
A Pragmatic Approach for the Semantic Description
and Matching of Pervasive Resources

Ayomi Bandara1, Terry Payne1, David De Roure1, Nicholas Gibbins1, and Tim Lewis2

1 University of Southampton, Southampton, UK
{hmab02r, trp, dder, nmg}@ecs.soton.ac.uk,

2 Telecommunications Research Laboratory, Toshiba Research Europe Ltd, Bristol, UK
Tim.Lewis@toshiba-trel.com

Abstract. The increasing popularity of personal wireless devices has raised new
demands for the efficient discovery of heterogeneous devices and services in per-
vasive environments. With the advancement of the electronic world, the diversity
of available services is increasing rapidly. Traditional approaches for service dis-
covery describe services at a syntactic level and the matching mechanisms avail-
able for these approaches are limited to syntactic comparisons based on attributes
or interfaces. In order to overcome these limitations, there has been an increased
interest in the use of semantic description and matching techniques to support ef-
fective service discovery. In this paper, we present a semantic matching approach
to facilitate the discovery of device-based services in pervasive environments.
The approach includes a ranking mechanism that orders services according to
their suitability and also considers priorities placed on individual requirements in
a request during the matching process. The solution has been systematically eval-
uated for its retrieval effectiveness and the results have shown that the matcher
results agree reasonably well with human judgement. Another important prac-
tical concern is the efficiency and the scalability of the semantic matching so-
lution. Therefore, we have evaluated the scalability of the proposed solution by
investigating the variation in matching time in response to increasing numbers
of advertisements and increasing request sizes, and have presented the empirical
results.

1 Introduction

Recent technological trends in electronics have resulted in a change in lifestyle, whereby
pervasive mobile devices such as mobile phones, PDA’s, GPS devices, etc. have become
an integral part of everyday life. This trend, together with the advancement in wireless
communications (resulting in an increasingly wireless world) have raised users’ expec-
tations about the accessibility of services in pervasive environments. This has raised
challenges for service discovery in a dynamic environment, where the services accessi-
ble to a user can change continuously. Although there are several traditional approaches
to service discovery such as UPnP [1], Jini [2], etc., in general these provide syntactic
approaches to service description and discovery, whereby locating appropriate services
rely on matching service descriptions based on keywords or interfaces. As such, they
cannot detect a match in cases where the service descriptions involve different repre-
sentations of conceptually equivalent content, which thus poses a serious limitation.

With the advent of the Semantic Web, there has been an increased interest in the
use of semantic descriptions of services and the use of logical reasoning mechanisms

to support service matching. The advantage of such frameworks include the ability to
extend and adapt the vocabulary used to describe services and to harness the inferential
benefits of logical reasoning over such descriptions. Recently, a number of semantic
matching approaches have been developed (targeted at different domains), which try to
address various limitations in the traditional discovery techniques.

Chakraborty et. al. [3] and Avancha et.al. [4] have proposed Semantic Matching ap-
proaches for pervasive environments. Both use ontologies to describe the services and
a Prolog-based reasoning engine to facilitate the semantic matching. They provide ‘ap-
proximate’ matches if no exact match exists for the given request. However, the criteria
used for judging the ‘closeness’ between the service advertisements and the request is
not clear from the literature. In both these approaches, the matching process does not
perform any form of match ranking. There have also been a number of efforts that use
description logic (DL) based approaches for semantically matching web services. For
example the matchmaking framework presented in [5] uses a DAML-S based ontology
for describing the services. A DL reasoner has been used to compute the matches for
a given request, where matches are classified into one of its five “degrees of match”
(namely Exact, Plug-In, Subsume, Intersection and Disjoint) by computing the sub-
sumption relationship of the request description w.r.t. all the advertisement descriptions.
No ranking is performed in the matching process, although the match class suggesting
the ‘degree of match’ gives an indication of how ‘good’ a match is.

In general, these semantic matching solutions have provided important research di-
rections in overcoming the limitations present in the traditional approaches for service
matching. However, they have a number of overlooked issues and lacks certain desir-
able properties that must be present in an effective solution to support service discovery.
Particularly, these approaches lack an appropriate criterion to approximate the available
service advertisements with respect to a given request and to rank them accordingly.
Furthermore, these approaches do not consider any priorities/ weights on the individual
requirements of a request during the matching process.

In this paper we present a solution to facilitate the effective semantic matching of
resources in pervasive environments. The proposed matching approach semantically
compares the request against the available services and provides a ranked list of most
suitable services. The rank will indicate the appropriateness of a service to satisfy a
given request. The matching process also considers the priorities/ weights on the indi-
vidual requirements of a request. The retrieval effectiveness of the proposed solution
has been systematically evaluated by comparing the match results with human judge-
ment. Furthermore, the semantic matching solution must be scalable and must demon-
strate acceptable execution times for it to be used in practice. Therefore, we investigate
the scalability of the proposed solution w.r.t. the number of advertisements involved in
matching and the request size (i.e. the number of requirements in a request).

The remainder of this paper is organised as follows: Section 2 discusses the motiva-
tion behind the proposed matching framework and identifies the requirements of a prag-
matic approach for matching pervasive resources. Section 3 describes the methodology
behind the matchmaking framework and its implementation in a pervasive scenario.
Section 4 discusses the experiments carried out to evaluate the retrieval effectiveness
and scalability of the proposed semantic matching solution and presents the results ob-
tained. Section 5 presents the concluding remarks and the future directions of this work.

2 Motivation and Requirements

A pragmatic approach for semantic service matching must possess several properties
and must satisfy certain requirements for it to be effective and usable in practice. In this
section we discuss these along with the motivating reasons behind them.

Semantic Description and Matching: The use of reasoning mechanisms to support
service discovery and matching enables logical inferencing over the service descriptions
and therefore offers several benefits over the traditional syntactic approaches. It is often
the case, that the service providers usually describe devices in terms of lower-level
properties, and the service seekers or clients usually prefer to describe service requests
using more abstract or higher level concepts. Semantic matching approaches supported
by logical reasoning mechanisms will be able to identify a match between logically
equivalent services that have syntactically different descriptions and therefore can offer
flexibility in how the service advertisements and requests are described.

Ranking of Potential Matches: Ranking refers to the ordering of the available
advertisements in the order of their suitability to satisfy the given request. In the absence
of an exact match, a requester might be willing to consider other advertisements that are
closer to the request and thus the ranking will be useful in gaining an understanding of
the appropriateness of the advertisement. Most existing matchmaking solutions do not
have an effective criterion to rank the available services according to their suitability.
Providing a ranking mechanism that will rank the advertisements on the basis of how
well it satisfies the properties specified in the request, is one of the main objectives
behind the proposed matching approach.

Approximate Matching: Providing approximate or flexible matching, is one of the
core objectives of semantic matching. i.e. services that deviate from the request in cer-
tain aspects should not be discarded but must be ranked or classified appropriately to
indicate the suitability. In current Description Logic approaches for semantic matching
([5], [6], etc.), the suitability of the advertisements have been determined based on the
taxonomic relation between the concepts. However, we argue that this is not sufficient
in determining similarity for the purpose of resource matching in certain situations.
For example, consider the concept Processor; assume there is a request for a computer
that has a Pentium4 processor, and advertisements of computers with processors Pen-
tium3 and Pentium1. Both Pentium3 and Pentium1 will be disjoint from the originally
requested concept of Pentium4; however, a requester may consider Pentium3 to be a
better match than Pentium1 and thus would be ranked higher. Hence, the type of at-
tribute involved in the individual requirement of a request will have to be considered in
approximating and ranking of advertisements. The different types of attributes and the
approach taken in judging the similarity between them is presented in Section 3.

Consideration of Priorities on Requirements: In many practical scenarios, cer-
tain requirements/ attributes in a request will be more important than others, either due
to the context involved or the subjective preferences of the user. In such cases, facil-
itating priority-handling in the matching process will produce match results that are
more relevant and suitable for the context involved. Most existing semantic matching
approaches do not consider any priorities or preferences that a user/agent may be having
with respect to various attributes or properties of a service (except in [6]). Mandatory
requirements or strict matching requirements have to be considered when the resource
seekers requires a certain individual property requirement in a request, to be strictly met
by any potential resource advertisement. I.e. resource seekers will not want to consider
any advertisements that will have even a minor deviation, with respect to that property.

Mandatory requirements can in fact be viewed as a specific case of priority assignments.
Priorities and mandatory requirements will be taken into account in the proposed work
by giving a service requester the option of placing priorities/ weights on the specified
attributes of the service request. These priorities will be considered during the matching
process when evaluating the suitability of the advertisements w.r.t. a given request.

Performance of the Matching Solution: The matching approach must demonstrate
a reasonable level performance w.r.t. the retrieval effectiveness and efficiency. Retrieval
effectiveness refers to the ability of the matcher to retrieve ‘relevant’ matches (as deter-
mined by a domain expert/user) in relation to a given resource request; i.e. the matcher
results must agree reasonably well with human judgement. Also, the matching solution
must be scalable and must demonstrate reasonable response times for it to be used in
practical environments. Therefore, we have evaluated the effectiveness of the proposed
solution by comparing the match results with human judgement, and have investigated
the scalability (against increasing numbers of advertisements and increasing request
sizes) and response times of the implemented solution.

3 The Semantic Matching Approach
3.1 Description of Requests and Advertisements

For effective semantic matching, the services must be described in a language that will
facilitate logical reasoning. In the proposed approach, we use the Web Ontology Lan-
guage (OWL) to describe the requests and advertisements.

A request will typically consist of several individual requirements to be satisfied.
Each requirement will specify: the description of the requirement (which is the re-
source characteristic the resource seekers expect in a resource, for the their needs to
be satisfied) and the priority or weight of that individual requirement, which will be a
decimal value that indicates the relative importance of the particular requirement. The
priority value can also be used to indicate if the requirement considered is a mandatory
requirement; i.e. if the requirement should be strictly satisfied in an advertisement for
the requester to consider it as a potential match. The description of an individual re-
quirement will include the property or attribute the requesters are interested in and the
ideal value desired. The request will take the form:

Request ≡ (Req1) � (Req2) � . . . � (Reqn)

where Reqi is an individual requirement3. The requirement takes the form:

Req � (= 1hasDescription.RD) � (= 1hasPriority.PriorityV alue)

where RD is the requirement description, which can be either a named concept or an
existential restriction of the form, ∃p.C where p is a role and C is a named concept or
a complex concept. For describing each RD, an ontology that describes the services
in the domain concerned can be used. The PriorityV alue indicates the relative im-
portance of the individual requirement in the request. This is a decimal value defined
between 0 and 1. In addition, to indicate that the requirement is a mandatory require-
ment that must be strictly met in any potential match, the PriorityV alue is defined as

3 Although the resources are described in OWL, for the sake of readability and brevity of this
discussion, we have used description logic (DL) notation. An explanation of the syntax and
semantics of the DL language can be found in [7].

2. The resource seeker must pick the appropriate PriorityV alue (according to these
pre-defined values) for each individual requirement, to indicate its relative importance.

The resource provider will specify all the relevant characteristics of the available
resource in the resource advertisement. The advertisement can take the form:

Advertisement ≡ (r1) � (r2) � . . . � (rn);

where ri is either a named concept or an existential restriction describing a characteris-
tic of the resource.

3.2 Judging Semantic Similarity

We distinguish between three types of concepts or properties occurring in the individual
requirements of a resource description for the purpose of approximate matching. These
types and the method followed in determining similarity within each of these types
during the matching process, are discussed below.

Type 1: Named Concepts having a Taxonomic Relation: When two concepts are
related through a taxonomy, the subsumption or taxonomic relation between these two
concepts can fall into one of five categories. Assuming CR is the requested concept and
CA is the advertised concept; the possible taxonomic relations and the similarity scores
assigned in each case are summarised in Table 1.

Table 1. Assignment of similarity scores when Subsumption Relation is considered

Taxonomic Relation Between CR and CA Similarity Score
CA ≡ CR 1.0
CA � CR 1.0
CR � CA t (where t ∈ [0, 1])

¬(CR � CA � ⊥) r (where r ∈ [0, 1])
(CR � CA � ⊥) 0.0

For cases when CA is a super concept of CR and when CR and CA intersect; the
similarity between the concepts (t and r) will be a value between 1 and 0. In this case we
have to judge the similarity based on the probability of satisfying the given requirement.
i.e. given that what is available is CA, we have to judge the likelihood that it is also CR.

There have been a number of approaches for determining similarity between con-
cepts in a taxonomy [8, 9], that are based on probability. Since the exact number of
instances belonging to the classes in a taxonomy are not known; these approaches take
into account the fact that the number of instances of a class are inversely related to
the depth of the class in the hierarchy; i.e. the number of its superclasses or ances-
tors. Based on this assumption, Skoutas et.al. [10] have provided an estimation for the
similarity between two concepts CR and CA (the values for t and r in this case) as:

t | r =
|A(CA) ∩ A(CR)|

|A(CR)| (1)

where A(C) denotes the set of superclasses of a class C. Note that in the case when
CR � CA; |A(CA) ∩ A(CR)| = |A(CA)|. Therefore t = |A(CA)|

|A(CR)| .
Hence Similarity Score for two concepts CR and CA can be determined as:

SimilarityScore(CR, CA) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if CA ≡ CR
|A(CA)|
|A(CR)| if CR � CA

1 if CA � CR
|A(CA)∩A(CR)|

|A(CR)| if ¬(CR � CA � ⊥)
0 if CR � CA � ⊥

(2)

Type 2: Named Concepts not having a Taxonomic Relation: There may be cer-
tain classes of concepts where although no subsumption relation exists between them
(disjoint concepts), some concepts can be thought of as being ‘more closer or similar’
to another concept than the rest. When properties involve such concepts, some other
method will have to be sought to find the similarity between such concepts.

Consider the scenario when reasoning with the following concepts: Processor Type
(Pentium 3, Pentium 4, Athlon etc.), Display Type (CRT, LCD, Plasma etc.) or Paper
Size (A0, A1, B1 etc.). If a service requester requires a computer with a Pentium 4 pro-
cessor, how can we rank service advertisements having Pentium 3, Celeron and AMD
Athlon processors as their processor type? In this case we have to use some similar-
ity measure that indicates the closeness between the concepts (the different processor
types in this example) in order to assign a sub-score with respect to the processor type
requirement and thereby match the request and advertisement.

Several proposals for measuring concept similarity exist; Schwering in [11] pro-
vides an overview of some of the existing approaches. For example Tversky et. al. in
[12] has proposed a feature-based metric of similarity, in which common features tend
to increase the perceived similarity of two concepts, and where feature differences tend
to diminish perceived similarity. For instance, Tomato and Cherry are similar by virtue
of their common features Round, Fruit, Red and Succulent. Likewise, there are dissim-
ilar by virtue of their differences, namely Size (Large versus Small) and Seed (Stone
versus NoStone). Hence in our work, if we wanted to find similarity between different
Processor Types for example, the features/properties of the Processors such as clock
speed, cache size, manufacturer, etc. will have to be used in measuring the similarity.

However, measuring similarity between concepts is not within the scope of the cur-
rent research and we assume that the knowledge of concept similarities between such
concepts is available to the semantic matcher (either measured by using a third party
approach for semantic similarity measurement or available as domain knowledge). This
knowledge will then be used during the matching process by the semantic matcher, to
obtain similarity values between Type 2 concepts. Hence for the purpose of matching,
Similarity Score for two Type 2 concepts CR and CA can be determined as:

SimilarityScore(CR, CA) = ConceptSimilarity(CR, CA) (3)

Type 3: Constraints on Datatypes: When available resources fail to meet requested
characteristics with respect to numeric attributes, the domain users tend to evaluate the
suitability of the available resources in proportion of the violation of the requested nu-
meric constraint. For instance, if a resource seeker requires a computer with a memory
size of 1GB, and there are two available advertisements of computers with memory size
of 512MB and 256MB, these two advertisements both fail to meet the requirement set
by the resource seeker. If only DL subsumption reasoning is used, both will be classified

as failed matches. However, for effective approximate matching, they must be distin-
guished for the level of deviation from the original request and penalised accordingly
during the matching process; i.e. the second advertisement (with the 256MB memory
size) must be ranked lower when ranking.

Thus, when judging the similarity within individual requirements that involve nu-
meric or datatype properties, the similarity measure has to consider the extent to which
an available numeric value (in an advertisement) can satisfy the requested datatype cri-
terion specified in a request. i.e. if a restriction ‘>20’ applies, how well would values
of ‘21’, ‘18’ and ‘15’ satisfy this constraint? Assuming that is a flexible or imprecise
criterion, intuitively we could say that ‘21’ strongly satisfies the constraint, whereas
‘18’ and ‘15’ partially satisfy the constraint. Dealing with such cases of imprecision
and vagueness is the principle behind fuzzy logic [13] introduced by Zadeh.

There have been many motivating scenarios in a variety of application domains,
that stresses the need for dealing with fuzziness and imprecision in the Semantic Web
and description logics. Straccia in [14] has presented a fuzzy description logic that
combines fuzzy logic with description logics. Typically, DLs are limited to dealing
with crisp concepts; an individual is either an instance of a concept or it is not. In
Fuzzy description logics, the concepts can be imprecise and thus an individual can
belong to a concept only ‘to a certain degree’; it allows for expressions of the form
〈C(a)n〉, (n ∈ [0, 1]) which means ‘the membership degree of individual a being an
instance of the concept C is at least n’. For example, there can be a concept Tall and
an individual tom can belong to the concept Tall to a degree of at least 0.7.

However, unlike in the domain described by [14], the knowledge base dealt with in
the proposed semantic matching framework is not fuzzy. i.e. it contains precise knowl-
edge and crisp concepts. For example concepts such as Computer, Processor, Pentium4
are all crisp concepts and an individual is either an instance of such a concept or it is not.
Also, the resource requests or advertisements do not contain any fuzzy predicates such
as Large Memory, High Capacity Disk etc., but specify precise concepts or data values.
However, in approximate matching, when judging similarity within individual require-
ments of a request that involves constraints on datatypes, it is desirable to consider these
as soft constraints as already emphasised. Therefore, we consider the relevant data range
restrictions to be fuzzy concepts or fuzzy boundaries and follow the approach discussed
in fuzzy description logic [14] when determining similarity between the required and
the available property values.

Datatype constraints specified in a request can be an exact, at least, at most or
a range restriction. These datatype constraints specified will be considered as fuzzy
boundaries and the deviation with respect to the specified constraint can be evaluated
using a fuzzy membership function. Due to space limitations, the details of the mem-
bership functions we use will not be included in this paper. However, a more detailed
discussion can be found in [15]. A constraint for a datatype property in a requirement
(ck,l) can take the form of (= k), (≥ k), (≤ k), or (≥ k � ≤ l) for given constants k
and l. If the value for the same datatype property in the advertisement is specified as v,
then the similarity score between a constraint ck,l and v (indicating how well v satisfies
the required constraint ck,l) can be determined as:

SimilarityScore (ck,l , v) = µ(v; k, l) (4)

where µ denotes the membership function and µ(x) ∈ {≥k (x), ≤k (x), =k

(x), ≥k,≤l (x)}

3.3 Matching Process and Implementation
A request will consist of a number of individual requirements along with their priority
values. The presence of any mandatory requirements that must be fully satisfied by
any potential match will also be indicated by using the appropriate priority value as
described in Section 3.1. In the matching process, the available resource will be checked
to see if each mandatory individual requirement (RD) is satisfied in the advertisement
description. If the mandatory requirement(s) are met, then the advertisement will be
evaluated through approximate matching.

In approximate matching, the available resources should be evaluated according to
how well it satisfies each individual requirement specified in a request; i.e. the match-
ing engine should quantify the extent to which each individual requirement description
(RD) is satisfied by the resource advertisement. For this, the matching engine will
check how similar the advertisement is with respect to each non-mandatory require-
ment (RD) specified in the request; the similarity will be determined depending on the
semantic deviation of the expected value in request and the available value in advertise-
ment for the same requirement, and a score will be assigned accordingly (Score i).

Each characteristic specified in the request (RD) can be a named concept(CR) or an
existential restriction (∃p.CR). If it is a named concept, similarity will be compared be-
tween the corresponding concepts in request and advertisement (Similarity(C R, CA));
the degree of similarity between concepts will be determined depending on the type
of concept or attribute involved, as discussed in Section 3.2. If it is an existential re-
striction, the corresponding existential restriction(s) will be found in the advertisement
(∃p.CA) and the similarity will be compared between the corresponding concepts in
request and advertisement. If it is a composite concept, the similarity will be judged
recursively. The score (Scorei) for each individual characteristic in the request will be
assigned depending on this similarity.

A score (Scorei) is assigned for each sub-requirement (RD) specified in the re-
quest. The score for the advertisement (match score) will be determined by using the
weighted average of these individual scores (the weight will be the corresponding prior-
ity value of each individual requirement). MatchScore =

∑n
i=1 wi.Scorei÷

∑n
i=1 wi

where wi and Scorei is the priority value and the score of the individual requirement
RDi. The overall score for the advertisement provides an indication of how good the
advertisement is in satisfying the given request. The score for an advertisement will in
turn be used as the basis for ranking; the highest score will receive the highest rank and
so on. The algorithm for the matching process and an example illustration can be found
in [15].

The proposed semantic matching approach has been implemented in a pervasive
context for matching of device based services. The advertisements and the individual
requirements in a request are described using the Device Ontology presented in [16]
(available at http://www.ecs.soton.ac.uk/˜hmab02r/DeviceOnt/
DevOntology.owl). This facilitates the description of features and functionalities
of the devices and their services. The necessary ontologies were developed with the
Protégé ontology editor. The matching engine was implemented in Java and the Pel-
let DL reasoner in combination with the Pellet-API is used to facilitate the necessary
reasoning tasks during the matching process.

4 Evaluation

We evaluate the matching framework with respect to two aspects: effectiveness (i.e.
how good the system is in discovering the relevant or suitable resources); and effi-
ciency/scalability, to justify that any compromise in performance resulting from the
involvement of reasoning mechanisms, is outweighed by the benefits gained from se-
mantic matching. The solution must be scalable and must demonstrate acceptable exe-
cution/response times for matching, to be applied in practical environments.

4.1 Evaluating Retrieval Effectiveness

The proposed matching solution was evaluated for effectiveness by comparing the re-
sults of the matching system with human perception. This is done by comparing the
matcher rankings with the rankings provided by domain users that rank the available
resources in the same scenario4. We conducted several experiments to test the effective-
ness of the proposed matching solution in four aspects. Specifically, the experiments
were devised to test the added utility of: (1) ranking (as opposed to classification) of
matches, (2) using the proposed approximate matching mechanism (as opposed to us-
ing subsumption reasoning alone), (3) consideration of priorities on individual require-
ments during the matching process, and (4) consideration of mandatory requirements.

Due to space limitations, the detailed results of all the experiments in this evaluation
exercise will not be presented in this paper. However, a more detailed discussion of the
experiments: the human participant study, experimental results and their analysis, are
presented in [15]. In general, the results from the effectiveness evaluation experiments
demonstrated that the Semantic Matcher results are compatible with human judgement
and thus is effective in retrieving the relevant matches. Specifically, through the ex-
perimental results it was observed, that each of the desirable properties present in the
Semantic Matcher, namely: ranking of matches, approximate matching, consideration
of priorities on individual requirements and consideration of mandatory requirements
in the matching process, has caused the match results to be more effective.

4.2 Evaluating Scalability

The proposed semantic matching approach must have a reasonable level of performance
(w.r.t. matching time) for its practical use in facilitating the discovery of resources.
Therefore, we evaluate the performance of the solution using the prototype implemen-
tation of this system, through the use of two experiments. Specifically, we investigate
the scalability of the solution in terms of the number of advertisements matched and the
size of the resource request. The objective of this evaluation exercise is to investigate
the variation in execution time of the matching process, when the number of advertise-
ments matched and the size of the resource request increases. If the Semantic Matcher
is scalable, the execution times must be acceptable, for reasonable numbers of adver-
tisements and request sizes. The experiments were carried out using a 3.2GHz, Intel
PentiumD PC with 2GB of memory. The execution times are averaged over 30 runs and
therefore the results are significant at a 95% confidence interval.

To test the scalability of the system in terms of the number of advertisements in-
volved in the matching process, we vary the number of advertisements available for

4 A human participant study was conducted to obtain the human rankings for this evaluation
exercise.

matching between 10 and 10000 and the execution time taken for the matching process
is measured in milliseconds (while keeping the size of the request constant at 4). We
obtain two sets of results:

1. When the resources are described using the Printer Ontology 5 which contains 126
concepts, 67 properties and 65 restrictions.

2. When the resources are described using the Computer Ontology 6 which contains
156 concepts, 103 properties and 75 restrictions.

Figure 1(a) graphically illustrates the execution times for both ontologies. It can be
observed from the two plots, that for both ontologies the execution times for the match-
ing process keeps increasing, with increasing numbers of advertisements. The execution
time becomes noticeably high, when the number of advertisements involved is high. For
example, it has taken approximately 37 seconds to match 2000 advertisements with a
request; this will mean a response time of 37 seconds when 2000 advertisements are
present. Although the matching times are relatively low for small numbers of advertise-
ments, these response times may become undesirable in the presence of a large number
of advertisements. To overcome this issue, load balancing solutions that will distribute
the matching load between a number of nodes [17], can be used.

It can also be observed that, the execution times taken when the advertisements and
requests are described using the Computer ontology (which is the larger ontology), are
generally higher when compared to the execution times related to the Printer ontology.
This may be due to the fact that, when the size of the ontology is larger, the knowledge
base that the reasoning mechanism has to deal with becomes larger and thus this can
affect the execution time.

Although the plots seems almost linear, on closer observation of the execution times,
it can be seen that the gradient of the plot keeps gradually increasing (from 17.34 to
22.88 for the plot related to the Computer ontology) when the number of advertisements
increases. However, the rate of the increase observed is low. The execution time taken to
match reasonable numbers of advertisements7, can be observed to be within acceptable
limits. For example, when the number of advertisements is 200 and 500, the matching
time taken is approximately 4.5s and 9.8s respectively (for Printer Ontology). Thus,
the results indicate that, the execution time for the matching process is satisfactory, for
reasonable numbers of advertisements.

To test the scalability of the system in terms of the size of the resource request (i.e.
the number of individual requirements involved in the request); we vary the number of
individual requirements in the resource request between 1 and 7 and measure the execu-
tion time taken by the matching process (while keeping the number of advertisements
constant at 50). For this case again, we obtain two sets of results for the two ontolo-
gies: (1) When the resources are described using the Printer Ontology. (2) When the
resources are described using the Computer Ontology.

Figure 1(b) graphically illustrates the execution times for both ontologies. From the
graph it can be observed, that for both ontologies the execution times for the matching

5 The Printer Ontology is a specialization of the generic Device Ontology ([16]) and defines
additional concepts and properties necessary to describe printers (such as printer resolution,
supported media types, printing speed etc.).

6 Again, this is a specialization of the generic Device Ontology and defines additional concepts
and properties necessary to describe computers.

7 For example, we can assume that, the maximum number of devices available in an average
enterprise will be typically around 500 - 1000.

process keeps increasing, when the request size is increased. The matching time for
a request that has 5 individual requirements specified (when described with the Com-
puter ontology, in the presence of 50 advertisements to be matched), is approximately
1.8 seconds, which can be acceptable, given the benefits provided by semantic match-
ing. As with the previous experiment, the same observation can be made regarding the
execution times related to the two ontologies; the execution time related to the larger
ontology (the Computer ontology) is higher than for the smaller ontology. The plots re-
lated to both ontologies are approximately linear. The execution times for the matching
process for increasing request sizes (up to a size of 7), can be observed to be accept-
able. For example, when the request size is 4, the matching time is 1.4s approximately
(for Printer Ontology); when the request size is 6, the matching time is 1.7s. Thus,
from these results we can observe that, the execution time for the matching process is
satisfactory for reasonable request sizes8.

0

50000

100000

150000

200000

250000

0 2000 4000 6000 8000 10000 12000
Num ber of Advertisem ents

E
x
e
c
u
ti
o
n
 T
im
e
 (
m
s
)

Printer Ontology

Com puter Ontology

(a) Number of Advertisements Vs Execution
Time

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7
Request size

E
x
e
c
u
ti
o
n
 t
im
e
 (
m
s
)

Printer Ontology

Com puter Ontology

(b) Request Size Vs Execution Time

Fig. 1. Plots obtained for Scalability Experiments

5 Conclusions & Future Work

In this paper, we have presented a semantic matching approach that can facilitate the ef-
fective discovery of pervasive resources. The approach provides an approximate match-
ing mechanism that overcomes the limitations present in matchers which uses subsump-
tion reasoning alone. The potential matches are ranked in the order of their suitability
to satisfy the request under concern. The matching approach also incorporates prior-
ity handling in the matching process; this helps to identify the relative importance of
the individual requirements in a request and also to indicate whether certain require-
ments are mandatory. Hence the matching system can produce results that better suit
the context involved and the subjective preferences of service seekers. The involvement
of match ranking and the priority handling are both important and useful additions to
the existing work on service matching. The proposed solution has been implemented in
a pervasive context and results have been obtained. We have used this implementation
for subsequent evaluation experiments, to test the retrieval effectiveness of the solution
and to investigate the scalability and matching times.

8 We also assume that, the number of requirements that can be expected in a device request in
most typical pervasive environments, could range from 3-6.

The effectiveness of the solution has been evaluated and the results demonstrates
that the Semantic Matcher results agree reasonably well with human judgement, and
thus is effective in retrieving the relevant matches. A further evaluation was conducted
on the scalability of the Semantic Matcher with respect to: (1) the number of adver-
tisements matched; and (2) the size of the request in terms of the number of individual
requirements. Other aspects of performance also need to be investigated, which will
help towards judging the usability of the Semantic Matcher in practical environments.
For example, when the Semantic Matcher is deployed on a network to support service
discovery, the transmission times between the resource seekers/ providers and the di-
rectory service can be measured to test the communication overhead involved.

Acknowledgements: This research was funded and supported by the Telecommunica-
tions Research Laboratory of Toshiba Research Europe Ltd and partially funded by the
Semantic Media project: grant EP/C010078/1 from the UK Engineering and Physical
Sciences Research Council.

References

1. UPnP Forum: UPnP Device Architecture (2006) http://www.upnp.org/specs/
arch/UPnP-DeviceArchitecture-v1.0.pdf.

2. Arnold, K., OSullivan, B., Scheifler, R.W., J. Waldo, A.W.: The Jini Specification. Addison-
Wesley (1999)

3. Chakraborty, D., Perich, F., Avancha, S., Joshi, A.: Dreggie: Semantic service discovery for
m-commerce applications. In: Workshop on Reliable and Secure Applications in Mobile
Environment, Symposium on Reliable Distributed Systems. (2001)

4. Avancha, S., Joshi, A., Finin, T.: Enhancing the bluetooth service discovery protocol. Tech-
nical report, University of Maryland Baltimore County (2001)

5. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web tech-
nology. In: Int. World Wide Web Conference, ACM (2003) 331–339

6. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services
capabilities. In: Int. Semantic Web Conference. (2002) 333–347

7. Baader, F., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: Description Logic Handbook
- Theory, Implementation and Applications. Cambridge university press (2003)

8. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In:
IJCAI. (1995) 448–453

9. Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th International Conf.
on Machine Learning, Morgan Kaufmann, San Francisco, CA (1998) 296–304

10. Skoutas, D., Simitsis, A., Sellis, T.K.: A ranking mechanism for semanticweb service dis-
covery. In: IEEE SCW. (2007) 41–48

11. Schwering, A.: Hybrid model for semantic similarity measurement. Lecture notes in com-
puter science (2005)

12. Tversky, A.: Features of similarity. Psychological Review 84 (1977) 327– 352
13. Zadeh, L.: Fuzzy sets. Information and Control 8 (1965) 338–353
14. Straccia, U.: A fuzzy description logic for the semantic web. Capturing Intelligence: Fuzzy

Logic and the Semantic Web (2005)
15. Bandara, A., Payne, T., de Roure, D., Gibbins, N., Lewis, T.: Semantic resource matching

for pervasive environments: The approach and its evaluation. Technical report, School of
Electronics & Computer Science, University of Southampton (2008)

16. Bandara, A., Payne, T., de Roure, D., Clemo, G.: An ontological framework for semantic
description of devices (poster). In: 3rd Int. Semantic Web Conference (ISWC 2004). (2004)

17. Kopparapu, C.: Load Balancing Servers, Firewalls, and Caches. John Wiley & Sons, Inc.,
New York, NY, USA (2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ENG ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

