controlled, thus overcoming the restriction of the

traditional C/S model of interaction.

In addition, MAMAS is a tool designed for open systems, and follows the

guideline of compliance with the Internet and Web standards. It is also able to

request services from CORBA compliant management tools (OMG, 1995), and

we are currently extending its implementation to achieve full interoperability with

legacy management systems.

The MAMAS Organisation

MAMAS offers an easy way to answer different management issues by

introducing two orthogonal dimensions in configuration (see Figure 1):

• network locality, i.e., the set of abstractions to model the physical resources;

• administration locality, i.e., the responsibility domain of one system

administrator.

MAMAS models network localities by defining several abstractions for physical

resources. The place abstraction, where agents can execute, represents the physical

machine. The domain abstraction encloses a set of places; it typically represents a

LAN and includes a gateway abstraction, called default place, that is in charge of

any possible interconnection between different domains.

MAMAS models any kind of administration locality, by grouping the resources

controlled by each administrator. Several administration localities may overlap,

thus modelling the joint management of some resources by several administrators,

even with different permissions over the same resource.

8

Place Place

Place

Domain A

Place

Place

Place

Domain B
Administration

Locality A

Administration
Locality B

Gateway
Default Place

Gateway
Default Place

Figure 1. MAMAS abstractions for network and administration localities.

The MAMAS ability of modelling both network and administration localities

offers a powerful way for implementing several management policies. At one

extreme, it is possible to configure MAMAS to adapt to a simple centralised

management scheme where a single administrator controls one single LAN

network locality. At the other extreme, it is possible to configure it for one

organisation where different system administrators have different administration

duties; the managed system can be composed by a multiplicity of network

localities, e.g., domains interconnected by gateways (and firewalls) and connected

to the Internet. The MAMAS environment helps in the management of all the

above situations and any other intermediate, by taking into account the related

security requirements, as described in the following.

In MAMAS, each administration authority represents a role with specific

authorisations for the access to different resources: the use of roles is justified to

enable rapid and flexible organisational changes. In fact, administrators may be

associated and disassociated with administration roles without altering the

specification of the policies (Lupu, 1997). Any administrator can control the

whole system by creating agents that move within her administration locality.

9

Managed resources are capable of accepting/refusing operations to agents

depending on the agent administration role. Any resource has its specific access

control list for all roles. Let us consider two different administration roles, of

different level of responsibility: the organisation-manager and the department-

manager. The former can send management agents to all hosts in the organisation,

while the scope of the latter is limited to a specific department A. They share the

possibility of operating on the A system resources. For instance, a possible

shutdown action that switches off some executing resources can be commanded

from any of the two authorities. The shutdown could also be graceful, to grant a

minimal level of operations and to maintain a few services available in the target

department A, for instance, one HTTP, one FTP, and two database servers. In this

example, the minimal set of services results by merging the two requirements, of

both the organisation-agent and the department-agent. In case of conflicting

requirements, the organisation-manager role prevails on the lower priority

department-manager one.

The MAMAS Agents

Our MA approach potentially avoids any centralisation point and provides better

fault tolerance and scalability than centralised C/S scheme. Several administrators

can be concurrently active and even co-operate to obtain a single administration

goal. It is easy to generate/destroy agents and to replicate them in case of a large

node number in the locality.

In MAMAS, agents act on behalf of administrators and fulfil administration

needs by moving and executing on different nodes. Any administrator can

implement her policy by using agents. The MAMAS environment provides a rich

set of already defined agents for systems management. In addition, it is easy to

tailor new agents to new specific administration needs in order to delegate the

automation of new management tasks. The following list gives a few examples of

already implemented functionality of agents in the MAMAS environment.

MAMAS agents can:

10

• monitor the state of the distributed system;

• help in the configuration of any new or reinserted node;

• easily be used in the control and co-ordination of replicated resources;

• be in charge of the shutdown of the whole system and can also guarantee a

minimal survival service level;

• regulate and improve the access to different databases by taking into account

both the traffic level and the locality of the queries;

• dynamically install new communication protocols for new applications.

As an example of a MAMAS agent, let us consider the monitor agent that can

report to one administrator the information about the state of the whole system.

The agent gives the situation of each node in terms of system and application

indicators (see Table 1). In addition, it can report network management

information, such as the measured collision rate.

System indicators Application indicators
CPU load collision rate availability of services
file system occupation network

connectivity
program versioning

swap space available firewall state application processes situation
daemon process situation ... local agent states
printers status

Table 1. Some indicators available in MAMAS.

MAMAS makes possible to delegate specific controlling actions to agents, thus

relieving the administrator duty. For instance, one agent can automatically take

care of software upgrading on all the nodes of one domain. Another distinguished

feature of MAMAS is the capacity of modifying system policies at run-time.

When a policy modification interests several nodes, there is no need to shutdown

the whole system: a new agent can bring the new policy everywhere. The same

run-time propagation applies to any static function.

11

MAMAS Web-based GUI

Any administrator can access to the MAMAS environment via any Web browser.

In fact, MAMAS provides a user-friendly graphical interface to operate directly on

the system. For example, Figure 2 shows how the administrator can control the

initial configuration of the system and its modification at run-time. Any

administrator is first authenticated, and then authorised to perform different

operations depending on her role. The same interface permits administrators to

handle new roles and administrators, to add new places and domains to the

system, and to provide new resources and behaviour.

Figure 3 describes the GUI offered by the monitoring tool to report the state of

a specific host. The administrator is given the situation of a node in terms of

system and application factors, e.g., the situation of physical resources, such as

CPU and disk occupation. The application monitoring part permits to create and

send new agents where requested in the distributed system.

Figure 2. The MAMAS Web-based GUI for locality configuration.

12

Figure 3. The MAMAS Web-based GUI for distributed monitoring.

Security in MAMAS

The typical MAMAS managed system consists of Internet-based nodes and should

face the security problems induced by this untrusted environment. In addition,

agents involved in systems management perform very sensible operations. They

have critical system duties and the risk of an incorrect action due to unwanted and

malicious reasons is intolerable. To prevent any malicious action, the MAMAS

security framework protects places, by verifying the integrity of the incoming

agents, by authenticating and associating them with their recognised

administration role, and by controlling agent operations on resources.

To protect resources, agents can perform local operations only by requesting

services to object interfaces because direct access to resources is ruled out. On the

one hand, this separation respects the encapsulation principle, and on the other

hand, it achieves agent independence from resource implementation,.

13

In addition to the protection of places and resources, agent protection forces to

consider two different scenarios, with very different security threats and

requirements: Internet-based environments and Intranet ones.

In the case of Internet environments, agents could be attacked when they

migrate and traverse insecure paths. There is no prevention against the destruction

of an agent that migrates through possibly hostile channels. MAMAS overcomes

this problem via message numbering and confirmed sending operations, with a

periodical use of a checkpointing technique to save the agent state (Peine, 1997)

and to recover from the previous state in case of a loss. To ensure secrecy,

management agents can be encrypted when traversing an insecure path with secret

keys known to the sender/destination places. The detection of any agent malicious

modification occurs via the use of a secure hash function verified in the integrity

check phase (see Figure 4). When one agent enters a place, the security

infrastructure identifies the principal responsible for the agent by means of its

signatures and associates the agent with its responsible administration role

(authentication and authorisation checks).

Authentication

Secrecy

Authorization (Domain Policy)

Place A

Integrity

Local Resources

Authentication

Secrecy

Authorization (Domain Policy)

Place B

Integrity

Local Resources

Internet

Figure 4. Security controls for agents while entering a place.

Intranet environments are intrinsically more protected. In this scenario, some

security checks can be avoided, and their cost saved. For instance, in a protected

14

environment the secrecy check can become unnecessary. In case of reliable

environments that grant a dependable message delivery, the integrity check can be

superfluous. In case of co-operative environments, where there is a complete trust

among all involved administration authorities, even signatures can be saved. In

that way, MAMAS can provide the security level suitable to any Internet and

Intranet need.

The Implementation of MAMAS Agents

Agents can move from node to node and access resources and services of the

currently local place by commanding place objects. Figure 5 shows the code of a

simple agent for monitoring the CPU load of the network nodes.

Figure 5. A simple MAMAS agent to monitor the CPU load of a set of specified nodes.

void run(){ // starting method for every Agent

// Asking to AgentSystem the list of Nodes in this Domain
 Node = AgentSystem.getAllDomain();
 CurrNode=0;

// Looking for the first active Node
for(;CurrNode<Node.length;CurrNode++)

if(AgentSystem.isActive(Node.Name)) goNode();
... // Error: no active nodes

}

void goNode(){
try{

This.go(Node[CurrNode].Name,"VerifyNode");
} catch(Exception e){//Can’t go, System or Security exception

...
goHome(); // Back home with failure status

}
}

void VerifyNode(){ // Restart method specified by goNode()
try{

CPUload[CurrNode]=Monitor.getCPULoad();
} catch(Exception e) { // action not allowed

... // Actions for exception handling
}
CurrNode++;
for(;CurrNode<Node.length;CurrNode++)

if(AgentSystem.isActive(Node.Name)) goNode();

goHome();
}

15

In this example, the agent visits all nodes and ascertains the load of the current

one by calling a specific method of the Monitor place object. While the

implementation of the place objects is system-dependent, the agent code is

independent of hardware/software architecture.

An additional example is the case of one agent that collects the information

about the file system occupation. It can request the diskusage method of the

Monitor object, that calls in its turn the system dependent command, e.g., a df

Unix command on a Sun workstation and a bdf in an HP one.

The Mobile Agent Support

Several MA environments are available from different sources (Huhus, 1997;

Rothermel, 1997; Vitek, 1997). Their agents can move from node to node and can

co-ordinate via either message passing or shared resources inside a node.

We have developed an MA support from scratch, in order to fully support some

fundamental properties of MAMAS: flexibility, security and interoperability. The

adopted MA support provides a hierarchy of locality abstractions suitable for

describing any kind of internet-worked scenario (Bellavista, 1999). Any node has

a place for agent execution; several places are grouped in domain abstractions that

can be interconnected by using gateways. The MA support provides also a range

of security mechanisms: authentication of mobile agents on the basis of public key

certificates, integrity check on the code, secrecy of agent status, and controlled

resource access based on authorisation, ACL mechanisms and safe interfaces. The

properties of portability and interoperability are ensured by the use of Java as the

implementation language and by the choice of CORBA compliance (OMG, 1995).

With regard to agent co-ordination, agents inside a place can interact by sharing

common resources. Whenever one agent needs to share one resource with another

agent residing in a remote place, it is forced to migrate to that remote place.

Outside the scope of the place, agents can interact only via message exchange.

Messages are eventually delivered to agents even in case of migration. Any other

16

advanced scheme of communication and co-operation can be implemented on top

of these basic mechanisms. The MA support provides the name system to ensure

the message delivery to agents: it is based on a federation of name servers, one per

domain, each in charge of answering the requests generated in its locality. We

have initially adopted an ad-hoc naming solution, with the goal of integrating with

accepted naming standards, such as DNS and CORBA Naming.

Agents are transferred from place to place (possibly in different domains) by

using a simple communication protocol to serialise/deserialise agents, while

waiting for an agreement for the definition of a standard MA exchange protocol

(GMD, 1998; Lange, 1997).

Our MA support uses the JDK 1.2 (Sun, 1999). We have developed it on SUN

workstations, and easily ported it to PCs. The OO nature of the Java language has

helped in the design of the MA platform. The encapsulation principle suits the

abstraction needs of both resources and agents; the classification principle makes

possible to inherit behaviour from already specified components; multithreading,

garbage collection and error management simplify writing robust code.

A well-known problem of Java is the lack of full mobility support, especially

for Java threads: it is not possible to save the whole state of a thread before its

migration to a different node. This restriction can be overcome by either

modifying the Java Virtual Machine or providing a new operation at the

application level. We have chosen the latter solution to preserve portability. The

new operation for mobility is a go operation that allows one agent to move itself

during its execution, by specifying the method to be activated after the migration.

From the point of view of security, the MA support provides a variety of

mechanisms to grant security to the MAMAS entities. The agent authentication

exploits the DSA algorithm and X.509 certificates. Agent integrity and secrecy are

achieved by standard cryptographic mechanisms: the iSaSiLk package provides

both DES channel encryption and the SSL protocol solution (IAIK, 1998).

17

MAMAS Performance

MA management solutions can obviate to the micro-management problem and can

delegate management activities to agents. The MAMAS implementation has

shown that MA solutions can also be convenient from the point of view of

performance.

In traditional solutions, the central manager resides on one node and collects

the monitoring information of the whole domain by message exchange with

remote servers, one in each controlled node (see Figure 6). MAMAS favours

decentralisation: it achieves better results than the centralised approach as soon as

the operations performed by each agent counterbalance migration costs.

Centralised management solution

Central Manager

Remote Manager

Remote Manager

Remote Manager

Remote
Manager

Remote Manager

MAMAS
SSyysstteemm AAddmmiinniissttrraattoorr

Figure 6. Different approaches to systems management: the traditional centralised
solution vs. the decentralised MA-based one.

Let us consider the example of a central manager that needs to ascertain the

consistency of the software versions of all administrated places. We have

measured the cost to inspect the configuration files for all places. The traditional

C/S solution requires a number of messages equal to the number of files to be

controlled (for each remote server). In the agent solution, the system administrator

dispatches a variable number of monitoring agents to control the situation in the

domain; each agent verifies the consistency locally and reports only the final

situation to the operator. Table 2 shows the total time (in msec) to complete the

task in a domain composed of 12 Ethernet-connected workstations (SUN Sparc 5,

18

Ultra-1 workstations and PCs). The experiment has been performed within an

Intranet that is protected from the Internet by a firewall. The Intranet is an

example of a co-operative and trusted domain: agents need neither signature nor

encryption while migrating. The measured time is an average over a high number

of executions.

The MA solution can perform better than traditional ones as soon as the

manager employs a suitable number of monitoring agents in the administrated

domain. The saturation effect in Table 2 stems from the cost of agent creation not

balanced by effective agent operations. Apart from performances, the MA-based

approach can offer a solution more suitable than traditional ones for dealing with

mobile computing, network bandwidth limitations and unreliable communication

scenarios.

No. of monitoring
agents

Time in MA
solution (msec)

Time in C/S
solution (msec)

1 215
3 129
6 98
9 112

12 131

188

Table 2. The MA-based monitoring solution compared vs. traditional C/S monitoring.

When the agent migration needs Java classes that are not present at the agent

destination, it is necessary to provide mechanisms to load these classes. The

loading operation, which occurs at any time in case of applet execution, is

necessary only once in MAMAS, and its impact on performance is limited if the

same behaviour is used several times. In addition, the cost for agent migration is

strongly influenced by the costs of the required security mechanisms. We have

extensively tested the loading and security mechanisms of MAMAS to give an

idea of the cost of moving agents under different assumptions:

• class loading before operating at the destination node (agent code migration);

• class loading at the same time of agent loading (agent + class code migration);

• agent migration over secure/insecure path.

19

Table 3 and Table 4 report the migration costs for different-sized agents, in

different platforms, in the case of secure/insecure path. In both tables, the first row

shows the cost of code migration when the class code is already present in the

destination node. The second row gives the migration cost when the agent carries

also its classes with it, and the third one the cost for an even larger agent: the

larger the bytecode to move, the higher the cost. When migrating on secure paths

(i.e., in trusted domains), the agent is transferred between places with no

encryption/decryption overhead. In the case of an insecure path, MAMAS

encrypts agents with DES to ensure agent secrecy. The reported results indicate

clearly the high costs of encryption: this overhead stems also from the use of the

Cryptix package (version 2.2), that operates partly in native and partly in

interpreted code.

Table 5 indicates the cost associated with signature verification that is

necessary to ascertain the agent principal and authorisation: let us note that is

almost independent of agent size.

Agent Dimension
(byte)

Secure Path
(msec)

Insecure Path
(msec)

218 (agent code) 21 180
1438 (agent code + class) 61 710
7300 (agent code + class) 176 4520

Table 3. Migration costs between Ethernet-connected SUN SPARC 5 workstations with
Solaris 2.5.

Agent Dimension
(byte)

Secure Path
(msec)

Insecure Path
(msec)

218 (agent code) 17 147
1438 (agent code + class) 40 461
7300 (agent code + class) 120 2924

Table 4. Migration costs between Ethernet-connected PC Pentium 133 MHz with
Windows NT 4.0.

Agent Dimension
(byte)

NO Credential
(msec)

One Credential
(msec)

1438 (agent code + class) 61 438
7300 (agent code + class) 176 552

Table 5. Migration costs in case of signature verification between Ethernet-connected
SUN SPARC 5 workstations with Solaris 2.5.

20

Conclusions

The paper presents MAMAS, a systems management environment based on the

MA paradigm. Apart from monitoring the distributed state of the system and

visualising it to the operator, it favours the automation of several management

actions and permits to dynamically change the predefined system policies. These

services are achieved by answering important requirements such as hardware and

software heterogeneity, flexibility, rapid development, and efficiency.

The MAMAS tool stresses two project guidelines, security and interoperability,

to achieve acceptance. We have decided to answer the security requirement at any

level of the project and with different security degrees that permit to

administrators to take into account also the resulting service performance. We

have decided to strive for interoperability with recognised standards to grant the

expected durability of the design effort. At the level of accessibility, MAMAS

suggest the usage of Web-based tools. At the level of user services and command,

any management function can be embodied by suitable agents. At the level of

openness, the CORBA interface permits to interoperate with CORBA-based

management tools. In addition, the use of mobile agents makes possible to

dynamically modify the behaviour of several MAMAS components and to

dynamically check different policies.

The Java implementation, apart from the a priori granted portability, has also

re-established the possibility of rapid prototyping. The choice of Java has

leveraged the integration with Web-based management components and Internet

tools.

References

Baldi, M., Gai, S., and Picco, G. (1997), "Exploiting Code Mobility in Decentralized and
Flexible Management", Proc. 1st International Workshop on Mobile Agents, Berlin
(D), Lecture Notes in Computer Science, No. 1219, Springer-Verlag.

Bellavista, P., Corradi, A., Stefanelli, C. (1999), "An Open Secure Mobile Agent
Framework for Systems Management", to be published in Journal of Network and
Systems Management, Vol. 7, No. 3.

21

Bieszczad, A., Pagurek, B., and Susilo, G. (1998), "Infrastructure for Advanced Network
Management based on Mobile Code", IEEE/IFIP Network Operations and
Management Symposium NOMS’98, New Orleans, Louisiana.

Case, J., et al. (1990), Simple Network Management Protocol (RFC 1157), DDN
Network Information Center, SRI International.

Chiariglione, L. (1997), FIPA 97 Specification, Foundation for Intelligent Physical
Agents, http://www.fipa.com/.

Dickson, G., and Loyd, A. (1992), Open Systems Interconnection, Trevor Housley (Ed.),
Prentice-Hall.

Finkel, R.A. (1997), "Pulsar: an Extensible Tool for Monitoring Large Unix Sites",
Software Practice and Experience, Vol. 27, No. 10.

Fuggetta, A., Picco, G.P., and Vigna, G. (1998), “Understanding Code Mobility”, IEEE
Transactions on Software Engineering, Vol. 24, No.5.

Glitho, R. H., and Hayes, S. (1995), Special Issue on "Telecommunications Management
Network", IEEE Communications, Vol. 33, No. 3.

GMD FOKUS, IBM Corp. (1998), Mobile Agent Facility Specification, Joint Submission
supported by Crystaliz Inc., General Magic Inc., the Open Group, OMG TC
Document orbos/97-10-05, ftp://ftp.omg.org/docs/ orbos/97-10-05.pdf.

Goldszmidt, G., and Yemini, Y. (1995), "Distributed Management by Delegation", Proc.
15th International Conference on Distributed Computing Systems, IEEE Computer
Society, Vancouver, British Columbia.

Gosling, J., Joy, B., and Steele, G. (1996), The Java Language Specification, Addison-
Wesley, Manlo Park, CA.

Hewlett Packard (1992), Openview User’s Guide, HP.
Huhns, M.N., and Singh, M.P. (1997), Special Issue on "Internet-Based Agents:

Applications and Infrastructure", IEEE Internet Computing, Vol. 1, No. 4.
IAIK (1998), iSaSiLk 2.0, http://jcewww.iaik.tu-graz.ac.at/iSaSiLk/.
IBM (1997), NETView, http://www.networking.ibm.com/netprod.html.
Inoue, Y., Guha, D., and Berndt, H. (1998), “The TINA Consortium”, IEEE

Communications, Vol. 36, No. 10.
Lange, D.B., and Aridor, Y. (1997), Agent Tranfer Protocol–ATP/0.1, IBM Tokyo

Research Labs, http://www.trl.ibm.co.jp/aglets/atp/atp.html.
Leppinen, M., et al. (1997), "Java- and CORBA-based Network Management", IEEE

Computer, Vol. 30, No. 6, pp. 83-87.
Lupu, E., and Sloman, M. (1997), "A Policy Based Role Object Model", Proc. EDOC'97,

IEEE Computer Society Press.
Object Management Group - OMG (1995), The Common Object Request Broker:

Architecture and Specification, Rev 2.0, OMG Document 96-03-04.
Peine, H. (1997), "An Introduction to Mobile Agent Programming and the Ara System",

ZRI-Report 1/97, Dept. Of Computer Science, University of Kaiserslautern,
Germany.

Rothermel, K., and Popescu-Zeletin, R. (1997), Proc. 1st International Workshop on
Mobile Agents, Berlin (D), Lecture Notes in Computer Science, No. 1219,
Springer-Verlag.

Stamos, J.W., and Gifford, D.K. (1990), "Remote Evaluation", ACM Transaction on
Programming Languages and Systems, Vol. 12, No. 4.

SUN Microsystems (1999), Java Development Kit - Version 1.2,
http://java.sun.com/products/.

SUNSOFT (1994), Sun NetManager, Reference Manual, SunSoft Press.
Systemics (1997), Cryptix, http://www.systemics.com/software/cryptix-java/.

22

TIVOLI (1997), http://www.tivoli.com/.
Vitek, J., and Tschudin, C. (1997), Mobile Object Systems Towards the Programmable

Internet, Lecture Notes in Computer Science, No. 1222, Springer-Verlag.
Wall, L., and Schwartz, R. (1990), Programming Perl, O’Reilly.
Welch, B. (1997), Practical Programming in Tcl and Tk, Prentice Hall.
Yemini, Y., and da Silva, S. (1996), "Towards Programmable Networks", IFIP/IEEE

International Workshop on Distributed Systems: Operations and Management,
L'Aquila, Italy.

23

Paolo Bellavista received his Laurea in electronic engineering from the

University of Bologna, Italy, in 1997. He is currently pursuing a Ph.D. in

computer science engineering at the same university. His research interests include

distributed computing, distributed objects, mobile agents, network and systems

management, multimedia systems for distance learning. He is member of the

ACM and IEEE.

Antonio Corradi is an associate professor of computer science at the

University of Bologna. His scientific interests include distributed systems, object

and agent systems, network management, and distributed and parallel

architectures. He received his Laurea in electronic engineering from the University

of Bologna and his MS in electrical engineering from Cornell University. He is

member of the ACM, AICA (Italian Association for Computing), and IEEE.

Cesare Stefanelli received his Laurea in electronic engineering from the

University of Bologna, Italy, in 1992 and the Ph.D. degree in computer science in

1996. His research interests are in the area of distributed systems, massively

parallel systems and programming environments for parallelism. Currently, he is

an associate professor of operating systems at the University of Ferrara. He is

member of the AICA (Italian Association for Computing), and IEEE.

Fabio Tarantino received his Laurea in computer science engineering from the

University of Bologna, Italy, in 1998. His research interests are in the area of

distributed systems, object-oriented programming, network and systems

management. He currently works for Andersen Consulting.

