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Abstract.  We present a prototype system that can be used to capture 
longitudinal socialising processes by recording people’s encounters in 
space.  We argue that such a system can usefully be deployed in prisons 
and other detention facilities in order help intelligence analysts assess 
the behaviour or terrorist and organised crime groups, and their 
potential relationships.  Here we present the results of a longitudinal 
study, carried out with civilians, which demonstrates the capabilities of 
our system.

1. Introduction

In this paper we argue that the deployment of pervasive technology in 

detention facilities can provide intelligence in relation to the activities of 

terrorist and organised crime groups, as well as their emerging relationships.  

Evidence suggests that detention facilities are increasingly becoming fora 

where terrorists and organised criminals establish channels of communication 

and co-operation, and more importantly recruit new members.  Here we argue 

that the systematic capturing and analysis of the social processes within 

detention facilities can enhance intelligence and law enforcement agencies’ 

understanding of the groups’ operation and behaviour.

To demonstrate the type of data that can be obtained from detention facilities, 

we present the results of a longitudinal study we carried out in the City of 

Bath, UK, involving civilians who socialised in various locations across the 

city.  Here we discuss how we were able to automatically capture and analyse 

data on people’s encounters, and we present the results of our analysis.  While 

our study did not take place in an actual detention facility, nevertheless it did 



take place in a real world setting and, as such, provides useful insights into 

how pervasive technologies may be utilised within detention facilities.  

2. Terrorism and organised crime 

Since the end of the Cold War era, the international community’s public and 

scholarly interest has shifted towards security issues related to the rise of 

transnational criminal and terrorist networks that are perceived to threaten 

national and international security and stability [UN; Shelly 1995].  The 

nature of the threats poised by organised crime and terrorism renders their 

containment by state actors extremely difficult and problematic. Prime 

examples of this difficulty are newly established states in various troublesome 

regions such as the Former Yugoslavia and the Soviet Union, where states 

have been unsuccessful in managing effectively the activities of criminal 

organisations.  This has permitted local Mafia groups, which claim huge 

profits from illicit markets, to fill political vacuums and develop symbiotic 

relationships with state institutions [Williams, 2000].

Terrorist organisations and groups have been dealt with much more 

proactively.  The measures intended to combat terror activities often require 

exceeding retaliation by means of military intervention and in general 

methods that have been argued undermine human right and civil liberties.  

Examples of these measures include pre-emptive strikes, the establishment of 

Guantanamo Bay detention centre, alleged Rendition flights and increasingly 

draconian legislation in both US and UK.

These emerging security challenges are taking place in a globalised 

environment were distant social systems are becoming increasingly 

interconnected and interdependent. Migration flows from the East to the West, 

and from the South to the North, facilitated by improvements in 

communication and transportation technologies, are contributing to the 

growth of heterogeneous and multiethnic societies. This increased pace of 



physical and electronic interconnection between actors from distant social 

systems has contributed to a rise of weak social ties. According to 

Granovetter’s hypothesis [1973], the establishment of weak ties or bridges 

amongst previously isolated groups,enhance the effectiveness of these actors’ 

organisational structures and thus facilitates the materialisation of their goals. 

Both organised crime and terrorism has been argued to  adhere to the same 

social principles [Chambliss 1971; Cohen 1977;  Lombardo 1994; Williams 

1998,2001; Kleemans & Van de Bund 1999].   

As a result, over time terrorist organisations have developed resilience, and 

have been able to establish intricate channels of communication in order to 

improve and learn from their previous mistakes.  Most significantly, terrorist 

networks are increasingly becoming able to study the operational behaviour of 

security forces, and frequently engage in counter intelligence practices.  At the 

same time, the increased embeddedness of these terrorist networks within 

society makes it easier and more likely to recruit and radicalise through 

propaganda civilians of various social classes and professions. Consequently, 

valuable intelligence that could be fed to ongoing investigations is very likely 

to emerge from unconventional locations and sources, which the security 

apparatuses underestimate or cannot monitor effectively. 

2.1. Prisons as a source of intelligence

The changing structure of the prison population in many European countries 

and the high number of foreign inmates [Council of Europe] increases the 

chances of Islamic militants being imprisoned along with “well-connected” 

criminals and individuals vulnerable to indoctrination methods and 

susceptible to radicalisation.  Moreover, the criminal networks that are 

established in prisons offer significant financial and logistical resources, 

which can facilitate large-scale terrorist attacks [Shelley et al., 2005].  These 



conditions have raised concerns, already expressed by state officials1, with 

regards to the increased possibilities facing detainees in various detention 

facilities.  Sadly, these concerns have been verified through a number of case 

studies. 

For instance, in 2001 Jose Emilio Suarez Trashorras was jailed in a Spanish 

prison for drug related offences. Whilst imprisoned, Trashorras established 

regular contact with Jamal Ahmidan who was serving time for a petty crime. 

Both individuals embraced radical Islamic fundamentalist ideas within the 

prison and were recruited in the Takfir wa al-Hijra group, a Moroccan terrorist 

groups linked with al-Qaida [Cuthberson, 2004].  Following their release, 

Ahmidan became the leader of the terrorist cell that conducted the Madrid 

bombing.  In a  drugs-for-bombs exchange with a third party, Trashorras 

provided the cell with explosives  for the 13 backpack bombes that killed 191 

people and injured hundreds. 

Another vivid example of the role of detention facilities as recruitment pools 

of terrorist groups has been the case of the Martyrs of Morocco terrorist cell. 

This group was composed of 18 north African immigrants who were 

radicalised and recruited whilst serving a prison sentence for minor offensives 

including weapon possession, document fraud and robbery [McLean, 2004]. 

According to official sources, the leader of the Martyrs of Morocco cell co-

ordinated an attack to bomb the national high court in Madrid and for that 

pursuit attempted to purchase 500 kilograms of explosive materials,2  but was 

detained before carrying out the attack.  It is worth noting that the Martyrs of 

Morocco cell was connected through prisons with the spiritual leader (emir) 

1 Testimony of John S. Pistole, Assistant Director, Counterterrorism Division, FBI Before the 
Senate Judiciary Committee, Subcommittee on Terrorism, Technology, and Homeland 
Security October 14, 2003: "Terrorist  Recruitment in Prisons and The Recent Arrests Related 
to  Guantanamo Bay Detainees". See http://www.fbi.gov/congress/congress03/
pistole101403.htm

2  Madrid ABC: Spanish Judge Orders Remanding of Islamists Involved in Bomb Plot (24-
Oct-2004)



of the Madrid bombing and with members of the ETA terrorist group [Bar et 

al., 2005; Haahr-Escolano, 2004]. 

3. Pervasive technology for detention facilities

As part of our research, we prototyped a pervasive system that captures 

longitudinal socialising processes by recording and analysing people’s 

encounters in space.  To achieve this, we utilised Bluetooth technology, 

typically found in mobile devices.  Bluetooth technology has a characteristic 

that renders it appropriate for studying people’s encounters. In contrast to the 

wireless signals emitted by typically static WiFi access points, the signals 

emitted by Bluetooth devices map very closely to the movements of people 

around the city, which in turn are a unique indicator of encounter and 

socialising.  In previous work, we found that approximately 7.5% of observed 

pedestrians had discoverable Bluetooth devices [O’Neill et al., 2006].  This 

number most certainly varies between different cities, but still it shows that a 

considerable portion of the public was recorded using our method.

Our basic setup, replicated across 4 sites, involved installing a computer that 

constantly recorded the presence of nearby Bluetooth devices within a 10-

meter range (Figure 1).  This data enables us to correlate pedestrian 

movements with Bluetooth device movements, providing baseline data about 

the penetration of Bluetooth into city life.  On the right side of Figure 1 we 

see that for each unique device (i.e. person), we are able to capture sessions,  

defined as the points in time when each person was in close range of the 

scanner (indicated as yellow horizontal bars).  Subsequently, we are able to 

detect encounters (indicated as links between the sessions), which we define 

as overlapping sessions.  In other words, an encounter takes place when two 

people are in the same place at the same time.

In our study we considered four locations, which we shall refer to as 

• campus



• street

• pub 

• office

The first two locations are outdoor pedestrian streets, one on our campus and 

one in the city of Bath, both of which connect open spaces and can be thought 

of as pedestrian gateways.  The latter two are indoor locations where visitors 

typically spend some time in them.  The pub is open to anyone over the age of 

18, while the office is a secure location where only employees and their 

visitors have access.

We should point out that the nature of Bluetooth technology mitigates against 

extreme accuracy of location.  The 10-meter range of our Bluetooth scanner 

reached beyond walls, and in adjacent offices.  Effectively, if our scanner 

picked up a Bluetooth device, there is no way of knowing if that device was 

on the street, or in any of the offices.  Despite this, on aggregate level we still 

get quite distinctive patterns of data between the first two and last two 

locations, as we describe in the next sections.  This is because the great 

majority of devices our scanners picked up was indeed on the street (for the 
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Figure 1. Left:  At each scanning location, our computer uses Bluetooth to monitor the presence 
of mobile devices within an approximate 10 meter radius. Right: Each recorded device is 
allocated its own timeline (dotted horizontal lines).  Using data from our scanners, we can plot 
each device’s visit  sessions (yellow bars).  Overlapping sessions are identified and linked (solid 
lines), thus indicating encounters.



first two locations).   During a six month study of our prototype, we captured 

approximately 10,000 unique devices.  In the following sections we describe 

in detail the data we captured and the analyses we carried out.

4. Data & Analysis

The method we used to scan for Bluetooth devices generates discrete data 

about the presence of devices in the environment.  A visualisation of our raw 

data, which we have termed timeline, can be seen in Figure 2.  Here, each dot 

represents a discovery event, i.e. a point in time (x-axis) when our Bluetooth 

scanner picked up a specific device in the environment.  By applying filters, 

we can see that, for example, device 16 was present in the environment 

between approximately 18.5 minutes and 19.5 minutes.

To study the patterns of co-presence in our data, we first need to identify 

instances where two or more devices were present at the same place and the 

same time.  For example, in Figure 2 we see that devices 12 and 13 

encountered each other. We developed filters that analysed our data and gave 

us instances of devices encountering each other at each of the four locations in 

our study.  These initial results took the form of records: <device1_id, 

device2_id, location>

Figure 2: A timeline visualisation of our Bluetooth gatecounts.  Each device is given  its own 
timeline (dashed lines) and each discovery event is plotted as a circle on the timeline.



At this stage in our analysis we had a long list of such records, describing 

which devices encountered each other and in which location.  For example, in 

Figure 1 we see that devices 12 and 13 encountered each other at 15.5 minutes 

and were together for approximately 1 minute.  This list of encounters is a 

textual representation of the patterns of encounter across our four locations.  

To further study the patterns and structure hidden within this list, we 

transformed it to four social network graphs, one for each location.  Assuming 

that each device from our dataset becomes a node in the social graph, then the 

list of encounters indicates which nodes are connected.  Proceeding in this 

manner, we generated four social network graphs, one for each location.  

For illustration purposes, in Figure 3 we show the graph from the pub location 

in our study.  In this graph, each device is represented as a node in the graph, 

and connected nodes indicate that these devices encountered each other at 

some point.  We see that most devices are linked to the main core, whilst some 

devices are islands.  The latter indicates cases where a device was seen only 

Figure 3: A graph visualisation of the encounters that  we recorded at one of the locations in our 
study. 



by itself and never in the presence of others.  Additionally, the size of nodes 

represents the total amount of time that a device has spend in this location, 

while the colour of the nodes (blue to red) indicates the betweenness of a node 

(from 0 to 1 respectively).

One of our initial observations was that due to the sheer number of nodes in 

the graphs, the visualisations themselves helped little in analysing our data, 

due to visual clutter.  However, by transforming our data into graph form, we 

were able to run a number of well-established analysis algorithms using 

existing software (e.g. Pajek, Ucinet).  Specifically, we analysed each of our 

four graphs in terms of

• Degree centrality, calculated as the number of neighbours of each node.

• Closeness centrality (access), calculated for any given node as the 

number of nodes (minus 1) divided by the sum of all distances between 

the node and every other node.

• Betweenness centrality (control), calculated for any given node as the 

proportion of shortest paths between all pairs of nodes that include this 

node.

• Distance, calculated as the probability that the shortest path between a 

random pair of nodes will be 1, 2, 3, etc.

The degree and closeness centrality are measures of the reachability of a node 

within a network, and describe how easily information can reach a node. 

Betweenness centrality indicates the importance of a node, and the extent to 

which it is needed as a link in the chains of contacts that facilitate the spread 

of information within the network. Effectively, the centrality measures we 

focused on can indicate each individual’s role, or potential, within the 

observed social structure.



5. Results: capturing social processes

To gain an overview of the structural properties of the graphs representing 

encounter, we calculated the metrics shown in Table 1.  For each of our 

locations we calculated the number of unique devices that were recorded by 

our Bluetooth scanner, the size of the largest core in the encounter graphs, the 

number of edges in the largest core, the density of the largest core as well as 

the size of the 2nd largest core.  We also calculated some generic centrality 

measures for each of the largest cores: network degree, closeness and 

betweenness centralisation.  Finally, we measured the maximum and average 

degree of each graphs, the longest shortest-path distance in each of the graphs, 

as well as the average shortest-path distance.

In addition to the above metrics, for each of degree, closeness and 

betweenness centrality measures we generated ranked log-log plots.  To do 

this we attached a value (either degree, closeness or betweenness) to each 

node in the graphs (only the core), and then sorted this list in descending 

order.  We then plotted the sorted lists, resulting in three sets of graphs 

(degree, closeness, betweenness) for each of our four gates.  Additionally, we 

Campus Street Pub Office

Unique devices 1162 8450 4175 329
Largest core 1028 2738 4036 318
2nd largest core size 2 4 2 1
Edges in largest core 6434 5060 23919 2419
Density 0.5% 0.007% 1.4% 2.2%

Network Degree Centralisation 0.43 0.51 0.68 0.73
Network Closeness Centralisation 0.49 0.55 0.66 0.65
Network Betweenness Centralisation 0.36 0.65 0.57 0.27

Max degree 454 1394 2758 246
Average degree 12.26 3.70 11.85 15.21
Max distance (diameter) 6 10 9 4
Average distance 2.72 2.96 2.44 2.04
Average clustering coefficient 0.50 0.32 0.68 0.82

Table 1: Metrics for each of our four graphs.



generated a fourth set of graphs, based on the probable distance between any 

randomly selected pair of nodes.  These graphs are shown in Figures 4 to 7.

5.1. Structural measures

Our results indicate that the data captured by our prototype is far from 

random.  On the contrary, across the four locations of our study we identified 

homogeneous patterns and comparable underlying temporal behaviour.   To 

demonstrate this, here we focus our discussion on the various properties of the 

social graphs that we listed in Table 1.  The way we captured and analysed our 

data prohibits us from directly inferring intelligence for each of the social 

networks.  However, by comparing the properties the social graphs across our 

four locations we can begin to draw a picture of the communities that inhabit 

those locations.  Also, it is important to keep in mind that in our observations 

of the four locations the only parameter we changed was the location itself: 

the hardware, software and algorithms we used to derive our results are 

identical for all locations.  Although it can be argued that our data are affected 

by a number of further variables, we consider those as part of the location and 

the environment.

A notable feature of the graphs is their size.  As we expected, the city street 

had the most “visitors”, followed by the pub, the campus and the office.  This 

is quite representative of the populations inhibiting each of the locations, since 

the street is open to everyone, thus likely to get lots of distinct visitors.  The 

pub is also open to everyone (over 18) and again has a large population of 

potential visitors.  The campus, on the other hand, is mostly visited by 

students and staff, which amount to about 15,000 students and staff (while the 

population of Bath is about 86,000).  Finally, the office is a secure area where 

only employees have access, thus a small population of potential visitors.

It is interesting to note, however, that the social network of the street consists 

of about 2/3 islands, with the core consisting of about 1/3 of the devices.  



Looking at Table 1 we see that the campus has a much higher density than the 

street. This indicates that there are more static devices on the campus, such as 

computers or employees phones, which are likely to act as hubs which 

connect to the core those single devices that go past in the environment.  This 

is something we can verify from Figure 4, where we see the street graph has a 

few well connected hubs but then falls quite sharply, as opposed to the 

campus where there are many more nodes with degree between 100 and 5.

It is interesting to note that both locations where the public can go, the street 

and the pub, have quite large max-degree (1394 and 2758), yet average degree 

is much smaller on the street than the pub (3.70 and 11.85).  In fact, in Figure 

4 we see that the pub completely outperforms the street in terms of degree.  

This is due to the fact that most people in the pub are co-present, thus they get 

linked together.  In other words, a visit in the pub can give someone much 

more opportunity for copresence than a visit in the street.  This is something 

we expect, as it is the primary purpose of a pub.  Also, we should note that in 

the pub there are certain devices with extremely high degrees, which we 

believe are attributed to members of staff or regular customers.  These act as 

central hubs that bring together all the customers of the pub into the central 

core of the social graph.  The same is true in the office, where a number of 

devices have a relatively high degree, indicating that these people come in 

frequent contact with others.

5.2. Network centrality measures

In general, across the four locations the “tightness”  of the communities varies.  

Specifically, the office and the pub have shorter average distances between 

their members (2.04 and 2.44 in Table 1 respectively), and we also see in 

Figure 7 that the probability curves of these two locations are shifted to the 

left.  This is further enhanced by the relatively high density of the pub and the 

office, which indicates more interactions between the members of the 

community.



Another interesting point to note is that although the pub has quite a tight and 

dense population, it has large diameter (9), which is also true of the street 

(10).  Yet, the pub has a smaller average distance (2.44) as opposed to the 

street (2.96).  Coupled with the density measures, we can describe the pub’s 

network as a large central core, while the street’s network more closely 

resembles a small core with a number of branches and additionally a large 

number of islands. 

Considering the network centralisation measures we can make more 

inferences about the overall structure of the social networks.  These measures 

range from 0 to 1 and indicate a similarity to a perfect linear-shaped network 

(0) or to a perfect star-shaped network (1). This is calculated for each of 

degree (DC), closeness (CC) and betweenness (BC).  The office scores high 

on DC and CC indicating that some nodes can be reached more easily than 

others, yet BC is low, indicating that all nodes are more or less equally 

important in terms control and communication.   The opposite is true of the 

pub, where high DC and CC are coupled with high BC.  This indicates that 

there are certain nodes in the pub that act as hubs of communication and 

control (most likely the members of staff or regular customers).  Comparing 

the campus and street in terms of centralisation measures also yields 

interesting insights. Both have similar levels of DC and CC, but the campus 

has low BC while the street has high BC.  This indicates that on the street 

there are a few important nodes, while on campus the nodes are more equal. 

5.3. Cumulative distribution measures

We now consider the graphs shown in Figures 4 to 7, which we found much 

more useful than a visualisation of the social networks themselves.  A really 

interesting observation is that although in each of the 4 graphs the lines have 

similar shape, the subtle differences are crucial pointers as to the effect of 

space on encounter.  For instance, the variation in how sharply the values fall 

is a useful indicators, along with the overall steepness of the graphs.



Figure 4: Ranked log-log plots of degree for each of our four locations.

Figure 5: Ranked log-log plots of closeness for each of our four locations.



Figure 6: Ranked log-log plots of betweenness for each of our four locations.

Figure 7: Probability plots of shortest path distance for each of our four locations.



When considering the whole range of values, degree graphs are overall more 

close to a power law distribution.  Closeness graphs have short sharp tails, 

with a body that approximates a power law extremely well.  Similarly, 

betweenness graphs have long sharp tails, while their body approximates a 

power law.  The distance probability graphs can be approximated by a Poisson 

distribution. 

The graphs we derived from analysing our Bluetooth data point to power-law 

distributions (γ≈0.6-1.1 for degree, γ≈1.2-1.4 for betweenness, γ≈0.1 for 

closeness) that are characteristic of scale-free, or self-similar networks.  Such 

networks imply infinite variance, and usually in such networks there are a few 

nodes with extremely large number of links.  Barabási et al. (1999a) have 

dubbed such networks ‘scale-free’, by analogy with fractals, phase transitions 

and other situations where power laws arise and no single characteristic scale 

can be defined. These characteristics can be found in kinship networks, 

physical and biological systems, and economic systems.

Scale-free networks have stimulated a great deal of theorising. The earliest 

work is due to [Simon, 1955], independently rediscovered by Barabási et al. 

[1999a; 1999b]. They show that scale-free networks emerge automatically 

from a stochastic growth model in which new nodes are added continuously 

and attach themselves preferentially to existing nodes, with probability 

proportional to the degree of the target node. Effectively, the richly connected 

nodes get richer.

We believe that our scanners recorded a phenomenon and process which is 

quite similar to the “rich getting richer”  model, which explains the presence of 

power laws in our data.  In terms of encounters, those people who have more 

links and encounters are the ones who are present more in the environment.   

When a new person comes along, chances are that they are going to encounter 

the regular customers or the employees.  Thus, they share an encounter with 

an already well-connected person in the graph.  It is this exact process that has 

been shown to result in power-law distributions.  



6. Suitability for detention facilities

Our analysis suggests that intricate social processes were captured by our 

prototype, given adequate time and a large enough sample of people to be 

observed.  Additionally, the underlying properties of our data suggest that our 

prototype did not capture noise, but somewhat of a “slice of reality”.   

Interpreting the numbers generated by our algorithms can yield insight, but 

doing so requires knowledge of the scanning locations and the people being 

observed in them.

Similarly, analysing data captured by our system in a detention facility 

requires knowledge of the exact locations where the system was installed, as 

well as knowledge of the underlying behaviour of people in those areas.  

Analysts with such knowledge can draw on they automated data collection 

capability of our system to augment their ongoing efforts in understanding the 

links between various terrorists and organised crime organisations.  There are, 

however, a number of issues that need to be resolved before utilising such a 

system for intelligence gathering in a detention facility.

To begin with, Bluetooth is only one possible technology that may be used for 

our purposes.  Other proximity technologies such as RFID, NFC, and possibly 

ZigBee are all potential candidates for such a system.  In fact, RFID would be 

the preferred mechanism, as RFID tags can easily be embedded in clothes or 

any other items that detainees may carry / be forced to carry. Key to the 

success of this scheme is the ability to relate each detainee to an individual or 

a set of RFID/Bluetooth identifiers.  Ideally, these identifiers would persist  for 

each individual across detention facilities. 

An obvious issue with intentionally tagging individuals in a detention facility 

has to do with human rights abuse.  While as technology developers we are 

merely highlighting the technological possibilities, we do wish to point out 

that our tagging system simply augments already established mechanisms of 

detention facilities, such as CCTV and human observation.  Our system 



simply makes the identification of an individual detainee much quicker and 

more efficient, when compared to the analysis of days’ worth of CCTV 

footage.

In addition to establishing the technological components required to deploy 

our system, an appropriate infrastructure is necessary so that data generated 

by our system can be readily accessed and analysed by intelligence agencies.  

This is most efficiently achieved by establishing a centralised data server, 

which will be used to store data arriving from various detention facilities. 

Subsequently intelligence agencies can issue queries to the data server, and 

retrieve the necessary information.

While in this paper we have presented a palette of tools and methods for 

analysing our systems data, further tools will be required in order to meet 

intelligence agencies’ requirements.  Ideally, our system will be used to 

augment ongoing investigations, by providing analysts with information that 

can be evaluated on a per-case basis.  For instance, our system’s central server 

could provide information about two people’s relationship during their stay at 

a detention facility.  Additionally, our system can provide an assessment of a 

suspect’s social network, and people they are likely to contact once they are 

released from the detention facility.  Effectively, analysts can look for 

patterns, or deviation from patterns in the data captured by our system, and 

evaluate these on an ad-hoc basis.

7. Conclusion and ongoing work

In this paper we describe our attempts to measure and quantify longitudinal 

socialising processes in a detention facility. We present a study where four 

distinct civilian locations were chosen for installing Bluetooth scanners which 

monitor the presence, and thus encounter, of people in those spaces.  Our 

scanners generated a very rich data set that we used to derive social graphs for 

each of the four locations.



In our analysis we focused on the derived social graphs, and were able to 

compare various well-established properties and measurements of social 

graphs across the four locations.  We found that the graphs exhibit power-law 

distributions when plotting their properties in rank-ordered graphs.  These are 

characteristic of scale-free networks that can be found in kinship networks, 

physical and biological systems, and economic systems.

Our findings suggest that the utilisation of our system for capturing the 

socialising processes within detention facilities is a quire realistic strategy.  

This will require a number of issues to first be clarified, including the 

technological and infrastructure  details, as well as the ethical and human 

rights challenges intrinsic to tracking and monitoring inmates.

As part of our ongoing work we are interested in exploring further our data 

sets.  For example, we are interested in experimenting with different rules for 

generating the social graphs from the Bluetooth data.  Also, we are in the 

process of running emulations of our data to explore ways in which 

information is diffused and spreads across the social networks.
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