
MONITORING AND CONTROLLING SOFTWARE
DEVELOPMENT PROJECTS.

McBride, Tom, Faculty of IT, Department of Software Engineering, University of
Technology, Sydney, Australia mcbride@it.uts.edu.au

Henderson-Sellers, Brian, Faculty of IT, Department of Software Engineering,
University of Technology, Sydney, Australia brian@it.uts.edu.au

Zowghi, Didar, Faculty of IT, Department of Software Engineering, University of
Technology, Sydney, Australia didar@it.uts.edu.au

Abstract

Software development projects are seldom able to be planned so accurately that the plans
predict exactly what will happen during the project. Project managers must monitor the project
and make changes either to the project’s activities or to the plan itself. Yet much of the project
management literature gives only cursory attention to the problem of monitoring and
controlling the project. To investigate how project managers regard software development
projects, this paper examines software development from the perspectives of two extremes:
software development as a production problem and software development as a design problem
and considers whether project monitoring and control ought be affected if some of the project
tasks are outsourced. Empirical evidence was analyzed and it was found that software
development is viewed as a production problem by most project managers. The research
highlighted that a relatively simple test could guide project managers toward tailoring their
project monitoring and control activities to better suit the project type. The research also
revealed that project managers did not distinguish between outsourced and non-outsourced
projects. The conclusions are discussed.

Keywords: Software development; project management; production problem; design problem;
outsourcing

1 INTRODUCTION.

Most project management literature e.g. (Hughes et al. 1999; Project Management Institute
2000) has little to say about monitoring and controlling a software development project in
progress. The assumption is that the project unfolds as planned and that adjustments to the
project should realign the project with the plan (McConnell 1998; Thomsett 1989). While this is
a reasonable overall strategy suitable for relatively stable technologies, its suitability for many
software development projects is questionable. Certainly there is little to advise new project
managers on just how to monitor and control software development projects and, as yet, very
little on how to monitor and manage outsourced project tasks.

The way software development projects are structured and planned depends very much on
whether they are viewed as a production problem (Boehm 1988; Curtis et al. 1987; Krishnan
1998) or as a design problem (Gasson 1998; Smith et al. 1993). If they are viewed as a
production problem, then it is assumed that the problem at hand is largely understood and that
its implementation in an information system is a matter of producing the required documents,
code, tests and other artefacts in a reasonably predictable and controlled manner. On the other

hand, if a project is viewed as design problem for which the solution is unknown and far from
certain, there will be more emphasis on understanding and solving the problem at hand and less
emphasis on steady progress toward project completion.

If the monitoring and control contingencies of outsourced project tasks differ significantly from
those of non-outsourced project tasks then failure to modify monitoring or controlling practices
poses a risk to achieving the project’s goals.

The main contributions of this paper are the conclusions that most projects are structured,
monitored and controlled as if they are production problems and that project managers do not
distinguish between projects with outsourced tasks and projects with no outsourced tasks. By
applying a relatively simple test, project managers could tailor their project monitoring and
control activities to better suit the project type.

This paper is structured as follows. Section 2 describes the general characteristics of production
problems, and how they would be monitored and controlled. Section 3 describes the general
characteristics of design problems, and how they would be monitored and controlled. Section 4
briefly examines the expected effects of outsourcing and Section 5 proposes the research
question then describes the research method used to answer it. Threats to validity are discussed
in Section 6 and conclusions are presented and discussed in Section 7.

2 PRODUCTION PROJECTS.

There are a range of production processes varying from mass production through to one-of-a-
kind product production. With mass production, the objective is to produce a perfect product
every time. The production process should become a steady state with highly predictable
processes, both automated and manual. Changes in the processes have measurable effects on
either the processes or the finished product. The key activities toward achieving a highly
predictable process are given in an introduction to process characterization (Croarkin et al.
2002):

"* identify the key inputs and outputs of a process

* collect data on their Behavior over the entire operating range

* estimate the steady-state Behavior at optimal operating conditions and

* build models describing the parameter relationships across the operating range
"

The result of this activity is a set of mathematical process models used to monitor and improve
the process.

Production that is less frequently repeated in the sense of, for example, building construction is
characterized by extensive schedule planning to reduce unknowns. Then, scheduled activities
are executed in pursuit of the final goal (Muller 1982; Yates et al. 1982). Essential to this type
of planning is that the techniques used are well known and the problems to be solved have
precedent solutions.

Many writings on project management reflect this, frequently assumed, production approach to
software development (Bauch et al. 2001; Boehm et al. 2000; Hughes et al. 1999; ISO 16326
1999; McConnell 1998; Project Management Institute 2000; Scarola et al. 1982; Thomsett
2002). The assumption is that planning will be done once and, with only minor corrections, will
accurately predict how the project will be carried out. This requires detailed estimates of how
long each task will take and the resources required for its completion. It is argued that, with the
software development project divided into component parts, it becomes possible to treat

software development as an engineering process, amenable to standard monitoring, management
and improvement techniques (Humphrey 1994; 1989; 2000).

2.1 Monitoring production projects.

If software development is viewed as a production process and the project is encapsulated in a
planned schedule of activities, there is likely to be an emphasis on monitoring the project
against planned progress. The delivered artefacts may be evaluated to determine whether or not
the task was completed as planned and whether they are of acceptable quality. Monitoring
software development projects in this way is quite common (Hughes et al. 1999; McConnell
1998; SEI 2000; Thomsett 1989).

2.2 Controlling production projects.

Corrective actions, arising from observations made during project monitoring, tend to realign
the project progress with the planned progress. The most common modification to project tasks
is to work longer hours or, less popularly, to add more people to the task in an attempt to bring
the project back to the planned schedule. Adding people to a late task doesn't always work and,
as pointed out by Brooks (Brooks 1995), can delay the task still further. Moving work from one
task to another, or from one group to another, to balance out the work load is also a common
corrective action. However, if none of those can be accomplished then the scope of work can be
reduced to something that can be achieved in the scheduled time or else the scheduled time is
expanded to accommodate the scope of work (Project Management Institute 2000; SEI 2000).

3 DESIGN PROJECTS.

The way in which a software development project should be treated as an exercise in design is
viewed differently by different groups. A systematic approach developed by Chen (2002) in the
context of Engineering Science believes that there are a finite number of steps that will obtain a
design solution. However, Chen argues that the representation of the domain knowledge lies at
the heart of the design problem. This accords with Gasson (1998) and Curtis (1987) who see the
design problem as one of understanding the problem, which would necessarily involve the
problem’s representation. Smith and Browne (1993), however, believe that the elements of
design problems are more than its representation, however important, and include goals,
constraints, alternatives, representations and solutions.

The design process is widely seen as a collaborative process that is largely opportunistic rather
than orderly (Chen 2002; Curtis et al. 1987; Gasson 1998; Henderson et al. 1992). Performance
is understood in terms of how individuals systematically affect the behaviours of each other
(Henderson et al. 1992). Gasson further argues that the traditional model, based on the rational
model of problem solving and involving problem decomposition, requires that all the
requirements are defined before problem decomposition begins. Obviously, this is seldom true
when, on average, only 58% of requirements are specified before beginning product design
(Thomke et al. 1998).

Volatile requirements compound the problem of designing software systems but should not be
confused with the design itself. Volatile requirements for a comparatively well understood
problem present different challenges than stable requirements for a new and little understood
problem. It is entirely possible that both challenges can be addressed by the same mechanism,
that of various forms of agile development (Beck 1999; 2000; Fowler 2003; Highsmith et al.
2001; Moore 2001). Agile development is usually distinguished from “plan-driven”
development (Boehm et al. 2004).

3.1 Monitoring design projects.

Gasson (1998) observed that the nature of design is an alternating cycle of opening up the
design problem and narrowing down potential solutions. This process terminates “when the
majority of the design team feel that the distributed design model matches their individual
design model in sufficient detail”. In other words, the team believe the design has converged.
Jagodinski et al. (1997) observe that planning and control in the early stages of design “places
more demands on seat-of-the-pants control which requires tacit knowledge and meta knowledge
acquired through experience.”

Such subjective measures do not generally sit well with software development professionals
who are only too aware that such measures tend to be optimistic (Brooks 1995; McConnell
1998). Sooner or later the subjective assessment must be tested. Brooks observed that the
“incompleteness and inconsistencies of our ideas only become clear during implementation.”
Life cycles that develop the system in stages achieve such objective demonstrations, and their
use seems likely to be favoured when the problem to be solved is not well understood.

Monitoring is then performed on two levels. The first level is the day-to-day interactive
monitoring of tasks related to the project plan’s work breakdown structure. This monitoring
only checks if the planned tasks are being carried out and completed as intended. The second
level is through the structure of the project life cycle which, if incremental in some way, affords
opportunities to examine whether the work completed so far demonstrates increasing an
understanding of the problem.

3.2 Controlling design projects.

Managing, that is, taking action over something revealed during monitoring, is likely to reflect
what was monitored. Agile projects afford two types of monitoring; interactive and structural.
Interactive monitoring is monitoring of progress compared to a plan, possibly for the particular
increment. It is likely to be the familiar task-oriented corrective actions to realign the tasks with
the planned activities for the particular increment or release. Structural monitoring occurs at
each increment boundary, either at the start or the end. It reviews such things as the state of the
requirements and lessons learnt from the recently completed work. It will result in broader
corrective actions to the already developed product or the intended product development. Beck
(1999) and Highsmith and Cockburn (2001) refer to this as the feedback cycle and advocate that
it should be as short as possible.

4 OUTSOURCED PROJECTS

Many software development projects now have some element of outsourcing in them. This may
be that some component of the system is being developed by another organization, a particular
specialization is performed by another organization, a particular part of the development life
cycle is performed by a separate organization or a number of other possibilities. One of the
problems for project managers is how they monitor and control outsourced activities when their
visibility into and authority over those activities is constrained.

4.1 Monitoring outsourced development

The general problem of organizational monitoring and control was considered by Ouchi and
Maguire (1975) and later modified for application within agency theory (Eisenhardt 1989). This
considers the problem of cooperating parties having different goals and different division of

labour. It is directed at the relationship where one party (the principal) delegates work to the
other (the agent) who performs that work.

The ability to monitor the work depends on the visibility into the work, the uncertainty of the
work and the understandability of the transformation processes used to perform the work. A
project manager is less able to monitor a task performed by another organization and less able to
verify that what they may be told about the progress of the task is, in fact, true.

4.2 Controlling outsourced development

The different forms of control could be classified as output control in which tasks were
controlled through rewards tied to the task outcomes, behaviour control in which rewards were
tied to conformance to specified behaviours, and input control in which attention was paid to
recruiting and training. Ouchi described clan control in which members of the clan subscribe to
the same goals and modify their behaviour to achieve those goals (Ouchi and Maquire 1975). A
variant of this, self control, has also been proposed in which a person controls their own
behaviour according to their beliefs about how the task should be performed (Kirsch 1996).

In both control theory and agency theory reduced visibility into the performance of the work
and greater uncertainty over the outcome of the work being performed favours output control.

5 RESEARCH QUESTION.

Software development projects are not so homogeneous and not so simple that they can be
treated as if they were all one type or another, but it can be helpful to consider extremes of
characterization to gain some insights. On the one extreme, software development processes
could be considered as production process where most aspects of the problem to be solved are
known and all that is required is to actually do the work. This would match the comparison that
McConnell (1993) makes to constructing a building. At the other extreme, software
development could be considered as a design problem where very little is known about how to
solve any particular problem.

If software development conformed to either of these extremes, how would a software project
be monitored and how would it be managed? When the problem to be solved is thought to be
well understood, a plan-based approach is more likely to be adopted. Project monitoring will be
schedule-based, such that adjustments to the project are likely to realign the project with the
plan.

When the problem to be solved is not well understood, a phased or agile life cycle uses the
normal project management and monitoring techniques while allowing the problem solution to
emerge over the longer review cycle of the increments or phases.

5.1 Research question

The research questions are then:

Do organizations and project managers monitor and control their projects as production
problems or design problems?

Do project managers monitor and control outsourced projects or outsourced project tasks
differently than non-outsourced projects and tasks?

5.2 Research method.

Structured interviews were conducted with project managers from software development
organizations in Sydney, Australia, between February and September 2003. Organizations were
approached initially by phone and asked if there was a project manager involved in software
development and willing to be interviewed. Structured interviews allowed questions and
responses to be clarified, or amplified, during the interview and also allowed for unexpected
information and findings to emerge rather than directing responses to preconceived models.

5.3 Sample characteristics.

5.3.1 Organizational size

Organizational size was judged largely on the number of personnel. This estimate included the
whole organization, not just the software development part, because past experience indicates
that a small division within a large organization more closely resembles the large organization
than a small, independent company of similar size to the division. Table 1 gives the distribution
of organization size.

Small (< 30 staff) 11
Medium (31 – 120) 4
Large (>120 - 1000 single organization) 3
Multinational (> 1000 or Multinational) 12

Table I: Organization size

5.3.2 Process maturity.

The process maturity is a very approximate guide based on the ISO 15504 (SPICE) or CMMI
scale of process maturity. Process maturity ratings are given in Table 2. The single instance of a
maturity level of 5 came from an organization that had recently undergone a CMMI assessment
and was accredited with that level. Organizations were adjudged at level 3 if they were ISO
9001 accredited or had undergone a SPICE or CMMI assessment and had achieved that rating.
Level 2 was assigned if the organization had documented software development processes,
particularly those dealing with project management and document control.
Informal - Level 1 6
Managed - Level 2 7
Defined - Level 3 16
Measured - Level 4 0
Optimizing - Level 5 1

Table II: Process maturity

5.4 Monitoring the project.

Subjects were asked how they monitored the project, either to see that it was going right or to
detect if it was going wrong. The responses are summarized in Figure 1. The majority used
some form of progress measure such as milestones as the first indication that something in the
project needed attention.

0 5 10 15 20 25 30

Expert judgment

Progress

Earned value

Risks

Defect growth & decline

Test results

Figure 1: Project monitoring technique

Approximately half of the subjects reported using expert judgment to monitor the state of the
project while 80% used some form of progress measure, either milestones or comparison to a
schedule. Very few, only 20%, reported using some form of earned value to monitor the
project’s progress against plan or the need to modify the plan. Other devices such as monitoring
the growth and decline of defects or monitoring risks were seldom mentioned as part of project
monitoring.

In response to tasks taking longer than planned, the most common response was to add
resources (63%) followed by reassigning planned work to another part of the schedule such as a
later increment (43%).

5.5 Meeting the schedule.

When asked if functionality would be dropped or rescheduled, 16.7% responded that
functionality would always be retained, while 63.3% responded that changes in functionality
would be negotiated with the stakeholders. A similar question about trading quality (in terms of
the number of known defects in a delivered product) against schedule, 36.7% responded that
quality goals were never relaxed to meet the schedule. 30% of the respondents said that changes
in the quality goals would be negotiated with the stakeholders while 20% of respondents said
that it would be the engineers who would decide whether to compromise the delivered quality to
meet a delivery schedule.

For performance goals, 13.3% of respondents said that no such goals were ever set, 30% said
that performance goals were never relaxed once set while 33% said that performance goals, like
quality and functionality, would be negotiated with stakeholders. These responses are
summarized in Figure 2.

Only one respondent declared that neither functionality nor quality nor performance goals were
relaxed. The schedule simply expanded and, since the project was to develop a first release of a
product, there was the capacity to choose to do this.

0 2 4 6 8 10 12 14 16 18 20

Always retained

Engineers decide

Project Review board decides

Marketing decides

Negotiated with stakeholders

No response

No goals set

Performance
Quality
Scope

Figure 2: Goals compromised to meet schedule commitments

5.5.1 Team meetings

All but two respondents said there was a regular project team meeting, usually weekly. Such
meetings were not necessarily in person because some of the teams were dispersed. The main
subjects discussed at the team meetings are summarized in Figure 3.

0 5 10 15 20 25 30

Design

Requirements

Schedule, Budget,
Milestones

Risks & Issues

Figure 3: Subjects discussed at team meetings

Many project managers also hold regular formal meetings with their management or with the
customer (53%), or write a report for distribution to their management (20%).

5.6 Production or design.

An estimated novelty rating was developed and assigned to each application. Novelty was rated
simply as low, medium, high.

• If the application was well known and being implemented using familiar technology,
the assigned rating was low. An example would be an accounting application being
customized for a specific customer or a new version of a product.

• Familiar applications using familiar technology, but pushing the boundaries slightly was
rated as medium, for example, developing an internet based accounting system.

• A new application that involved new ways of doing business delivered using newer
technology such as an internet based application in a new business area, was rated high.

Discussing design issues at team meetings was not correlated with novelty. No project manager
specifically listed “understanding the problem” or conveyed a similar sense of gaining increased
confidence in the correctness of the design or solution being implemented.

5.7 Monitoring and controlling outsourced projects.

Some projects did no outsourcing at all, some engaged contractors for at least some of the work
and some organizations fully outsourced at least part of the work. The distribution of these
among the sample is shown in Table III.
 Count
No outsourcing 8
Contractor used. 9
Some outsourcing 15
Total 32

Table III:Outsourcing frequency

The survey included a section that asked about monitoring and controlling outsourced projects.
After a small number of interviews it became apparent that project managers did not distinguish,
or at least said they didn’t distinguish, between outsourced and non-outsourced projects. In
subsequent interviews the subjects, having responded to questions about project management,
were asked if outsourced projects or tasks were treated any differently. Invariably the response
was that there was no difference in how outsourced tasks were monitored or managed.

6 THREATS TO VALIDITY.

Small sample size. The sample was relatively small at 29 and many statistical tests suffered
from having insufficient cell counts, usually less than 10.

Non-random sample. The participating organizations were those listed in the Sydney, Australia,
Yellow Pages who agreed to be interviewed when approached by telephone. Soliciting started at
the beginning of the list of those organizations listed under “Computer Software and Packages”
and proceeded until sufficient data had been gathered to provide a useful, if limited, source.
Such accidental sampling is considered to have very weak external validity and likely to be
biased (Trochim 2001).

Weak external validity. Organizations with low maturity, chaotic project management processes
are less likely to be willing to reveal to a researcher just how they manage, or don’t manage,
projects. Consequently, the findings of this research are likely to be biased toward the more
mature organizations. However, given the conclusions, the weak external validity is of less
importance.

Localized sample. The research sample was from organizations in Sydney, Australia. While
there were a significant number of multinational organizations in the sample, it is possible that
the same research findings are localized and the study would need to be replicated in another
country to test this.

7 CONCLUSIONS AND DISCUSSION.

We have described the characteristics of a production process and how it would be monitored
and controlled in Section 2, described the characteristics of a design problem and how it would
be monitored and controlled in Section 3, briefly described how outsourcing could be expected
to affect project monitoring and control, and described the research question along with the
method used to investigate it in Section 5.

From the research results, we conclude that the majority of interviewed project managers
managed their projects as if they were production problems rather than design problems. That
is, the assumption was that the problem was amenable to decomposition and solvable with
known or readily available techniques. This is despite Gasson’s assertions that most software
development projects should be treated as if they were design problems rather than production
problems if only because the requirements are so volatile (Gasson 1998).

There was very little evidence, statistical or anecdotal, that software development projects in
this research sample present novel problems, problems that require periodic checks on how well
the project team understood the problem itself and problems that require progress measures of
awareness toward an acceptable, implementable solution.

There was no evidence to suggest that project managers monitored and controlled outsourced
projects or tasks any differently than non-outsourced projects or tasks. There are several
possible explanations for this. Monitoring and controlling practices could be sufficiently robust
that there is no need to differentiate. It could also be that software development professionals
subscribe to substantially the same goals, thus form a clan that does not require extensive
control. However, case histories (Nicholson et al. 2001) and experience reports (Borchers 2003)
suggest otherwise. Further research would be needed to investigate whether project managers in
fact treated outsourced projects differently despite their perception to the contrary, or whether
outsourcing causes changes in project management practices that are then applied to all projects.

7.1 Importance of the conclusions.

In this research sample, most software development problems were neither new nor unique.
They did not require special project monitoring and controlling. Project managers did not
evaluate problem novelty before planning the project and did not consciously change their
intended methods because of it. It seems sufficient for project managers to monitor adherence to
the project plan and to correct any deviations from that plan with no expectation of significant
replanning. A simple, if crude, measure of novelty could be used during project planning to
decide whether the project should be treated as a design or production problem. Project
monitoring and control could then be tailored accordingly.

7.2 Acknowledgements

This is Contribution number 04/15 of the Centre for Object Technology Applications and
Research and was originally presented, in a shorter form, at the EMCIS2004 conference.

References
Bauch, G. T. and C. A. Chung (2001). 'A Statistical Project Control Tool for Engineering

Managers.' Project Management Journal 32(2): 37-44.
Beck, K. (1999). 'Embracing change with extreme programming'. Computer 32(10): 70-77.
Beck, K. (2000). 'Extreme Programming Explained', Addison-Wesley.
Boehm, B. and R. Turner (2004). 'Balancing Agility and Discipline: A Guide for the Perplexed',

Addison-Wesley Pub Co.
Boehm, B. W. (1988). 'A spiral model of software development and enhancement'. Computer

21(5): 61-72.
Boehm, B. W., C. Abts, et al. (2000). 'Software Cost Estimation with Cocomo II'. Upper Saddle

River, New Jersey, Prentice Hall PTR.
Borchers, G. (2003). 'The software engineering impacts of cultural factors on multi-cultural

software development teams'. Proceedings of the 25th international conference on
Software engineering, Portland, Oregon, IEEE Computer Society.

Brooks, F. P., Jr (1995). 'The Mythical Man-Month', Addison Wesley Longman.
Chen, D. (2002). 'Developing a theory of design through a multidisciplinary approach'. IEEE

International Conference on Systems, Man and Cybernetics, Bordeaux, France, IEEE
Computer Society.

Croarkin, C. and P. Tobias (2002). 'Engineering Statistics Handbook'. Available:
http://www.itl.nist.gov/div898/handbook/index.htm, Accessed 3 November, 2003

Curtis, W., H. Krasner, et al. (1987). 'On building software process models under the lamppost'.
Proceedings of the 9th international conference on Software Engineering, Monterey,
California, IEEE Computer Society Press.

Eisenhardt, K. M. (1989). 'Agency Theory: An Assessment and Review'. Academy of
Management Review 14(1): 57-74.

Fowler, M. (2003). 'The New Methodology'. Available:
http://www.martinfowler.com/articles/newMethodology.html, Accessed October 2003

Gasson, S. (1998). 'Framing design: a social process view of information system development'.
International Conference on Information Systems, Helsinki, Association for
Information Systems.

Henderson, J. C. and S. Lee (1992). 'Managing I/S Design Teams: A control Theories
Perspective'. Management Science 38(6): 757-777.

Highsmith, J. and A. Cockburn (2001). 'Agile software development: the business of
innovation'. Computer 34(9): 120-127.

Hughes, B. and M. Cotterell (1999). 'Software Project Management', McGraw-Hill.
Humphrey, W. (1994). 'A Discipline for Software Engineering', Addison-Wesley Pub Co.
Humphrey, W. S. (1989). 'Managing the Software Process', Addison-Wesley Publishing.
Humphrey, W. S. (2000). 'The Team Software Process', Software Engineering Institute: 37.
ISO 16326 ISO/IEC 16326:1999:1999 - Software engineering - Guide for the application of

ISO/IEC 12207 to project management
Jagodzinski, P., R. R. Parsons, F., et al. (1997). 'Use of ethnography to acquire an insider's view

of engineering design teams'. Workshop on Soft Approaches to Product Introduction
Improvement, Birmingham, UK, IEEE.

Kirsch, L. J. (1996). 'The Management of Complex Tasks in Organizations: Controlling the
Systems Development Process.' Organization Science 7(1): 1-22.

Krishnan, V. (1998). 'Modeling ordered decision making in product development'. European
Journal of Operational Research 111(2): 351-368.

McConnell, S. (1993). 'Code Complete'. Redmond, Microsoft Press.
McConnell, S. (1998). 'Software Project Survival Guide', Microsoft Press.
Moore, R. J. (2001). 'Evolving to a "lighter" software process: a case study'. 26th Annual NASA

Goddard Software Engineering Workshop, Maryland Univ. USA, IEEE Computer
Society.

Muller, F. (1982). 'Definition of Construction Management'. Specialty Conference on
Engineering and Construction Projects, New Orleans, American Society of Civil
Engineers.

Nicholson, B. and S. Sahay (2001). 'Some political and cultural issues in the globalisation of
software development: case experience from Britain and India'. Information and
Organization 11(1): 25-43.

Ouchi, W. G. and M. A. Maguire (1975). 'Organizational Control: Two Functions.'
Administrative Science Quarterly 20(4): 559(11).

Project Management Institute, Ed. (2000). 'A Guide to the Project Management Body of
Knowledge', Project Management Institute.

Scarola, J. A. and C. B. Tatum (1982). 'Definition of Project Management'. Specialty
Conference on Engineering and Construction Projects, New Orleans, American Society
of Civil Engineers.

SEI (2000). 'CMMI for Systems Engineering/Software Engineering, Version 1.02'. Pittsburgh,
Carnegie Mellon University/Software Engineering Institute: 606.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.martinfowler.com/articles/newMethodology.html

Smith, G. F. and G. J. Browne (1993). 'Conceptual foundations of design problem solving'.
IEEE Transactions on Systems, Man and Cybernetics, 23(5): 1209-1219.

Thomke, S. and D. Reinertsen (1998). 'Agile product development: managing development
flexibility in uncertain environments.' California Management Review 41(1): 8(2).

Thomsett, R. (1989). 'Third Wave Project Management', Yourdon Press Computing Series.
Thomsett, R. (2002). 'Radical Project Management', Prentice Hall PTR.
Trochim, W. M. K. (2001). 'The Research Methods Knowledge Base'. Cincinnati, Atomic Dog

Publishing.
Yates, M. K. and C. B. Tatum (1982). 'Definition of Engineering Management'. Specialty

Conference on Engineering and Construction Projects, New Orleans, American Society
of Civil Engineers.

	1 INTRODUCTION.
	2 PRODUCTION PROJECTS.
	2.1 Monitoring production projects.
	2.2 Controlling production projects.

	3 DESIGN PROJECTS.
	3.1 Monitoring design projects.
	3.2 Controlling design projects.

	4 OUTSOURCED PROJECTS
	4.1 Monitoring outsourced development
	4.2 Controlling outsourced development

	5 RESEARCH QUESTION.
	5.1 Research question
	5.2 Research method.
	5.3 Sample characteristics.
	5.3.1 Organizational size
	5.3.2 Process maturity.

	5.4 Monitoring the project.
	5.5 Meeting the schedule.
	5.5.1 Team meetings

	5.6 Production or design.
	5.7 Monitoring and controlling outsourced projects.

	6 THREATS TO VALIDITY.
	7 CONCLUSIONS AND DISCUSSION.
	7.1 Importance of the conclusions.
	7.2 Acknowledgements

