
J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. c©TROUBADOR PUBLISHING LTD) 1

Towards Pervasive Instant Messaging and Presence
Awareness

Xiaolei Zhang, Chun-Fai Law, Cho-Li Wang, Francis C.M. Lau
The University of Hong Kong

Received: January XX 2005; revised: November XX 2005

Abstract— This work envisions the benefits of applying the
Instant Messaging (IM) paradigm in pervasive computing envi-
ronments. With IM in such an environment, all smart entities,
human or not, can interact using IM as the unified interface.
To realize this vision, the design of a Smart Instant Messaging
(SIM) system is proposed, which features context-aware presence
management, user-centric resource configuration, and adaptive
grouping. This system extends the Jabber-based IM framework
and relies on an ontology-based supporting middleware to handle
the chore of retrieving and interpreting contextual information.
Three prototype versions of a client have been implemented and
their performance in terms of memory usage and response time
is evaluated.

Index Terms— Pervasive computing, instant messaging,
presence-awareness, ontology-based context middleware

I. INTRODUCTION

Instant Messaging (IM) enjoys enormous popularity nowa-
days. According to a 2005 AOL’s survey [1], 70% of Internet
users use instant messaging and 38% of them swap instant
messages no less than they send emails. With the proliferation
of handheld devices, mobile instant messaging is quickly
becoming mainstream, and demands the attention of both
industry and research. IM now pervades almost every aspect
of daily living—at home, at work, at school, and on the road.

Currently, the usage of IM is limited to supporting human-
to-human communication. Conceptually, however, in pervasive
computing environments, anything having some computation
and communication capability could be made a “talking”
buddy. It is no longer the privilege of human users to initiate
a conversation; rather, all smart resources could interact with
each other, or address a human user by their own initiation.
This yields a grand arena for the development of IM. By
extending the coverage to ubiquitous devices and resources,
IM would become a unified interface for all communications.
The benefits of a unified interface are as follows.

First of all, IM provides the simplest and a convenient
form of interaction, i.e., near-synchronous message exchange.
For human users, it connects people with more immediacy
than email and without the expense of a phone call. The
interaction approximates the natural face-to-face dialog of
human, and multi-tasking is possible. The quick, short and
informal conversation of IM favors abrupt encounters. These
features are in line with the goal of pervasive computing which

is to support users and their daily activities on an extended
scale of time and space.

The attractiveness of IM is also manifested in the aspect
of presence awareness. For IM, this is the feature that differ-
entiates it from other communication means such as email or
telephone. Presence at the basic level means the availability
status or responsiveness of a user to engage in a conversation.
People use this information to decide whether it is the proper
time to initiate a communication. In pervasive environments,
such awareness is essential, as the surrounding is expected
to be dynamic, and any attempt of communication could
easily return a failure. A pre-knowledge of the corresponding
party’s presence can improve the situation. The concept of
presence also applies to describing the availability status of
ubiquitous resources. In general, given instances of human (H)
and resource (R), presence awareness can be enabled for all
H-H, H-R, R-H and R-R pairs.

A common function of IM systems, contact list manage-
ment, can serve as an interface to browse environmental
resources. Currently, an IM user can keep a roster of contacts
(or “buddies”), which is displayed on the user’s device upon
logon. This list provides an immediate view of the buddies
and their status, and the user can contact them directly via the
list. By extending this function to include environmental re-
sources, the user can quickly locate and interact with whatever
resources they need, using the same familiar IM interface.

The above features suggest that IM can indeed serve as
a unified interface for pervasive communications. However,
current IM systems have yet to upgrade themselves in order
to realize this vision, as explained below.

First, the vocabulary and semantics of presence need to be
enriched. Primarily, presence is the direct opposite of absence,
indicating whether a person has logged on and is reachable.
Typical presence includes such status as “onlne”, “busy”,
“away”, “be right back” and “on the phone”, etc. But such
presence is insufficient to convey a user’s real situation. As
a result, users often have to leave a message to supplement.
Mobile users suffer more from the limited vocabulary. For
instance, a device can be connected and the user is online,
and yet the person can miss the message if the device is left
in pocket. The situation is worst for resources in general, for
which there is a lack of meaningful descriptions. Therefore,
the need to extend the presence vocabulary is imperative.

Updating of presence should be automatic. Current IM



2 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. c©TROUBADOR PUBLISHING LTD)

products require the users to consciously change their status,
which could be troublesome and error-prone. In commercial
IM systems like MSN Messenger and ICQ, a user’s desktop
activity is sometimes exploited to infer presence—for example,
the user’s status is set to “away” after a certain period
of non-activity; such result however is neither accurate nor
sufficient. For mobile IM users, manual update is an even
more formidable task, as their location could virtually be
everywhere and their activity anything. These users are more
likely to encounter abrupt situations and experience more
frequent changes. On the other hand, in contrast with desktop
users, it is less probable for a mobile user to be continuously
engaged with the device. Automatic presence update by the
system thus appears to be necessary.

In most products, a user’s presence appears the same to
all buddies, which leads to the block-all-or-block-none sit-
uation. This is clearly in contrast to human interactions in
which the acceptance or refusal of a conversation is not only
dependent on the principal’s status, but also on the relationship
between the two parties as well as the priority or urgency of
the message. Therefore, presence also implies the subjective
willingness of the user at a specific moment towards a specific
conversation. A more fine-grained mechanism for sharing
presence has yet to be devised.

Most current systems display all the contacts of a user in the
IM client. This practice, however, is ill-suited for the pervasive
environment as there could be hundreds or even thousands of
buddies. Displaying or searching in such a large collection
is difficult. Although grouping mechanisms are available for
a user to categorize their contacts, these mechanisms do
not scale well. Furthermore, the grouping is manually set
by users and would remain static thereafter. They may not
actually reflect the reality where people come and go and their
relationships evolve with time. Therefore, adaptive filtering
and grouping mechanisms are both necessary for the extended
IM usage.

Dealing with resources as buddies arouses a few issues. In
open, heterogeneous environments, the interaction of resources
could be somewhat serendipitous. Two processes are required
to make it happen, i.e., to discover each other and to establish
an acquaintance. Ideally, the discovery should only include
those resources that the user is interested in, and the resources
should be able to talk using free-form messages, in order
to fulfill the user-centric motto of pervasive environments.
However, such a feature can rarely be found in current
technologies.

Targeting these requirements, this paper presents Smart
Instant Messenger (SIM), an extended IM system for pervasive
environments. The essential idea behind is to treat every smart
entity as a buddy and use IM as the unified interface for all
interactions. In the proposed system, the context is exploited
to extend the presence vocabulary; and two types of group-
ing mechanism, namely vicinity-based grouping and activity-
based grouping, are devised to support dynamic and adaptive
organization of the contact list. The underlying infrastructure
manages and monitors the environments’ resources; distributed
intelligent proxies select and configure the resources with
context-sensitivity, and the user interfaces are dynamically

generated based on a device’s capability. A Jabber-based
framework is modified to incorporate the above new features
in the IM system. Context-awareness support is achieved by
an ontology-based middleware whose duty is to gather and
interpret context information on behalf of the applications as
well as the system.

The rest of the paper is organized as follows. Section
2 elaborates on the issues and design principles for the
extended IM usage. Section 3 overviews the architecture of
the proposed SIM system and discusses how the new features
are realized. The ontology-based context-aware supporting
middleware (CASM) is also introduced. Section 4 reports the
implementation details and the experimental results. Similar
work is compared and discussed in Section 5 and the paper is
concluded with reflection on experiences and an outlook for
future work.

II. ISSUES AND DESIGN

This work attempts to expand the potential of Instant Mes-
saging by extrapolating from this communication paradigm a
similar but new means of communication for the pervasive
computing environment. The previous section has discussed
new requirements that challenge existing IM concepts and
systems. This section will go over the issues and elaborate
on the approaches suggested by this work.

A. Context-aware presence management

The extended IM in this work demonstrates the features of a
real pervasive application which is used by anything, anytime,
anywhere and in any aspect of life. Aside from a ubiquitous
messaging service, the presence awareness function needs to
work on an unprecedented scale. As identified in the previous
section, three limitations exist in current presence services:
limited vocabulary, manual update, and unitary distribution.

For a human user, presence conveys the ability and will-
ingness to communicate. Though the concept of presence is
popularized by IM systems, its root can be traced back to
awareness research in Computer Supported Cooperative Work
[2], where the cues to promote awareness include virtually
everything: social, cognitive status, location, interaction and
communication status [18]. A more general view has suggested
that presence information should answer the questions of Who,
Where, When, How and Why [4]. Recent works have also
identified the insufficiency of basic information and responded
with some rich presence proposals [5][6]. However, there is
still a lack of consensus on what the vocabulary of presence
should contain.

We find presence to be a mixed concept, which involves the
observable, external situation of a user as well as the user’s
willingness at a specific moment towards a specific communi-
cation. The willingness is based on an internal re-interpretation
of the current situation, a process subconsciously carried out
by the human user. We figure also that the observable situation
of a user in fact is a subset of the user’s context which is highly
relevant to the communication act.

The observation above prompted us to consider factoring
a user’s presence into two levels. At the general level, we



AUTHOR SURNAMES HERE: ABBREVIATED PAPER TITLE HERE 3

enrich the vocabulary of presence using context information,
including the user’s activity, location, device capability, etc.
The other level encapsulates the user’s preferences and will-
ingness towards various communications, which is represented
by a set of user-defined rules.

The design of a presence service is thus also divided
into two parts. The generic presence service automatically
gathers and releases context information as the user’s enriched
presence. At the other level, mechanisms are provided for the
user to override the default presence. The user can manually
select a level of willingness, or use adaptive rules to adjust
the willingness against different people or situations. Such
knowledge is also used to guide the system for adaptive
sharing of presence information.

B. Activity-based grouping and vicinity-based grouping

In current IM systems, by a subscription request for a
buddy, a user can add the buddy to the contact list. This
way, the list grows or shrinks under the user’s manual control.
The mechanism is good enough for today’s use, since such
operations only happen occasionally and users tend to interact
with the people they actually know. However, this is not the
case when moving on to pervasive IM scenarios. We argue
that, to take advantage of environmental resources and chance
encounters, the contact list should not be pre-configured by
the user. Rather, the system should automatically adapt the
content to display to reflect the interest of the user at the
current moment.

Generally, there are two kinds of interaction for a human
user: intended and spontaneous. Intended interaction is typ-
ically based on a arrangement beforehand such as a shared
task requiring the users’ collaboration. Spontaneous interaction
usually takes place where the human users or computational
participants coincide temporarily at a location [7]. We can
therefore infer two indicators to be used by grouping mecha-
nisms, namely, shared activity and vicinity.

When people collaborate in a task, they need a means for
quick questions and timely responses. They also would like
related electronic resources to be ready for sharing. Consider
the situation of a clinical discussion about a certain patient. If
a doctor can see in his contact list the other doctors (remote
or co-located), nurses, electronic patient records, projector,
the real-time monitoring sensors of the patient, and so on
as a group, the efficiency of communication and accuracy of
diagnosis will both be improved.

Given the enormous growth of the number of mobile users
and the likely scenario of “hundreds of computers per room”,
chances for spontaneous encounter of human and all sorts
of resources will multiply. Many of us will benefit from the
serendipitous availability of other people and computational
resources as we move around during our everyday living.
Such are the situations when virtual and physical interactions
can integrate. Users can quickly switch to the real experience
of talking with someone, or discovering and manipulating a
device on hand. The physical vicinity can further be com-
plemented by the proximity of interest and disposition, just
like many online discussion groups where users are grouped

according to interests and background. This enhanced way of
grouping promotes socializing and knowledge communication
among human users.

In open, dynamic environments with evolving usage scenar-
ios, it is very difficult to predict a set of grouping mechanisms
that will be be sufficient. In this work, we choose to focus on
two mechanisms—activity-based grouping and vicinity-based
grouping, and leave the space of extension for future work.

C. User-centric resource configuration
In our envisioned environment, “resource” refers to anything

that has an identifiable functionality and is able to compute
and communicate on its own. In pervasive environments, the
number and types of such resources could be staggering, and
the user would need a highly efficient means to access them.
These resources can initiate the interaction too, for example,
to report an exception, or to reveal the progress of their tasks.

An important theme of pervasive computing is user-
centricity. The system design should be directed to support
the users and their tasks as the top priority, and to reduce
the amount of distraction. For a human user, the baseline
requirements are to be able to find an appropriate resource
and then to interact with it in a simple way. The system needs
to streamline the process for the user, which will discover and
select a suitable resource and establish the communication. In
recent years, we have seen technologies that deal with adver-
tisement and discovery of resources [8], including Jini and
UPnP; however, their focus is more on software infrastructure
support. In this work we aim at satisfying the user’s needs at
a higher level.

Discovering and selecting a resource need to take into
consideration such factors as the user’s preference, specific
task requirements, the current situation and status of the
resources, etc. The real-time decision must be made in a
context-aware fashion. Such a mechanism is especially useful
for mobile device users, as their devices could not put up
with a long list of choices to be displayed, or a lengthy,
energy-consuming process of manual selection. A practical
consideration for the user would be to provide them with a
customable graphical user interface or service menu which
is dynamically downloaded to the client device. Jini has the
concept of a proxy to connect to the service interface and
the underlying protocols. However, it cannot easily adapt to
specific user preferences or device displays.

This work proposes to describe a resource’s interface in an
extensible and machine-interpretable XML document. Instead
of downloading the whole UI software, the user client acquires
this document and generates a UI dynamically. This also
reduces the user’s and the device’s burden, since unnecessary
functionalities can be filtered out, and the UI can be organized
according to the user’s preferences. For example, when a
user looks for a photo editing application, the icon of a
suitable application appears on the contact list; and the only
the “resize” and “blur” functions show up on the right-click
menu. The result is so because it has been the user’s habit to
use only these two operations for photo-editing.

On the other hand, since the resource can also initiate
a conversation, it needs the capability to discover a user



4 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. c©TROUBADOR PUBLISHING LTD)

`

Distributed 

SIM Server

SIM Server

Smart 

Spaces

SIM Client

SIM Client

SIM Client

SIM Client

Fig. 1. Deployment of the SIM framework over smart spaces

and to “understand” a user’s presence. In order to reduce
unnecessary annoyance, the message delivery act may take
different approaches in different situations. A resource buddy
could delay the conversation until the user is available, send
the notification to the user’s mail box, or leave a voice message
in the user’s cell phone. Such flexibility is possible with the
necessary support implemented in the system.

III. SYSTEM ARCHITECTURE

We have designed and implemented a prototype of the Smart
Instant Messenger (SIM) system to address the requirements
discussed in the previous sections. Our approach is realized
using two layers. The IM Framework layer extends the existing
Jabber Instant Messaging platform to cater for new behav-
iors and features. The Context-Aware Supporting Middleware
(CASM) underpins the IM framework and handles the chore of
context provisioning, including retrieving context information
from various context providers, interpreting and reasoning
about contexts, and monitoring context changes on behalf of
the applications.

The SIM system is deployed within a pervasive environment
in a peer-to-peer architecture (Figure 1). In each smart room,
an SIM server operates to serve two purposes. First, it serves
as a message switch and collaborates with other servers to
relay IM messages. Second, it is the local repository of
environmental resources. All local and incoming resources
register to the server with their service descriptions. It is also
where discovery and resource selection would take place.

The main components of the SIM system and their inter-
actions are shown in Figure 2. Inside the SIM client, the
Instant Message module provides the basic message exchange
functions. The roster module is extended to include the
presence, dynamic grouping and resource buddy features.
The context module handles the context-triggered behaviors
through subscription to interested events; it also monitors the
user’s conversational behavior, collects the IM context (i.e.,
context inferred from chatting and typing) and passes it on to
CASM.

All the messages are XML formatted and go through the
server. The SIM server parses the message, retrieves the target
address and relays the message to the destination. It provides
several message handlers to deal with different message types,
including chat message, presence update, grouping mechanism
and resource configuration, etc. The resource repository in the

SIM Client

c
o

n
te

x
t

Provider

Change 

handler

ro
s

te
r

presence

grouping

resource

instant message

SIM Server

Context-aware 

supporting 

Middleware (CASM)

Resource

repository

Message 

handler

Roster

handlerP
a

c
k
e

t
ro

u
te

r

Context interpreter

Reasoning Context updater

T
o

 o
th

e
r 

IM
 s

e
rv

e
rs

(d
is

tr
ib

u
te

d
 a

rc
h

it
e

c
tu

re
)

Presence 

handler

Other context 

providers

E
n

v
ir

o
n

m
e

n
ta

l 

re
s
o

u
rc

e
s

CASM

interface

Knowledge

Base

Fig. 2. Interactions between the SIM components

SIM server admits and keeps track of all the local resource
descriptions. The roster handler takes charge of dynamic
resource discovery and selection, and feeds the resulting list
of resources back to the SIM client which later renders the
roster based on the information. During execution, the SIM
server would interact with CASM to query or subscribe to the
interested context via the CASM interface.

A. Realizing the features

This section will elaborate on how our system design fulfills
the requirements presented in section 2.

1) Context-aware presence management: As discussed in
section 2, presence is categorized into context presence and
user willingness. Resources have only context presence, or a
variation of that when they “prefer” to put specific users on
their priority list, for example, when they recognize a owner.

In order to support meaningful sharing of context presence,
a common vocabulary is needed. Ontology is an obvious
choice for this purpose, since it provides a formal, inter-
operable and extensible vocabulary for describing entities
and concepts. An ontology-based vocabulary also provides a
common language for defining user-specific rules.

Context presence includes situational information which the
user is willing to disclose, such as activity, location, the people
nearby, etc. Time can be added as an attribute to context
presence, as it usually indicates whether a conversation will
eventually be carried out, and if it will, when is the next
suitable moment for retry.

Sharing of context presence is enabled by CASM, which
actively collects user contexts on behalf of the applications.
When a user’s context is queried by a buddy for presence
information, it would be encapsulated in an XML-formatted
message, routed to the buddy’s client, and parsed and dis-
played in the roster.



AUTHOR SURNAMES HERE: ABBREVIATED PAPER TITLE HERE 5

SIM Client 1 CASMSIM Server
Context 

Provider
getRoster()

associateRules() & 

registerListener(presence)

subscribe() & 

update()
roster()

update()

updatePresence(status)

User 2 

updates 

presence

automatically 

when context 

changes.

changePresence()

SIM Client 2

changePresence(buddyID, status)

getPresence(buddyID_1, buddyID_2)

re
a

s
o
n

in
g

re
a

s
o
n

in
g

changePresence()

User 2 

informs User 

1 through IM 

Server.

User 1 

replies her 

presence to 

User 2.

Fig. 3. Sequence diagram for the adaptive presence notification process

A user’s willingness is either manually set by the user, or
inferred by the system according to some predefined rules. The
reasoning of the latter is based on the actual situation of the
user and the user’s relationship with the buddy. Therefore, the
sharing of presence is adaptive and different buddies may see
different statuses at the same instant. The process considers
the user’s preferences and exercises fine control over how a
user’s availability is distributed.

The following scenario illustrates the idea above. Suppose
user A is attending a presentation with other group members, a
situation which is detected by the CASM from environmental
clues. The context presence of A is inferred to be “in the
meeting”, and optionally with a more detailed description
about the meeting. The context presence could be masked,
if A would like to signal a “Do Not Disturb” (“DND”) to
A’s buddies. This can be done either manually or via some
pre-specified rules:

Rule 1: If I’m in a meeting, set my presence as “DND”;
Rule 2: If I’m in a meeting, set my presence to my group
members as “Available”;
Rule 3: If I’m in a meeting, set my presence to my supervisor
as “Available” .

Rule 1 is the general rule for automatic update of A’s
presence. Rules 2 and 3 specify the exceptions for which the
user is willing to raise the priority for those specific persons
in question.

The negotiation protocol takes into consideration the priority
of the message itself. Suppose user B has an important
message for A; an indication of “urgency” could be delivered
to A, and the negotiation process might result in changing A’s
status to “available”, which happens exclusively for B.

Figure 3 shows the adaptive presence notification process.
Upon initialization, the SIM client first registers the user
preference rules to the CASM, describing the conditions under
which the presence should be changed. It also prescribes
the different statuses that should be displayed for different
buddies. When a user’s status changes, for each buddy that
has a subscription, the presence to be displayed needs to be
reevaluated. The process is carried out by CASM, based on
inference with the pre-defined rules. In this way, a list of
updated presence is generated, and then dispatched by the SIM
server to the buddies accordingly.

Although presence is popularized by and intimately related
to IM systems, the technology of presence is indeed orthogonal
to that of Instant Messaging. Therefore, the mechanism for
presence awareness can also be integrated with other appli-
cations such as email and calendar. In pervasive computing
environments, it is highly desirable that presence support be
built as a generic, stand-alone system service, to be shared by
different applications and entities.

2) Activity-based grouping and vicinity-based grouping:
The SIM system provides an extensible set of grouping
mechanisms. In the current stage, we focus our attention on
vicinity-based grouping and activity-based grouping. Activity-
based grouping captures the user’s collaborative intention
to complete a task together with others. According to the
structure of an activity model [9], entities that constitute an
activity also include tools and objects that to be operated
on. Therefore, the definition of a group goes beyond those
by social software, and captures the temporary associative
relationship of both human and resources.

This work exploits the activity model to pre-define the struc-
ture and participants of a collaborative activity. Our definition
could specify a particular buddy, or the type of a resource.
Requirements can also be associated with components in the
model. When the condition is satisfied for an activity to start,
the system is notified and a process of discovery is initiated.
Based on the specified requirements, screening of resources
and buddies is done to form a workable group. The result is
then returned to the roster module in the SIM client, which in
turn updates the display.

Vicinity-based grouping is based on the discovery of users
and resources within the current locale. When a location
change event of a user is detected, a nearby SIM server
would register this client and retrieve from CASM the user’s
context and profile, as well as the profiles of the pending
tasks. Such information might be dispersed in various personal
applications such as calendars and address books, which is
compiled periodically by CASM to synthesize knowledge
about a user. Based on this knowledge, the server browses
its repository of all registered resources and human users
to find those that would interest the user. The resulting list
is organized and wrapped in an XML-format message and
returned to the user’s client device, which will then show up
in the roster.

3) User-centric resource configuration: A resource in the
SIM system needs to have a description file specified in XML
format. The file contains the profile of the resource, its func-
tionality, run-time behavior and possible context conditions.
Such a description file is registered to a proximate SIM server
upon registration, and is later used for matchmaking in the
discovery process.

In order to facilitate interaction with a user, a service menu
is provided with each resource in the user’s contact list. When
the user invokes the service, the requested operations are
wrapped in messages and directed to the resource. The service
menu, which could be in terms of a complex graphical user
interface, can be dynamically generated. The SIM system
uses the User Interface Markup Language (UIML) [10] for
abstractly defining the user interface of a resource. UIML is



6 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. c©TROUBADOR PUBLISHING LTD)

Context providers

User specified 
rules

Context
knowledge 

base

Sensor

Context 
updater

Context 
interpreter

Context
reasoner

Sensor Sensor

Change 

monitor

CASM

interface

Change 

handler

CASM

interface

Fig. 4. Detailed design of the context-aware supporting middleware

an XML markup language with tags to describe the structure
of UI elements, their properties and behaviors when being
manipulated. The advantage of using UIML is that it separates
interface code from non-interface, application logic, and it al-
lows multiple user interface descriptions to be associated with
one application logic. For example, for devices of different
resolutions, the GUI of the same application can be different.

In the SIM system, the UIML description of a resource is
also registered with the SIM server. When an interaction be-
gins, the corresponding description is shipped to the requesting
client, based on which the interface is dynamically rendered.
This way, the network load is reduced, and the adaptation and
user customization can be done on-the-fly.

B. Context-aware supporting middleware

The SIM system explicitly separates the context process-
ing routines from the application logic. A generic context-
aware supporting middleware (CASM) handles the chore of
processing, interpreting and reasoning for context information
retrieved from various context providers. The separation not
only alleviates the task of programming the context-aware fea-
tures of applications, but encourages reuse of context related
processes and results.

CASM features an ontology-based model for the formal
representation of contexts, which makes easy knowledge
sharing in the open, heterogeneous pervasive environment,
and enables various mechanisms to do logic-based context
reasoning. Contexts are classified into five categories: Device,
Person, Location, Time, and Activity. There also exist prop-
erties on relationship among these main classes. For example,
an instance of class “Person” can have a relationship called
“hasLocation” which links to an instance in the “Location”
class. All classes and relationships can be added or removed
as needed.

Figure 4 shows the detailed design of CASM. The Context
Interpreter translates the context compiled from heterogeneous
sources to form an OWL data instance which stores all
the dynamic context information (e.g., location, time, current

Fig. 5. Client-side GUIs for PC and PDA

activity) in files. The Context Updater directly manipulates
the context model. When the context model is first created,
the schema file will be parsed and the data type of the domain
and range for each property are specified. The Context Updater
validates the data type each time an add/remove request is
received. Upon a context query, it inquires the context model
and forms the answer in a format that can be used on the
client side easily. The Context Reasoner provides two kinds
of reasoning over the context ontology—transitive reasoning
and rule-based reasoning. The former is used to store and
traverse class and property lattices. The latter hosts a general
purpose rule engine, which performs rule-based inference over
the ontology. Depending on the schema and domain of the
ontology bound to the context model, rules can be written
to derive some implicit information or map information to a
standard format for the benefits of the applications.

CASM also provides a set of standard methods for the
application developers to update, query and register context
event listeners to the middleware. An application registers
interested context events to CASM, and relies on the latter
to monitor the environment on its behalf. A notification will
be issued when any of these events takes place, prompting
the Change handler module in the application to invoke the
corresponding event handling methods.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The SIM server uses and extends the open-source Jive
Messenger, which is now called Wildfire [11]. We extend
Jabber’s Extensible Messaging and Presence Protocol (XMPP)
[12], which is currently an Internet Engineering Task Force
draft, for the mechanism that reports the presence of buddies
and handles the interactions among human, software and
devices through XML messages. Both wireless LAN (802.11)
and Bluetooth connections are enabled in the environment.
We have implemented three versions of SIM clients: PC,
PDA and cell phone. The PC and PDA clients are from
modifying the open-source Jabber client program “JBother”
[13], and the cell phone version is built from scratch. All three



AUTHOR SURNAMES HERE: ABBREVIATED PAPER TITLE HERE 7

Fig. 6. Cell phone version of the GUI running in a Nokia emulator.

clients possess the basic functionality of IM dialog as well
as some advanced features such as context-aware presence
management, user-centric resource configuration and dynamic
grouping. The PC version has been used and tested in a
university campus environment, while the PDA version has
been adopted in a hospital to assist clinical staff in their daily
tasks. Figure 5 shows the client-side GUIs for the PC and
PDA clients respectively, where the PC client has six human
members and a printer in the roster; a right-click menu is
enabled for the printer, which can be used to invoke a series
of services. The roster in the PDA shows the resources and
clinical staff that are in a room.

Cell phone has gradually become a special platform where
technologies converge. The subscriber identity module in the
cell phone associates the device with the identity of of the
owner, such that the status and the location of a cell phone
provide a useful indication of the user’s situation. The potential
of SIM on cell phone is that it would improve users’ experi-
ences via presence sharing among a variety of communication
modes and applicated hosted in the phone, including phone
calls, email, and Short Message Service (SMS), etc. and would
unify them by means of a common interface. Figure 6 shows
a cell phone version of SIM running in a Nokia emulator.
The roster combines image icons and text descriptions for
a visualization of a buddy’s status. The client program is
currently implemented in J2ME (MIDP2.0).

Figure 7 demonstrates the two grouping mechanisms in
the SIM system. The first SIM client running on a PDA
groups people and resources according to their locations which
could be canteen, lab or office. The second one shows an
automatically formed group relating to a project, containing
six human members and a printer resource.

Sensors are used to obtain a snapshot of the environment:
light, noise, motion and temperature (Figure 8). At the current
stage of implementation, only in-door locations with the
granularity of a room are exploited. The various locations are
each assigned a symbolic identifier. The RFID technology is
used to identify people entering or leaving a room or place.
Users’ mobile phones are attached with RFID tags, and an
RFID reader at the door of each room would trigger an event

Fig. 7. Client-side GUI showing vicinity-based grouping and activity-based
grouping on an HP iPAQ H5500.

Fig. 8. Sensors used in the trials: RFID card reader, bluetooth access and
light sensors.

upon someone entering or leaving the room.
We have constructed several ontologies for pervasive com-

puting environments. Figure 9 shows one ontology used for
modeling the campus life. The Web Ontology Language
(OWL) is selected as the ontology language because of its
expressivity and standardization. Reasoning and inference over
the context models are based on the Jena [14] framework. A
set of rules have been developed to infer high-level contexts
from low-level facts. We notice that one of the most time-
consuming parts of the system (wireless delays excluded) is
related to the operation of the CASM middleware. As more
context instances are added into the context knowledge base,
the overhead of the middleware grows accordingly. This is an
area whether future optimization efforts can be targeted.

To test the performance, we evaluate the responsiveness
and memory consumption against the increase of the num-
ber of instances. A PC (Intel Pentium4 2.26GHz, 512MB
memory, Linux FC 3.0) running Jena version 2.2 hosts the
context-aware supporting middleware. A typical sequence of
operations is compiled as a sample test, including two adds
(adding instance data to the ontology), one remove (removal
of instance data), one class query and one instance query. The
numbers of instances we try are 300, 700, 1000, and 1800.
At each stage, the sampling sequence is performed and the
total processing time and memory usage are recorded. The
result shows an approximately linear growth of memory usage
varying from 17MB to 22MB and an average processing time
of 3.4s with variations within 0.2s. The performance of the
system is acceptable for non-crisis scenarios and adding more
instances would not cause much degradation.



8 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. c©TROUBADOR PUBLISHING LTD)

Owl: Context 

Entity

Device

Person

Activity

Location

Time

Speaker

Computer

...

Lecturer

Student

...

CurrentActivity

ScheduleActivity

...

ComputerLab

MeetingRoom

...

CurrentTime

TimeInterval

isSubClassOf

relationship

hasBuddy

isDeviceOf

hasDevice

hasDeviceLocation

hasActivity

isActivityOf

hasTimeInterval

hasLocation

isLocationOf

isDeviceLocationOf
isActivityLocationOf

hasActivityLocation

Fig. 9. Diagrammatic view of the campus ontology model

V. RELATED WORK

The concept of combining awareness with communication
is not new. In the computer supported cooperative work
community, awareness of a remote partner’s activity has been
exploited to facilitate coordination. For example, media space
[15] and porthole [16] use live video shows or snapshots to
display the partner’s office activities. The benefit of presence
has also been recognized by researchers to improve telephony.
For instance, Live addressbook [17] has taken advantage of
presence cues to provide status information in the telephone
book. Similar ideas can be found in [18] and [19].

Presence usage within Instant Messaging has also attracted
some research interest. Past research work proceeded mainly
along two dimensions. The first dimension aims to enrich
presence information, such as PLIM [20], ConChat [21] and
F@ [22]. PLIM combines functionalities related to location,
presence and instant messaging in a context-aware mobile
application framework. Conchat automatically offers cues to
users about the context of their contacts, enabling them to
exchange contextual information outside the main channel
of conversation. Both projects employed mobile devices and
described the extension of presence to work with them. How-
ever, sharing of presence is not adaptive and they do not take
resources into consideration. In the F@ framework, awareness
information is divided into four types: awareness of multiple
concurrent conversations, conversational awareness, presence
awareness of a group conversation, and visibility of moment-
to-moment listeners and viewers. This work, however, focuses
only on enhancing the awareness functions in the current IM
paradigm, and has not touched on the potential of IM to the
larger extent.

The second dimension is to devise system support for
automatic presence inference. Lilsys [23] exploits the ambient
sound, phone usage and computer activities to infer the un-
availability of a user. The Awarenex [24] system yields cues
about a user’s presence from location and calendar events, and
the idea of Rhythm is proposed there to model the pattern of a
person. These two projects resemble our work in the aspect of
automatic interpretation of context presence, but they did not
attempt to define a vocabulary of presence, and the sharing
of presence remains unitary. Perttunen et al. propose to utilize
both the initiator’s and the recipient’s contexts in inferring
presence [25] [26], which is similar to our SIM’s support for
user willingness. However, their work has not done anything
about the need to enlarge the presence vocabulary.

Kranz et al. [27] also promote the idea of extending the

presence in IM to a ubiquitous presence system. They offer
a tangible user interface for communicating one’s physical
state to a virtual communication system. Their work echoes
our concept of extending presence but the two approaches are
different.

Activity-based grouping is mainly addressed in groupware
or collaborative software, i.e., those computer-based systems
that support groups of people engaging in a common task (or
goal) and that provide an interface to a shared environment.
The focus in this research category caters to human users
and their collaborative operations, such as co-editing a paper.
Our work emphasizes more on providing an immediate and
familiar view of participants and available tools (resources),
where the “outeraction” [28] of IM is to be found. The idea
of vicinity-based grouping is similar to location-based services
[29], which is particularly true for the recommender systems in
tourism [30], where location-relevant information or services
are pushed to the user. However, our aim is different in that
we choose a popular application (IM) and apply its familiar
interface for browsing and interaction to nearly everything
encountered.

Using mobile device as the interface to access environmen-
tal resources is also promoted in [31] and [32]. The former
extends IM and its presence concept to include resources,
which is similar to our SIM, and the latter proposes to use
Short Message Service for communicating with resources.
Their work has a lot in common with the SIM system in
dealing with resources. However, our work does not only
focus on resources; instead, the vision of SIM is to extend the
IM style of communication and awareness to a much wider
scale covering ubiquitous devices and resources. Our design
for presence awareness targets at a generic service that could
benefit a wide range of applications. To our best knowledge,
there is no similar work on extrapolating the IM paradigm to
an extent like ours.

VI. CONCLUSION

In this research, we explore the vision of extrapolating
the instant messaging paradigm, fitting it to the pervasive
computing environment. We discuss the new requirements
arising from this vision, and revisit the somewhat obscure
concept of presence. We present solutions that meet these
requirements, and have implemented them in the Smart Instant
Messenger (SIM) system. This system transcends current IM
products with new features including context-aware pres-
ence management, user-centric resource configuration, and
adaptive grouping support. An ontology-based context-aware
middleware underpins the IM framework, which takes care
of retrieving, interpreting and reasoning over contextual data.
Experimental results suggest that our design is feasible. To
summarize, our design has followed the following principles:

1) User-orientation. An important theme of pervasive com-
puting is user orientation, which is to reduce distraction
on and maximize the personality of the user during
computation. The SIM system design has investigated
ways of fulfilling the user’s requirements and improving
the user’s experience. Presence update, for example, is



AUTHOR SURNAMES HERE: ABBREVIATED PAPER TITLE HERE 9

automatic, grouping is devised to fit real-life scenarios,
and resources are selected and configured according to
user preferences. We believe, in the future, putting the
human user at the center of any system design will
always be the optimal choice.

2) Separation of context provision from context consump-
tion. The chore of retrieving and managing contexts
need not be a part of the application; rather, a separate
middleware layer or the underlying system infrastructure
should be made responsible, which is the approach
adopted by SIM. On one hand, it makes life easier for the
programmers and reduce the load on the small devices;
on the other hand, the separated functions can form
a generic middleware which could potentially benefit
many different applications.

3) Design for extensibility. Extensibility is crucial in per-
vasive environments as users, applications, devices and
sensors come and go dynamically. Also, the users’
requirements might change rapidly over time. SIM
chooses the Jabber protocol for its extensibility fea-
tures, adopts a distributed architecture, and exploits an
ontology-based context modeling solution to facilitate
the re-use and integration of knowledge.

4) Prototype for real life usage. Pervasive computing is by
and large in its germinal stage. We believe live appli-
cations will stimulate and inspire more useful research.
Therefore this version of SIM has been designed to work
for a campus and clinical environments, where there is
a rich collection and variety of resources, users and use
cases. We believe these test environments could bring
about insights that can benefit future applications and
research.

The dual tradeoff between privacy and awareness, and
between awareness and disturbance [33] still exists. As SIM
treats nearly everything as an IM buddy, it aggravates the
problem, which we will address in our future research.

Ongoing work includes the refinement of the concept of
presence, the design of a pervasive presence ontology and
the exploration of ontology-mapping support. We also need to
devise ways to improve the performance of CASM. Another
plan is to deploy SIM in a range of real-life environments, in
order to gather more insights from diverse usage scenarios.

ACKNOWLEDGMENT

This research is supported by CERG grant HKU 7146/04E
from the Hong Kong Government.

REFERENCES

[1] America Online. Third annual instant messaging survey. Online resource.
http://www.aim.com/survey, 2005.

[2] P. Dourish, and V. Bellotti. Awareness and coordination in shared
workspaces. Proceedings of the ACM Conference on Computer-
Supported Cooperative Work CSCW92 (Toronto, Ontario), 107-114. New
York: ACM.

[3] A. Oulasvirta, M. Raento, and S. Tiitta. ContextContacts: re-designing
SmartPhone’s contact book to support mobile awareness and collabo-
ration. In proceedings of the 7th international conference on Human
computer interaction with mobile devices services, 167–174, Salzburg,
Austria, 2005.

[4] R. Chakraborty. Presence: a disruptive Technology. Presentation at Jabber
Conference, Denver, 2001.

[5] J. Jachner, S. Petrack, et al. Rich presence: a new user communications
experience. Alcatel telecommunications review, technical whitepaper. Q1:
73–77, 2005.

[6] H. Schulzrinne, V. Gurbani, et al. RPID: rich presence extensions to
the presence information data format. IETF RFC 4480, 2006. Online
resource: http://www.ietf.org/rfc/rfc4480.txt.

[7] M. Esborjörnsson, and M. Östergren. Issues of Spontaneous Collabo-
ration and Mobility. Workshopt on Supporting Spontaneous Interaction
in Ubiquitous Computing Settings, the 4th International conference on
Ubiquitous computing. Göteborg, Sweden, 2002.

[8] G. Richard. Service Advertisement and Discovery. IEEE Internet Com-
puting, 4(5): 18–26, 2000.

[9] Z. Gregory, et al. Activity theory: history, research and application.
Theoretical issues in ergonomics science, 1(2): 168–206, 2000.

[10] User interface markup language. Online resource. http://www.uiml.org/.
[11] Jive software. Online resource. http://www.jivesoftware.org/Wildfire/.
[12] Jabber/XMPP protocols. Online resource.

http://www.jabber.org/protocol.
[13] JBother Homepage. Online resource. http://www.jbother.org/.
[14] Jena: a semantic Web framework for Java. Online resource.

http://jena.sourceforge.net/.
[15] S.A. Bly, S.R. Harrison, and S. Irwin. Media spaces: bringing people

together in a video, audio, and computing environment. Communications
of the ACM, 36(1):28–46, 1993.

[16] P. Dourish, S. Bly. Portholes: supporting awareness in a distributed work
group. In proceedings of the SIGCHI conference on Human factors in
computing systems, 541–547, Monterey, California, United States, 1992.

[17] A. E. Milewski and T. M. Smith. Providing presence cues to tele-
phone users. In proceedings of the 2000 ACM conference on Computer
supported cooperative work, 89–96, Philadelphia, Pennsylvania, United
States, 2000.

[18] A. Oulasvirta, M. Raento, and S. Tiitta. ContextContacts: re-designing
SmartPhone’s contact book to support mobile awareness and collabo-
ration. In proceedings of the 7th international conference on Human
computer interaction with mobile devices services, 167–174, Salzburg,
Austria, 2005.

[19] A. Schmidt, et al. Context-aware telephony over WAP, Personal and
Ubiquitous Computing, 4(4): 225–229, 2000.

[20] A. J. H. Peddemors, M. M. Lankhorst, and J. de Heer. Presence, location,
and instant messaging in a context-aware application framework. In 4th
International Conference on Mobile Data Management (MDM), volume
2574 of Lecture Notes in Computer Science, 325–330, Springer, 2003.

[21] A. Ranganathan, R. H. Campbell, A. Ravi, and A. Mahajan. Conchat:
A context-aware chat program. IEEE Pervasive Computing, 1(3):51–57,
2002.

[22] M. H. Tran, Y. Yang, and G. K. Raikundalia. The F@ Framework for
Designing Awareness Mechanisms in Instant Messaging. the Australasian
Journal of Information Systems AJIS, 2006 (to appear).

[23] J. B. Begole, N. E. Matsakis, et al. Lilsys: sensing unavailability.
In proceedings of the 2004 ACM conference on Computer supported
cooperative work, November 06-10, 2004, Chicago, Illinous, USA.

[24] J. C. Tang, N. Yankelovich, J. B. Begole, et al. ConNexus to Awarenex:
Extending Awareness to Mobile Users. In proceedings Conference on
Human Factors in Computing Systems CHI’01, 221–228, Seattle, WA,
New York, NY, 2001. ACM press.

[25] M. Perttunen, J. Riekki J. Inferring Presence in a Context-Aware Instant
Messaging System. the 2004 International Conference on Intelligence in
Communication Systems, November 23-26, 2004.

[26] M. Perttunen, J. Riekki, et al. Experiments on mobile context-aware
instant messaging. In proceedings of the 2005 International Symposium
on Collaborative Technologies and Systems, 305–312, May 2005.



10 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. c©TROUBADOR PUBLISHING LTD)

[27] M. Kranz, P. Holleis, and A. Schmidt. Ubiquitous presence systems.
Proceedings of the 2006 ACM Symposium on Applied Computing (SAC),
1902–1909, Dijon, France, April 23-27, 2006.

[28] B. A. Nardi, S. Whittaker, and E. Bradner. Interaction and outeraction:
instant messaging in action. In proceedings of the 2000 ACM conference
on Computer supported cooperative work, pp. 79–88, Philadelphia, PA,
US, 2000. ACM Press.

[29] S. Barnes. Location-based services: the state-of-the-art. e-service jour-
nal, 2(3), 2003.

[30] S. Stabb, H. Werther, et al. Intelligent systems for tourism. IEEE
Intelligent Systems, bf 17(6): 53-66, 2002.

[31] J. Favela, et al. Extending instant messaging to support spontaneous
interactions in ad-hoc networks. In proceedings of ACM 2002 conference
on computer supported cooperative work, new orleans, Louisiana, 2002.

[32] F. Siegemund. Spontaneous interaction in ubiquitous computing settings
using mobile phones and short text messages. Workshop on supporting
spontaneous interaction in ubiquitous computing settings, the 2rd inter-
national conference of ubiquitous computing, 2002.

[33] S.E. Hudson and I. Smith. Techniques for addressing fundamental
privacy and disruption tradeoffs in awareness support systems. In pro-
ceedings of the 1996 ACM conference on Computer supported cooperative
work pp. 248-257, November 16-20, 1996, Boston, Massachusetts, US.

Xiaolei Zhang is a Ph.D candidate in the De-
partment of Computer Science at the University of
Hong Kong. Her research interest includes pervasive
computing, context aware systems and applications.
She received her B.S. and M.S from Nanjing Uni-
versity, China in 2000 and 2003 respectively, all in
computer science. Contact her at the Department of
Computer Science, the University of Hong Kong,
xlzhang@cs.hku.hk.

Chun-Fai Law received the B.Eng degree in Com-
puter Engineering from The University of Hong
Kong in 2005. He is currently an M.Phil candi-
date in the Department of Electrical and Electronic
Engineering at the University of Hong Kong. His
research interests include pervasive computing, dis-
tributed computing, wireless networking, and sen-
sor network security. He is a student member of
IEEE. Contact him at the Department of Electrical
and Electronic Engineering, the University of Hong
Kong, cflaw@eee.hku.hk.

Cho-Li Wang received his Ph.D. degrees in Com-
puter Engineering from University of Southern Cali-
fornia in 1995. Dr. Wang’s current research involves
context-aware software systems for Pervasive Com-
puting, Grid middleware with migration support, and
distributed Java Virtual Machine on clusters. He is
now on the editorial board of the IEEE Transaction
on Computers, the International Journal of Pervasive
Computing and Communications (JPCC), and Mul-
tiagent and Grid Systems (MAGS). He also serves
as a regional coordinator (Hong Kong) of IEEE

Technical Committee on Scalable Computing (TCSC). Contact him at the
Department of Computer Science, the University of Hong Kong, Hong Kong,
clwang@cs.hku.hk.

Francis C.M. Lau received his PhD in computer
science from University of Waterloo. He is a Pro-
fessor of the Department of Computer Science at
the University of Hong Kong. His research interests
are in parallel and distributed computing, object-
oriented programming, operating systems, Web and
Internet computing, computer graphics, and AI. He
is a senior member of the IEEE. Contact him at the
Department of Computer Science, the University of
Hong Kong, Hong Kong, fcmlau@cs.hku.hk.


