
DETECTION AND SEPARATION OF GENERIC-SHAPED OBJECTS BY FUZZY CLUSTERING

M. Ameer Ali

Department of Computer Science and Engineering

East West University, Bangladesh

Email: ameer7302002@yahoo.com

Gour C Karmakar

Gippsland School of Information Technology

Monash University, Australia

Email: Gour.Karmakar @infotech.monash.edu.au

Laurence S Dooley

Department of Communication and Systems

The Open University, Milton Keynes, United Kingdom

Email: L.S.Dooley@open.ac.uk

Received ()
Revised ()
Accepted ()

ABSTRACT

Purpose - Existing shape-based fuzzy clustering algorithms are all designed to explicitly segment regular geometrically-
shaped objects in an image, with the consequence that this restricts their capability to separate arbitrarily-shaped objects.
Design/Methodology/Approach – With the aim of separating arbitrary shaped objects in an image, this paper presents a
new detection and separation of generic shaped objects (FKG) algorithm that analytically integrates arbitrary shape
information into a fuzzy clustering framework, by introducing a shape constraint that preserves the original object shape
during iterative scaling.
Findings- Both qualitative and numerical empirical results analysis corroborate the improved object segmentation
performance achieved by the FKG strategy upon different image types and disparately shaped objects.
Originality/value- The proposed FKG algorithm can be highly used in the applications where object segmentation is
necessary. Like this algorithm can be applied in MPEG-4 for real object segmentation that is already applied in synthetic
object segmentation.
Key word: Fuzzy clustering, Image segmentation, B-splines, Generic shape information.

1. INTRODUCTION

Image segmentation involves the separation of mutually exclusive regions/objects of interest (see (Gonzalez and Woods,
2002)), and is integral to the image processing, coding and interpretation domains, with examples of some of the eclectic
range of applications including; image analysis, robot vision, automatic car assembly, security surveillance systems, object
recognition and medical imaging [1]. As there are potentially a very large number of perceptual objects in an image, with
subtle variations between them, this makes generalised object-based segmentation an especially challenging task.
Fuzzy clustering techniques (see (Bezdek, 1981); (Krishnapuram and Keller, 1993); (Fan et al., 2003)) have successfully
been applied to image segmentation, though their performance has proven to be highly dependent on the features used and
types of objects in the image. For one particular image, the fuzzy c-means (FCM) clustering algorithm (see (Bezdek,
1981)) may well provide the best segmentation performance when pixel location is used as the feature, while for a
different image, either pixel intensity or a combination of pixel intensity and location could be more propitious choices.
This raises the rhetorical question as to which features provide the best object segmentation results for a particular
clustering algorithm, with the outcome ultimately restricting both the algorithm’s generalisation capability and application
domain. These limitations have motivated investigation of alternative strategies to characterise object-specific information
in image segmentation frameworks, with shape being one of the most important perceptual attributes in both detecting and
recognising objects.
Existing shape-based clustering techniques [2] all have their foundations embedded in fuzzy theory, with examples
including; the Gustafson-Kessel (GK) algorithm [9], fuzzy k-ring (FKR) [10], fuzzy circular shell (FCS) [11], fuzzy c-
ellipsoidal shells (FCES) [12] and fuzzy elliptic-ring (FKE) [13]. FKR and FCS were both designed to detect and separate,
ring and compact spherical shapes, and their assorted combinations. Subsequently FKE and FCES were developed as the
respective generalised versions of these algorithms, facilitating segmentation of ring and elliptic shaped objects and their
combination. While the underlying mathematical models of both FKR and FKE have proven successful for separating
particular object shapes, they are much less effective in segmenting ring and elliptical-shaped regions. In contrast, FCS
and FCES are better suited for region-based separation as they include shape constraints within their objective function
and use a normalized data distance to update both the membership values and other key parameters in the iterative
minimisation process. Their main drawback however, is that most natural objects are neither ring nor elliptical in shape,
which severely confines their capacity to segment arbitrary-shaped objects.
The GK algorithm [9] conversely does not explicitly use shape information and so is ineffectual for generic-shaped object
segmentation, though it does employ a fuzzy covariance matrix in its model which automatically adapts the local data
distance to the cluster shape, a property that has been exploited for shape initialisation purposes [9].
This paper generalises shape-based fuzzy clustering theory by seamlessly integrating arbitrary shape-based information
into an FCM-based clustering framework. A new detection and separation of generic shaped object (FKG) algorithm is
introduced, with shape descriptor information embedded within an analytic optimization of the FCM-based objective
function. FKG is uniquely characterised by the following four distinct features: i) A special shape-based constraint which
ensures the optimisation of the algorithm; ii) Provision for either manually defining or automatically generating the initial
object shape contour by employing either parametric curve models or an alternative clustering technique; iii) Preservation
of the initialised object shape during iterative scaling; and iv) Accurate intersection point calculation for the requisite data
distances from the respective object contour. Collectively these features enable FKG to improve the overall segmentation

performance, with both qualitative and quantitative analysis conclusively confirming its superiority over all other existing
shape-based clustering algorithms for many different image types and disparately shaped objects.
The remainder of this paper is organized as follows: Section 2 reviews the main properties of current shape-based fuzzy
clustering algorithms, while the new FKG algorithm, including its full mathematical foundations and a complete
computational complexity analysis are presented in Sections 3, 4 and 5. The object-based segmentation performance of
FKG is analysed in Section 6, with some concluding comments being provided in Section 7.

2. SHAPE-BASED CLUSTERING ALGORITHMS

This section examines the various features and limitations of existing shape-based clustering algorithms. FCM [6] has
become a widely adopted clustering algorithm, being either directly or indirectly applied in a broad range of applications
including crucially, as the initialisation strategy for other fuzzy clustering techniques. Its performance however, is highly
sensitive to the features used and the type of objects in an image, so to relax this dependency, a number of dedicated
shape-based clustering methods have been developed, including the FKR, FCS, FCES and FKE algorithms (see (Man and
Gath, 1994); (Dave, 1990); (Dave, 1992); (Gath and Hoory, 1995); (Babuska et al., 2002)), which all have as their
fundamental premise, an iterative minimisation of an FCM-type objective function.
FCS [11] detects and separates circular structures in an image by considering relevant geometric representations and using
the distance from the circular shell to the corresponding data point, in its objective function. Two special constraints are
applied to integrate circular shape information into the clustering framework involving the ratio of the respective data
distances from the cluster shell and cluster centre. Both the cluster centre and circular shell radius are updated using
Newton’s iteration and while FCS performs well for circular-type shapes, it is ineffectual in segmenting arbitrary shaped
objects due to its underlying non-linear mathematical model.
A similar judgement stands for FKR [10] which focuses upon ring-shaped objects. The respective membership functions,
cluster centres and radii are iteratively updated based on the minimisation of an objective function defined for circular ring
shapes, to separate both ring and spherical compact clusters, allied with combinations of ring-shaped clusters. Once again
however, the algorithm fails to perform satisfactorily for arbitrary-shaped objects and ring-shaped regions, for the same
reason delineated in Section 1.
The FCES [12] and FKE [13] algorithms generalize FCS and FKR respectively by supporting the segmentation of
elliptically-shaped objects and their related geometric combinations. FCES applies the same constraints as FCS and
employs a covariance matrix to calculate the distance between each datum and cluster centre, with this distance being
adapted to the shape by taking cognisance of the orientation and scaling of the shell. Newton’s iteration again updates the
cluster centres and radii, though both FCES and FKE consistently fail to effectively segment either region-based or
arbitrarily-shaped objects.
The GK algorithm in contrast, does not explicitly incorporate any particular shape information, be it circular or ellipsoidal
shell. Instead it uses a fuzzy covariance matrix that automatically adapts the local data distance metric to the cluster shape
 [9], an attribute that gives GK superior object segmentation performance compared with existing shape-based clustering
algorithms including FKR, FCES and FKE. For this reason GK was adopted in the new FKG algorithm (Section 3) to
provide better object shape initialization. The formal mathematical basis of the GK algorithm, which uses Lagrangian
optimization techniques to iteratively minimize an FCM-based objective function is presented in Appendix A.
In summary, existing shape-based clustering algorithms are generally not very successful in segmenting arbitrary-shaped
objects because they are specifically designed for regular geometric structures. This provided the impetus to investigate
seamlessly incorporating generic shape object information into fuzzy clustering paradigms.

3. MATHEMATICAL FOUNDATIONS FOR INCORPORATING GENERIC SHAPE INFORMATION
INTO A FUZZY CLUSTERING FRAMEWORK

This section introduces the FKG algorithm for detecting and separating arbitrary-shaped objects in an image. In the
literature, the most effective shape approximating methods, like moment invariants, Fourier descriptors and boundary
signatures, represent the shape of an object by a contour (Dengsheng and Guojun, 2004). This has been the underlying
rationale for all available shape-based clustering algorithms to seamlessly incorporate regular geometric contours into their
segmentation frameworks.
To embed generic shape information into the segmentation model, the contour points (shape descriptor) for each object
must either be provided in terms of significant points or automatically determined from the initialization process. These
are then used to calculate the data distance from the boundary, in an analogous manner to existing shape-based clustering
algorithms including FKE and FCES. These two core algorithmic components will now be examined.

3.1 Embedding Shape Information

As previously alluded, to initialise FKG, the shape contour points have to be either manually provided as a set of
significant points or automatically derived from the initialisation process, with in the former case, the B-spline
approximation (e.g. (Francis, 1994); (Hearn and Baker, 1994); (Zhang, 1999); (Tony, 1988)) applied to generate the
respective contour points of each object. For example, the shape descriptor for the miss america object displayed in Figure
1(a) is given in terms of significant points (denoted by ■) [25]. The significant points are generated by (e.g. (Francis,
1994); (Hearn and Baker, 1994); (Zhang, 1999); (Tony, 1988)) and are translation, rotation and scale normalised using
the window-to-viewport normalisation ((Costa et al., 2001); (Foley et al., 1999)) in order to find the best matching region
of the initialisation process. The cluster with the largest number of pixels lying inside the polygon of a set of significant
points is then designated the best matching region [25], with the contour points of this region generated by B-spline using
its corresponding set of significant points. The contour points for the set of significant points shown in the Figure 1(a)
example, are represented by “*” in Figure 1(b).
When initialisation is automatically performed, there is no need for translation and rotation normalisation because the
same object information is used throughout the process. As highlighted in Section 2, the GK algorithm uses a fuzzy
covariance matrix that helps to automatically adapt the shape of the cluster, so enabling it to approximate the original
shape of objects in an image. This is the main advantage in adopting the GK algorithm for automatic object shape
initialisation purposes. Note in this particular initialisation scenario, there is no need to obtain the significant points and
their respective contour points, because the image is segmented by GK, and the corresponding boundary points of each
segmented region are scanned to obtain the set of contour points. These contour points then represent the relevant object
shape and are considered as the initial shape of each object.

(a) Miss America

(b) Shape description with significant points
and generated points of (a)
Figure 1: (a) Miss America, (b) B-spline
generated shape with its significant points.

It needs to be emphasized however that in both cases, the scaling of particular segmented regions will automatically occur
during the various iterations involved in the clustering process.

A core precept of shape-based fuzzy clustering algorithms [10], [13] is that the data distance used in the objective function
must be calculated from the shape of corresponding region. To calculate this distance, the corresponding point on a shape
for a datum must be found and this will actually be the intersection point between the object contour and a line passing
through the cluster centre and datum. A suitable strategy for determining this intersection point is now presented.

3.2 Calculating the Intersection Points

The most important consideration in any clustering–based image segmentation strategy is how best to compute the data
distance ijd implicit in the objective function. In FCM [6] for example, ijd is calculated from the cluster centre based

upon some predefined features (pixel intensity and/or location), while for FKR and FKE, it is calculated from the contour
of a circle and ellipse respectively. As FKG processes arbitrary-shaped objects, ijd has to be calculated from the

respective contour points derived in the initialisation phase (Section 3.1). While the mathematical origins for both FKR
and FKE are straightforward, no similar analytic framework exists for generic shapes, which means it is a more complex
task to determine ijd . To gain an intuitive insight into both this distance and the role of the shape descriptor, consider the

butterfly shape in Figure 2(a) and its corresponding B-spline contour representation in Figure 2 (b), where iv is assumed

to be the centre of the object contour, jS is a datum and '
ijS the corresponding intersection point, with ijd the distance

between them. The aim is to determine the point '
ijS on the initial contour intersected by the line ()1l which joins jS with

the thi cluster centre iv as illustrated in Figure 2(b). '
ijS can be calculated using either polar or a combination of polar and

Cartesian coordinates. The former does not always accurately approximate the actual intersection point because it involves
the matching of two angles, namely ijθ for the datum jS and c

ikθ for the thk contour point ()ijC , with the minimum

distance then being chosen, In many cases, it is not possible to accurately calculate the intersection point of a datum
because the contour points ()ijC are mainly discontinuous as evinced in Figure 1(b). The corollary is that it is not feasible

to compute the exact distance ijd for that datum, which causes improper scaling of the initial shape of a region during the

clustering iterations, and can ultimately lead to poor segmentation performance.
The combined polar and Cartesian coordinate approach in contrast, involves the following two processing steps: i) Find
two points on the contour of the curve that are closest to and lie on opposite sides of the line 1l and; ii) As the shape

descriptor linearly interpolates between two consecutive shape contour points ()ijC , the intersection of these points and

1l gives '
ijS . To locate the two consecutive shape contour points ()ijC , the difference in angle ijkθΔ needs to be

calculated, where c
ikijijk θθθ ~=Δ for "

iNk ≤≤1 , ci ≤≤1 and nj ≤≤1 , with "
iN being the number of contour

points ()ijC in the thi cluster. The two shape contour points with minimum ijkθΔ lying either side of the line 1l will be

the respective consecutive shape contour points ()ijC . These two points together with 1l are then be used to calculate the

accurate intersection point of the thj datum jS . In this scenario, the calculation of the intersection point is determined

from the intersection of two straight lines. If more than one point is found, the point having the smallest ijd will be the

exact intersection point, a decision that resolves any problem arising of handling concave and convex object shapes.
The various steps to locate the intersection point are detailed in Algorithm 1, where ()ijijr θ, and ()c

ik
c

ikr θ, respectively

represent the polar coordinate of datum ijS and corresponding thk contour point in the thi cluster. Firstly convert all the

contour points ()ijC into its corresponding polar form (Step 1 of Algorithm 1) while it also requires same conversion for

all data points to polar form like ()c
ik

c
ikr θ, in Step 2. After conversion to polar form of both contour points ()ijC and data

points jS , a datum is taken and then calculate angle differences ()ijkθΔ with all the contour points ()ijC (Step 3) and

then find two contour points having minimum angle difference ()ijkθΔ and lying both side of the line ()1l in Step 4 of

Algorithm 1. Now, find out the intersection point '
ijS between the lines 1l and the line passing through the contour points

found in Step 4, which is the respective intersection point '
ijS (Step 5). Once all the intersection points are found, the

algorithm terminates (Step 6).
Having determined the intersection point of every datum, ijd can now be calculated and the FKG objective function

formulated, as detailed in the following section.

(a)

(b)

Figure 2: (a) Original butterfly object, (b) Contour points
()ijC of the butterfly object for the given set of

significant points in Figure 1(a) generated by B-spline.
Example of an intersection point '

ijS denoted by “*”

between the contour and line 1l joining datum jS and

the cluster centre iv .

 Algorithm 1: Determining the intersection point between a datum and its corresponding cluster centre.
Precondition: cluster contour points ()ijC , cluster centre iv and datum jS .

Post condition: Intersection point '
ijS .

1. Convert all contour points into polar form ()c
ik

c
ikr θ, with respect to the corresponding cluster

centre iv .
2. Convert all data points into polar form ()ijijr θ, with respect to the corresponding cluster centre iv .

3. Calculate c
ikijijk θθθ ~=Δ for "

iNk ≤≤1 , where "
iN is the number of contour points in the

thi cluster
4. Use the minimum ijkθΔ value to locate the two points lying either side of 1l for jS .

5. Calculate intersection point '
ijS between a line joining the two selected contour points and 1l . If more

than one point is found, the point with the shortest ijd is the intersection point.

6. STOP

1l

3.3 Integrating Shape Constraints

Existing shape-based algorithms like FKR and FCS do not require shape constraints in their paradigms, because they
respectively consider regular circular and elliptic geometric shapes, which can be analytically expressed by standard
equations that both preserve and scale the respective shapes during the clustering process. In contrast, no mathematical
representation exists for generically shaped objects, so in order to incorporate arbitrary-shape information into the
clustering framework, an appropriate shape constraint must be introduced. To address this requirement, the shape
constraint integrated into the FKG algorithm is defined as:

ij
n

t
itij krr =∑

=1
 (1)

where ijr is the distance between the intersection point '
ijS and the thi cluster centre iv and ijk is a constant for the thj

datum of the thi cluster. The notable feature of (1) is that it preserves the initial shape during iterative scaling,
irrespective of the size of the initial contour, as will now be proven in Lemma 1.
Lemma 1: The arbitrary shape constraint ∑= ijijij rkr * always preserves the original shape during iterative scaling,

regardless of size of the initial shape contour.

A formal proof of this Lemma is provided in Appendix B.

The objective function and its associated constraint for the FKG algorithm are now formally defined:

() ()∑∑
= =

=
n

j

c

i
ij

q
ijq dVJ

1 1

2, μμ (2)

subject to ∑
=

=
c

i
ij

1
1μ and ij

n

t
itij krr =∑

=1
 (3)

and

{ }ciij ,,1;10 K∈≤≤ μ and { }nj ,,1K∈ (4)

where S is the dataset containing []jS , μ is the set of membership values ijμ , V is a vector containing the cluster

centre values iv , q is the fuzzifier ≤∝< q1 , and distance () ', ijijijij DrvSdd =−= . ()ij vSd , is the Euclidian

distance between datum jS and iv , while c and n represent the number of clusters and data respectively.

For iterative optimization of the objective function, (2) and (3) are minimised by Lagrangian techniques. In calculating
the membership function, if 0=ijd a crisp decision is mandated and the thj data is classified into the thi cluster,

otherwise the membership value is updated based upon the distance ijd as (see Appendix C for formal derivation):

IF 0=ijd THEN 1=ijμ maintaining ∑
=

=
c

i
ij

1
1μ (5)

ELSE ∑
=

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

c

k

q

kj

ij
ij d

d

1

1
2

1μ (6)

To scale the initial shape during the iterative minimization of the objective function (2), the contour radius ijr as proven in

Appendix C, is analytically derived as:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
−

−
−=

∑

∑

=

=
q
ij

ij

n

t
q
ij

ij
q
it

it
ij

ij

n

t
itij

ijij

k
kk

k

DDk
Dr

μ
μμ

1
11

1

'

1

'

' (7)

When data are further away from the contour of a cluster, their corresponding membership values ijμ are close to zero,

which forces the second term in (7) towards zero and as a consequence, leads to faster convergence and an over-scaling of
the initial shape. To mitigate the impact of over-scaling, ijr is updated as follows (Ameer et al., 2006):

() () 01 ijijij rrnewr λλ −+= (8)

where 0
ijr and ijr are the initial and current values respectively, while λ is an empirically selected constant derived from

the data which is a trade-off between the current and initial cluster sizes.
The thi cluster centre iv is given by (see Appendix C):

∑

∑

=

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−+
−

−

= n

j

q
ij

ij

ij
ijij

ij

iij
ijj

n

j

q
ij

i

D
vS

rS
r

vS
DS

v

1

'
'

'
'

1

2

.

μ

μ

 (9)

where for any image, the 2-D data and cluster centre are respectively given by
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

2

1

j

j
j S

S
S and ⎥

⎦

⎤
⎢
⎣

⎡
=

2

1

i

i
i v

v
v .

The complete FKG algorithm is formalised in Algorithm 2, with the object shape initialised in STEP 1 by the GK
algorithm, as highlighted in Section 3.1. The intersection points for each datum are calculated in STEP 2, with ijr and ijk

being initialised in STEP 3. The membership values ijμ , contour radii ijr and cluster centres iv are then iteratively

updated in STEPS 4 and 5 until either the maximum number of iterations (maxits) is fulfilled or a specified threshold ()ξ
is exceeded.
A major consideration for any fuzzy clustering algorithm, especially one designed for object-based segmentation
applications, is how to determine the optimal number of clusters (objects), either directly from the image data or using a
priori knowledge. This issue is considered in the next section.

Algorithm 2: Detection and separation of generic
shaped object using fuzzy clustering (FKG).
Precondition: Dataset X, number of clusters c,
maxits and threshold ξ .
Post condition: Final segmented regions R

1. Initialise the object shape (Section 3.1).
2. Find intersection point using Algorithm 1.
3. Calculate the initial ijr and ijk values from (3).

4. FOR l = 1, 2, 3,…maxits
5. Update ijμ , ijr and iv using (5) to (9)

6. IF ξμμ <− −1l

ij

l

ij for ji,∇ THEN

STOP

4. DETERMINING THE NUMBER OF CLUSTERS

As there is no single unified definition of what exactly constitutes an object, there typically exists a large number of
objects with their definition very much depending upon user perception and the purpose of the application. In this context,
the cluster number c can either be manually provided or automatically determined from image data, with the standard
approach adopted in the latter case being to use validity measures to find the optimal c [6]; [11] (Jain and Dubes, 1988);
(Chong et al., 2002); (Yen and Langari, 1999)). There are certain situations however, particularly in object-based

segmentation, where validity algorithms fail to generate the correct (optimal) number of clusters (e.g. (Chong et al., 2002);
(Dave, 1992)) because they focus on homogeneous regions of interests, which are often contrary to the human perception
of an object, and this ultimately degrades the overall clustering performance. Conversely, there are numerous applications
in the manufacturing and medical imaging (Pal and Pal, 1993) domains for example, where the number of objects to be
segmented is known a priori, and so in this paper for all shape-based fuzzy clustering algorithms, c is provided.

5. COMPUTATIONAL TIME COMPLEXITY

A detailed computational time complexity analysis for the FKG algorithm is now presented.

Assumption 1: For object-based image segmentation, cn >> and 'pn >> where n is the number of data points, c

the number of clusters and 'p the data dimension, so both ()cO and ()'pO will be constant.
A stepwise computational complexity for Algorithm 1 is firstly derived, which calculates the intersection point for every
datum in each cluster.

5.1 Time Complexity for Algorithm 1

Step 1: To convert "

iN contour points for the thi cluster from Cartesian to polar coordinates takes ()"
iNO time , so for c

clusters, this takes ()'cmO , where 'm is the average number of contour points i.e., ∑
=

=′
c

i
iN

c
m

1

''1
.

Using Assumption 1, for object-based segmentation c will be small, so ()'cO is constant and the time taken ()'mO .

Step 2: Takes ()nO time to convert n data points from Cartesian to polar coordinates.

Step 3: The angle difference '~ ikijijk θθθ =Δ for a particular thj data point in the thi cluster needs to calculate the

difference between it and the angles of all contour points '
jkθ where "1 iNk ≤≤ . Thus for a given c and 'm average

contour points, this takes () ()'' mOcmO = time and for n data points ()'nmO .

Step 4: To find the two contour points on either side of the connecting line 1l i.e., the line between a datum and cluster

centre iv requires ()'mO and so for n data takes ()'nmO .

Step 5: To find the intersection point of two lines takes ()1O time for a single datum, and ()nO time to find the
intersection point for n data points.

In summary therefore, for n data and c cluster contours, all the intersection points can be computed in ()'nmO time.

5.2 Time Complexity for the FKG Algorithm

A full stepwise complexity analysis for the FKG algorithm is now delineated.

Step 1: The shape initialisation technique (Section 3.1) can be computed in ()nO time.

Step 2: For n data points, Algorithm 1 needs ()'nmO time (see Section 5.1), while the contour radius "
ir can be

initialised in ()nO time, so the total time for this step is ()'nmO .

Step 3: To initialise ijK requires ()nO time.

Step 4: The membership values are updated in ()nO time, while similar times are incurred to update the contour radii and

cluster centre values, so the total execution time for this step is ()nO .

This means the overall computational complexity of the FKG algorithm is ()'nmO , i.e., it is dependent on the average
number of cluster contour points 'm . For most real world images, if pixels are uniformly distributed among all clusters, the

minimum number of contour points will be ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

c
nO i.e., () ()nOmO =' (Karmakar, 2002) so in the best case scenario,

the time complexity will be ⎟
⎠
⎞⎜

⎝
⎛ 2

3
nO . In contrast, for the worst case, particularly where objects comprise only the contour

so nm ≅' , the overall computational complexity of FKG becomes ()2nO .

6. EXPERIMENTAL RESULTS

To analyse the segmentation performance of the new FKG algorithm, the results were both qualitatively and numerically
compared with five other shape-based clustering algorithms, namely FKR, FKE, GK, FCS, and FCES. While both the
FKE and FCES algorithms are the generalized versions of FKR and FCS respectively, all algorithms were considered in
the evaluation in order to rigorously test the performance of FKG. Various natural and synthetic gray-scale images
together with medical images were randomly selected for analysis having multiple regions (objects) and comprising
diverse features and shapes1. When pixel location alone is used as a feature in FCM, it arbitrarily divides the image into a
given number of clusters (Ameer et al., 2005b). For this reason, in order to segment foreground objects into perceptually
meaningful regions, all background pixels were manually set to zero, with any zero-valued foreground object pixels being
replaced by 1 to avoid the possibility of foreground pixels merging with the background, without impacting upon visual
perception. All the algorithms are implemented using Matlab 6.1 and the background of the images are separated using
Paintshop-Pro software while Pentium 4 personal computer with 1GB RAM is also used to perform the experiments.
To quantitatively appraise the performance of all the fuzzy clustering algorithms, the objective segmentation evaluation
method, discrepancy based on the number of misclassified pixels (Karmakar, 2002) was used. The two errors, namely
Type I, ierrorI and Type II, ierrorII are formally defined as:

100

1

1
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

∑

∑

=

=

c

j
ji

ii

c

j
ji

i

M

MM
errorI (10)

100

1 11

1
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

∑ ∑∑

∑

= ==

=

c

i

c

j
ji

c

j
ij

ii

c

j
ij

i

MM

MM
errorII (11)

where M is the confusion matrix. Type I, ierrorI is the percentage error of all thi region pixels that are misclassified in

other regions, while Type II, ierrorII is the percentage error of all region pixels misclassified into the thi region.
Representative samples of the manually segmented reference regions together with the original images are shown in

1Obtained from IMSI (Master Photo Collection, San Rafael, CA 94901-5506, USA.), the Internet and personal collection.

Figure 3 (a)-(b) to Figure 5 (a)-(b), where to improve the visual interpretation of the results, both the reference and
segmented regions are displayed in different colours rather than their original gray-scale intensities.
Before a detailed analysis of the results, an outline is given on the various initialisation strategies used for each clustering
method. The GK, FCS and FCES algorithms were all initialised using random membership values ijμ , while FKR used a

fuzzy k-means (FKM) (see (Karmakar, 2002)) algorithm and FKE employed the same initialisation approach as in [13],
namely 10 iterations of FKM followed by 10 iterations of FKR. For FKG, while in principle any clustering algorithm can
be used, the GK algorithm was selected for automatic shape initialisation because as highlighted in Section 2, it has
consistently proven to give superior results for object-based segmentation compared with FKR, FCS, FKE and FCES. In
the FKG experiments, 1.0=λ was chosen in (8) to give a higher priority to the initial shape size, the rationale being that
as the initial shape has been automatically determined, the ensuing clustering process will not alter it very much and as a
consequence, it will not improve the quality of the segmentation. To achieve better performance it is therefore essential to
downscale the cluster in each iteration, and for this reason, the initial cluster size was heuristically downscaled by 25%.
The first set of results relate to the X-ray image in Figure 3 (a) which has two objects (regions), namely the femur ()1R and
tibia ()2R with both regions being arbitrarily shaped. The segmentation results for all the various shape-based algorithms
are displayed in Figure 3 (c)-(h). If Figure 3 (c) is compared with the manually segmented reference regions in Figure 3
(b), it is visually apparent that for FKR, a large number of pixels in 1R have been misclassified into 2R and vice versa
because neither region is circular in shape. Similar judgments can be made concerning the results for the FKE, FCS and
FCES algorithms in Figure 3 (d), (f) and (g) respectively, while the GK algorithm failed to effectively segment 1R and

2R because as alluded earlier, it does not explicitly consider specific shape information. In contrast, the results for the
FKG algorithm (Figure 3 (h)) reveal it correctly classified both 1R and 2R with a minimal number of misclassified pixels
vindicating the incorporation of generic shape information. The corresponding numerical results for 1R in Table 1
confirm this improved performance with FKG producing the lowest overall average error of 3.3% compared with the next
best average error of 6.2% for both FCS and FCES. This error is directly attributable to the erroneous initial object shape
generated by the GK algorithm as evidenced in Figure 3(e).

(a) Original

(b) Ref. Image

(c) FKR

(d) FKE

(e) GK

(f) FCS

(g) FCES

(h) FKG

Figure 3: (a) Original X-ray image, (b) Manually
segmented reference of (a). Figures (c)-(h) the
segmented results of (a) using FKR, FKE, GK, FCS,
FCES, and FKG respectively.

Table 1: Percentage error of segmentation results in Figure 3 for region 1R

Error Algorithm
Type I Type II Mean

FKR 31 37.4 34.2
FKE 43.8 0 21.9
GK 5.2 10.3 7.7
FCS 0 12.4 6.2
FCES 0 12.4 6.2
FKG 0.4 6.2 3.3

A second series of experiments were performed upon the dog image in Figure 4 (a), which has two distinctly asymmetric-
shaped objects; the camel ()1R and dog ()2R . The corresponding results for FKR, FKE, GK, FCS, FCES, and FKG are
evinced in Figure 4 (c)-(h) respectively. If the segmented results produced by FKR in Figure 4 (c) are compared with the
reference image in Figure 4 (b), it is clear many pixels from 2R have been misclassified into 1R and vice versa, which is
not surprising given that neither object is circular in shape. Similarly, FKE also generated a high number of misclassified
pixels for 2R in Figure 4 (d), while interestingly the GK algorithm produced a lower misclassification than FKR, FKE,
FCS and FCES because it adapts to the local topological structure of the cluster shape (Figure 4 (e)), though some
misclassified pixels from 1R in 2R remain. In contrast, both 1R and 2R have been correctly classified by FKG with Table
2 corroborating its superior segmentation performance, with a minimum average error of just 0.01% compared with the
next best error of 2.75% for GK, which was used to initialize the new FKG algorithm.

(a) Original

(b) Ref. Image

(c) FKR

(d) FKE

(e) GK

(f) FCS

(g) FCES

(h) FKG

Figure 4: (a) Original dog image, (b) Manually segmented
reference of (a). Figures (c)-(h) the segmented results of (a)
using FKR, FKE, GK, FCS, FCES, and FKG respectively.

Table 2: Percentage error of segmentation results in Figure 4 for 1R region

Error Algorithm
Type I Type II Mean

FKR 52.3 38.9 45.6
FKE 23.7 0 11.8
GK 5.5 0 2.75
FCS 0 10.5 5.25
FCES 0 9 4.5
FKG 0 0.02 0.01

The final test image (bird) used in the experiments (Figure 5 (a)) contained three regions, all of which were arbitrarily
shaped, namely reptile ()1R , bird ()2R and tree branch ()3R , with 2R and 3R being connected. The corresponding results
for the FKR, FKE, GK, FCS, FCES and FKG algorithms are displayed in Figure 5 (c)-(h) respectively. As with the other

test images, because all objects are arbitrarily shaped, there is an ensuing large number of misclassified pixels between 1R ,

2R and 3R for FKE as confirmed in Figure 5 (c). The results for FKE, FCS and FCES in Figure 5 (d), (f) and (g)
respectively, are also characterized by high pixel misclassifications, though for these algorithms this is especially
noticeable between the connected two regions 2R and 3R . Conversely, the FKG algorithm (Figure 5 (h)) has successfully
separated 1R and generated significantly fewer misclassified pixels for both 2R and 3R compared with the other
algorithms. These perceptual judgments are substantiated by the quantitative results in Table 3 which confirm FKG again
had the lowest mean error of 1% compared with 46.8% for FKR and 3.02% for GK.

(a) Original

(b) Ref. Image

(c) FKR

(d) FKE

(e) GK

(f) FCS

(g) FCES

(h) FKG

Figure 5: (a) Original bird image, (b) Manually
segmented reference of (a). Figures (c)-(h) the
segmented results of (a) using FKR, FKE, GK, FCS,
FCES, and FKG respectively.

Table 3: Percentage errors for the segmentation results in Figure 5

Error Mean
Type I Type II Algorithm

R1 R2 R3 R1 R2 R3
FKR 65.7 59.4 62.8 35.8 27.5 29.8 46.8
FKE 0 47.6 46.5 0 27.1 26.6 24.6
GK 0 7 4.7 1.8 2.7 1.9 3.02
FCS 0 52.2 47.7 0 27.7 29.2 26.1

FCES 0 47.8 57.2 0 33.3 26.8 27.5
FKG 0 3.9 0 0 0 2.2 1

To rigorously assess the performance of the FKG algorithm, experiments were conducted upon 185 randomly selected
images containing multiple objects with circular, elliptic and arbitrary shaped structures of differing orientations and size.
With the object shape descriptor being generated by GK initialization (Section 3.1), FKG produced the best segmentation
performance for 80 images while as shown in Figure 8, FKR, FKE, GK, FCS, and FCES provided better segmentation
results for only 2, 17, 4, 6, and 21 respectively. FKG also produced analogous results for 29 and 27 images respectively to
GK and the other algorithms considered, while FKR, FKE, FCS, and FCES exhibited similar results for only 6, 17, 16, and
19 images respectively. Since these latter algorithms are specifically tailored for regular geometric objects, they provided
either comparable or slightly improved segmented results compared with FKG for such objects. As highlighted in Section
2, while FKG adopts the same philosophy as the FKR, FCS, FKE and FCES algorithms (see (Man and Gath, 1994);
(Dave, 1990); (Dave, 1992); (Gath and Hoory, 1995)), it does explicitly consider contour-based shape information and not
the enclosed region that defines a particular object, with the consequence that in only 4 images did FKG fail to improve
upon the GK initialization. An example is illustrated in Figure 6 for the cat image, where the degraded FKG segmentation
performance is directly due to the poor initial segmented regions produced by GK leading to poor initial shapes and
subsequent improper scaling of these shapes.

(a) Original

(b) Ref. Image

(c) GK

(d) FKG

Figure 6: (a) Original cat image, (b) Manually
segmented reference of (a). Figures (c)-(d) the
segmented results of (a) using GK and FKG
respectively.

Another example is given in Figure 7 for the snake image containing two arbitrary shaped objects, where it clearly visible
that the segmentation results of FKG for given shape information is better than that of for automated generated shape
information.

(a) Original

(b) Ref. Image

(c) FKG (Generated

Points)

(d) FKG (Given shape)

Figure 7: (a) Original snake image, (b) Manually
segmented reference of (a). Figures (c)-(d) the
segmented results of (a) using FKG for generated
contour points and given contour points
respectively.

Overall, to assess the results validate the enhanced performance of the FKG algorithm in being able to segment arbitrary-
shaped objects, with the consistent superior segmentation results for most images justifying the strategy of seamlessly
integrating generic shape information into a clustering framework.

0
20
40
60
80

100
120
140
160

FKR FKE GK FCS FCES FKG

Algorithm
N

um
be

r o
f I

m
ag

es

Best Performance Equal w ith other algorithm

Figure 8: The best segmentation results for six different
fuzzy clustering algorithms when arbitrary shape
contours are automatically determined from the
initialization.

7. CONCLUSION

This paper has presented a new shape-based fuzzy image segmentation algorithm called detection and separation of
generic shaped objects (FKG) that seamlessly incorporates generic shape information, and introduces a shape constraint to
preserve the original object shape and ensure its optimization during subsequent iterative scaling. A thorough qualitative
and quantitative analysis has been conducted to compare the performance with existing shape-based algorithms using a
myriad of images comprising multiple objects having different shapes, with FKG consistently providing better
segmentation results by virtue of integrating generic shape information into an FCM-based fuzzy clustering framework.
The FKG algorithm can further be extended to implement it in MPEG-4 for real images, which has already been
implemented for synthetic images.

8. REFERENCES

[1] Gonzalez R. C. and Woods R. E. (2002). Digital Image Processing, New Jersey: Prentice Hall Inc.
[2] Hoppner, F., et al. (1999). Fuzzy Cluster Analysis: methods for classification, data analysis, and image recognition,

New York: John Wiley & Sons, Ltd.
[3] Pham D. L. and Prince J. L. (1999). An adaptive fuzzy c-means algorithm for image segmentation in the presence

of intensity inhomogeneities, Pattern Recognition Letters, 20, 57-68.
[4] Gath I. and Geva A. C. (1989). Unsupervised optimal fuzzy clustering, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2(7), 773-781.
[5] Pal N. R. and Pal S. K. (1993). A review on image segmentation techniques, Pattern Recognition, 26(9), 1277-

1294.
[6] Bezdek J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithm, New York: Plenum Press.
[7] Krishnapuram R. and Keller J. M. (1993). A possibilistic approach to clustering, International Journal of Fuzzy

Systems, 2(2), 98-110.
[8] Jiu-Lun Fan, Wen-Zhi Zhen, and Wei-Xin Xie (2003). Suppressed fuzzy c-means clustering algorithm, Pattern

Recognition Letters, 24, 1607-1612.
[9] Gustafson D. E. and Kessel W. C. (1979). Fuzzy clustering with a fuzzy covariance matrix, In Proceedings of IEEE

CDC, 761-766.
[10] Yael Man and Isak Gath (1994). Detection and separation of ring-shaped clusters using fuzzy clustering, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 16 (8), 855-86.
[11] Dave R.N. (1990). Fuzzy shell-clustering and applications to circle detection in digital images, International

Journal on General System, 16 (4), 343-355.
[12] Dave R.N. (1992). Generalized Fuzzy c-Shell clustering and detection of circular and elliptical boundaries, Pattern

Recognition, 25 (7), 713-721.

[13] Isak Gath and Dan Hoory (1995). Fuzzy clustering of elliptic ring-shaped clusters, Pattern Recognition Letters, 16,
727-741.

[14] Babuska R., Van der Veen P. J. and Kaymak U. (2002). Improved covariance estimation for Gustafson-Kessel
clustering, IEEE international Conference on Fuzzy Systems, 2, 1081-1085.

[15] Dengsheng Zhang and Guojun Lu (2004). Review of shape representation and description techniques, Pattern
Recognition, 37, 1-19.

[16] Ameer Ali M., Karmakar G., and Dooley L.S. (2005). Fuzzy image segmentation of generic shaped clusters, IEEE
International Conference on Image Processing, 2, 1202-1205.

[17] Jain A. K. and Dubes R. C. (1988). Algorithms for Clustering Data, Prentice Hall Inc., New Jersey.
[18] Chong, A., Gedeon, T.D. and Koczy, L.T (2002). A hybrid approaches for solving the cluster validity problem,

International Conference on Digital Signal Processing, 2, 1207-1210.
[19] Yen J. and Langari R. (1999), Fuzzy logic, New Jersey : Prentice Hall Inc.
[20] Dave R. N. (1992). Boundary detection through fuzzy clustering, IEEE International Conference on Fuzzy Systems,

127-134.
[21] Francis S. Hill (1994). Computer Graphics, New Jersey: Prentice Hall Inc.
[22] Hearn D. and Baker M. P. (1994). Computer Graphics, New Jersey: Prentice Hall Inc., 1994.
[23] Jiwen Zhang (1999). C-Bezier curves and surfaces, IDEAL International Conference on Graphical Models and

Image Processing, 2-15.
[24] Tony D. Derose (1988). Geometric continuity, shape parameters, and geometric constructions for catmull-rom

splines, ACM Transaction on Graphics, 7(1), 1-41.
[25] Ahmed R., Dooley L. S., and Karmakar G. C. (2007). Probabilistic spatio-temporal video object segmentation using

a priori shape descriptor, IEEE International Conference on Acoustics, Speech & Signal Processing, 1, 1081-1084.
[26] L. da F. Costa, and R. M. Cesar Jr. (2001). Shape Analysis and Classification: Theory and Practice, 331-419, CRC

Press LLC.
[27] Foley J. D. et al. (1999). Computer Graphics: Principles and Practice, Addison-Wesley Pub. Co. Inc.
[28] Ameer Ali M., Dooley L. S., and Karmakar G. C. (2006). Object based segmentation using fuzzy clustering, IEEE

International Conference on Acoustics, Speech & Signal Processing, 2, 105-108.
[29] Ameer Ali M., Dooley L. S., and Karmakar G. C. (2005). Automatic feature set selection for merging image

segmentation results using fuzzy clustering, International Conference on Computer and Information Technology,
337-342.

[30] Karmakar G. C. (2002). An Integrated Fuzzy Rule-Based Image Segmentation Framework, PhD, Thesis
Dissertation, Monash University, Australia.

[31] Watanabe N and Imaizumi T. (2002). Fuzzy k-Means Clustering with Crisp Regions, IEEE International
Conference on Fuzzy Systems, 1528-1531.

BIOGRAPHY

Dr. Ameer Ali has born in Dhaka, Bangladesh in 1977. He completed his B. Sc. in Computer Science and Engineering in
2001 from Bangladesh University of Engineering and Technology, Dhaka and PhD in IT in 2006 from Monash
University, Australia. Currently, he is working as an Assistant Professor in the Department of Computer Science and
Engineering, East West University, Dhaka, Bangladesh. He has more than 28 published articles in both reputed

international journals and conferences. His research interests are image processing, segmentation, fuzzy clustering,
telemedicine, vendor selection using fuzzy techniques, and networking.

GOUR C. KARMAKAR received the B.Sc. Eng. degree in Computer Science and Engineering from Bangladesh
University of Engineering and Technology in 1993 and Masters and Ph.D. degrees in Information Technology from the
Faculty of Information Technology, Monash University, in 1999 and 2003, respectively. He also successfully completed
the Graduate Certificate in Higher Education, Higher Education Development Unit, Monash University, Australia in
Semester 1, 2005. He was with the Computer Division, Bangladesh Open University from 1994 to 1998. He is currently a
Senior Lecturer at the Gippsland School of Information Technology, Monash University, Australia. He has published over
67 peer-reviewed research publications including twelve international peer reviewed reputed journal papers and was
jointly awarded three best paper awards. His research interest includes image and video processing, mobile and wireless
sensor networks.

LAURENCE S. DOOLEY received his B.Sc.(Hons), M.Sc. and Ph.D. degrees in Electrical and Electronic Engineering
from the University of Wales/Cymru (Swansea) in 1981, 1983 and 1987, respectively. He is currently Professor of
Information and Communication Technologies in the Department of Communication and Systems at The Open University,
UK, where his research interests include: next generation multimedia technologies, cognitive radio networks, MANETs,
4G security, and technology transfer and commercialisation strategies for small-to-medium enterprises. He has edited one
book and published more than 200 peer-reviewed scientific journals, book chapters; monographs and conference papers,
with 3 international best paper awards and/or nominations, including the IEEE Communications Society sponsored
Outstanding Paper Prize at the 2006 International Conference on Next Generation Wireless Systems. He has successfully
supervised 18 PhD/Masters research students together with being the recipient of significant public and private sector
funding to support his multifaceted research. He is a Chartered Engineer, a Fellow of the British Computer Society and a
Senior Member of the IEEE, as well as being a Vice President of the Welsh Crawshay’s Rugby Football Club.

APPENDIX A

THE GUSTAFSON-KESSEL (GK) ALGORITHM

Let c and n be the number of clusters and data respectively. S is the dataset containing []jS , μ is a set of membership

values, V is a vector containing the cluster centre values iv , q is the fuzzifier ≤∝< q1 , and ijD is the distance norm

calculated for clusters of different shapes in one data set using:
() ()iji

T
ijij vSAvSD −−=2 (A.1)

where iA is the norm inducing matrix, which allows the distance norm to adapt to the local topological structure of the
data (see (Babuska et al., 2002)). The GK algorithm iteratively optimizes the following objective function to derive ijμ

and iv :

() () 2

1 1
,, ij

qn

j

c

i
ijq DVSJ ∑∑

= =
= μμ (A.2)

for { }ciij ,,1;10 K∈≤≤ μ and { }nj ,,1K∈ (A.3)

and { }nj
c

i
ij ,,1;1

1
K∈=∑

=
μ (A.4)

For 0=ijD , a crisp decision is mandated and the thj datum is classified into the thi cluster, otherwise the membership

value ijμ is updated using ijD so:

IF ()0=ijD THEN

 1=ijμ maintaining ∑
=

=
c

i
ij

1
1μ (A.5)

 ELSE

∑
=

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

c

k

q

kj

ij

ij

D
D

1

1
2

1μ (A.6)

While the cluster centre iv is updated by:

()

()∑

∑

=

== n

j

q
ij

n

j
j

q
ij

i

S
v

1

1

μ

μ
 (A.7)

and iA adapts the local topological structure of the cluster shape as follows:

() () ()

()∑

∑

=

=
−−

= n

j

q
ij

n

j
ij

T
ij

q
ij

i

vSvS
F

1

1

μ

μ
 (A.8)

()⎡ ⎤11
'det −= iPiii FFA ρ (A.9)

where iF is the fuzzy covariance matrix, 'P is the data dimension, and iρ is the cluster volume, which is usually set
equal to unity.

APPENDIX B

PROOF OF LEMMA 1

Proof: The shape constraint ∑= ijijij rkr * will not deform an object shape because ijk is defined as the ratio of the

normalized radius with respect to the sum of all radii ∑ ijr , so it is constant for every iteration. This therefore represents

the shape irrespective of its size, so for example, in the tht and ()tht 1+ iterations, the following holds:

()
()
()

()
() ()1

1
1

+=
+

+
==
∑∑

tk
tr

tr
tr

tr
tk ij

ij

ij

ij

ij
ij

()
()

()
()1

1
+

+
=⇒
∑∑

tr
tr

tr
tr

ij

ij

ij

ij

() ()

()

() ()

()1

11
,,

+

+++

=

+

⇒
∑∑

≠≠≠≠

tr

trtr

tr

trtr

ij

jmik
kmij

ij

jmik
kmij

()

()

()

()1

1
11 ,,

+

+

+=+⇒
∑∑

≠≠≠≠

tr

tr

tr

tr

ij

jmik
km

ij

jmik
km

()

()

()

()1

1
,,

+

+
=⇒
∑∑

≠≠≠≠

tr

tr

tr

tr

ij

jmik
km

ij

jmik
km

() ()
() ()tr
tr

tr
tr

jmik
km

ij

ij

jmik
km ∑∑

≠≠≠≠

+
=+⇒

,,

1
1 (B.1)

So every ()1+trkm in the current iteration is updated by the ratio
()
()tr

tr

ij

ij 1+
 and the respective ()trkm from the previous

iteration. Since this ratio is constant for all radii, it either scales up or down by the same amount and so the scaling does
not distort the original shape of the region. The shape constraint ∑= ijijij rkr * thus ensures the original object shape is
preserved.

APPENDIX C

SOME FORMAL FKG ALGORITHM PROOFS

The objective function of the proposed FKG algorithm is defined as follows:

() ()∑∑
= =

=
n

j

c

i
ij

q
ijq dVJ

1 1

2, μμ (C.1)

subject to:

∑
=

<<
n

j
ij n

1
0 μ ; nj ≤≤1 (C.2)

∑
=

=
c

i
ij

1
1μ ; ci ≤≤1 (C.3)

∑
=

=
n

t
itijij rKr

1
 (C.4)

where () ijijijijij rDrvSdd −=−= ', , ()iijij vSdr ,'= , () ijijij vSDvSd −== ', , with all other parameters being

defined as in Appendix A.

Applying Lagrangian multiplier and using (C.1) to (C.4), (C.1) can be derived as follows:

⎟
⎠
⎞⎜

⎝
⎛ −+

⎟
⎠
⎞⎜

⎝
⎛ −+==

∑

∑∑ ∑

=

== =

n

t
itijij

c

i
ijij

c

i

n

j

q
ijq

rKr

dVJJ

1
2

1
1

2

1 1

' 1),(

λ

μλμμ
 (C.5)

To derive ijμ , (C.5) is differentiated with respect to ijμ and set equal to 0

01
1

1
2

1 1

'

=⎟
⎠
⎞⎜

⎝
⎛ −+= ∑∑ ∑

== =

c

i
ij

ij
ij

c

i

n

j

q
ij

ijij d
dd

d
d

d
dJ μ

μ
λμ

μμ

01
21 =+⇒ − λμ ij

q
ij dq

211 . ij
q
ij d

q
−=−⇒ μ

λ

ij

q

q
μ

λ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⇒

−1
1

1 . 1
2
−q

ijd

()1
2

1
1

1 1.
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⇒

q

ij

q

ij dq
λ

μ (C.6)

Again from (C.3):

1
1

=∑
=

c

k
kjμ

.
1

1

1

1
−

=
∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⇒

qc

k q
λ

11 1
2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −q

kjd

.
1

1

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⇒

q

q
λ

 11 1
2

1
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

=
∑

qc

k kjd

ijμ⇒ . 1
2
−q

ijd . 11 1
2

1
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

=
∑

qc

k kjd

ijμ⇒ . 1
1

2

1
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

=
∑

qc

k kj

ij

d
d

∑
=

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⇒

c

k

q

kj

ij

ij

d
d

1

1
2

1μ (C.7)

To calculate ijr , (C.5) is differentiated with respect to ijr :

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛ −+= ∑ ∑ ∑

= = =

c

i

n

j

n

t
itijijij

q
ij

ijij

rKrd
dr
d

dr
dJ

1 1 1
2

2
'

λμ

() ()ijij
ij

ij
q
ij Kd

dr
dd −+= 12 2λμ (C.8)

Now () () ()1' −=−= ijij
ij

ij
ij

rD
dr
dd

dr
d

 (C.9)

So from (B.8) and (C.9), and setting (C.8) =0 gives:

() () 012.1 2

'

=−+−= ijij
q
ij

ij

Kd
dr
dJ λμ

() () () 012.1 2
' =−+−−=> ijijij

q
ij KrD λμ

() 0122 2
' =−++−=> ijij

q
ijij

q
ij KrD λμμ

() 0122 2
' =−−−=> ijij

q
ijij

q
ij KrD λμμ

q
ij

ij
ijij

K
Dr

μ
λ −

−=⇒
1

.
2

2' (C.10)

Again, using (C.4) and (C.10),

∑∑
== ⎭

⎬
⎫

⎩
⎨
⎧ −

−==
n

t
q
it

it
itij

n

t
itijij

K
DKrKr

1

2'

1

1
.

2 μ
λ

∑∑
==

−
−=

n

t
q
it

it
ij

n

t
itij

K
KDK

1

2

1

' 1
.

2 μ
λ

ij

n

t
q
it

it
ij

n

t
itij r

K
KDK =

−
−=> ∑∑

== 1

2

1

' 1
.

2 μ
λ

q
ij

ij
ij

n

t
q
it

it
ij

n

t
itij

K
D

K
KDK

μ
λ

μ
λ −

−=
−

−⇒ ∑∑
==

1
.

2
1

.
2

2'

1

2

1

'

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−
−

=−⇒ ∑∑
==

q
ij

ijn

t
q
it

it
ijij

n

t
itij

KK
KDDK

μμ
λ 11

.
2 1

2'

1

'

∑

∑

=

=

−
−

−

−
=⇒

n

t
q
ij

ij
q
it

it
ij

n

t
ijitij

KK
K

DDK

1

1

''

2

112
μμ

λ
 (C.11)

Using (C.11) and (C.10) can be expressed as:

q
ij

ij

n

t
q
ij

ij
q
it

it
ij

n

t
ijitij

ijij

K
KK

k

DDK
Dr

μ
μμ

−
−

−
−

−
−=∴

∑

∑

=

=
1

.
11

1

1

''

' (C.12)

To obtain iv , (C.5) is differentiated with respect to iv :

⎭
⎬
⎫

⎩
⎨
⎧

= ∑∑
= =

c

i

n

j
ij

q
ij

ii

d
dv
d

dv
dJ

1 1

2
'

μ

)(. 2

1
ij

i

n

j

q
ij d

dv
d∑

=

= μ

ij
i

ij

n

j

q
ij d

dv
dd ..2.

1
∑
=

= μ

{ }ijij
i

ij

n

j

q
ij rvSd

dv
dd −= ∑

=

),(..2
1
μ

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑
=

ij
i

ij
i

ij

n

j

q
ij r

dv
dvSd

dv
dd),(2

1
μ (C.13)

If datum S and cluster center V are 2D, i.e.,
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

2

1

j

j

S

S
 and ⎥

⎦

⎤
⎢
⎣

⎡

2

1

i

i

v
v

 respectively, then

{ }2
22

2
11)()(),(ijij

i
ij

i

vSvS
dv
dvSd

dv
d

−+−=

)1).((2.
)()(2

1
112

22
2

11

−−
−+−

= ij

ijij

vS
vSvS

 when the X-coordinate is considered and:

{ }2
22

2
11)()(ijij

i

vSvS
dv
d

−+−

)1).((2.
)()(2

1
222

22
2

11

−−
−+−

= ij

ijij

vS
vSvS

 while this considers only the Y-coordinate. So,

2
22

2
11)()(2

)1)((2
),(

ijij

ij
ij

i vSvS

vS
vSd

dv
d

−+−

−−
=∴

'

))(1(
),(

))(1(

ij

ij

ij

ij

D
vS

vSd
vS −−

=
−−

= (C.14)

Similarly,

ij

iij
ij

i r
vS

r
dv
d))(1(' −−

= (C.15)

Using (C.13):

⎭
⎬
⎫

⎩
⎨
⎧

−=∴ ∑
=

ij
i

ij
i

ij

n

j

q
ij

i

r
dv
dvSd

dv
dd

dv
dJ),(2

1

'

μ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −−

−
−−

= ∑
= ij

iij

ij

ij
ij

n

j

q
ij r

vS
D

vS
d

))(1())(1(
.2

'

'
1
μ

()()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−
−

−−= ∑
= ij

iij

ij

ij
ijij

n

j

q
ij r

vS
D

vS
rD

'

'
'

1
12 μ

⎪⎭

⎪
⎬
⎫

−+
−

−

⎪⎩

⎪
⎨
⎧ −

−−−= ∑
=

iij
ij

ij
ij

ij

iij
ijij

n

j

q
ij

vS
D

vS
r

r
vS

DvS

'
'

'
'

1
2)1(μ

⎪⎭

⎪
⎬
⎫

+
−

−

⎪⎩

⎪
⎨
⎧ −

−−−= ∑
=

'
'

'
'

1

22)1(

ij
ij

ij
ij

ij

iij
ijij

n

j

q
ij

S
D

vS
r

r
vS

DvSμ

 (C.16)

For optimization, (C.16) is set to 0:

0

22)1(

'
'

'
'

1

=
⎪⎭

⎪
⎬
⎫

+
−

−

⎪⎩

⎪
⎨
⎧ −

−−− ∑
=

ij
ij

ij
ij

ij

iij
ijij

n

j

q
ij

S
D

vS
r

r
vS

DvSμ

⎪⎭

⎪
⎬
⎫−

−+

⎪⎩

⎪
⎨
⎧ −

−==> ∑∑
==

'
'

'
'

11
2

ij

ij
ijij

ij

iij
ijj

n

j

q
ij

n

j

q
iji

D
vS

rS

r
vS

DSv μμ

∑

∑

=

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−+
−

−

==> n

j

q
ij

ij

ij
ijij

ij

iij
ijj

n

j

q
ij

i

D
vS

rS
r

vS
DS

v

1

'
'

'
'

1

2

.

μ

μ

 (C.17)

