
J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005.c©TROUBADOR PUBLISHING LTD) 1

Ontology Alignment as a Basis for Mobile Service
Integration and Invocation

Jingshan Huang1

Jiangbo Dang
Michael N. Huhns

Computer Science and Engineering Department
University of South Carolina
Columbia, SC 29208, USA

{huang27, dangj, huhns}@engr.sc.edu

Yongzhen Shao
Software School
Fudan Unversity

Shanghai 200433, China
shaoyz@fudan.edu.cn

Received: December 31 2005; revised: May 07 2006

Abstract— The limited capabilities of typical mobile devices
can be extended by using services from other devices. To use
such services, a mobile device must be able to comprehend
their descriptions. Ontologies can aid in this comprehension,
but ontologies designed independently for each device would
have heterogeneous semantics. This paper presents an automated
schema-based approach to align the ontologies from interacting
devices as a basis for mobile service invocation. When the on-
tologies are ambiguous about the services provided, we introduce
compatibility vectors as a means of maintaining ontology quality
and deciding which service to choose to reduce the ambiguity.
Our approach is verified both experimentally and theoretically.

Index Terms— Ontology Merging, Ontology Compatibility,
Mobile Service

I. I NTRODUCTION

Mobile computing is becoming more widespread and in-
creasingly important. Mobile portable devices already outnum-
ber traditional desktop computers and are expected to deter-
mine the view of computers for future generations. However,
mobile devices typically have rather limited capabilities. To
overcome this limitation, a mobile device can make use of the
functionalities and services provided by other mobile devices,
and thereby extend its own capabilities. The first step for
mobile devices to achieve this goal will be to understand the
descriptions of services that they can provide to each other.
Only in this way can the future integration and/or invocation
of mobile services take place automatically and successfully.

An ontology serves as a declarative model for the knowl-
edge and capabilities possessed by a device or of interest to

1Corresponding author Tel./Fax: +1-803-777-3768/+1-803-777-3767.

a device. It forms the foundation upon which machine un-
derstandable description of services can be obtained, and as a
result, automatic interaction among mobile devices is enabled.
Therefore, adding ontologies into the mobile service scenario
will facilitate the extension of mobile device capabilities
by providing a more comprehensible and formal semantics.
The functionalities and behaviors of mobile services can be
described, advertised, discovered, and composed by others
through the use of and reference to ontologies. Eventually,
these mobile services would be able to interoperate with each
other, even though they have not been designed to work
together. This is the vision for pervasive computing among
mobile devices.

However, because it is impractical to have a global ontology
that describes every concept that is or might be included
as part of the mobile services, ontologies from different
mobile devices typically have heterogeneous semantics. Due
to this basic characteristic, mobile devices need to reconcile
ontologies and form a mutual understanding when they interact
with each other. Only in this sense are mobile services able
to comprehend and/or integrate the information from different
sources, and enhance service interoperability thereafter.

In this paper, we first present an automated schema-based
ontology merging algorithm to align heterogeneous ontologies.
Then we focus on an important but mostly neglected research
topic - how a mobile device can select suitable ontologies
to interact with. We introduce the concept of compatibility
vectors as a means of evaluating and maintaining ontology
quality, and use this as a basis for suitability of ontology se-
lection. Our approach is able to create and adjust dynamically
the compatibilities of mobile devices with regard to the quality

2 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005.c©TROUBADOR PUBLISHING LTD)

of their underlying ontologies.
The rest of the paper is organized as follows. Section

II briefly introduces related work in ontology matching and
Quality of Service (QoS). Section III discusses the challenges
after the introduction of ontologies into mobile services.
Sections IV and V present our ontology merging algorithm and
compatibility vector system, respectively. Section VI briefly
reports on the experiment results, and Section VII concludes
with future work.

II. RELATED WORK

A. Related Work in Ontology Matching

Many researchers have investigated the problem of ontology
matching, mostly using one of two approaches: instance-based
and schema-based. All of the following systems belong to the
latter, except for GLUE [2].

GLUE introduces well-founded notions of semantic similar-
ity, applies multiple machine learning strategies, and can find
not only one-to-one mappings, but also complex mappings.
However, it depends heavily on the availability of instance
data. Therefore, it is not practical for cases where there is an
insignificant number of instances or no instances at all.

PROMPT [5] is a tool making use of linguistic similar-
ity matches between concepts for initiating the merging or
alignment process, and then use the underlying ontological
structures of the Protéǵe-2000 environment to inform a set
of heuristics for identifying further matches between the
ontologies. PROMPT has a good performance in terms of
precision and recall. However, user intervention is required,
which is not always available in real world applications.

COMA [3] provides an extensible library of matching
algorithms, a framework for combining results, and evaluation
platform as well. According to their evaluation, COMA is
performing well in terms of precision, recall, and overall
measures. Although being a composite schema matching tool,
COMA does not integrate reasoning and machine learning
techniques.

Similarity Flooding [6] utilizes a hybrid matching technique
based on the idea that similarity spreading from similar nodes
to the adjacent neighbors. Before a fix-point is reached,
alignments between nodes are refined iteratively. This algo-
rithm only considers the simple linguistic similarity between
node names, leaving behind the node property and inter-node
relationship.

Cupid [4] combines linguistic and structural schema match-
ing techniques, as well as the help of a precompiled dictionary.
But it can only work with a tree-structured ontology instead
of a more general graph-structured one. As a result, there
are many limitations to its application, because a tree cannot
represent multiple-inheritance, an important characteristic in
ontologies.

S-Match [7] is a modular system into which individual
components can be plugged and unplugged. The core of the
system is the computation of relations. Five possible rela-
tions are defined between nodes: equivalence, more general,
less general, mismatch, and overlapping. Giunchiglia et al.
claim that S-Match outperforms Cupid, COMA, and Similarity

Flooding in measurements of precision, recall, overall, and F-
measure. However, like Cupid, S-Match uses a tree-structured
ontology.

B. Related Work in QoS

QoS is becoming a significant factor with the widespread
deployment of Web services. By QoS we refer to the non-
functional properties of services, such as reliability, availabil-
ity, and security. [9] proposes a Service Query and Manipula-
tion Language (SWSQL) to maintain QoS attribute ontologies
and to publish, rate, and select services by their functionality
as well as QoS properties. Based on SWSQL, they extend
the UDDI registry to a service repository by combining a
relational database and the attribute ontology.

Zhou et al. [10] provide a DAML-QoS ontology as a
complement to a DAML-S ontology in which multiple QoS
profiles can be attached to one service profile. In addition, they
present a matchmaking algorithm for QoS properties.

One widely used QoS attribute is user rating, but it is
subjective to the perception of the end user and is limited
by the lack of an objective representation of the performance
history. Kalepu et al. [11] introduce reputation, a composition
of user rating, compliance and verity as a more viable QoS
attribute. Ontologies are applied to QoS-aware service selec-
tion, execution, and composition. A selected ontology itself
can adopt some QoS measures to facilitate mutual ontology
understanding as discussed in this paper.

III. CHALLENGES OF ONTOLOGY INTEGRATION
INTO MOBILE SERVICES

A. Adding Ontologies into Mobile Services

In order to integrate and invoke the services rendered by
other mobile devices, a mobile device must be able to compre-
hend the descriptions about those services as a first step. Being
a formal knowledge representation model, ontologies can aid
in this comprehension by providing the necessary semantics
during communications among mobile devices.

An example scenario of the interaction among different
mobile devices can be envisioned as follows.

1) A number of mobile devices form a mobile service
community (MSC) within which services provided by
different devices might be integrated and have the abil-
ity to render better services. This integration requires
the mutual understanding of the individual ontologies
underlying each service.

2) The mobile devices outside this MSC can ask for
help from the community and consume its services,
either the original ones or the integrated one. This
invocation requires not only an understanding of the
related ontologies, but also the ability to choose suitable
service provider(s), especially under the situations where
resources are limited.

B. Problems Encountered

Because of the fact that there is no global, common,
and agreed-upon ontology, any mobile device can maintain

HUANG, DANG, HUHNS, AND SHAO: ONTOLOGY ALIGNMENT FOR MOBILE SERVICES 3

and use ontologies according to its own conceptual view
of the world. Consequently, ontological heterogeneity among
different mobile devices becomes an inherent characteristic
in a mobile computing environment. The heterogeneity can
occur in two ways: (1) Different ontologies could use different
terminologies to describe the same conceptual model. That is,
different terms could be used for the same concept or the
same term could be used for different concepts. (2) Even if
two ontologies use the same name for a certain conceptC, its
corresponding properties and relationships with other concepts
can be different.

Therefore, two major problems are envisioned here. First,
during the formation of a MSC, how can it be ensured that all
devices within the community have no problem in understand-
ing each other’s ontology? Secondly, a mobile device seeking
services from outside this community would like to choose
those devices that understand its ontology best. How can it
ensure this selection is a correct one?

C. Overview of Our Approach

In order to solve the first problem - mutual understanding of
ontologies within a MSC, we need an approach to match/align
ontologies from different mobile devices. By this means,
concepts from communicating devices can comprehend each
other, and possible integration of related services can be
achieved. In the next section, we present an ontology merging
algorithm to reconcile heterogeneous ontologies.

To tackle the second problem - the correct selection of
mobile devices that are most acquainted with the ontologies
from service-consuming devices, we introduce compatibility
vectors as a means of measuring and maintaining the ontology
quality. By setting up the compatibility for each mobile device
along with the formation of a MSC, not only the mobile
devices seeking service from this community are able to select
the best service provider(s) with ease, but also a better mutual
understanding of ontologies within the MSC is obtained.

IV. A SCHEMA-BASED ONTOLOGY MERGING
ALGORITHM

Our goal is to construct a merged ontology from two
original ones. Although there does not exist such a global and
agreed-upon ontology, we do assume that there is a common
metamodel, i.e., OWL DL, for the ontologies to be merged,
and we also assume that natural language provides common
semantics during the ontology merging process.

A. Top-Level Procedure

The ontology merging is carried out at the schema level,
that is, we concentrate on the structure (schema) information
of ontologies. Internally we represent an ontology using a
directed acyclic graphG (V, E), whereV is a set of ontology
concepts (nodes), andE is a set of edges between two
concepts, i.e.,E = {(u,v)|u and v belong to V, and u is a
superclassof v}. In addition, we assume that all ontologies
share “Thing” as a common “built-in” root. In order to merge
ontologies, G1 and G2, we try to relocate each concept

(node) from one ontology into the other one. We adopt a
breadth-first order to traverseG1 and pick up a concept
C as the target to be relocated intoG2. Consequently, at
least one member ofC’s parent set Parent(C) in the original
graphG1 has already been put into the suitable place in the
destination graphG2 before the relocation ofC itself. The
pseudocode below describes this top-level procedure, whose
time complexity is obviouslyO(n2), with n the number of
concepts in the merged ontology.

Input: OntologyG1 andG2

Output: Merged OntologyG2

begin
new location ofG1’s root = G2’s root
for each nodeC (except for the root) inG1

Parent(C) = C’s parent set inG1

for each memberpi in Parent(C)
pj = new location ofpi in G2

relocate(C, pj)
end for

end for
end

Top-Level Procedure - merge(G1, G2)
An implementation detail is worth mentioning here. Because

of the characteristics of traversing a directed acyclic graph,
there is a possibility that one or more parents of a certain
concept may not have been relocated before that concept is
visited. However, at least one of the parents will have been
relocated. In this case, we revisit the target concept after all its
parents have been visited. Notice that progress is guaranteed,
because the graphs in question are acyclic.

B. Relocate Function

The relocate function in the top-level procedure is used
to relocateC into a subgraph rooted bypj . The following
pseudocode shows the details of this function.

Input: nodesN1 andN2

Output: the modified structure ofN2 according to information
from N1

begin
if there exists anyequivalentclassof N1 in the
child(ren) ofN2

mergeN1 with it
else if there exists anysubclass of N1 in the
child(ren) ofN2

Children(N1) = set of such subclass(es)
for each memberci in Children(N1)

add links fromN2 to N1 and fromN1

to ci

remove the link fromN2 to ci

end for
else if there exists anysuperclassof N1 in the
child(ren) ofN2

4 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005.c©TROUBADOR PUBLISHING LTD)

Parent(N1) = set of such superclass(es)

for each memberpi in Parent (N1)

recursively call relocate(N1, pi)

end for

else

add a link fromN2 to N1

end if

end

Relocate Function -relocate(N1, N2)

Our main idea is: try to find the relationship between
C and pj ’s direct child(ren) in the following descending
priorities: equivalentclass, superclass, and subclass. Because
equivalentclasshas most significant and accurate information,
it is straightforward thatequivalentclasshas been assigned the
highest priority. Forsuperclassandsubclass, since we adopt a
top-down procedure to relocate concepts, the former has been
given a higher priority than the latter. If we cannot find any
of these three relationships, the only option is for us to letC
be another direct child ofpj .

Notice that there is a recursive call within relocate. This
recursion is guaranteed to terminate because the number of
the nodes within a graph is finite, and the worst case is to
call relocate repetitively until the algorithm encounters a node
without any child.

To determine the relationship betweenC and pj ’s direct
child(ren), we need to consider both the linguistic and the
contextual features. The meaning of a concept is determined
by two aspects: (1) its linguistic feature - concept name - and
(2) its contextual feature - property list and the relationship(s)
with other concept(s). These two features are discussed next;
they together specify a concept’s semantics.

C. Linguistic Matching

The name of a concept reflects the meaning that the on-
tology designer intended to encode. Our approach uses string
matching techniques to match linguistic features. Furthermore,
we integrate WordNet by using the JWNL API [8] in our
system. In this way, we are able to obtain the synonyms,
antonyms, hyponyms, and hypernyms of an English word.
In addition, WordNet performs some stemming, e.g., the
transformation of a noun from plural to singular form.

We claim that for any pair of ontology conceptsC and
C’, their namesNC and NC′ have the following mutually
exclusive relationships, in terms of their linguistic features
(the vlinguistic mentioned below refers to the similarity
between two concept names).

• anti-match: NC is a antonym ofNC′ , with vlinguistic =
0;

• exact-match: either NC and NC′ have an exact string
matching, or they are the synonyms of each other, with
vlinguistic = 1;

• sub-match: NC is either a postfix or a hypernym ofNC′ ,
with vlinguistic = 1;

• super-match: NC′ is either a postfix or a hypernym of
NC , with vlinguistic = 1;

• leading-match: the leading substrings fromNC andNC′

match with each other, withvlinguistic equaling the length
of the common leading substring divided by the length
of the longer string. For example, “active” and “actor”
have a common leading substring “act”, resulting in a
leading-match value of36 ;

• other: vlinguistic = 0.

When relocatingC, we perform the linguistic matching
betweenC and all the candidate concepts in the destination
graphG2, and build a list for each of three types of relationship
of C, i.e., equivalentclass, superclass, andsubclass. For each
candidate conceptC’, if an exact-match or a leading-match
(with vlinguistic ≥ threshold) is found, we putC’ into C’s
candidate equivalentclass list; if a sub-match is found, we put
C’ into C’s candidate subclass list; and if a super-match is
found, we putC’ into C’s candidate superclass list. Then we
continue the contextual matching betweenC and each concept
in the three candidate lists to obtain further information.

D. Contextual Matching

In essence, the context of an ontology conceptC consists
of two parts: its relationship(s) with other concept(s), and its
property list. The former includeequivalentclass, subclass,
superclass, andsibling, and is implicitly embodied in the graph
traverse process mentioned previously. The latter is discussed
next.

Considering the property lists, P(C) and P(C’), of
a pair of concepts C and C’ being matched, our
goal is to calculate their similarity value.vcontextual =
wrequired·vrequired + wnon−required·vnon−required, where
vrequired and vnon−required are the similarity values calcu-
lated for therequiredproperty list andnon-requiredproperty
list, respectively.wrequired andwnon−required are the weights
assigned to each list. Notice thatvrequired andvnon−required

are calculated by the same procedure.
Suppose the number of properties in two property lists

(either required or non-required ones),P1 and P2, is n1 and
n2, respectively. Without loss of generality, we assume that
n1 ≤ n2. There are three different matching models between
two properties.

1) total-match

• The linguistic matching of the property names re-
sults in either an exact-match, or a leading-match
with vlinguistic ≥ threshold; and

• The data types match exactly.

Let vt = number of properties with a total-match, and
ft=

vt

n1
. Here ft is a correcting factor for name-match,

embodying the integration of heuristic reasoning. We
claim that between two property lists, the more pairs
of properties being regarded as total-match, the more
likely that the remaining pairs of properties will also hit
a match as long as the linguistic match between their
names is above a certain threshold value. For example,

HUANG, DANG, HUHNS, AND SHAO: ONTOLOGY ALIGNMENT FOR MOBILE SERVICES 5

assume that bothP1 and P2 have ten properties. If
there are already nine pairs with a total-match, and
furthermore, if we find out that the names in the
remaining pair of properties are similar with each other,
then it is much more likely that this pair will also have
a match, as opposed to the case where only one or two
out of ten pairs have a total-match.

2) name-match

• The linguistic matching of the property names re-
sults in either an exact-match, or a leading-match
with vlinguistic ≥ threshold; but

• The data types do not match.

Let vn = number of properties with a name-match,
and fn=vt+vn

n1
. Similarly to ft, fn also serves as a

correcting factor fordatatype-match.

3) datatype-match
Only the data types match. Letvd = number of
properties with a datatype-match.

After we find all the possible matching models in the above
order, we can calculate the similarity between the property
lists as 1

n1
(vt·w1 + vn(w2 + ft·w′

2) + vd(w3 + fn·w′
3)), where:

• wi (i from 1 to 3) is the weight assigned to each matching
model; and

• w′
i (i from 2 to 3) is the correcting weight assigned to

the matching models of name-match and datatype-match.

E. Domain-Independent Reasoning

Remember that to merge two ontologies, we in essence are
to relocate each concept from one ontology into the other
one. After we obtain the linguistic and contextual similarities,
we apply a domain-independent reasoning rule to infer the
relationship between the target concept to be relocated and
the candidate concept in the destination ontology.

1) Relationships among Property Lists:Suppose we have
two ontologies A and B, each of which is designed according
to the OWL DL specification. Furthermore, letn(A) andn(B)
be the sets of concepts in A and B, respectively, withni(A)
and nj(B) be the individual concept for each set (1 ≤ i ≤
|n(A)| and 1 ≤ j ≤ |n(B)|), and P(ni(A)) and P(nj(B)) be
the property list for each individual concept.

Consider the property lists P(ni(A)) and P(nj(B)), let si and
sj be the set size of these two lists. There are four mutually
exclusive possibilities for the relationship between P(ni(A))
and P(nj(B)):

• P(ni(A)) and P(nj(B)) are consistent with each other if
and only if

i. Either si = sj or abs(si−sj)
si+sj

≤ threshold, and

ii. vcontextual ≥ threshold

We denote the corresponding conceptsni(A) and nj(B)
by ni(A)

p↔ nj(B);

• P(ni(A)) is a subset of P(nj(B)) if and only if

i. si ≤ sj , and
ii. vcontextual ≥ threshold

We denote the corresponding conceptsni(A) and nj(B)
by ni(A)

p→ nj(B);

• P(ni(A)) is a superset of P(nj(B)) if and only if

i. si ≥ sj , and
ii. vcontextual ≥ threshold

We denote the corresponding conceptsni(A) and nj(B)
by ni(A)

p← nj(B);

• Other.

2) Relationships among Concepts:Given any two ontology
concepts, we can have the following five mutually exclusive
relationships between them:
• subclass, denoted by⊆
• superclass, denoted by⊇
• equivalentclass, denoted by≡
• sibling, denoted by≈
• other, denoted by6=

3) Reasoning Rule:If two classes share a same parent,
then their relationship is one of:equivalentclass, superclass,
subclass, andsibling.

- Preconditions:
ni1(A) ⊇ ni2(A) and
nj1(B) ⊇ nj2(B) and
ni1(A) ≡ nj1(B) and
1) (the names ofni2(A) and nj2(B) have either an exact-

match, or a leading-match withvlinguistic ≥ threshold)
andni2(A)

p↔ nj2(B)
2) (the name ofnj2(B) is a sub-match of the name of

ni2(A)) andni2(A)
p→ nj2(B)

3) (the name ofnj2(B) is a super-match of the name of
ni2(A)) andni2(A)

p← nj2(B)
4) None of above three holds

- Conclusion:
1) ni2(A) ≡ nj2(B)
2) ni2(A) ⊇ nj2(B)
3) ni2(A) ⊆ nj2(B)
4) ni2(A) ≈ nj2(B)

The intuition behind our reasoning rule is as follows. After
the linguistic matching phase we obtain three candidate lists
for target conceptC. For each conceptC’ in these lists, we
then try to find the contextual similarity betweenC andC’ to
make the final decision.

6 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005.c©TROUBADOR PUBLISHING LTD)

F. Features of Our Merging Algorithm

Comparing to the research work mentioned in Section II,
our approach advances the state of the art of ontology merging
techniques by including the following features.
• We carry out ontology merging at the schema level,

and separate the performance of the merging algorithm
from the availability of a large volume of instance data.
As a result, it is more practical than GLUE in cases
where there is no enough data to carry out instance-based
matching.

• Our approach is fully automated. This feature is nec-
essary, especially in terms of the successful invocation
and seamless integration of mobile services dynamically.
Some semi-automated systems, PROMPT for example,
require user intervention, which is not always available
in a dynamic environment.

• We treat graph-structured ontologies, which are not only
more complex than tree-structured ones (as in Cupid
and S-Match), but also more realistic, because multiple-
inheritance cannot be represented by a tree.

• We exploit both the linguistic and the contextual features
of a concept, and combine these two features to determine
what a concept means in an ontology. It is more advanced
than Similarity Flooding, which considers concept names
alone and can represent only partial semantics of onto-
logical concepts.

• We incorporate WordNet into the linguistic analysis
phase, under the assumption that natural language pro-
vides common semantics; and then integrate heuristic
knowledge into the contextual analysis phase.

• We apply a reasoning rule to infer new relationships
among concepts. This rule is based on the domain-
independent relationships subclass, superclass, equiva-
lentclass, and sibling, together with each concept’s prop-
erty list.

V. COMPATIBILITY VECTORS

We introduce compatibility vectors as a means of measuring
and maintaining the ontology quality, which determines the
compatibilities of mobile devices providing services. Along
with the formation of a MSC, we create acenterontology by
merging all the original ontologies; then thedistancesfrom the
latter to the center ontology are suitably encoded in compati-
bility vectors, and can be adjusted efficiently and dynamically
during the period in which the MSC is formed. Based on
the information contained in the vectors, mobile devices are
supposed to understand the ontology from each other without
trouble. In addition, for the mobile devices seeking services
from outside this community, there is no difficulty for them
to choose the devices with good compatibilities, which is, in
an objective sense, with no bias.

A. Center Ontology Formation

The center ontology is generated by merging all original
ontologies, step by step, as each new mobile device joins a
MSC. At the beginning, when there is only one mobile device,
its ontology is regarded as the center ontology. Each time a

Thing

AbstractThing

Intangible

TemporalThing
 SpatialThing
 IntangibleIndividual
 Mathematical

PartiallyTangible

disjointWith

isa

isa

isa
 isa
 isa
 isa

Fig. 1. Graphical Representation forOntology1

new device joins the community, the new ontology is merged
with the current center one. The resultant merged ontology is
the newly obtained center ontology.

B. Ontology Distance and Compatibility Vectors

1) Concept Distance:The center ontology contains infor-
mation from all original ontologies, because the former is the
result of the merging of the latter. Therefore, with respect
to whether a specific original ontology understands each
concept in the center ontology or not, there are two situations.
One situation is that for one specific concept in the center
ontology, the original ontology can understand it, but possibly
with less accurate and/or complete information. The other
situation is that the original ontology is not able to recognize
that concept at all. In either case, the concept distance is
represented by the amount of information missing, i.e., the
number of relationships not known in the original ontology.
The following equation formalizes the concept distance:d
= w1·nsub−super + w2·nother, with the constraint of (w1 +
w2 = 1). nsub−super is the number of sub/superclass (isa)
relationships not known in the original ontology, andnother

is the number of other relationships not known in the original
ontology. wi is the weight assigned to different kinds of
relationship, includingsubclass, superclass, equivalentclass,
disjointWith, parts, owns, contains, and causes, etc. Because
the sub/superclass relationship is the most important one in an
ontology schema,w1 will be given a greater value thanw2.

Consider the ontologies in Figures 1 and 2. In
ontology1, concept “Intangible” has one superclass
(“AbstractThing”); four subclasses (“TemporalThing”,
“SpatialThing”, “Mathematical”, and “IntangibleIndividual”);
and one disjointWith relationship (with “PartiallyTangible”).
In the merged center1, the concept “Intangible” has
more information from the other ontologies: one more
superclass (“PartiallyIntangible”); one more disjointWith
relationship (with “Tangible”); and one more subclass
(“OtherIntangibleStuff”). Thus, the concept distance from
“Intangible” in ontology1 to “Intangible” in center1 is (w1·2
+ w2·1). Also notice that the concept distance formula is
suitable for both situations, i.e., independent of whether the
original ontology recognizes that concept or not. For example,
if in ontology1 there is no concept “Intangible”, then the
distance becomes (w1·7 + w2·2).

2) Ontology Distance:After each concept distance has
been calculated as shown above, we can continue to figure out

HUANG, DANG, HUHNS, AND SHAO: ONTOLOGY ALIGNMENT FOR MOBILE SERVICES 7

Thing

AbstractThing

Intangible

TemporalThing
 SpatialThing
 IntangibleIndividual
 Mathematical

Tangible

disjointWith

isa

isa

isa
 isa
 isa
 isa

PartiallyIntangible

isa

isa

OtherIntangibleStuff

PartiallyTangible

isa

Fig. 2. Graphical Representation forCenter1

Yes
 2.7
Yes
Intangible
 1.6
 No
 N/A
 6.7
 ...
…

sub
-
dimension 1
 sub
-
dimension 2
 sub
-
dimension 3

dimension

for
Spatial

dimension

for
Intangible

dimension

for
Tangible

…
...

Compatibility Vector

for Device
1
:

No
 5.0
Yes
Intangible
 2.6
 No
 N/A
 6.7
 ...
…
Compatibility Vector

for Device
2
:

Yes
 Space
4.5
Yes
Immaterial
1.9
 Yes
 3.2
 ...
…
Compatibility Vector

for Device
3
:

No
 N/A
 5.0
 No
 N/A
 3.8
 No
 N/A
 6.7
 ...
…
Compatibility Vector

for
Device
m
:

…

…

Material

N/A

Spatial

dimension for

n
th
 concept

N/A
No
 3.7

No

No

No

N/A

N/A

N/A

3.7

3.7

3.7

Fig. 3. Compatibility Vectors

the ontology distance between the original ontology and the

center one:D =
n∑

i=1

(wi·di), wheredi is the distance between

a pair of concepts, andn is the number of concepts in the
center ontology.

Recall that the concept set of the original ontology is a
subset of that of the center ontology, and the concept distance
is encoded by the missing relationships in the original
ontology compared to the center one. The above formula
shows that the ontology distance is obtained by the weighted
sum of the concept distances between two ontologies. How
much a concept contributes to the ontology distance is
determined by the importance of that concept in its ontology.
We use the percentage of the number of relationships to
represent this measurement. For example, ifontology1 has
100 relationships in total, and concept “Spatial” has 15
relationships, then the weight for this concept inontology1

is 0.15.

3) Compatibility Vectors:Inside the center ontology, there
is a set of compatibility vectors, one for each original ontology.
A compatibility vector consists of a set of domains, each corre-
sponding to one concept in the center ontology. Therefore, all
compatibility vectors have identical dimension, i.e., equaling
to the number of the concepts in the center ontology. Each
dimension has three sub-dimensions. The first sub-dimension
tells us whether the original ontology understands this concept
or not; the second sub-dimension records the concept name in
the original ontology if the latter does recognize that concept;
and the third sub-dimension encodes the distance from the
concept of the original ontology to the concept of the center
ontology. An example of compatibility vectors is shown in

ontology
1
 ontology
2

center
1
 ontology
3

center
2
 ontology
4

center
3

merged

merged

merged

distance

adjustment

(1
st
 round)

distance

adjustment

(2
nd
 round)

Initial

distance

Initial

distance

Fig. 4. Dynamic Adjustment of Compatibility Vectors

Yes
 2.7
 Yes
 Intang
 1.6
 No
 N/A
 6.7
 ...
…

dimension

for
Intangible

dimension

for
Tangible

…
...

Compatibility Vector

u
for Device
1
 in

Center
1
:

Yes
 2.3
 Yes
 Tangible
 1.7
 No
 N/A
 5.9
 ...
…
Compatibility Vector

v
for Center
1
 in

Center
2
:

Yes
 Intang
 3.9
 No
 N/A
 8.4
 No
 5.9
 ...
…
Compatibility Vector

w
for Device
1
 in

Center
2
:

N/A

Intangible

Spatial

+

=

Fig. 5. Example of New Vector Generation

Figure 3.
For the first concept (“Spatial”) in the center ontology,

device1 knows it as “Spatial” and has a concept distance of
2.7;device3 also understands this concept, but with a different
name (“Space”) and a bigger concept distance of 4.5; neither
device2 nor devicem recognizes concept “Spatial”, therefore,
they have the same concept distance (5.0).

C. Dynamic Adjustment of Compatibility Vectors

As mentioned before, when there is only one mobile device,
its compatibility is perfect. In the compatibility vectors stored
in the center ontology, each concept distance has a value of
zero. However, with the adding of new devices into this MSC,
the compatibilities for existing devices might be changed
because newly joined devices could contain more accurate
and/or complete information regarding the ontology in the
same domain.

An example is shown in Figure 4, demonstrating the
process of dynamic distance adjustment. Afterontology1

and ontology2 are merged to generatecenter1, the distance
between these two original ontologies and the merged one
(center1) is calculated and stored in compatibility vectors of
center1. Upon the joining ofontology3 and the generation of
center2, the distance fromcenter1 to center2 is calculated

8 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005.c©TROUBADOR PUBLISHING LTD)

and then integrated into the compatibility vectors incenter2

for ontology1 andontology2. This is accomplished by vector
integration.

For example, we have compatibility vectors in bothcenter1

and center2. Now we want to upgrade the compatibility
vectors in center2. Originally there are two compatibility
vectors in center2: one for ontology3, and the other for
center1. The former will stay the same as is; while the latter
will be replaced by several new vectors, the number of which
is determined by the number of the vectors incenter1 (two
in our example).

Remember thatcenter1 has one vector for each mobile
device whencenter1 is generated. Each vector incenter1

will be integrated with the vector forcenter1 in center2,
therefore creating a new vector correspondingly incenter2.
The following procedure describes the generation of such a
new vector.

Input:
• compatibility vectorv for center1 in center2

• compatibility vectoru for devicei in center1

Output:
• compatibility vectorw for devicei in center2

begin
for each dimensiond in v

yn = d’s first sub-dimension’s value
nm = d’s second sub-dimension’s value
dis = d’s third sub-dimension’s value

create a new dimensionnd in w

if yn = “Yes”
find in u the dimensionod for concept
nm
yn old = od’s first sub-dimension’s
value
nm old = od’s second sub-dimension’s
value
dis old = od’s third sub-dimension’s
value

nd’s first sub-dimension = ynold
nd’s second sub-dimension = nmold
nd’s third sub-dimension = dis + disold

else // yn = “No”
nd’s first sub-dimension = yn
nd’s second sub-dimension = nm
nd’s third sub-dimension = dis

end if
end for

end
Pseudocode for New Vector Generation

It is not difficult to figure out that the time complexity for
the above procedure isO(nlogn). There aren dimensions in

each vector, therefore, we needn steps for the loop. Within
each loop, all steps take constant time, except for the one
finding dimension inu. Suppose inu the dimensions are
indexed by the concept names, then a binary search is able
to locate a specific dimension withinO(logn).

Figure 5 exemplifies how the above pseudocode works.
There are two source vectors,u and v, and we traverse the
second one, one dimension each time.

1) The values for the first dimension are “Yes”, “Intangi-
ble”, and “2.3”. We then find the dimension for “In-
tangible” in u, and obtain (“Yes”, “Intang”, and “1.6”).
Finally we calculate the values for the new dimension
in the resultant vectorw, which are “Yes”, “Intang”, and
“3.9” (the result of 1.6 + 2.3).

2) The values for the second dimension are “Yes”, “Tangi-
ble”, and “1.7”. After we obtain the values for dimension
“Tangible” in u (“No”, “N/A”, and “6.7”), we figure out
the values for the new dimension inw are “No”, “N/A”,
and “8.4” (the result of 6.7 + 1.7).

3) The values for the third dimension are “No”, “N/A”, and
“5.9”. We simply copy these three values into the new
dimension inw.

4) This continues until we finish the traverse of all dimen-
sions inv.

D. Ontology Understanding via Compatibility Vectors

The center ontology maintains the compatibility vectors for
all original devices; in addition, the vectors themselves contain
such information as whether a device understands a specific
concept or not, what is the concept name in the original
ontology, and so on. Therefore, if two devices would like to try
to understand each other’s ontology, they can simply refer to
the center ontology and obtain the corresponding compatibility
vectors. By this means, compatibility vectors help a mobile
device in the mutual understanding of ontological concepts.

E. Mobile Device(s) Selection through Compatibility Vectors

When a mobile device from outside this MSC needs to ask
for service(s), it would like to choose the device(s) under-
standing its ontology best. The device first compares its own
ontology with the center ontology, and then searches in the
compatibility vectors to find all those devices understanding
the concept of its interest. If there is more than one device
competing to provide this service, the request will be sent to
those with good compatibilities, that is, devices with concept
and/or ontology distance below a certain threshold. Such a
threshold could be either specified by the service-consuming
device, or otherwise determined by the center ontology. Be-
cause the compatibility vectors are stored and maintained by
the center ontology, the service-rendering devices have no way
to modify or manipulate the vectors. In this sense, the selection
of service device(s) is objective and with no bias.

F. Features of Compatibility Vectors

1) Correctness of Compatibility Vectors - A Precise Ap-
proach: In this section we prove that our approach obtains
a correct compatibility for each mobile device.

HUANG, DANG, HUHNS, AND SHAO: ONTOLOGY ALIGNMENT FOR MOBILE SERVICES 9

To record and maintain the proper compatibility of each
device inside a MSC, the key is to obtain a correct center ontol-
ogy by which to evaluate the distance from it to each original
ontology, and thereby acquire the corresponding compatibility
vector. When a new device and its associated ontology join the
MSC, instead of communicating with each existing device,
it only talks with the center ontology. Therefore, if we can
prove that the newly merged ontology is a correct new
center ontology, the correctness of compatibility vectors is
guaranteed.

First, we point out that according to the merging algorithm
in this paper, each time we merge two ontologies, the resultant
one will contain all information from both original ones.
Next, we introduce Lemma 1 and Theorem 1.

Lemma 1. When we merge two ontologies A and B using
the algorithm in Section IV, the result is the same regardless
of whether we merge A into B or merge B into A.

Proof by induction.
1) Base Case: when both A and B contain two concepts,

i.e., besides one common built-in root, “Thing”, A
containsC1 and B containsC2.
If we merge A into B according to the Top-Level
Merging Procedure in Section IV, “Thing” in A is
considered equivalent with “Thing” in B; thenC1 is
compared with all the direct children of the root in B,
in this caseC2, to determine where to putC1 in B. This
is based on the relocate function inside the Top-Level
Merging Procedure. On the contrary, if we merge B into
A, “Thing” in B is considered equivalent with “Thing”
in A; then C2 is compared withC1 to determine where
to put C2 in A. Obviously, we obtain the same merged
ontology in both cases.

2) Induction: Assume that Lemma 1 holds for all cases
where the number of concepts contained in A and B is
less than (i+1) and (j+1), respectively. Now consider the
case where A and B contain (i+1) and (j+1) concepts,
respectively.
Suppose the superclass set of the(i + 1)th concept
in A, Ci+1, is PA(Ci+1), and suppose the location
of PA(Ci+1) in merged ontology M isPM (Ci+1).
The position of Ci+1 in M is determined by the
relationships betweenCi+1 and all the direct children
of PM (Ci+1). From the inductive hypothesis we know
that PM (Ci+1) is identical no matter whether we
merge A into B or merge B into A. Therefore, the
position of Ci+1 in M will also be the same in both
situations. That is,Ci+1, the (i + 1)th concept in A,
will be put into the same position in M in both merging
orders. Similarly, the(j + 1)th concept in B will also
be put into the same position in M in both merging
orders. So in the case where A and B contain (i+1)
and (j+1) concepts, respectively, we still have the same
resultant ontology regardless of the merging order taken.

Theorem 1. The final result of merging a number of
ontologies is identical no matter by which order the original

ontologies are merged using the algorithm in Section IV.

Proof by induction.
1) Base Case: there are two ontologies to be merged.

According to Lemma 1, when we merge two ontologies
A and B, the result is the same no matter whether we
merge A into B, or merge B into A.

2) Induction: Assume that Theorem 1 holds for all cases
where the number of ontologies to be merged is less than
(n+1). Now consider the case where we merge (n+1)
ontologies. Let the indexes of these ontologies be: 1, 2,
..., (n+1).
Consider two arbitrary orders by which we merge these
(n+1) ontologies:order1 and order2. Suppose the last
index in order1 andorder2 is i and j, respectively.
• If i equals j, then the first n indexes inorder1

and order2 are the same, just in different orders.
We merge the first n ontologies to getMergedn.
According to the inductive hypothesis,Mergedn in
order1 is identical withMergedn in order2. Then
we mergeMergedn with the last ontology in both
order1 andorder2, and we will get the same result.

• If i does not equal j, we mutate the first n indexes in
order1 and make thenth index be j; then mutate the
first n indexes inorder2 and make thenth index be
i. Now the first (n-1) indexes inorder1 andorder2

are in common (possibly in different orders),
and the last two are (j, i) and (i, j), respectively.
Notice that this kind of mutation will not affect the
merging result of the first n ontologies according to
our inductive hypothesis. We then merge the first
(n-1) ontologies to getMergedn−1. According to
the hypothesis,Mergedn−1 in order1 is identical
with Mergedn−1 in order2. Finally we merge
Mergedn−1 with the last two ontologies in both
order1 andorder2, and we will get the same result.

2) Complexity of Compatibility Vectors - An Efficient Ap-
proach: The time complexity of establishing a MSC, along
with the achievement of mutual understanding of ontological
concepts, is in the order ofO(mn2). For the ontology merging,
O(mn2) is needed, because we need to mergem ontologies,
and each merging procedure takes timeO(n2) as described
in Section IV. In addition, in order to dynamically update the
compatibility vectors, extra time will be spent. According to
the previous analysis,O(nlogn) is needed for updating one
device, so the time for extra work for all services isO(mnlogn).
Therefore, the total complexity becomesO(m(n2 + nlogn)),
which is in the same order ofO(mn2).

For device selection, the time complexity isO(n2). We only
need to compare the ontology from the service-consuming
device with the center ontology.

VI. EXPERIMENTAL RESULTS

A. Test ontologies

A collection of sixteen ontologies for the domain of
“Building” were constructed by graduate students in computer

10 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005.c©TROUBADOR PUBLISHING LTD)

TABLE I

STATISTIC OF TEST ONTOLOGIES

Average of Original Ontologies Merged Ontology

Max Depth 7 8

of Total Nodes 14 64

of Inner Nodes 6 42

of Total Nodes 5 47

of Inner Nodes 23 182

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1
 2
 3
 4
 5
 6
 7
 8
 9
 10 11 12 13 14 15

Number of Ontologies Merged

P
r
e
c
i
s
i
o
n

a
n
d

R
e
c
a
l
l

Precision of Equivalent ConceptsRecall of Equivalent Concepts

Fig. 6. Precision and Recall Result in Ontology Merging

science at the University of South Carolina and used for
evaluating the performance of our merging algorithm, and the
utilities from compatibility vectors as well. Table I lists the
summarized characteristics of these test ontologies. They have
between 10 and 15 concepts with 19 to 38 properties.

B. Experiments on Merging Algorithm Itself

To decide whether a correctly merged ontology is obtained,
we asked two ontology experts to carry out a manual mapping
and we compared their results with ours. Both precision
and recall measurements are applied in the evaluation. The
evaluation result is shown in Figure 6, reflecting a promising
result. Please refer to [1] for more details.

C. Experiments on Compatibility Vectors

1) Correctness of Compatibility Vectors:We simulated a
MSC out of 16 test ontologies. Based on ontology distances
calculated (see Figure 7), we sorted the original ontologies
with regard to their distances to the center. We then asked
two experts to rank the qualities of these ontologies manually;
the result is the same as the one from our system.

2) Efficiency of Compatibility Vectors:A set of experiments
have been conducted. We first fixed one original ontology
as the service-consuming one, and simulated a MSC out of
the remaining 5, 10, and 15 ontologies as three experiment
settings; then for each MSC setting we did the following in
two groups. In the first group the service-consuming ontology
always interacted with the ontology with the best quality,
while in the second group the interaction happened with a
randomly chosen ontology. We compared the resultant merged
ontologies from two groups. The result is shown in Figure
8. It is clear that, after adopting our compatibility vectors,

0

10

20

30

40

50

60

70

80

O
n
t
o
l
o
g
y

D
i
s
t
a
n
c
e

1
 2
 3
 4
 5
 6
 7
 8
 9
 10 11 12 13 14 15 16

Test Ontologies

Fig. 7. Ontology Distance Calculated

Improvement with Compatibility Vectors

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

1

2

3

D
iff

er
en

t M
S

C
 S

et
tin

gs

Precision & Recall

Presicion with Vectors
 Presicion without Vectors
 Recall with Vectors
 Recall without Vectors

Fig. 8. Improvement with Compatibility Vectors

both precision and recall measurements have been improved.
Therefore, in cases where sufficient resources are not available
and only a certain number of mobile devices can be chosen for
interaction, our approach increases the efficiency by choosing
suitable mobile device(s).

VII. CONCLUSION

Mobile computing has become increasingly important with
the proliferation of mobile devices. To extend the usually
limited capabilities of typical mobile devices, it is essential
to integrate mobile services from different providers. As the
first step of this process, mobile devices must understand
each other’s service descriptions. Although ontologies can aid
in this understanding, they will likely have heterogeneous
semantics if designed independently, as they typically are. We
present an automated approach carried out at the schema level
to reconcile ontologies as a basis for mobile service integration
and invocation. In addition, we introduce compatibility vectors
as a method to evaluate and maintain ontology qualities,
thereby handling the problem of how to choose ontologies with
good compatibilities. We not only prove theoretically that our
approach is both precise and efficient, but also show promising
results experimentally.

Our current approach makes use of a center ontology, but
introduces the problem of how to handle the vulnerability
issue inherent in this centralized solution. To analyze and
solve this problem is a potential research direction. Other

HUANG, DANG, HUHNS, AND SHAO: ONTOLOGY ALIGNMENT FOR MOBILE SERVICES 11

future work includes (1) how to maintain compatibility vectors
when existing mobile devices modify their corresponding
ontologies, and (2) what kind of mechanism is suitable if
we simultaneously consider qualities of both ontologies and
services.

REFERENCES

[1] J. Huang, R. Zavala Gutiérrez, B. Mendoza, and M. N. Huhns.Sharing
Ontology Schema Information for Web Service Integration, in: Pro-
ceedings of 5th International Conference on Computer and Information
Technology (CIT 2005), Shanghai, China, 2005.

[2] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy.
Learning to match ontologies on the Semantic Web, in: The VLDB
Journal, Vol. 12. Springer-Verlag 303–319, 2003.

[3] H. H. Do, S. Melnik, E. Rahm.Comparison of schema matching
evaluations, in: Proceedings of workshop on Web and Databases, 2002.

[4] J. Madhavan, P. A. Bernstein, and E. Rahm.Generic Schema Matching
with Cupid, in: Proceedings of the 27th VLDB Conference, Springer-
Verlag, 2001.

[5] N. F. Noy, M. A. Musen.Anchor-PROMPT: Using Non-Local Context
for Semantic Matching, in: Workshop on Ontologies and Information
Sharing at the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI). Seattle, WA, 2001.

[6] S. Melnik, H. Garcia-Molina, and E. Rahm. 2002.Similarity Flooding:
A Versatile Graph Matching Algorithm and its Application to Schema
Matching, in: Proceedings of the 18th International Conference on Data
Engineering. IEEE Computer Society Press, 2002.

[7] F. Giunchiglia, P. Shvaiko, and M. Yatskevich.S-Match: an algorithm
and an implementation of semantic matching, in: Proceedings of the 1st
European Semantic Web Symposium, Vol. 3053. Springer-Verlag 61–75,
2004.

[8] JWNL, “Java WordNet Library - JWNL 1.3”,
http://sourceforge.net/projects/jwordnet/, 2005.

[9] A. S. Bilgin. and M. P. Singh.A DAML-based repository for QoS-
aware semantic web service selection, presented atIEEE International
Conference on Web Services, 2004.

[10] C. Zhou, L.-T. Chia, and B. S. Lee.DAML-QoS ontology for web
services, presented atIEEE International Conference on Web Services,
2004.

[11] S. Kalepu, S. Krishnaswamy, and S. W. Loke.Reputation = f(user
ranking, compliance, verity), presented at IEEE International Conference
on Web Services, 2004.

Jingshan Huang is a Ph.D student in the Computer
Science and Engineering Department at the Unver-
sity of South Carolina. Mr. Huang is a member of
AAAI and SIAM, and a review board member of
Journal of Open Research on Information Systems
(JORIS). He has served as a program committee
member for several international conferences and
is a technical paper reviewer for many journals
and conferences. Mr. Huang’s research interests in-
clude ontology matching/aligning, ontology quality,
semantic integration, Web services, and service-

oriented computing. He can be reached at huang27@sc.edu.

Jiangbo Dangearned his Ph.D degree in Computer
Science from the Computer Science and Engineering
Department at the Unversity of South Carolina. Dr.
Dang’s research interests include distributed artifi-
cial intelligence and multiagent systems, service-
oriented computing, business process and workflow
management, and knowledge discovery, data min-
ing, and machine learning. He can be reached at
dangj@engr.sc.edu.

Michael N. Huhns is a professor of computer
science and engineering at the University of South
Carolina, where he also directs the Center for In-
formation Technology. Dr. Huhns is a Fellow of the
IEEE and a member of Sigma Xi, Tau Beta Pi, Eta
Kappa Nu, ACM, Upsilon Pi Epsilon, and AAAI.
He is the author of over 200 technical papers and
four books in machine intelligence, including the
recently coauthored (with Prof. Munindar P. Singh
of NCSU) textbookService-Oriented Computing:
Semantics, Processes, Agentsfor John Wiley Pub-

lishing Co. Dr. Huhns is on the editorial boards of seven journals and is a
founder and board member for the International Foundation for Cooperative
Information Systems and the International Foundation for Multiagent Systems.
Hi sresearch interests include multiagent systems, service-orinted computing,
and semantic Web services. He can be reached at huhns@sc.edu.

Yongzhen Shao is pursuing a Master’s degree in
the Institute of E-Business of Software School at
Fudan University, China. Mr. Shao’s research in-
terests include E-Business, Web services, and on-
tology management. He can be reached via email:
shaoyz@fudan.edu.cn.

