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Purpose- In recent years Monte-Carlo sampling methods, such as Moaté tree search, have
achieved tremendous success in model free reinforcemaumting. A combination of the so called
upper confidence bounds policy to preserve the “exploratiomxploitation” balance to select actions
for sample evaluations together with massive computinggpdw store and to update dynamically a
rather large pre-evaluated game tree lead to the develdmheoftware that has beaten the top human
player in the game of Go on a 9 by 9 board. Much effort in theemtrresearch is devoted to widening
the range of applicability of the Monte-Carlo sampling neetblogy to partially observable Markov
decision processes with non-immediate payoffs. The maifiestge introduced by randomness and
incomplete information is to deal with the action evaluatat the chance nodes due to drastic dif-
ferences in the possible payoffs the same action could athie aim of this article is to establish
a version of a theorem that originated from population geseind has been later adopted in evo-
lutionary computation theory that will lead to novel Mor@arlo sampling algorithms that provably
increase the Al potential. Due to space limitations theaaigorithms themselves will be presented
in the sequel papers, however, the current paper providekdansathematical foundation for the de-
velopment of such algorithms and explains why they are smiziog.
Design/Methodology/Approach-In the current paper we set up a mathematical frameworle atad
prove a version of a Geiringer-like theorem that is very vgeited for the development of Mote-Carlo
sampling algorithms to cope with randomness and incomjétemation to make decisions. From
the framework it will be clear that such algorithm increaseatvseems like a limited sample of roll-
outs exponentially in size by exploiting the symmetry withiie state space at little or no additional
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computational cost. Appropriate notions of recombinaf@ncrossover) and schemata are introduced
to stay inline with the traditional evolutionary compugatiterminology. The main theorem is proved
using the methodology developed in the PhD thesis of thedfitsior, however the general case of non-
homologous recombination presents additional challetigetshave been overcome thanks to a lovely
application of the classical and elementary tool known as‘itarkov inequality” together with the
lumping quotients of Markov chains techniques developatisartcessfully applied by the authors in
the previous research for different purposes. This metlaggowill be mildly extended to establish
the main result of the current article. In addition to esgdtihg the Geiringer-like theorem for Monte
Carlo sampling, which is the central objective of this papes also strengthen the applicability of
the core theorem from the PhD thesis of the first author onhvbig main result rests. This provides
additional theoretical justification for the anticipatadsess of the presented theory.

Findings- This work establishes an important theoretical link betwelassical population genetics,
evolutionary computation theory and model free reinforeatriearning methodology. Not only the
theory may explain the success of the currently existing tet@arlo tree sampling methodology, but
it also leads to the development of novel Monte-Carlo samypiéchniques guided by rigorous math-
ematical foundation.

Practical implications- The theoretical foundations established in the currenkyoovide guidance
for the design of powerful Monte-Carlo sampling algorithimsnodel free reinforcement learning to
tackle numerous problems in computational intelligence.

Originality/value- Establishing a Geiringer-like theorem with non-homolagoecombination was a
long standing open problem in evolutionary computatiorotiieApart from overcoming this chal-
lenge, in a mathematically elegant fashion and estabtishirather general and powerful version of
the theorem, this work leads directly to the developmentasfeh provably powerful algorithms for
decision making in the environment involving randomnesgién or incomplete information.

Keywords Reinforcement learning; partially observable Markovisien processes; Monte Carlo tree
search; upper confidence bounds for trees, evolutionanpuatation; Geiringer Theorem; schemata;
non-homologous recombination (crossover); Markov chdimsping quotients of Markov chains;
Markov inequality; contraction mapping principle; irraibie Markov chains; non-homogenous
Markov chains.

1. Introduction

A great number of questions in machine learning, computeregatelligence, control the-
ory, and numerous other applications involve the desigigafrahms for decision-making
by an agent under a specified set of circumstances. In thegeastral setting, the prob-
lem can be described mathematically in terms of the stateaation pairs as follows. A
state-action pair is an ordered pair of the fofm &) whered = {a1, asz,...,a,} IS
the set of actions (or moves, in case the agent is playing agtminstance) that the
agent is capable of taking when it is in the state (or, in cdse game, a state might be
sometimes referred to as a positienDue to randomness, hidden features, lack of mem-
ory, limitation of the sensor capabilities etc, the state/ i@ only partially observable by
the agent. Mathematically this means that there is a funetio S — O (as a matter of
fact, a random variable with respect the unknown probatsfilace structure on the s&}
whereS is the set of all states which could be either finite or infinitieile O is the set
(usually finite due to memory limitations) of observatiorsimg the property that when-
everg(s1) = ¢(s2) (i.e. whenever the agent can not distinguish statesnds,) then the
corresponding state action pairs , &) and (se, 5) are such thati = 3 (i.e. the agent
knows which actions it can possibly take based only on themfsion it makes). The gen-
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eral problem of reinforcement learning is to decide whictioacis best suited given the
agent’s knowledge (that is the observation that the agesinfwde as well as the agent's
past experience). In computational settings “suitaBiilgynaturally described in terms of a
numerical reward value. In the probability theoretic sethg&eagent aims to maximize the
expected reward (the expected reward considered as a ravattable on the enormous
and unknown conditional probability space of states givepecific observation and an
action taken). Most common models such as POMDPs (partibgrvable Markov deci-
sion processes) assume that the next state and the cordasponmerical rewards depend
stochastically only on the current observation and actioa.number of situations the im-
mediate rewards after executing a single action are unkndva so-called “model free”
reinforcement learning methods, such as Monte Carlo teciesi (i.e. algorithms based
on repeated random sampling) are exploited to tackle pnoblef this type. In such al-
gorithms a large number abllouts (i.e. simulations or self-plays) are made and actions
are assigned numerical payoffs that get updated dynamigalat every simulation of an
algorithm). While the simulated self-plays started wittpadfic chosen action, say, are
entirely random, the actiom itself is chosen with respect to a dynamically updated proba
bility distribution which ensures the exploration versupleitation balance: the technique
known as UCB (Upper Confidence Bounds). It may be worth enipingsthat the UCB
methodology is based on a solid mathematical foundatian[#e[10] and [3]). A combi-
nation of UCB with Monte Carlo sampling lead to tremendowesalirthrough in computer
Go performance level (see [5] and [6], for instance) and nraskarch is currently under-
going to widen the applicability of the method. Some of thetipalarly challenging and
interesting directions involve decision making in the eamments (or games) involving
randomness, hidden information and uncertainty or in ‘itmttus” environments where
appropriate similarities on the set of states must be coctstd due to runtime and mem-
ory limitations and also action evaluation polices must beamced to cope with drastic
changes in the payoffs as well as an enormous combinatogédsion in the branching
factor of the decision tree. In recent years a number of bearapproaches have been
proposed based on the existing probabilistic planning odlogy. Despite some of these
newly developed methods have already achieved surprjgiagverful performance levels:
see([28] and [24], the authors believe there is still roondi@stic improvement based on
the rigorous mathematical theory originated from cladgicgulation genetics(([8]) and
later adopted in traditional evolutionary computationatye([18], [13] [12]). Theorems of
this type are known as Geiringer-like results and they asidtiee limiting “frequency of
occurrence” of various sets of “genes” as recombinatioepeatedly applied over time.
The main objective of the current work is to establish a nagjemeral and powerful version
of a Geiringer-like theorem with “non-homologous” recomdion operators in the setting
of Monte Carlo sampling. This theorem leads to simple dywcaagorithms that exploit
the intrinsic similarity within the space of observationsncrease exponentially the size
of the already existing sample of rollouts yielding sigrafitly more informative action-
evaluation at very little or even no additional computadibrpst at all. The details of how
this is done will be described in sectidds 3 &hd 4. Due to slimitations, the actual algo-
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rithms will appear in sequel papers. As a matter of fact, wiebe the interested readers
may actually design such algorithms on their own after snglgection§ 13 arld 4.

2. Overview

Due to the interdisciplinary nature of this work the authdics their best to make the pa-
per accessible on various levels to a potentially wide angdidhaving diverse backgrounds
and research interests ranging from practical softwareéergng to applied mathematics,
theoretical computer science and high-level algorithnigihelsased on solid mathematical
foundation. The next section (sectidn 3) is essential faleustanding the main idea of the
paper. It provides the notation and sets up a rigorous mattieshframework, while the
informal comments motivating the various notions introgllicassist the reader’'s compre-
hension. Sectiol 4 contains all the necessary definitiod€ancepts required to state and
to explain the results of the article. It ends with the staetrof Geiringer-like theorem
aimed at applications to decision making in the environmeiith randomness and incom-
plete information where no immediate rewards are availdliés is the central aim of the
paper. A reader who is only after a calculus level understandith the aim of developing
applications within an appropriate area of software ergying may be satisfied reading
section 4 and finishing their study at this point. Secfibn Besoted to establishing and
deriving the main results of the article in a mathematicetiprous fashion. Clearly this
is fundamentally important for understanding where theselts come from and how one
may modify them as needed. We strongly encourage all theestid readers to attempt
understanding the entire sectldn 5. Subsedfioh 5.1 doegedgmiliarity with elementary
group theory. A number of textbooks on this subject are albel (see, for instance,I[7])
but all of them contain way more material than necessary terstand our work. To get
the minimal necessary understanding, the reader is intitéalok at the previous papers
on finite population Geiringer theorems of the first two aush{il3] and[[12]. Finally, sec-
tion[@ is included only for the sake of strengthening the gaifanite-population Geiringer
theorem to emphasize its validity for nonhomogenious tinekdv chains, namely the-
orem[23. Example_24 explains why this is of interest for thgmethm development. The
material in sectiohl6 is entirely independent of the reshefgaper. One could read it either
at the beginning or at the end. The authors suspect thisytlie&nown in modern math,
but the literature emphasizing theordms 77[add 81 is viptirabossible to locate. More-
over, mathematics behind these theorems is classicalraesenple and elegant. While
sectiorL 6 is probably not of any interest to software engm@beoreni 23 may be thought
to strengthen the justification of the main ideas), more ematitically inclined audience
will find it enjoyable and easy to read.

3. Equivalence/Similarity Relation on the States

Let S denote the set of states (enormous but finite in this framiéwBormally each state
§ € Sis an ordered paifs, @) whered is the set of actions an agent can possibly take
when in the stat@. Let ~ be an equivalence relation ¢h Without loss of generality we
will denote every equivalence class by an intege, . . . , 4, ..., € N so that each element
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of S as an ordered pali, a) wherei € N anda € A with A being some finite alphabet.
With this notation(i, a) ~ (7, b) iff ¢ = j. Intuitively, S is the set of states and is the
similarity relation on the states. For example in a card g#riiee 2 states corresponding
to the same player have cards of roughly equivalent valuet(fat specific game) and
their opponent’s cards are unknown (and there might be soare hidden and random
effects) then the 2 states will be considered equivaleneurd We will also require that
for two equivalent states; = {s1,d;} ands; = {s2,d>} under~ there are bijections
f1:d — ds andfy : dy — d;. For the time being, these bijections should be obvious
from the representation of the environment (and actiondyaflect the similarity between
these actions.

Remark 1. In theory we want functiong; and f> to be bijections and inverses of one
another for the theoretical model to be perfectly rigordusin practice there should prob-
ably be no strict requirement on that. In fact, we believe¢ itharactice one may even want
to relax the assumption on to be an equivalence relation.

As described in sectioris 1 aht 2, the most challenging questhen applying an MCT
type of an algorithm to deal with randomness and incompigtemation or simply with a
large branching factor of the game tree is to evaluate thierectinder consideration mak-
ing the most out of the sample of independent rollouts. Qalirrisingly, very powerful
programs have already been developed and tested in prag@dest human players (see
[11]), however the action-evaluation algorithms used esthsoftware are purely heuristic
and no theoretical foundation is presented to explain thaicess. In fact, most of these
methods use some kind of a voting mechanism to deal with ratbek classifiers. In the
next section we will set up the stage to state the main re§tti®paper which motivates
new algorithms for evaluating actions (or moves) at the charodes and hopefully will
provide some understanding for the success of the alreastynextechniques in the future
research.

4. Mathematical Framework, Notion of Crossover/Recombintion and
Statement of the Finite Population Geiringer Theorem for Adion
Evaluation.

Definition 2. Suppose we are given a chance néde (s, @) and a sequency; }2_, of
actions ina (it is possible thaty; = «; for i # j). We may then calk’ aroot state or a
state in questiosthe sequencén; }b_,, thesequence of moves (actions) under evaluation
and the set of moved = {a|a = «a; for somei with 1 < ¢ < b}, the set of actions (or
moves) under evaluation.

Definition 3. A rollout with respect to the state in questige- (s, d) and an actiomw € &
is a sequence of states following the actioand ending with a terminal labé¢l< 3 where
¥ is an arbitrary set of Iab@swhich looks as{(«, s1, so,...,s:—1, f)}. For technical
reasons which will become obvious later we will also reqihat s; # s; for i # j (it is

2|ntuitively, each terminal label in the s&t represents a terminal state that we can assign a numerical tza
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possible and common to hayg~ s; though). We will say that the total number of states
in a rollout (which isk — 1 in the notation of this definition) is theeightof the rollout.

Remark 4. Notice that in definitio 3 we included only the initial mowemade at the

state in question (see definitibh 2) which is the move undatuation (see definitionl 2).
The moves between the intermediate states are chosen rjnalodnare not evaluated so
that there is no reason to consider them.

Remark 5. In subsectiofl3 we have introduced a convenient notatiostftes to empha-
size their respective equivalence classes. With suchiantatypical rollout would appear
as a sequencf(c, (i1, a1), (i2, a2),..., (4—1,at-1), f)} with i; € N while a; € A.
According to the requirement in definitibh 3, = i), for j # k = ax, # a;.

A single rollout provides rather little information about action particularly due to the
combinatorial explosion in the branching factor of possiiloves of the player and the op-
ponents. Normally a large, yet comparable with total reselimitations, number of roll-
outs is thrown to evaluate the actions at various positidhe.challenging question which
the current work addresses is how one can take full advaifatie parallel sequence of
rollouts. Since the main idea is motivated by Geiringer teeowhich is originated from
population geneticsl([8]) and later has also been involaesi/olutionary computation the-
ory ([18], [13] and [12]) we shall exploit the terminology tife evolutionary computation
community here.

Definition 6. Given a state in questiofi= (s, @) and a sequencfy; }°_, of moves un-
der evaluation (in the sense of definitidn 2) thepapulationP with respect to the state
§ = (s,d@) and the sequencf;}?_, is a sequence of rollouts = {r'"}%_, where
ri = {(au, 8%, b, ..., Sf(i)—p fi)}. Just as in definitioh]3 we will assume that # s/
wheneveri # j (which, in accordance with definitidd 3, is as strong as neqgithat
st # sg whenever # j or k # qE Moreover, we also assume that the terminal laljels
are also all distinct within the same population, i.e.fgf j the terminal labelg; # ij
In a very special case Whet;j ~ s§ = j = k we will say that the populatiof is ho-
mologousLoosely speaking, a homologous population is one wheraigat states can
not appear at different “heights”.

Remark 7. Each roIIoutrﬁ(i) in definition[8 is started with the corresponding mave
of the sequence of moves under evaluation (see defiriitioh &) clear that if one were
to permute the rollouts without changing the actual seqge®n€ states the corresponding

via a function¢ : ¥ — Q. The reason we introduce the $ebf formal labels as opposed to requiring that each
terminal label is a rational number straight away, is to dwminfusion in the upcoming definitions

bThe last assumption that all the states in a population aredaity distinct (although they may be equivalent)
will be convenient later to extend the crossover operatans fpairs to the entire populations. This assumption
does make sense from the intuitive point of view as well stheeexact state in most games involving randomness
or incomplete information is simply unknown.

¢This assumption does not reduce any generality since oneteasse an arbitrary (possibly a many to one)
assignment functiop : ¥ — Q, yet the complexity of the statements of our main theoremkhei mildly
alleviated.
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populations should provide identical values for the cqroesling actions under evaluation.
In fact, most authors in evolutionary computation theoge(B2], for instance) do assume
that such populations are equivalent and deal with the sparding equivalence classes of
multisets corresponding to the individuals (these are eecgges of rollouts). Nonetheless,
when dealing with finite-population Geiringer-like theor®it is convenient for technical
reasons which will become clear when the proof is presersted élsol[13] and [12]) to
assume therdered multiset modele. the populations are considered formaligtinct
when the individuals are permuted. Incidentally, orderadtiset models are useful for
other types of theoretical analysis in [19] ahdl[20].

Example 8. A typical population with the convention as in remfatk 7 milghtk as below.

a+— law ba— 6a— 3d— Ta— fi
B — 2a +— 1b — 3¢ — 6d — fo

v — 4a — 6b — 5b — f3

ar—le —4b — 2b — Tb — 5c— fy
E—3a—2c—4de— fs
E—=2d— fg

m— 3b — 1d — 2e — 6¢ — f7

The height of the first rollout in the population pictured ebdavould then bés since it
containss states. The reader can easily see that the heights of thetoih this population
read from top to bottom arg 4, 3, 5, 3, 1 and4 respectively. Clearly, the total number of
states within the population is the sum of the heights oftalrollouts in the population.
In fact, this very simple observation is rather valuable whstablishing the main result of
the current article as will become clear in subsedtioh 5 gecfior’b.

The main idea is that the random actions taken at the equivatates should be inter-
changeable since they are chosen somehow at random dueirsintialation stage of the
MCT algorithm. In the language of evolutionary computing;tsa swap of moves is called
a crossover. Due to randomness or incomplete informatagether with the equivalence
relation which can be defined using the expert knowledge gfemific game being an-
alyzed) in order to obtain the most out of a sample (poputaitioour language) of the
parallel rollouts it is desirable to explore all possiblgptations obtained by making var-
ious swaps of the corresponding rollouts at the equivalesitipns. Computationally this
task seems expensive if one were to run the type of genetgrammming described pre-
cisely below, yet, it turns out that we can predict exactlyathe limiting outcome of this
“mixing procedure” would b@We now continue with the rigorous definitions of crossover.

Representation of rollouts suggested in renidrk 5 is coeweénd define crossover op-
erators for two given rollouts. We will introduce two crogsooperations below.

d|n this paper we will need to “inflate” the population first athen take the limit of a sequence of these limiting
procedures as the inflation factor increases. All of thi$ bélrigorously presented and discussed in subseciion 4.2
and in sectionl5.
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Definition 9. Given two rolloutsry = (ay, (i1, a1), (i2, a2), ..., (Gg1)—1, ar(1)=1), f)
andry = (a2, (j1, b1), (J2, b2),.- -, (Je2)—1,be(2)-1), 9) Of lengthst(1) and #(2)
respectively that share no state in common (i.e.,, as in defin[3, ) there are
two (non-homologous) crossover (or recombination) opesatve introduce here. For
an equivalence class labeh < N and lettersc,d € A define the one-point

non-homologous crossovaransformationy., ¢, a(ri, r2) = (t1,t2) wheret; =
(ala (ila al)a (iQa (lg), ey (ik—la ak—l)a (jqa bq)7 (jq+l7 bq+1)a ey (jt(2)717 bt(2)fl)a g)
and to =

(O‘Qa (jlv bl)a (j27 b2)7 R (jq—17 bq—1)7 (ika ak)a (ik+1a ak-‘rl)a ARE) (it(l)fla at(l)fl)v f)
if [ix. = j, = m and either(a, = ¢ andb, = d) or (ay = d andb, = c¢)] and
(t1, t2) = (r1, r2) otherwise.

Likewise, we introduce &ingle position swap crossover,, . q(r1, r2) = (v, v2)

where V1 =
(ala (ila al)a (iZa a2)a---a(ik—17 ak—l)a (jqa bq)a (ik-‘rla ak-i—l)a"'7(2.75(1)7110/75(1)71)1 f)
while Vo =

(a2, (j1, b1), (J2, D2), .-, (Jg—1, bg—1), (ik, ar), (gr1, bgs1)s- -+, (Je2)—15br2)=1)5 9)

if [ir. = j, = m and either(a, = ¢ andb, = d) or (ary = d andb, = c¢)] and
(v1, v2) = (71, 72) Otherwise. In addition, a singe swap crossover is define@nigton
the pairs of rollouts but also on a single rollout swappingiegjent states in the analogous
manner: If

r=(a, (i1, a1), (i2, a2), ..., (ij—1, aj—1), (35, a;), (Tj4+1, @j41),- .-

ceey (ik—la ak—l)a (ika ak)a (ik+17 ak+l)7 ey (it(l)fla at(l)fl)a f)

and [i; = iy, and eithef{a; = c anday, = d) or (a; = d anday, = ¢)] then

Vm,c,d(r) = (a7 (ilv al)v (iQ’ a2)’ EERE (ij—lv Gj—l), (ijv ak)a (ij+17 aj+1)7 s

ooy k=1, ak—1), (ik, @5), (Gks1s k1), - - -5 (Ggy—15 @()—1)s f)

and, of coursey,,, .. 4(r) fixesr (i.e.vp,, ., ¢(r) = r) otherwise.

Remark 10. Notice that definitioi}d makes sense thanks to the assumbizmo rollout
contains an identical pair of states in definitidn 3.

Remark 11. Intuitively, performing one point crossover means that tloeresponding
player might have changed their strategy in a similar Sibmadlue to randomness and a
single swap crossover corresponds to the player not knavengxact state they are in due
to incomplete information, for instance.

Just as in case of defining crossover operators for pairdlotits, thanks to the assumption
that all the states in a population of rollouts are formaistidct (see definitionl6), it is easy
to extend definitionl9 to the entire populations of rollolisview of remarKTlL, to get the

most informative picture out of the sequence of paralldbrds one would want to run the
genetic programming routine without selection and mutasiod using only the crossover
operators specified above for as long as possible and themgér to evaluate a certain
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moveq, collect the weighted average of the terminal values (hevilues assigned to the
terminal labels via some rational-valued assignment fankif all the rollouts starting
with the movex which ever occurred in the process. We now describe prgordeht the
process is and give an example.

Definition 12. Given a populatior” and a transformation of the forwy .. ,,, there exists
at most one pair of distinct rollouts in the populatiéh namely the pair of rollouts,
andrs such that the stat@, ) appears in; and the stat€i, y) appears in. If such

a pair exists, then we define the recombination transfoomati , ,(P) = P’ where
P’ is the population obtained fro® by replacing the pair of rolloutéry, r2) with the
pair x;, z, 4 (r1, 72) as in definitior . In any other case we do not make any charge, i
Xi,z,y(P) = P. The transformatiow; , ,(P) is defined in an entirely analogous manner
with one more amendment: if the stateésx) and (i, y) appear within the same individual
(rollout), call it

r= (CY, (jla al)a (j27 a?)a ceey (Za :E)a ceey (Za y)7 ) (it(l)flaat(l)fl)a f)a

and the statéi, =) precedes the stateé, y), then these states are interchanged obtaining
the new rollout

T/ = (Oé, (jla al)a (jQ’ a?)a ceey (Za y)7 ) (Za .%')7 ceey (it(l)flaat(l)fl)a f)

Of course, it could be that the state y) precedes the state, =) instead, in which case
the definition would be analogous: if

r= (Oé, (jla a1)7 (j?a a?)a ceey (l, y)a ey (l, x)7 CI) (it(1)717at(1)71)7 f)

then replace the rolloutwith the rollout

T/ = (Oé, (jla al)a (jQ’ a?)a' ) (Za ‘T)a' ) (Za y)a ) (it(l)flaat(l)fl)a f)

Remark 13. It is very important for the main theorem of our paper thatheat the
crossover transformationg ,, andv; . , is a bijection on their common domain, that
is the set of all populations of rollouts at the specified deanode. As a matter of fact,
the reader can easily verify by direct computation from dedins[I2 andP that each of
the transformations; .., andv; . , is an involution on its domain, i.&.i, =, y we have
Xi 2.y = Vi »,y = 1 Wherel is the identity transformation.

LT, Y

Examples below illustrate the important extension of resimration operators to arbitrary
populations pictorially.

Example 14. Suppose we were to apply the recombination (crossoverptgey; . 4 to
the population of seven rollouts in example 8. Once the wnigoation of stateél, ¢) and
(1, d) in the population has been identified (the first state in thia fmllout and the second
state in the seventh rollout), applying the crossover dpena, ., 4 yields the population
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pictured below:

a— la— ba+— 6a—3d— Ta— fi
B—2a—1b+— 3cr 6d — fo

v — 4a — 6b — 5b — f3

a— 1d — 2e — 6c — fr
E—3a+— 2c —4de— fs

E—=2d— fo

T—=3b = 1lc—4b— 20— Tb— 5c— [y

On the other hand, applying the crossover transformatian, to the population in exam-
ple[8 results in the population below:

a+— la— ba— 6a— 3d— Ta— f1
B+—2a—1b— 3c— 6d — fo

v = 4a — 6b — 5b — f3
a—1d—4b — 20— T7b — 5c— fy.
E—=3a—2c—4de— fs

&= 2d— fg

= 3b — lc— 2e = 6c— fr

Example 15. Consider now the populatiaf pictured below:

a+— 1b — 3¢ — 6d — fo

B+ 2b = Th — bc— fy

v +— 4a +— 6b — 5a — 6a — 3d — Ta — fi
a— 1ldw— 2c — 4c — f5

& — 3a— 2e — 6c — fr

&= 2d— fs

= 3b+— 1lc — 4b— 2a+— la — bb— f3

Suppose we apply the transformations,,» andvg 4,5 to the populatior(). The states
(6, a) and (6, b) both appear in the third rollout in the populatiéh Since these states
appear within the same rollout, according to definifioh 12 ¢trossover transformation
X6, q,b fixes the populatior® (i.e. xs,q,5(Q) = Q). On the other hand, the population
Ve, a, (@) is pictured below:

a— 1b — 3c — 6d — f

B —2b—Tb — 5c— fy

v — 4a — 6a — 5a — 6b +— 3d — Ta — fi
ar— 1ld— 2c — 4dc — fs

& 3a— 2e — 6¢c— fr

& 2d — fg
m—3b—1lc—4b— 2a— la — 5b+— f3
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Definition 16. Letn = {1, 2,...,n} denote the set of first natural numbers. Consider
any probability distribution: on the set of all finite sequences of crossover transformstio

F = (U {xXiz,ylz,ye Aandi e N} U{v; , 4|z, y € Aandi € N})") u{1}

n=1
which assigns a positive probability to the singleton sm&g and to thadentity element
1. (i.e. to every element of the subset

S={1}U({Xizy|z, ye Aandi e N} U{v; o, |z, y € Aandi e N})".

Given a sequence of transformatiofis= 104(), 2(j), y(j) } j=1 Where eacl® is eithery

orv (i.e.Vj either®;;) (), y(j) = Xi(s), (), v(i) OF ©i(s), 2(7), v(G) = Vi), 2(5), y(5))s
consider the transformation

O = Oi(n), z(n), y(n) © Oi(n—1),2(n-1),y(n-1) © - - - © Oi(2), 2(2), y(2) © Oi(1), 2(1), y(1)

on the set of all populations starting at the specified chande obtained by composing alll
the transformations in the sequer@eThe identity element stands for the identity map
on the set of all possible populations of rollouts. Now defireeMarkov transition Matrix
M,, on the set of all populations of rollouts (see definitidn 6 aechark[5) as follows:
given populationsy andY of the same siz&, the probability of obtaining the population
Y from the populationX after performing a single crossover stagg, .y = u#(Sx—y)
where

Sxoy ={T'|Te FandT(T)(X) =Y}

e ifr=6
() = - .
The identity map ifi" = 1.

where

Exampld_1V below illustrates the first part of definition 16.
Example 17. Consider the sequence of five recombination transformsition

O = (Xl,c,da X2,¢c,es X5,a,by X1,a,b; X2,a,b)-

According to definitioh 16 the sequenéegives rise to the composed recombination trans-
formation

() = X2,a,b° X1,a,b © X5,a,b°© X2,¢c,e © X1,c,d-

The reader may verify as a small exercise témo) = (@ whereP is the population
displayed on figur@? while the populatior) is the one appearing in figu®. If one were
to append the recombination transformatign,, , to the sequence of rolloué obtaining
the sequence

—»
91 = (XLC,da X2,c,es X5,a,by X1,a,bs X2,a,bs Vﬁ,a,b)

®This technical assumption may be altered in various mansdorag as the induced Markov chain remains
irreducible.
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then, b~y associativity of composition, we ha@ = Ug a,b © O so that(:)vl(P) =

vs,a,6(O(P)) = s, 4,5(Q) WhereQ, as above, is the population displayed on figae
so that, according to examplel15, the populaﬁr@P} is the one appearing in figuR®.

Remark 18. Evidently the magl’ : 7 — P introduced at the end of definitiénl16 can
be regarded as a random variable on the/Setescribed at the beginning of definitibn] 16
where P denotes the set of all populations of rollouts contairkrigdividuals so that?”

is the set of all endomorphisms (functions with the same doraad codomain) orP
and the probability measuger on P” is the “pushforward” measure induced By i.e.
ur(S) = u(Tfl(S)) To alleviate the complexity of verbal (or written) presdita we
will usually abuse the language and use theZat place of P¥ so that a transformation
F € PP is identified with the entire sgt—!(F') € F. For example,

if we write u({F'| F € FandF(X) =Y })we mearu({I"'|T € F andT(I')(X) = Y}).

It may be worth pointing out that the st ! is not necessarily a singleton, i.e. the niap
is not one-to-one as examjplg 19 below demonstrates.

Example 19. Consider any # j and anya, b, c andd € A. Notice that the transforma-
tionsv; o, andv; ., ¢ commute since the order in which elements of distinct edenae
classes are interchanged within the same population afuillis irrelevant. Thus the se-
quences\i = (Vi a,b, Vj,c,d) aNAdX2 = (Vj ¢, 4, Vi, a,5) iINduce exactly the same trans-
formation® on the set of populations of rollouts. Here is another veryartent example.
Notice that every transformatios; ,,, where© could be eithery or v is an involution
on the set of populations of rollouts i.®, , » © ©; 4,5 = e Wheree is the identity map
since performing a swap at identical positions twice bringek the original population of
rollouts. Therefore any ordered pdi®;, . », O: 4, 5) Of repeated transformations induce
exactly the same transformation as the symbalamely the identity transformation on the
population of rollouts.

One more remark is in order here.

Remark 20. Notice that any concatenation of sequences ifwhich is what corresponds
to the composition of the corresponding functions) stay# inn other words, the family
of maps induced byF is closed under composition.

Of course, running the Markov process induced by the triamsihatrix in definitio 16

infinitely long is impossible, but fortunately one does navé to do it. The central idea
of the current paper is that the limiting outcome as time goesfinity can be predicted
exactly using the Geiringer-like theory and the desireduataons of moves can be well-
estimated at rather little computational cost in most caéegointed out in example 119
above, each of the transformatio®s ., iS an involution and, in particular, is bijective.

fThe sigma algebra oR* is the one generated Ky with respect to the sigma-algebra that is originally chosen
on F, however in practical applications the sets involved argefiand so all the sigma-algebras can be safely
assumed to be power sets.
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Therefore, every composition of these transformationsh§eation as well. We deduce,
thereby, that the family= consists of bijections only (see remarK 18). The finite papoh
Geiringer theorem (sek [13]) now applies and tells us tHewahg:

Definition 21. Given populationd” and@ of rollouts at a specified state in question as in
definition[6 (see also remalk 5), we say tifat~ Q if there is a transformatiof’ € F
such that) = F(P).

Theorem 22 (The Geiringer Theorem for POMDPS) The relation~ introduced in defi-

nition[21 is an equivalence relation. Given a populatiBrof rollouts at a specified state
in question, the restriction of the Markov transition matintroduced in definitiof 16 to
the equivalence clag#®’] of the populationP under~ is a well-defined Markov transition
matrix which induces an irreducible and aperiodic Markowathon [P] and the unique

stationary distribution of this Markov chain is the unifodistribution on[P].

In fact, thanks to the application of the classical contoeciapping princip@ described
in sectior 6 of the current paper (namely theoferh 81; intedeeader is welcome to fa-
miliarize themselves with sectidd 6, although this is naeesial to understand the main
objective of the paper), the stationary distribution isform in a rather strong sense de-
scribed below.

Theorem 23. Suppose we are given finitely many probability measuregs, . . ., ux on
the collection of sequences of transformatignas in definitio 16 where each probabil-
ity measureu; satisfies the conditions of definitibnl16. DenoteMy the corresponding
Markov transition matrix induced by the probability measpy. Let M = {M;}Y ;. Now
consider the following stochastic proce§gb,,, X,,)}>2 , on the state spacat x [P]
where[P] is the equivalence class of the initial population of roi®at the state in ques-
tion as in theorerh 229,, is an arbitrary stochastic process (not necessarily Maiény
on M which satisfies the following requirement:

The random variabl@,, is independent of the random variabl&s, X, 11,... (1)

The random variabl@®, is arbitrary while X, = P (recall that P is the initial population
of rollouts at the node in question) with probability

v n € N the probability distribution of the random variabl€,,, namely

Prob(X,, =) = ®,,_1(w) - Prob(X,,—1 = ). (2)
It follows then thatim,,, ., Prob(X,, = -) = 7 wherer is the uniform distribution ofiP].
We now pause and take some time to interpret thegrém 23ivrthyitExampld 24 below

illustrates a scenario where theorlenh 23 applies.

&This simple and elegant classical result about completeiersgiaces lies in the heart of many important theo-
rems such as the “existence uniqueness” theorem in theytbédifferential equations, for instance.
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Example 24. Consider the sef of all finite sequences of populations in the equivalence
class[P] of the initial populationP which start with the initial populatiof? (notice thatS

is a countably infinite set sind®] is a finite set). Intuitively, each sequenceSimepresents
prior history. Every sequencﬁ = P, P, P, P5,..., P, is associated with a probabil-
ity measurey(ﬁ) on the set of populationd®]. Suppose further that to every population
@ € [P] we assign a probability measugg, on the family of recombination transfor-
mations induced byF where each measupe, satisfies definitiofi_16. Intuitively, each
probability distributiory.o might represent the probability that the swaps (or sequseoice
swaps) are reasonable to perform in a specific populaticerdégss of the knowledge of
the prior history or experience in playing the game, foranse. Starting with the initial
populationP we apply the probability measun¢P) (hereP denotes a singleton sequence)
to obtain a populatiofy; € [P]. Independentlye now apply the Markov transition matrix
induced by the probability measugg to obtain another populatioR;, € [P]. Next, we
select a populatio®- with respect to the probability measureP, P; ) and, againndepen-
dently, apply the Markov transition matrixg, to the populatiorP; to obtain a population
P» in the next generation. Continuing recursively, let's séigratimet € N we obtained

a population)), at stept and a sequence of populatioﬁ§: P, Py, P,,...,P.Selecta
populationQ; ., with respect to the probability measm'@t). Independentigelect a pop-
ulation P, via an application of the Markov transition matrix inducedtbe probability
measuregu, to the populatiorP;. Theoreni 23 applies now and tells us that in the limit as
t — oo we are equally likely to encounter any populati@re [P] regardless of the choice
of the measures involved as long as the probability meagugesatisfy definitior 16. A
word of caution is in order here: it is not in vain that we emgiba that selection is made
“independently” here. Theorem23 simply does not hold witithis assumption.

Evidently examplé 24 represents just one of numerous pessiterpretations of theo-
rem[23. We hope that other authors will elaborate on thistpiimowing that the limiting
frequency of occurrence of a any two given populatiGhsand @, € [P] is the same,

it is possible to compute the limiting frequency of occuremf any specific rollout and
even certain subsets of rollouts using the machinery dpeelan [13] and[[12] which is
also presented in secti@? of the current paper for the sake of self-containment. Teesta
and derive these “Geiringer-like” results we need to intreelthe appropriate notions of
schemata (see, for instande, [2] ahd [17]) here.

4.1. Schemata for MCT Algorithm

Definition 25. Given a statds, @) in question (see definitidn 2), a rollottolland-Poli
schemais a sequence consisting of entries from thevsetN U {#} U 3 of the form
h = {x;}F_, for somek € N such that fork > 1 we havex; € @&, z; € N
whenl < i < Fk represents an equivalence class of states, sande {#} U &
could represent either a terminal label if it is a member & #et of terminal labels
3, or any substring defining a valid rollout if it is # signE“] For k = 1 there is a

hThis notion of a schema is somewhat of a mixture between hdifaand Poli’s notions.
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unique schema of the forgt. Every schema uniquely determines a set of rolldits=

{(z1, (z2,a2), (z3,0a3),...,(Xk-1,ak-1),Tk)

|a; € Aforl < i<k} if k>1andz, € X

{(z1, (x2,a2), (x3,a3),...,(Tr-1,a5-1),

(Y, ar), (Yrr1,are1)s- -5 f)

la; € Aforl <i<k,y; € Nanda; € A} if k> 1andx, =#

the entire set of all possible rollouts kf= 1 or, equivalentlyh = #.

which fit the schema in the sense mentioned above. We wilhafteise the language and
use the same word schema to mean either the schessa formal sequence as above or
schema as a sé}, of rollouts which fit the schema. For examplehitindh* is a schema,
we will write h N A* as a shorthand notation féf, N S« wheren denotes the usual in-
tersection of sets. Just as in definitidn 3, we will say that 1, the number of states in the
schema is theheightof the schema.

We illustrate the important notion of a schema with an exanglow:

Example 26. Suppose we are given a scherha= (a, 1, 2, #). Then the rollouts
(o, la, 2¢, 5a, 3¢, f)and(a, 1d, 2a, 3a, 3d, g) € S;, or one could say that both of them
fit the schema. On the other hand the rollog8, 1a, 2¢, 5a, 3¢, f) ¢ S, (or does not fit
the schema) unlessoe = §. Arollout (o, 1a, 3a, 5a, 3¢, f) ¢ S, does not fit the schema
h either sincers = 2 # 3. Neither of the rollouts above fit the schefia= (o, 1, 2, f)
since the appropriate terminal label is not reached indthgosition. An instance of a
rollout which fits the schema* would be(«, 1¢, 20, f).

The notion of schema is useful for stating and proving Gggirlike results largely thanks
to the following notion of partial order.

Definition 27. Given schematah and g we will write A > ¢ either if
h = # andg # # or h = (x1,22,x3,...,2-1, #) While g =
(x1, T2, T3, ..., Th—1, Yk, Yk+1,---»Yi—1, Y1) Wherey; could be either of the allowable
values: a#t or a terminal labelf € 3. However, ify; = # then we require thdt> k.

An obvious fact following immediately from definitiohs125@&@1 is the following.

Proposition 28. Suppose we are given schematandg. Thenh > g = S, 2 5.

4.2. The Statement of Geiringer-like Theoremsfor the POMDPs

In evolutionary computation Geiringer-like results adsdréhe limiting frequency of oc-
currence of a set of individuals fitting a certain schema (&8¢ [13] and [12]). In this
work our theory rests on the finite population model basedatiosary distribution of the
Markov chain of all populations potentially encounteredhie process (see theorems 22
and23 and example 24). The “limiting frequency of occuregr(cigorous definition ap-
pears in sectionl5, subsectionl]5.2, definitions 42[ahd 45ehemfor the readers who aim
only at “calculus-level” understanding with the goal of §ipg the main ideas directly in
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their software engineering work we will discuss the intugtidea in more detail below)
of a certain subset of individuals determined by a Hollaot-Bchemah among all the
populations in the equivalence clg43] as time increases (i.e. &s— oo) of the initial
population of rolloutsP will be expressed solely in terms of the initial populatiBrand
schemah. These quantities are defined below.

Definition 29. For any action under evaluation define a set-valued functiam | from
the set’ of populations of rollouts to the power set of the set of rataumbersP (N)
as follows:«r | (P) = {i|¢ € N and at least one of the rollouts in the populatiBn
fits the Holland scheméu, i, #)}. Likewise, for an equivalence class labet N define
a set valued function on the populations of sizeas: | (P) = {j|3dz andy € A
and a rollout- in the populationP such that = (..., (i, ), (4, y),...) }U{f|f € Z
and3 anz € A and a rolloutr in the populationP such thatr = (..., (i, x), f) }.

In words, the set | (P) is the set of all equivalence classes together with the teximi
labels which appear after the equivalence classat least one of the rollouts from the
populationP. Finally, introduce one more function, namelys:: Q® — Nu {0} by letting
ils (P)=|{f|feXnil (P)}thatis, the total number of terminal labels (which are
assumed to be all formally distinct for convenience) follogvthe equivalence clagsn a
rollout of the populatiorP.

As always, we illustrate definitidn 29 in exampld 30 below.

Example 30. Continuing with examplel8, we return to the populati®m figure??. From
the picture we see that the only equivalence claasch that a rollout from the population
P fits the Holland schemé&y, i, #) isi = 1 so thata | (P) = {1}. Likewise, the
only equivalence class following the acti@nis 2, the only equivalence class following the
action+y is 4 and the only one following is 3 so that3 | (P) = {2},~ | (P) = {4} and

7 | (P) = {3}. The only equivalence classefollowing the action¢ in the populationP
arei = 3 andi = 2 so thatthe seg | (P) = {2, 3}.

Likewise the fragment(1, a), (5, a) appears in the first (leftmost) rollout i@,
(1, b), (3, ¢) in the second rollout,1, ¢), (4, b) in the forth tollout and 1, d), (2, e) in the
last, seventh rollout. No other equivalence class or a tehtébel follows the equivalence
class of the staté in the populationP and so it follows that | (P) = {5, 3, 4, 2} and
14s (P) = |{0}] = 0. Likewise, equivalence cladsfollows the equivalence clagsn the
second rollouty follows 2 in the forth rollout 4 follows 2 in the fifth rollout ands follows
2 in the last, seventh rollout. The only terminal label thdldies the equivalence clagsis
fo inthe6™ rollout. Thus we have | (P) = {1, 7, 4, 6, fs} and2 | (P) = |{fs}| = 1.
We leave the reader to verify that

31 (P)={7,6,2,1}sothat3 |x (P) =0,
4¢ (P) = {67 2, f5} SOthat4¢E (P) =1,

5] (P)={6, f3, fa} and s |y (P) = 2,



October 20, 2018 23:56 Emerald/INSTRUCTION FILE InviteBhittedFirst-
DraftForArchive

Geiringer Theorem, Partially Observable Markov decisiand@sses and other Monte-Carlo search Methodk?

6\1/(P):{35 57 f27 f7}and5(ﬁ$2 (P) =2
and, finally,7 | (P) = {5, f1} sothat7 |s (P) = 1.

Remark 31. Note that according to the assumption that all the termanagls within the
same population are distinct (see definifidn 6 together thithcomment in the footnote
there). But then, since every rollout ends with a terminbelawe must have_".~, i |x
(P) = b (of course, only finitely many summands, namely these etgrice classes that
appear in the populatio® may contribute nonzero values Y3, i s (P)) whereb is
the number of rollouts in the populatidh i.e. the size of the populatidd. For instance, in
examplé_3[b = 7 and there are totally equivalence classes, namély2, 3, 4, 5, 6 and7
that occur within the population in figuR? so that we have ">, i |5 (P) = S.1_, i I
(P)=04+14+0+1+2+241=7=0b.

Another important and related definition we need to intredisdhe following:

Definition 32. Given a populatior? and integerg and;j € N representing equivalence
classes, let

0 if i(P)=0o0rj¢il (P)
orderi | 7, p) — 4 (@), G, )| the segment
4 ((i,a), (4, b)) appears in one of the

rollouts in the populatiod®}| otherwise

Loosely speaking, Ordér | j, P) is the total number of times the equivalence class
follows the equivalence clagsvithin the population of rollouts>.

Likewise, given a population of rollout8, an actiomn under evaluation and an integer
jeN, let

0 ifi(P)=00rj¢ alj
[{(a, (4, b)) | the segment

Orde i, P) =
(@l P) (o, (4, b)) appears in one of the

rollouts in the populatio®} | otherwise

Alternatively, Ordef« | j, P) is the number of rollouts in the populatidp fitting the
rollout Holland scheméo, j, #).

We now provide an example to illustrate definition 32.

Example 33. Continuing with exampl€-30 and populatiédhappearing in figur&?, we
recall thato | (P) = {1}. we immediately deduce that Order j, #) = 0 unlessj = 1.
There are two rollouts, namely the first and the forth, thabBtschemda, 1, #) so that
Ordefa | 1, P) = 2. Likewise,3 | (P) = {2} and exactly one rollout, namely the
second one, fits the Holland scheiffa 2, #) so that Orde(s3, j, #) = 0 unlessj = 2
while Orde( | 2, P) = 1. Continuing in this manner (the reader may want to look back
at examplé€_30), we list all the nonzero values of the func@ude(action 1, P) for the
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populationP in figure ??: Ordef~ | 4, P) = Ordef¢ | 3, P) = Orde(¢ | 2, P) =
Ordefr | 3, P) = 1.

Likewise, recall from example_80, that | (P) = {5, 3, 4, 2} so that Ordefl |
j, P) =0unlessj = 50rj =3o0rj =4orj = 1. It happens so that a unique rollout
exists in the populatio® fitting each fragmentl, (j, something inA)) for j =5, j = 3,
j = 4 andj = 2 respectively, namely the first, the second, the forth andiatste(seventh)
rollouts. According to definitioh 32, we then have Ordet 5, P) = Orde(1 | 3, P) =
Order1 | 4, P) = Ordef1 | 2, P) = 1. Analogously;2 | (P) = {1, 7,4, 6, fs} so
that Ordef2 | j, P) = O unlessj = 1,7, 4 or 6. The only rollout in the population
P involving the fragment withl following 2 is the second one, the only one involving
7 following 2 is the forth, the only one involving following 2 is the fifth, and the only
one involving6 following 2 is the last (the seventh) rollouts respectively so that @2de
1, P) = Orde(2 | 7, P) = Order2 | 4, P) = Ordel2 | 6, P) = 1. Continuing in
this manner, we list all the remaining nonzero values of theder” function introduced in
definition[32 for the populatiof® in figure ??:

Orde(3 | 7, P) = Orde(3 | 6, P) = Orde(3 | 2, P) = Ordef3 | 1, P) =1,
Ordel4 | 6, P) = Ordef4 | 2, P) =1,

Ordex5 | 6, P) = Orde(6 | 3, P) = Ordef6 | 5, P) = Orde(7 | 5, P) = 1.

Remark 34. It must be noted that all the functions introduced in defmsi29 and"32
remain invariant if one were to apply the “primitive” recométion transformations from
the familyS as in definition§ 116 arf[d 12 to the population in the argumentewxplicitly,
given any population of rollout®, an actiona under evaluation, an equivalence class
i € N, a Holland-Poli schema = (a, i1, 42, ...,ik—1,x) anintegerj with 1 < j < k,
and any recombination transformati@e< S, we have

al(P)=al(R(P)), i\ (P)=il(R(P))

i ls (P) =i ls (R(P)), Orde(q | r, P) = Ordeq | r, R(P)).

Indeed, the reader may easily verify that performing a swaphe elements of the same
equivalence class, or of the corresponding subtrees pramneguivalent labels, preserves
all the states which are present within the population ardtels no new ones. Moreover,
the equivalence class sequel is also preserved and heriogdhiance of the functions |
and: | etc. follows. Since every transformation in the fam#yis a composition of the
crossover transformations from the famé#y it follows at once that all of the functions
introduced in definitions 29 aid 32 are constant on the ebpriea classes of populations
under the equivalence relation introduced in definifioh 21.

Example 35. Recall from exampl€14 that the populations in figuP&s ?? and ?? are
equivalent and, likewise, according to examplé 15, the fatjmns in figures?? and ??
are equivalent. Moreover, examplel 19 demonstrates thaighelations displayed in fig-
ures?? and?? are also equivalent. Thus all of the populations that appefigures??,
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??,??, ??and?? belong to the same equivalence class under the relatimtroduced in
definition[21. In view of remark 34, all the functions appearin definitiond 2D and 32
produce identical values on the populations displayed amndg?, ??, ??, ??and??

Observe that applying any recombination transformatiothefformy; .. » orv; 4, to a
populationP of rollouts neither removes any states from the populatmmadds any new
ones, and hence the following invariance property of thévadgnt populations that will
largely alleviate theoretical analysis in sectidn 5 foliow

Remark 36. Given any populatiod) € [P], the total number of states in the populati@®n

is the same as that in the populatiBnApparently, as we already mentioned, the the total
number of states in a population is the sum of the heights obkduts in that population
(see definitio 13 and) 6). It follows then, that the sum of thigihies of all rollouts within a
population is an invariant quantity under the equivalertation in definitiod 2IL. In other
words, if@Q ~ P then the sum of the heights of the rollouts in the populafjds the same
as the sum of the heights of the rollouts in the populaffon

There is yet one more important notion, namely that of thmiting frequency of occur-
rence” of a schema as one runs the genetic programming eoutth recombination only
we need to introduce to state the Geiringer-like resultshefdurrent paper. A rigorous
definition in the most general framework appears in subsel&i2 of sectiofl5 (namely,
definitiond42 anfl 45), nonetheless, for less patient readdro aim only at the “calculus
level” understanding, we explain informally what the limd frequency of occurrence is.

Informal Description of the Limiting Frequency of OccureenGiven a scheméa and
a populationP of sizem, suppose we run the Markov procesk,, }52 , on the popula-
tions in the equivalence clagB] of the initial population of rollouts” as in definitiod 15,
or, more generally, the non-homogenous time Markov proassescribed in theordml23
(where the Markov transition matrices introduced in definfiLl§ are chosen randomly with
respect to another stochastic process (not necessarilyoMian) that does not depend on
the current population but may depend on the entire histbfgrmer populations as well
as on other external parameters independent of the cuwpntation). As discussed in the
preceding paragraph, this corresponds to “running thetgepsegramming routine for-
ever” and each recombination models the changes in plasteategies due to incomplete
information, randomness personality etc. Up to tifreetotal ofm - ¢ individuals (count-
ing repetitions) have been encountered. Among these arcenianber, say.(t), fit the
schema in the sense of definitidn 25. We now P, h, t) = % to be the proportion
of these individuals fitting the schemabut of the total number of individuals encountered
up to timet. It follows from theoreni 2R via the instruments presentesiatior 5.P (also
available in[[18] and?]) thatlim;_, ., ®(P, h, t) exists and the formula for it will be given
purely in terms of the parameters of the initial populati®rfmore specifically, in terms
of the functions described in definitiohs] 29 32. Althoitghay be possible to derive
the formulas folim;_,., ®(P, h, t) in the most general case when the initial population
of rollouts P is non-homologous (in other words when the states reprieggetite same
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equivalence class may appear at various “heights” in theegaopulation of rollouts: see
definition[8), the formulas obtained in this manner wouldmiefly be significantly more
cumbersome and would not be as well suited for algorithm Idemerﬁ as the limiting
result with respect to “inflating” the initial populatioR in the sense described below.
Remarkably, the formula for the limiting result in the geasleron-homologous initial pop-
ulation case coincides with the one for the homologous pijuuls.

Definition 37. Given a populatior? = {rﬁ(i)}le of rollouts in the sense of definitidn 6,
wherer; = {(«ay, (5%,4d%), (44, db), ..., (j;(i)_l,a;(i)_l) fi)} and a positive integen, we
firstincrease the size of the alphabeby a factor ofm: formally, let the alphabet

Axm={(a,i)|a€ A, i e Nandl <i<m}.
Likewise, we also increase the terminal set of labelsy a factor ofm so that
Exm={(f,9)|feB ieNandl <i<m}.
Now we let
P, = {Tifz}lgigb and1<k<m
where
i = (o, G (@l k), G5 (abs B)), - Gily—s (@1, R, (fis k)
We will say that the populatioR,, is aninflation of the population? by a factor ofm.

Essentially, a populatio®,,, consists ofin formally distinctcopies of each rollout in the
populationP. Intuitively speaking, the stochastic information captliin the sample of
rollouts comprising the populatioR,, (such as the frequency of obtaining a state in the
equivalence class of after a state in the equivalence classofs the same as the one
contained within the populatioff emphasized by the factor af. In fact, the following
rather important obvious facts make some of this intuitioecse:

Proposition 38. Given a population? of rollouts and a positive integer. consider the
inflation of the populatior® by a factor ofm, P,, as in definitiod 3l7. Then the following
are true:

0L (Pr)=al(P), il (Pa)=il(P)ils (Pn)=m-ils (P)
while
Ordefa | j, Py,) = m-Ordefa | j, P), Ordelq | r, Py,) = m-Ordefq | r, P) (3)

For any population of rollouts) let Total(@)) denote the total number of states in the
population@ which is, of course, the same thing as the sum of the heightbroflouts in
the populatior). Then clearlyTotal( P,,,) = m - Total( P). In the special case wheR is a
homologous populatiory,m € N so is the populatio®,,.

IThis is an open question, yet it's practical importance ghlyi unclear
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When using Holland-Poli schemata with respect to any pajpud) < [P,,] we will adopt
the following convention:

Given a Holland-Poli schemia= (i1, i2,...,ik—1, f) and a populatiod) € [P,,],
an individual (i.e. a rollout) of the population fits the schema if and only if it is
of the formr = (Oé, (il, (CLl, jl)), (iQ, (CLQ, _]2)) ceey (’L'kfl,akfl,jkfl), (f, .]k)) Infor-
mally speaking, everythingis as in definitiod 25 with thegption that the terminal symbol
of the schema, namelyf € X while the terminal symbol of the rolloutis an ordered
pair of the terminal symbaof coupled with a numerical label betwegmandm so that we
require only the first element of the ordered pair, namelyftinetion labelf, to match.

We are finally ready to state the main result of the currenepap

Theorem 40 (The Geiringer-Like Theorem for MCT) Repeat verbatim the assump-
tions of theorern 23. Let

h = (Oé, il, ig,...,ik_l,l'k)

wherez;, € {#} UX be a given Holland-Poli schema. Fot € N consider the random
variable®(P,,, h, t) described in the paragraph just above (alternatively, arigus def-
inition in the most general framework appears in subse@i@of sectiof5: definitioris #2
and[4%) with respect to the Markov proce¥§* wherem indicates that the initial popu-
lation of rollouts is the inflated populatioR,, as in definitior 3I7 with the new alphabet
A x m labeling the states (see also exaniple 24 for help with utaleding of the Markov
processX,,). Then

lim lim ©(Py, b, #) = 29 P)

m—>00 t—00 b
M Orde(( iq, P)
x b - -LF(P, h) (4)
<q_2 Zjeiq,lj,ordel(qulv 3 P) +ig-1ds (P)>
where
LF(P, h): 0 ika:feEandf¢xk,1¢(P)
Fraction ifz, = feXandf € a1 ls (P)
where

1

Fraction= - - -
Zjeik,lj,(P) Ordefix—1, j, P) + ix—1 s (P)

(we write “LF" as short for “Last Factor”). Furthermore, in he special case when the
initial population P is homologous (see definitibh 6), one does not need to takerthe
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asm — oo in the sense thdim;_,, ®(P,,, h, t) is a constant independent of and its
value is given by the right hand side of equaﬁ_ﬁ_iﬂ40.

An important comment is in order here: it is possible thatdeaominator of one of the
fractions involved in the product i& However, in such a case, the numerator is dlsnd
we adopt the convention (in this theorem only) that if the emator is0 then, regardless
of the value of the denominator (i.e. even if the denominiatdy, then the fraction i%).
As a matter of fact, a denominator of some fraction invohgs@lif and only if one of the
following holds:a(P) = 0 or if there exists an indexwith 1 < ¢ < k£ — 1 such that no
state in the equivalence classigfappears in the populatio (and hence in either of the
inflated populationg>,,).

Theoreni 4D tells us that given any Holland-Poli rollout snaeand a generating population
P, Ve > 0 3 a sufficiently largeM so that the right hand side of equatiod 40 provides
an approximation of the limiting frequency of occurrencetaf set of rollouts fitting the
schema, starting with the initial populatio®,,, which is the inflation of the populatioR

by a factor ofm > M, namelylim;_, o ®(P,,, h, t), with an error at most.

Theoreni 4D is the main result of the current work. It motigatevariety of algorithms
for evaluating the actions based on the entire, fairly lange seemingly pairwise discon-
nected sample of independent parallel rollouts that fudketadvantage of the exponen-
tially many possibilities already available within thahgale and, at the same time, should
be rather efficient in many situations. These algorithmblveithe subject of sequel papers.

5. Deriving Geiringer-like Theorems for POMDPs
5.1. Setting, Notation and the General Finite-Population Geiringer Theorem

Throughout sectiof]5 (the current section) the followingation will be used(2 is afinite
set called asearch spacé/e fix anintegeb € Nand we call® = {(x1, 2o, ... 23) | 7; €
Q} the set ofpopulations of sizé; every element = (1, 2o, ...75)7 € Y is called

a population of sizeéh and every element € ( is called an individual. Notice that we
prefer to think of a population as a “column vector” (hence ttranspose symbol”). Of
course, this is just the matter of preference, but normatigrmwve list the individuals it is
natural to write each individual as a string of “genes orleiéwhich appear on the same
row and so thé individuals appear oh separate rows. It is important to emphasize here
that populations arerderedb-tuples so thatzy, xa, ... x)T # (24, 22, ... 21)T unless
x1 = xp. By afamily of recombination transformationse mean a family of functions
F ={F|F : Q" — Q). The general finite population Geiringer theorem then sags t
following:

Theorem 41 (The Finite Population Geiringer Theorem for Evdutionary Algorithms)
Suppose we are given a probability measure on the familyafmbination transforma-

iThe case of homologous recombination has been establistedifferent but mathematically equivalent frame-
work in [13] and [12] nonetheless we will derive it along witte general fact expressed in equalich 40 to illustrate
the newly enhanced methodology based on the lumping quetiémarkov chains described in subsecfion 5.3.
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tions.F on the set of populatiorf3” of sizeb as described above. Suppose further there is a
subfamilyS C F which generates the entire famify in the sense that I’ € F 3 a finite
sequence of transformatios, Ss,...,S; € S suchthatF’ = S; 0 Sz 0...05;. Assume
the following about the probability measyne

V.S € S we haveu(S) > 0. (5)

The identity map : Q° — QisinS (6)

Most importantly, assume that every recombination tramsédion S € S is bijective (i.e.
a one-to-one and onto function d2’). Consider the Markov transition matrix/ with
state spacé)’ defined as follows: given populatiofisandy € Q°, we let

Py = u({F | F € F andF() = ). @)

Now define a relation- on2? as follows:Z ~ i if and only if 3k € N and recombination
transformationg, Fs, ..., F, € F suchtha{F; o Fro... 0 Fy](Z) = ¢. We now assert
the following facts:

~ is an equivalence relation. (8)
Given an equivalence class of some populatiprall it [Z],
the restriction of the Markov transition matri) to [z
is a well-defined Markov transition matrix on the state spagecall it M|z.  (9)
Vi € QP the Markov transition matrix\/ |z is doubly stochastic and
it defines an irreducible and aperiodic Markov chain [afh (20)

v € Q" the unique stationary distribution 6 |z is the uniform distribution ofz].
(11)

Theoreni 41l is a simple yet elegant consequence from basip gneory. In this paper we
assume that the reader is familiar with fundamental notitnasit groups and group actions.
Nearly any standard textbook in Abstract Algebra such asinstance,[[] contains way
more group theoretic material than necessary for our perges a brief introduction we
invite the reader to study [13].

Proof. Since the family of transformatiors consists entirely of bijections and any com-
position of bijections is also a bijection, the family also consists solely of bijections. It
follows then that the familyF generates a subgrodpof the group of all permutations on
the finite sef2’. Notice that the probability measugenaturally extends to the entire group
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if F
G generated byF by defininguexi(g) = ng) ity e . Clearly the Markov process
0 otherwise.
defined in the statement of theorEm 41 (See 7) can be redefined a
pi-y = tex({g|g € G andg(z) = 7}). (12)

Furthermore, notice that the groGpis of size no bigger thaff2®|! < oo since|| < oc.

It follows then that every element € G can be written as a finite compositign =
FioFyo...0F,for Fy, Fy,..., F, € F (because every elemehte F C G is atorsion
element ofG i.e. F! = 1 for somel € N so thatF!~! = F—1). But then the relation- can
be redefined ag ~ 7ifand only if3 g € G such thay(#) = 3. We now quickly recognize
that the relation~ is the orbit-defining equivalence relation which partisadhe set of all
populations of sizé, °, into the orbits under the action of the groGp The assertions
expressed in equatiohs 8 drd 9 now follow at once. To verifiagqn[10 we choose any
7 € Qb and compute directly

D pisg= Y pex({glg € Gandg(#) = g}) =

TeQr TeQb

= Z ,Uext({g|g cG andgil(g) = f}) = Mext(G) =1
e

—

since the set& (z) = {g|g € G andg~1(¢) = &} clearly form a partition of7. We have
now shown that the Markov transition matriX is doubly stochastic. Irreducibility follows
from finiteness together with the fact tidgenerate§ . Sincel € S, aperiodicity follows
as well. Now the classical result about Markov chains tedlthat there is unique stationary
distribution and sincé/ is doubly stochastic it must be the uniform distributionisatthe
final assertions expressed in equations 10Cahd 11 followa.on |

5.2. A Methodology for the Derivation of Geiringer-like Results

The classical Geiringer theorem (sek [8]) from populatienagics tells us something about
the “limiting frequency of occurrence of certain individsin a population” rather than re-
ferring to the limiting distribution of populations. In fadhe mathematical model of the
classical Geiringer theorem inl[8] is entirely differentrin that of the finite-population
Geiringer theorem described in the previous section. Nwaiess, the finite-population
Markov chain model is much more suited when dealing with @timhary algorithms since
all the structures, including the search space and popuoktin the computational setting
are finite and the model i [13] and [12] as well as in the curpaper describes ex-
actly what happens during a stochastic simulation. Knowlirag some stochastic process
{X.}$2, on some equivalence class of populati¢fistends to the uniform distribution
over the populations (i.&/7 € [Z] we havelim,_.., P(X, = §) = 1/|[Z]]) it is often
possible to deduce what we call Geiringer-like theoremstvigixpress the limiting fre-
quency of occurrence of specific individuals and specifis sétindividuals in terms of
the information contained in a single representative ofefp@éivalence class only (say, the
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initial population). Of course, we need to formulate prelyisvhat the “limiting frequency
of occurrence” is.

Definition 42. Consider a functiort’ : P(Q) x Q* — {0, 1, 2,...,b} whereP(Q) de-
notes the power set @ (i.e. the set of all subsets 6f) andQ is the set of all pop-
ulations of sizeb, as usual, defined as follows: given a subSet 2 and a population
7 = (21, 29,...,1p) € Q, we define a functiotk' (S, %) = |{i|0 < i < b, z; € S}|t0
be the number of individuals in the populatigrwhich belong to the subsét (counting
their multiplicities).

Example 43. Let's sayS = {a} is a singleton set = 3 andZ = (u, v, u) whereu # v.
ThenX (S, %) = 2 sincex; = x3 =u € Swhileas =v ¢ S.

Remark 44. Observe that if we fix a subsét C Q and let the second argument in the
function X vary, then we get a function of one variat#&s, 00) : Q* — {0, 1, 2,...,b}
defined naturally by plugging a population of stz place of thel.

Definition 45. Choose a subsét C 2 an equivalence cla$g] of populations of sizé and
let{X,}:°, be any stochastic process [afi (¥ could be an initial population, for instance).
It makes sense now to define a random variable

_ T X(S, Xi)

b-t '
Clearly the random variabke (S, Z, t) counts the fraction of occurrence (or frequency of
encountering) the individuals from the sg¢tbefore timet. In generalim;_,, (S, Z, t)
does not exist. However, under “nice” circumstances diesdrbelow everything works out

rather well.

o(S, 7, t)

Lemma 46. Suppose there is an “attractor” probability distributiomon the equivalence
class[z] for the stochastic processX; }{2, in the sense that iK, = = with probability
1 thenlim;_, ., P(X; = -) = p whereP(X; = -) denotes the probability distribution of
the random variableX, which can be thought of in terms of a vectorRhi¥! so that the
lim; o is taken with respect to the; norm, let’s sa@. Then
. . 1

lim @(8, 7,t) = L E, (X(S, O)lia)
where E,, denotes the expectation with respect to the probabilityrilistion p on [],
while X' (S, )|z is the restriction of the functioA’(.S, O) introduced in remark 44 to the
equivalence clasg].

A sketch of the proof. Consider a “constant” stochastic proc&gswhere each random
variableY; is distributed according to. By assumption| P(X; = ) — P(Y; = )|z, — 0

k]t is well-known that any two norms on finite dimensional reakcomplex vector spaces are equivalent so that
the choice of the norm is irrelevant here
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ast — oo. On the other hand, by the law of large numbers,

-1 t—1
—o X(5,Y; inec-detai ST X(S, X
B, (X(S, D)) = Jim 2izo X(5, Yi) after routineedetails |, D2i—o X(S, Xi) _
— 00

t t—00 t

t—1
X X;
=b- lim M = lim ®(S, Z, t)

t—00 b-t t—00

so that the desired assertion follows after dividing botlesiof the equation above by

In our specific case, thanks to theorlemh 41, the probabilgtyitutionp in lemmd46 is the
uniform distribution on the equivalence clds$
Notice that a random variable

b
X(8,0)=>"17,(5,0) (13)
1=1

whereZ; (S, O) is the indicator function of théh individual in the argument population
with respect to the membership in the sulisa¥ore explicitly, if we are given a population
7= (1, T2, ...73)7 then

7.(5. 7) = {1 i €5 (14)

0 otherwise

Assume now that all transpositions of individuals withine tikame population are
among the transformations in the famil§ (see the statement of theorem] 41).
In other words,Vi < j the transformationZ; ; sending a populationt =
(Il, T2y ooy Tim1y Tiy Titly-o-yLj—1y Tjy Tjtly--- ,Ib)T into the populatiorTl-_,j(f) =
(T1, To, .., Tim1, Tj, Tit1,---,Tj—1, Tiy Tj41,---,Tp)° has positive probability of be-
ing chosen. Notice that this is usually a very reasonablamagton since the order of
individuals in a population should not matter in practigaplcations. Then we immedi-
ately deduce that any given populatigr [Z] if and only if the corresponding population
T;. ; () obtained by swapping th# and thej™ individuals in the populatiog is a member
of [Z]. Whenp is the uniform distribution (as in theordml41), this is eqlént to saying
that all the indicator random variabl&g S, ) defined in equation 14 above are identically
distributed independently of the indéxin particular, they are all distributed ds(S, O).
Using equatioh 13 together with linearity of expectatioe, mow deduce that if denotes
the uniform distribution orz] then

b

1=1

(15)

L B %
—b~7f({y|y—(y1,yzv---,yb)Te[I]andyleSD—b'%

1
s

where

V(Z, 8) ={7|4 = (y1, yo,..., )" € [7] andy, € S} (16)
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is the subset ofr] consisting solely of populations [&¥] the first individuals of which are
members of the subsét C Q. combining equation 15 with the conclusion of lemma 46
immediately produces the following very useful fact.

Lemma 47. Under exactly the same setting and assumptions as in thdéfetngether
with an additional assumption that all the “swap” transfoations defined and discussed
in the paragraph following equatidn L4 are members of thdamlily S of the family.F of
recombination transformations, it is true thats C 2 we have

lim ®(S, &, t) = 7“}(57 )

t—o0 (7]
where the sev(Z, S) is defined in_16.

Lemmad4Y allows us to derive Geiringer-like theorems in hemstraightforward fashion
for several classes of evolutionary algorithms via theofwlhg simple strategy: suppose
we are given a subsét C Q. According to lemma47, all we have to do to compute the
desired limiting frequency of occurrence of a certain stilsse_ (2 is to calculate the
ratio ‘V‘([{”S)' For some subsets of the search space such a ratio is quitauspyet for
others it may be combinatorially non-achievable. In evohary computation, it is often
possible to define an appropriate notion of schemata (tlpseisisely what we have done
in sectior 4.1 for the case of MCT) which has, intuitively akieg, a “product-like flavor”
that allows us to exploit the following observation: suppaege can find a sequence of

subsetsS; 25, D...2 5,1 25, = S. We can then write

v, 5)| v S)| V@, Sn-i)l v, S1)
lim ®(S, Z, t) = ~ = - . — o = =
t—00 || V(& Sn-1)| [V(Z, Sn-2) (]|
by Iemma@? ar{El_'Ild |V X, Sk+1
17

The idea is that the individual ratios in the right hand suﬂequatlorm may be quite
simple to compute as happens to be the case when derivirggimitulation Geiringer-like
theorems for GP with homologous crossover (see [13] and.[V2hen deriving the fi-
nite population version Geiringer-like theorem with nomafologous recombination in the
limit of large population size, rather than computing thiéosin equation 117, we will in-
stead estimate each one of them from above and from belowiérglthe main Geiringer
theorem (theorein41) together with the methodology fonesting the stationary distribu-
tions of Markov chains based on the lumping quotient corsitn appearing in ([14]/ [16]
and [15]). All of the necessary apparatus and one enhangeddewill be summarized and
presented in the next subsection for the sake of completenes

5.3. Lumping Quotients of Markov Chains and Markov | nequality

Throughout the current subsection we shall be dealing wittagkov chainM (not nec-
essarily irreducible) over a finite state spate {px_,y} denotes the Markov transition
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matrix with the convention that._. is the probability of getting in the next stage given
x. Let 7 denote a stationary distribution of the Markov chadih (here we will assume
that at least one stationary distribution does exist). Harmore we will assume that the
stationary distributionr has the property thatz € X «(z) # 0. Suppose we are given
an equivalence relation partitioning the state spac®. The aim of the current section is
to construct a Markov chain over the equivalence classesrundi.e. over the set’/ ~)
whose stationary distribution is compatible with the diattion = and then to exploit the
constructed lumped quotient chain to estimate certaingaif the stationary distribution
values. In fact, this methodology has been successfullgl tsestablish some properties
of the stationary distributions of the irreducible Markdvains modeling a wide class of
evolutionary algorithms (see [14], [16] and [15]).

Definition 48. Given a Markov chainM over a finite state spac¥ determined by the
transition matrix{px—y }, an equivalence relation on X', and a stationary distribution
7 of the Markov chainM satisfying the property thatz € X wn(z) # 0, define the
quotientMarkov chainM/ ~ over the state spack/ ~ of equivalence classes viato
be determined by the transition matyig,—, v}, VGX/N given as

. 1
Pu—v = m Z 7(X) - pxsy = Z Z * Px—y-
xeu xeu yevy
Herepx_,y denotes the transition probability of getting somewhesidia of V given x.
SinceV = Uyev{y} it follows thatpy ., = Zyevpx_}y and hence the equation above

holds.

Intuitively, the quotient Markov chai/ ~ is obtained by running the original chaiwvt
starting with the stationary distributionand computing the transition probabilities of the
assiciated stochastic process conditioned with respehetstationary input. Thereby, the
following fact should not be a surprise:

Theorem 49. Letw denote a stationary distribution of a Markov chaW determined by
the transition matrix{px—y }x, yex and having the property thatz € X w(z) # 0.
Suppose we are given an equivalence relatiopartitioning the state spac&. Then the
probability distribution7 defined ast({O}) = #(O) is a stationary distribution of the
guotient Markov chainM/ ~ assigning nonzero probability to every state (i.e. to every
equivalence class undey).

Proof:  This fact can be verified by direct computation Indeed, wiob

S F{OY) Posu= Y ZZ Pase =

Oex /~ Oex /~ xG(’)zGZ/{
by stationarity ofr
- E E *Px—z = § § *Px—z =
xeX zelU zcU xeX
=Y =a({u}).

zcelU
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This establishes the stationarityfind theorerh 49 now follows. O]

Although theoren 49 is rather elementary it allows us to dednteresting and insightful
results (se€ [14]([16] and [15]) via the observations presgtbelow. To state these results
it is convenient to generalize the notion of transition @oitities in the following manner
(which is coherent with definition 48):

Definition 50. Given a Markov chaio\ with state spac&” and a stationary distribution,
for any two subsetsl andB C X, we defingps g = >, c 4 %pa_}B wherep, .5 =

ZbeB Pa—b-

Remark 51. Itis worth emphasizing that in case whBn= A or AN B = {J, the transition
probabilitiesp 4, g are precisely the transition probabilities of various gt Markov
chains with states which havéandB as their states according to definitfod 48. In partic-
ular, if we consider the quotient Markov chain comprisechef states4d and A¢ whereA°
denotes the complement df we havel —ps .4 = pa_ ac.

In the current paper we will use a lumping quotient chain iimg of only2 equivalence
classesA andB = A¢ (i.e. the complement od in the state spac#). For a2 by 2 Markov
transition matrix we easily see that7fdenotes the unique stationary distribution of the
original Markov chainM then, thanks to theordmU9, we haved)pa— 4 +7(B)pp—a =
7(A) so thatr(B)pp—a = m(A)(1 —pasa) = 7(A)pa—p and, if neitherA nor B is
empty, we have

m(A) __ DPB—A

W(B) B PA—B
Equatio I8, tells us that in order to estimate the ratio@ftiationary distribution values of
the Markov chainM on a pair of complementary subsets of the state sdeared B = A€,
it is sufficient to estimate the ratio of the generalized sithon probabilitiesps_, 4 and
pa—p. Although these transition probabilities do depend on tia¢ianary distribution
itself, it is sometimes possible to estimate them using aexity-based bound appearing
in ([14], [16] and [15]). For the purpose of the present work meed to introduce a mild
generalization of this bound appearing below:

(18)

Lemma 52. Suppose, as in definitign’sd,and B € X andU C X such that
m(UNA)
— < )
wA) = e<1

Suppose further that for some constamtith 0 < « < 1 the following is true¥ a € ANU*
we have,, 5 < k. Thenwe have,_, 5 < (1—¢)x+e. Dually, assume that for a constant
Awith0 < A < litistruethatVva € ANU°we havep,—,g > \. Thenpa_,p > (1—¢)A\.

Proof. Indeed, we have

PA—-B = Z %pa%B = Z %IM%B + Z %IM%B- (19)

acA acANU® a€ANU
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Notice that
n(a)  w(ANU®) (U NA) .
PO Ry ) =
. m(a) 7w(ANU)
while 0 < G;U A - A (20)

The desired inequalities now follow when we plug in the bauimdthe assumptions into
equatiori IP and then use the inequalities in equéfibn 2Gtegwith the fact that proba-
bilities are always betwedhand1. |

In a special case whédi = () lemmd52 entails the following.

Corollary 53. Given any two subsetsand B C X, if for some constantwith0 < x < 1
it is true thatva € A we havep,_,p < x thenp,_, 5 < k. Dually, if for some constarnt
with0 < A < 1itistrue thatva € A we havep,_,p > Athenp,_,p > A. Consequently,
if for some constant it happensthata € A we havep, .5 = ythenp,_.p = 7.
Combining equatioh 18 with lemnhal52 readily gives us theofeihg.
Lemma 54. Supposed and B C X is a complementary pair of subsets (&N B = ()
and AU B = X). Suppose further thdf C X is such that
m(UNA) m(U N B)
_ land ————=
wA) T ~(B)
Assume now that we find constants \», k1 and ko such thatvb € U° N B we have
M <ppsa < kiandvVa € U°N Awe have\s < p,.5 < ko. Then we have

(=M 7(A) _ (1—d)m+0
A= rate 7B = (=

<6< 1.

In order to apply lemmB54 effectively we need to know thahbdt“24) and “Sfég’)g)

are small. As we shall see in the next subsection, the indubtipothesis will imply that
at least one of these ratios is small. The following simpfartea will allow us to deduce
that the remaining ratio is also small as long as a certaio cdtgeneralized transition
probabilities is bounded below.

Lemma 55. Supposed and B C X with AN B = () (notice that we do not require
AUB = X). Then

m(A) > n(B) - 224
PA— Ae

Proof. Let C = X N (4 U B)°. Consider the lumped Markov chain on the state space
{4, B, C}. Sincer is the stationary distribution of the Markov chaM, by theoreni 49
(see also definition 50 and remérK 51) we have

m(A) = 7(B)pp—a + 1(A)pasa + 7(C)pc—a
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so that

(1 —pasa)m(A) =7(B)pp—a + 7(C)pcsa > m(B)pp—a

since probabilities are nonnegative. The desired coratusbw follows when dividing
both sides of the inequality above by- ps_,4 = pa_ ac. O

Finally, there is another very simple and general classieajuality that will be elegantly
exploited in the next section to set the stage for the apicaf lemmd54 allowing us to
avoid unpleasant combinatorial complications.

Lemma 56 (Markov Inequality) Supposéd is a non-negative valued random variable
on a probability spacé) with probability measur®r. Thenv A > 0 we have

O<Pr(H>)\-E(H))§§—>Oas)\—>oo.

Proof. By definition of expectation we have
by positivity of H
E(H)= | HdPr > / HdPr>Pr(H > \A-E(H))- (A E(H)).
Q H>X\-E(H)

Now, if Pr(H > 0) = 0 thenH = 0 almost surely so thaf'(H) = 0 and
Pr(H>X-E(H))=Pr(H>0)=0< %

Otherwise, PtH > 0) > 0 = E(H) = [, HdPr> 0 and the desired inequality follows
when dividing both sides of the equation above)oyFE (H ). O

We end this section with a very well-known elementary faaciwgtMarkov chains having
symmetric transition matrices that will also be used in theopof theoreni 4.

Proposition 57. Let M be any Markov chain determined by a symmetric transitionrimat
Then the uniform distribution is a stationary distributiofithe Markov chain\/ (notice
that M is not assumed to be irreducible).

Proof. The reader may easily see that the Markov transition matribouibly-stochastic or
verif;lj that the uniform distribution is stationary dirgcfrom the detailed balance equa-
tions O

5.4. Deriving the Geiringer-like Theorem (Theorem[40) for the MCT algorithm

We now recall the setting of sectidh 4. At first we will proveettheorem for a mildly
extended family of recombination transformatidisvhere in addition to the transforma-
tions in definitior IRF also contains all the transpositions (or swaps) of the utdlan a
population and these are selected with positive probglfditdetailed description appears

IThis is also a particular case of the well-known reverdipitiroperty of Markov chains.
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in paragraph following equatidnL4). Since every trangmsbf rollouts is a bijection on
the set of all populations, theorém| 41 still applies, extleat the equivalence classes will
be enlarged by a factor @b - m)! i.e. [P,]z = (b-m)! - [Py,]+ (this is so because ev-
ery permutation is a composition of transpositions). Tisatokthe assumption we will be
in a position to apply the tools based on lenima 47, namelytemiZd. This assumption
will be dropped at the end via apparent symmetry considaratindeed, any permutation
7 of the rollouts in a populatio® € [P,,] naturally commutes with all the recombina-
tion transformations in definitidn 16 thereby providing anfly of bijections between the
equivalence clasg’,,| » and each of théb - m)! disjoint pieces comprising the partition
of the equivalence clag#’,,] . Furthermore, permutations preserve the multisets of roll
outs within a population so that the frequencies of occureesf various subsets in the
corresponding pieces will be preserved and, thereby, thelesion of theorerin 40 with the
family of recombination transformatiods replaced by}N‘ will be exactly the same.

Recall the schema

h = (a, i1, i2,... k1, Tk)

of heightk — 1 > 0 in the statement of theoreml40. Notice that thanks to prépos23
we can write the given scheniaas

h=hy Chy1 Cht2C...Cha Ch (21)
whereh; = («, i1, #) and, in general, wheh < j < k
hj = (Oé, il, ig, ey Z'j, #)

are Holland schemata. Thanks to equafiohvls7, € N we have

. _ |V Pma hq+1 |
Jim @, P, £) = 25, (X, D), ) - H e (22)
and, taking the limit ag» — oo,
lim lim ®(h, Py, t) =
m—00 t—00
_1 V(Pns g 1)
=3 Jim_ B, (X(, Olie,, ) Hmli%om (23)

where p is the uniform distribution or{P],,. First of all, notice thatv, m € N the
random variableX'(h1, O)[(p,, . is @ constant function which is equal to Orfter |
i1, Pn) = Ordefa | i1, P) (see remark’34 and propositibn] 38). It follows trivially the
that £, (X(hl, |[Pm]}~_) = Order(« | i1, P) giving us the first ratio factor in the right
hand side of equatidn #0. In particular, whiea= h; is a schema of heiglftending with a
#, there is no need to take the limitas— oo regardless of whether or not the population
P is homologous. To deal with the remaining ratios in the galhease, when the popula-
tion P is not necessarily homologous, we will exploit the cladsacal elementary Markov



October 20, 2018 23:56 Emerald/INSTRUCTION FILE InvitebBttedFirst-
DraftForArchive

Geiringer Theorem, Partially Observable Markov decisiand@sses and other Monte-Carlo search Method33

inequality (lemm&356 in a rather elegant manner) to set ugtdnge for the application of
lemmag 5P and %4 in the following manner.

Consider the random variablé; : [P,,] — N where[P,,] is equipped with the uniform
probability measurg, measuring the height of thé&" rollout in the populatior € [P,,].
In other words,

H;(Q) = the height of the™ rollout in the populatiors.

Notice thatV, ¢ andj with 1 < ¢ < j < b - m the random variable&l; and H; are
identically distributed (indeed, thanks to theoren 41, gtvap of the rollouts andj in

the populationP,, is an isomorphism of the probability spad@,,] with itself, call it 7,

such thatd; o 7 = H; and vice versa). In particular, these random variables tieveame
expectation. Thanks to remdrk|36 and propositidn 38, we cethat

E(Hy) = i PO) _ (meH):

b-m b-m

Total(P,,) m-Total(P) Total(P)
= = = . (24)
b-m b-m b
Notice that the right hand side of equatiod 24 does not depend:. In other words,
Vm € N the expected height of the first rollout in the populati®p is the same and is

equal tonaKP) At the same time, according to proposition 38, the function

Ordef« | j, P,,) — oo and Ordefi | j, P,,) — oo asm — co. (25)

The above observation opens the door for the application arkid inequality that will,
in turn, allow us to exploit lemma’b4 with the aim of estimagtihe desired ratios involved
in equatiorL_II7 and then showing that the upper and the lowand®on these fractions
converge to the corresponding ratios involved in the rigirtchside of equatidn 40 in the
conclusion of the statement of theorém 40. We now proceectaildLetd > 0 be an
arbitrary small number (informally speaking 1). ChooseM € N large enough so that

2 M > Tota;I(P)

= E(H)
(see equation 24). Fen > M let

={Q|Q € [P,]andH(Q) > § - m}. (26)
and observe that the Markov inequality (lemima 56) tells as th

pUR) = pUQIHQ) > 6-m)) = p (1 > 5 0oy "2

1
Hy > < E(Hy)

and by definition of7?, in equatiof 2b < > by Markov inequality |
< <

)

wherep denotes the uniform probability distribution on the g&t,].
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As the reader probably anticipates by now, our aim is to sthate¢ach of the ratios of
the form
lim V(P hgt1)] _ Ordet(iq | ig+1, P)
m—o0  [V(Pn, hq) Zjeiun) Ordel(iy | j, P) +iq I (P)

so that equation 40 in the conclusion of theofern 40 woulafolirom equation 22 when
taking the limit of both sides as. — oc. First of all, let us take care of the “trivial ex-
tremes” when for somgwith 1 < ¢ < k — 1 we have either (Ordét,_, | i,, P) = 0) or
(Vj # i, we have Orddli,—_1 | j, P) = 0andiz_; |5 (P) = 0)) or ((z, € ¥) and (either
ir—1 ds (P)=00rzy ¢ ix—1 | (P))or(Vj € Nwe have Orddt;_; | j, P) = 0 and
xy is the only terminal label member of the ggt, | Pi.e.ix—1 | PNX = {xx})) or
(zr = #). According to propositioh 38, the statement above holdafpopulationP if
and only ifYm € N it holds when the populatioR is replaced withP,,. In the case when
either Ordefig—1 | iq, Pm) =00rigx_1 s (Pn) =00rz; ¢ ix—1 | (P), no individual
fitting the schema is present in any populatia@ € [P,,] so thaty m andt € N we have
®(P,,, h, t) = 0. Thereby the left hand side of equatlod 40 is trividllyThe right hand
side is0 as well in this case since the numerator of one of the frastioithe product i$
(see the convention remark in the statement of thebrém 4@ fihishes the verification of
one trivial extreme case. Suppose now for some indeis the case that j # i, we have
Ordef(iq—1 | j, P) = 0 andi,—; s (P) = 0. In this case we observe that any individual
occurring in a populatio) € [P,,] which fits the schema,,_,, also fits the schem’a,. In
particular, the set¥(P,,, hqt1) andV(P,,, hy) are equal and we trivially havém € N
%Zﬁm’iw = 1. Of course, the corresponding ratio
Ordef(iq | igt1, P)
Zjeiqwg) Ordef(iq | j, P) + iq 4= (P)

=1

as well since Ordéi, | j, P) is the only nonzero contributing summand in the denomi-
nator. The last factor ratio is supposed to coincide withrét® W‘VP(P =1L This ratio

is either0 or 1 in the extreme cases and verifying the validity of equﬁiénsﬁlentlrely
analogous to the above. We now move on to the interestingvease none of the trivial
extremes above happen. For schematndy we writez \ y = S, N (S,)° (see def-
inition 25) to denote the set of rollouts fitting the schemand not fitting the schema
y. Rather than estimating or, in case of homologous populdticevaluating exactly the

ratios of the form% we estimate and, in case of homologous recombination,
m ltq
IV Py, h +1)‘

evaluate the ratios of the forgy——<4=-5; since these are more convenient to tackle
using the tools in sectidn 5.3. The foIIowmg very simpletfdemonstrates the connection
between the two:

Lemma 58. Suppose that m whenevel < ¢ <k —1

|V(Pm7 hq+1)| o Orde'(lq J, iq+17 P)

|V(Pma hq \ hq+1)| Zjeiq¢(P) andj#igi1 Orde'(iq 1, P)+ iq iz (P)
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and neither the numerator nor the denominator of any of thetfons is0. Then
|V(Pm, hq+1)| _ Ordel(z'q 1 iq+1, P)
V(P h)l — Xjei, () OTdeliq 4, P) +ig 45 (P)

Likewise, if

i Y EPms b))l Ordexiy | ig11, P)
m=0 [V(Pm, hq \ hgt1)] Zjeiq¢(P) andj#ig41 Ordeliq | j, P) +iq Ix (P)
and for all sufficiently largen neither the numerator nor the denominator of any of the
fractions involved vanishes, then

lim |V(Pm7 hq+1)| _ Orde'(iq igt1, P)

m=oo | V(Pp, hg)l B Zjeiqup) Ordeliy | j, P) +iq Iz (P)’

Proof. ClearlyV (P, hq) = V(Pm, hqt1) W V(Pn, hq\ hq+1) Whered emphasizes that
this is a union of disjoint sets. The rest is just a matter oéftd verification: we have

V(P gl _ V(Pors i) _ L 28)
V(P hg)l V(P hgt1)| + V(P hg \ hgg1)| 1+ Bmoha\hgs )]
|V(Pm7hq+1)|
Taking the limit asn — oo on both sides of equatién 28 yields
. |V(Pm7 hq+1)| 1
lim = (29)
m=sco : [V(Prm, hg\hq1)]
— |V(Pm7 hq)| 1+ lim,, 00 m

The right hand sides of equatidng 28 29 are easily comliriectly from the corre-
sponding formulas in the assumptions and each of them is:

1
14 Zjeiqi(P)andjyéiq+]- Or-der(iqij., P)+iqls(P)
OI'CI(-:‘I(ZQ\LZQ+17 P)
1
Ordel(iyligi1, P) | 2oiciql(P)andjziy, OrdeNiqld, P)+igln(P)
Order(iqu'ﬁl, P) Order(iqu'ﬁl, P)

Order(iq | ig41, P)
> e, p) Ordeliq | j, P) +iq lx (P)
yielding the asserted conclusions. |

Entirely analogously,

Lemma 59. Suppose that m
V(s )| 1

V(P hie—1 \ hi)] 2 jcir o up) Ordeliy_1 | j, P) +ip—1 Is (P) -1
and the denominators do not vanish. Then
[V(Pp, hi)] _ 1
V(P hi—1)] Zjeik,lJ,(P) Ordel(iy—1 | j, P) +ix—1 Iz (P)




October 20, 2018 23:56 Emerald/INSTRUCTION FILE InviteBhittedFirst-
DraftForArchive

36 Mitavskiy, Rowe, Cannings

Likewise, if
[V(Pp, hi) 1

lim = - - -
m=o0 V(P hie—1 \ hu)| Zjeik,w(P) Ordeiy_1 | j, P) +ix—1 s (P) —1

and for all sufficiently largen the denominators of any of the fractions involved vanishes,
then

V(P )] 1
m—oo |V(Pm, hk,1)| Zjeik,li(P) Ordel(ik,1 J,j, P) “+ Z.kfl \LE (P) .

To estimate or, in the special case of homologous populdtioto compute exactly, the
ratios% the following strategy will be employed. For a givenc N consider
the set of all population¥(P,,, h,) (i.e. the set of these populations [i?,,] the first
individual of which fits the schema,). Let now «, ,, denote the uniform probability

measure on the s&t(P,,, h,). We then have

[V (P, hgt)]
VP )l bl __ Taem V(P hgi1)) (30)
|V(va hq\hq+1)| % 7"'q,m(V(va hq\thrl))
my g
and, more generally, set of rolloutssS,
[V (P, hg11nS)]
V(s harr 09 _ Wil _ Tam PPy b1 08)) 599
V(P hg \ )l % Tg,m(V(Pms hg \ hgt1))

The idea behind equatiohs|30 dndl 31 is to construct a Markaw etith a uniform station-
ary distribution on the state spat¥P,,, h,) thereby opening the door to an application
of lemmd54. It seems the easiest construction to accomplistask uses propositiénl57.
Recall the transformations of the forgm . ,, as in definition§19 arld 12 from definitibnl16.
We now construct our Markov chain, call.ik,, on the sed(P,,, h,) whereq < k as
follows: given a population of rollout®; € V(P,,, hy) attimet, let(i,, z) be the state in
the first rollout and;" position in the populatiory),. Consider the set

States, (iq 4 Q) = {(4, 2) |7 € ig 4 (Q1), z € A x m and the stat¢j, z)
appears in the populatiap, following a state with equivalence clagg U

U{(f./)|1<j<mandf € i, ls P}. (32)

Now select a state or a terminal label; call either one ofedhedrom the set finite set
States, (i, J @) uniformly at random. Since each state appears uniquely ipalation
Q:, by definition of the set Statggi, | Q) in[32, the state preceding the element
selected from Statggiq | Q:), call it u, is of the formu = (i4, y) wherey € A x m.
Now letQ; 11 = xi,, «,y(Q¢). Notice that there are two mutually exclusive cases here:
Case 1.The states: and(i4, =) appear in different rollouts (or, equivalently, the state
u does not appear in the first rollout since the statex) does by definition). In this case
Q:+1 # Q; and the state in the first rollout of the populati@p, ; in the ¢ + 15t position
is v. In this case we will say that the elemenis mobile
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Case 2:The states: and(iq, «) appear in the same rollout (of course, it has to be the
first rollout). In this cas&); 1 = Q.. We will say that the elementis immobile

Notice that in either of the cases, the populatipn, € V(P,,, hq) so that the Markov
process is well defined on the set of populatio$,,, h,) C [Py]. We now emphasize
the following simple important facts:

Lemma 60.VQ € V(P.,, hy) |States, (i | Q)| = m - [States(i, | P)| and
|States(iq | P)| =3_,c;, (p) Ordeliq | j, P) +iq lx (P)

Proof. The fact thatStates(iq | P)| = 3¢, |(p) Ordefiq | j, P) +iq Ix (P) follows

directly from the definitions. Definition of the set Statgs, | Q) in[32 together with
remark34 tell us that Statgs$i, | Q) = States(i, | P.,) (WhereP,, plays the role ofP

for the time being) so that

States, (iy | Q) = |States(iy | Pn)| = Y Ordeliy | j, Pn) +ig b (Pn) =
J€ig(Pm)

by propositior 3B Z m - Ordeliy | j, P) +m-ig Ix (P) =
J€igd(P)

by the already proven fact
= m

=m: Z Ordeliq | j, P) +iq Ix (P)

-|States(iq | P)|.
J€iqL(P) O

Another very simple important observation is the following

Lemma 61. Given any two population§ and Q' € V(P,,, hy), let p%_@/ denote the
transition probability of the Markov chaim,, as constructed above. Then eitpdy ., =

q — 1 q — 4 i ictri i
001 PG o = wsmes 1Py MOrEOVerp, o = Do sq and the uniform distribution

is a stationary distribution of the Markov chait .

Proof. From the construction it is clear thatif, ,,, # 0 then there must be an element
s € States,(i; | @) which appears in a rollout in the populatiéhdifferent from the
first one and it is the state at th€" position of the first rollout of the populatia’ while
definition[I6 tells us that the stafe,, =) in the ¢'* position of the first rollout of the
population appears ir)’ in some rollout that is not the first one (the former positién o
the states that is now in positiory of the first rollout ofQ’) and it is also a member of the
set States (i, | Q') according to the way Statgsi, | Q') is introduced ifi 3R. According
to lemma 6D States(i, | Q) = States, (i, | Q') = m - |States(i, | Q)| so that the
desired conclusion that}, ., = pf,_,, follows from the construction of the Markov
chainM,. The uniform probability distribution is a stationary dibtition of the Markov
chain. M, since we have just shown that the Markov transition matrigyismetric (see
also proposition 37). O

Recall the generalized transition probabilities introellim definitiod 50. For the remaining
part of this section it is convenient to introduce the foliogvdefinition:
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Definition 62. Given a population) € V(P,,, hq+1), let Mobile,(Q) denote the number
of mobile elements (semsel above) in the set Statgsi, | Q) that move the population
Q away from the seV(P,,, hq+1) (and hence, into the s&t(P,,, hq \ hg+1)) under the
application of the Markov chain, as constructed above. Dually, givene V(P,,, hq \
hqgt1), let Mobile, (@) denote the number of mobile elements in the set Sidtgs] Q)
that move the populatiof away from the seV(P,,, hq \ hq+1) (@and hence, into the set
V(P hq-i-l))-

Suppose, for the time being, that the 3&tP,,, h,+1) # (. Given a populatior) €
V(P hq+1), notice that

Z.jequ,Q andj#iq41 Orde'(iq i J)(Q) + iq iE (Q) if q< k-1
Zjequ,Q Ordefiy | j)(Q) +iq s (Q) —m ifg=k—1

Notice that in case the populatidn is homologous (and hence so &g and Q) there
are no immobile elements in the populati@rso that the inequalify 33 turns into an exact
equation. In general, froirase2 above it is clear that the total number of all the immobile
elements is crudely bounded above by the height of the fillstutain the populatiorn?,
H,(Q). We now obtain a lower bound on the total number of mobile eletsiin the set
States, (i, . @) that move the populatio@ away from the seV(P,,, h,+1) into the set
V(P hq \ hg+1): this number is at least

Mobile, (Q) < { (33)

Mobile, (@) >

>

{Zjeiqu;) andj#iq4+1 Orde'(iq i])(Q) + Z'q Is (Q) - H, (Q) if qg<k-1 (34)

Zjeiqu;) Order(iq Q) + iqg e (Q) —m — H1(Q) ifg=k—1

Analogously, if the populatiod) € V(P,,, hq \ hq+1) then the total number of mo-
bile elements in the set Stafe@, | @) that move the populatio away from the set
V(Pm, hq \ hq+1) (@and hence, into the s®X(P,,, hq11))

Ordef(ig | iq+1)(Q) fg<k—1

35
m fg=k—1 (33)

Mobile, (Q) < {

and, as before, the inequality turns into an exact equatitine case whe® is a homolo-
gous population. At the same time

ordel(iy | igi1)(Q) — Hi(Q) ifg<k—1

m— Hi(Q) ifg=k—1 (36)

Mobile, (Q) > {
In view of propositiori 3B and remafk 34 inequalities B3, [38,a8d36 can be rewritten
verbatim replacing Ordéf, | i,+1)(Q) with m - Ordefi, | i44+1)(P), and Ordefi, |
7)(Q) with m. - Ordex(i, | j)(P).
For the case of homologous populati@rthe situation is particularly simple:
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Lemma 63. Suppose the populatidn is homologous. Suppose further, that neither one of
the set(P,,, hg+1) andV (P, hq \ hq11) is empty. Thelw m € N we have

ZjeiqLPandj;éiq+] Order(iq ) (P)+iqd=(P)

X _ 2 jciqyp Ordeliqli)(P)+igds(P) ifg<k—1
Py (P, hgi1) =V (P, hg\hgs1) 3 jeiqyp OMdeiliq ) (P)+iqds (P)—1 fo— k1’
Zjemﬂp Order(iqj)(P)+igds (P) q=
Ordel(l li +1)(P)+7, \LE(P) .
a _ Zjeiquaqord(é'(iqij)(P)q-ﬁ-iqi);(P) ifg<k—1
Py, hg\hgs1)=V (P, hgs1) — 1 o1
Zjeiq¢P Order(iqj)(P)+iq = (P) q=
Consequentlyy m € N
Order(igliqg+1) (P)+iqds(P) . .
T, m(V(Ems hg11)) _ 2 jciqiP andjtioy, Ordeligls)(P)+igl=(P) ifg<k—1
1 . .
g, m(V(Pms hg \ hgy1)) S ee 1 OTRTE L) (P, T= (P~ ifg=%k—1

Proof. The first and the second conclusions follow from equations/®#3% combined
with lemmal61, definition 30 and comment following equafi@h Bhe last conclusion is
an immediate application of equation 18 to the lumping agratof the Markov chaio\,
into the two statesl = V(P,,, hg+1) andB = V(P,,, hy \ hgt1)- O

All that remains to do now to establish theoréni 40 in the spemase of homologous
populationP is to show that whenever < ¢ < k — 1 and none of the “trivial ex-
tremes” takes place (see the beginning of this subsectiba)setsV(P,,, hq+1) and
V(Pp, hq \ he+1) are nonempty. This will be done later jointly with the copending
fact needed for the general case. Meanwhile, we return tedtimation of the ratios of the
form ﬂ”q*m(V(Pm’hq“)) in the general case. Suppose, for now, the following stat¢me

. q,M(V(PM7hq\hq+l))
IS true:

Vqwith1 < ¢ < k3Jconst(q) € (0, 1) such tha¥ sufficiently largemn

we havep,,(V(Pr., hqt1)) > const(q) andp,, (V(Pnm, hq \ hqt1)) > const(q) (37)

In the general case of non-homologous populafibiihe presence of immobile states sig-
nificantly complicates the situation. This is where Markongquality comes to the rescue
telling us that asn increases the height of the first rollout (and hence the numwbien-
mobile states) being large becomes more and more rare eve¢hassthe bounds in the
inequalitie$ 3B and 34 as well as inequalifiek 35[add 36 gsecland closer together. We
now proceed in detail. Recall the construction of the $&}sstarting with equation 24
and ending with inequalitif 27. Let > 0 be given. According to inequalify 27 M;
large enough so thatm > M; we havep,, (U5 "ty < 5. const(q + 1). where
const(q + 1) is as in the assumption statemient 37. We now have

Tgom (V(Prus hia) N U0 _Tam (ueomsttasn)
Tg,m(V(Pms hgt1)) = g, m V(P hgt1))
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|U7i;00n5t(q+1)| ‘Ufn:const(q+1)|

e A | d-cons

B o v v I L e I |7 e
WP, her DL |(V(P,,, h N
V(P )] O a1l P71

&-const(g+1)
_ Pm (Um ) < d-const(g+1) 5 (38)
Pm(V(Pm, hqt1)) = const(q+1) .
Analogously,
g (V(Pa g\ ) N US40
Tg,m(V (P g \ hg11))
d-const(g+1) d-const(g+1)
B Crtd T i) MPPRR
Tg,m(V(Pms bg \ hgt1))  pm(V(Pr, hg \ hg11))

Now observe that as long as a populat@re V(P,,, hy+1) \ Uit the hight of
the first rolloutH; (Q) < (6 - const(qg+ 1)) - m < - m (recall how the sets of the form
U¢, are introduced frorh 26). Now, far < k& — 1 inequalitie$ 33,34 and lemrhal60 tell us
that forvm > M; we have

" ((Za'eiqi(m#iw Ordexi | j, P)) tigm (P)) —om <
m - |States(iq | P)| -

<

< S ((Zﬂ'emw),j#w Ordex(iq | j, P)) +ig Iy (p))
= PV i) = m - |States(iq | P)|
so that dividing the numerator and the denominatorbgives

(zj@.q WP i, OFdeliy | j, P)) tigls 0

' <
|States (i | P)|
D iy L(PY, jtige, OFdeNig L j, P) +ig s (P)
- < j€iq » JF g1 40
S PQ-V(Pr, hog\hgi1) S |States(iq | P)| 0

Entirely analogous and, by now, well familiar to the readeasoning with inequality 39
playing the role of inequality_38 shows that whenewer> M; and a populatior) &
V(Pry hg \ hgrr) \ US™19T) we have
Ordef(iq | ig41, P) — ¢ < < Orde((ig | igy1, P)
States(i, | P)|  — L@Y(Pmhan) = TStates(i, | P)]
Now inequalitie$ 3d. 39. 40 andl41 allow us to apply lenima S#wi = V(P,,, hq+1),

B =YV(Ppy, hg \ hgy1) andU = Uoconstatl) gng concluding that m > M; we have
Order(iqli ,P)—¢
(1—0) " “oates tiabPy gy m(V(Pn, hgt1))

2jei gy, Ordeligld, P)+iqls(P) o m(V (P, hg \ b -
(L=9)- ( N ¢|gtraltes(iqlP)|j - ) +6 @ 4 e\ a11))

(41)
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Order(iqliqt1, P)
(1-0) sty +90

< .
< 9. <Zje:q¢<P),j¢iq+1 order(iq L7, P)+iq¢g(P)6>

|States (iq P)|

Multiplying the numerator and the denominator of the lefstnand the rightmost fractions
by the constaniStates(i, | P)| which does not depend on we obtain

(1 —-9)- (Ordeliy | ig+1, P) — § - |States(iy | P)|)

<
(1=9)- (Zjeiqup),j;&iw Ordefiq | j, P) +iq Ix (P)) + 6 - |States(iq | P)|
Wq,m(V(Pma hq+l))
T g,m(V(Pm, hg \ hgt1)) ~
(1 —9) - Ordeliq | ig+1, P) + 0 - |States(iq | P)| (42)

(1-0) (z JeinL(P). 141, OTdeiy L, P) +ig s (P) — 6 - |States(i, | P)|)

Now simply observe that the leftmost and the rightmost saféle inequality 4R are both
differentiable (and, hence, continuous) function® afn the domain(—0.5, 0.5) (notice
that the denominators do not vanish on this domain thankse@ssumption that neither
of the trivial extremes takes place). It follows immedigtiien that both, the leftmost and
the rightmost sides of the inequalifyl42 converge to the sashee, namely to the desired
ratio

Ordefiq | ig+1, P)
Zjeiqup),j;&iQH Orde(i, | j, P) +iq Is (P)

asd — 0. From the definition of a limit of a real-valued function at aimt, it fol-
lows that given any > 0 we can choose small enough> 0 such that both, the left-
most and the rightmost sides of the inequdlity 42 are witharror of R. We have now
shown that depending on thiswe can then choose sulfficiently largé so that the ratio
7. m V(P ha1)) being squeezed between the two quantities withiretagor of R,

_”qy_m(V(Pmah_q\thrl)) ) .
is itself within the error at mostof R. In summary, we have finally proved the following

R =

Lemma 64. Assume that the statemen{in 37 is true. Then whenkeverg < k — 1 we
have

o g, m(V (P, hgt1)) _ Ordel(iy J ig+1, P) .
m—00 g m (V(Pm, hq \ hgt1)) Zjequ,(P),j;&qu Ordefiy | j, P) +iq Is (P)

An entirely analogous argument shows the following:

Lemma 65. Assume that the statemenfid 37 is true. Then
Th—1,m(V(Pm, hi))

lim =

m—00 Wk_l,m(V(Pm, hy—1 \hk))

1
a Y jcin 1u(pyOrdelic_y | j, P) +ip_1 s (P) -1
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According to lemmals 88 and 59, equatibnk 30[and 31, lerhm&5683 and equatiofs P2
and23, all that remains to be proven to establish thebrém #ifollowing:

Suppose neither of the trivial extremes takes place. Thestdiement in equatidn 137
is true. Furthermore, in case of homologous recombinatiengtatement is true for ath
(not only for large enougim).

Proof. We proceed by induction on the indexFirst of all, recall from the beginning of
the current subsection that we have already showrithat N we have

Ordefa | i1, P)
b

where the last inequality holds because none of the triwakeenes takes place so that
Ordef« | i1, P) # 0 (recall thatp,,, denotes the uniform probability distribution ¢R,,]

50 thatp,, (V(Ppn, h1)) = z=ril). SinceV(Py, ha) = V(Pon, ha) WV(Pon, b\ ho)
we also hav@,, (V(Pon, h2))+pm(V(Pry hi\h2)) = prn(V (P, b)) = 28D —
constg wherel > consty > 0 andconstg is independent of. It follows then that at least
one of the following is truep,,, (V(Py,, h2)) > <2250 of p, (V(Ppy, hy \ he)) > <2to,

constqg

In the general case, choo3é, large enough so thatm > M; we havep,, (U, * ) <
C""Sto (recall the part of the proof starting with equatiorh 24 andieg with inequality 27).
It follows then that either

const t const t
o (VP 1)\ U2 ) 2 25 o, (VP )\ 0T ) 2 S

An already familiar argument exploiting corollaky153, inedjties[33,[34[ 35 36 and
lemmal6D shows that, thanks to the assumption that no textemes take place, and
observing that — <2sle > 2 for all large enoughn the ratios

by lemmd 4y

pm(V(Pm, h1)) 1m O(hi, P, t) = >0

constg

p
<V(Pm7h2)\Um 4 >_)V(P7nah1\h2)

>I£1

1
Py (P, hi\h2)=V(Pp, h2)
and, likewise,

const

p
<V(Pm,h1\h2)\Um 4 >—>V(Pm,h2)

>Ii2

p%Z(Pyn,hg)—)V(Pm,hl\hg)
where both,x; and k2 > 0 and independent ofn. Now we apply lemmd 85 to
the setsB = V(P,, ha) \ Un T and A = V(Pn, h1 \ ha) in the case when

const constg

Pm (V(Pm, ho) \ Um * 0) > consto or to the pair of set® = V(Pr,, by \ h2) \Un, *

constg

andA = V(P,,, h2) in the case whep,, (V(Pm, hi\ha)\Un * ) > %, tells

us that if we letconst(1) = min{<2ste  conste ., ~consto . i} then the statement in

[37 is true forg = 1. This establishes the base case of induction. Now obseaéftthe
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statement il_37 holds for somgethen it is true, in particular, that a constantonst(q)
independent ofn such that for all large enough we haveV(P,,, hy) > const(q). Now
the validity of the statement [n_B7 fgr+ 1 follows from an entirely analogous argument
to the one in the base case of induction withust(q) playing the role otonst(0) and the
Markov chainM, replacing the Markov chain ;. In the case of homologous recombina-
tion, an even simpler (since there is no need to worry abauh#ight of the first rollout),
analogous argument shows that the statemdniin 37 kolds |

6. A Further Strengthening of the General Finite PopulationGeiringer
Theorem for Evolutionary Algorithms

6.1. A Form of the Classical Contraction Mapping Principle for a Family of
Maps having the same Fixed Point

The material of this section requires familiarity with elentary point set topology or with
basic theory of metric spaces (see, for instarice, [21])oTginout this sectiofX, d) de-
notes a complete metric space. We recall the following frdassical theory of metric
spaces:

Definition 67. We say that a mapf : X — X is acontractionon X if 3k < 1 such that
Vz,y € X we haved(f(z), f(y)) < k-d(x,y). We also calk a contraction rat@ We
may then say thaf is a contraction with contraction rate at maést

The classical result known as contraction mapping prieciphtes the following:

Theorem 68 (Contraction Mapping Principle) Suppose(X, d) is a complete metric
space andf : X — X is a contraction onX in the sense of definitidn 67. Théhz € X
such thatvy € X we havdim,, o, f™(y) = z.

Proof. The proof can be found in nearly every textbook on point geblimgy such as [21],
for instance. O

In our application we will exploit the following natural extsion of definitiolh 67:

Definition 69. Suppos€ X, d) is a complete metric space. We say that a family of maps
F C{f|f: X — X}is anequi-contraction familyf 3k < 1 such thatv f € F and
Ve, y e X we haved(f(x), f(y)) < k-d(z,y).

Evidently, if the family 7 of contractions is finite, one can take the maximum of a set
K = {ky|Vz,y € X we haved(f(x), f(y)) < ky - d(z,y)} so that we immediately
deduce the following important (for our application) cdaoy:

Corollary 70. If F is any finite family of contractions on the metric spa¢e¢henf is an
equi-contraction family.

mEvidently contraction rate is not unique with such a notianetheless, the minimal contraction rate does exist
since itis theinf{k | k is a contraction rate
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The classical contraction mapping principle says thatyegentraction map on a complete
metric space has a unique fixed point. Here we need a sligtvixin of theoreiln 68, which
probably appears as an exercise in some point set topologgabanalysis textbook, but
for the sake of completeness it is included in our paper.

Theorem 71. Suppose we are given an equi-contraction farfilpn the complete metric
space(X, d). Suppose further that every € F has the same unique fixed poin{in
accordance with theorelm b8). Consider any sequence of cagdgonctiong, = f1, g2 =
f20091 ..., 9n = fnogn—1 Where eacty; € F (itis allowed forf; = f; wheni # j). Then
Vy € X limp—0ogn(y) = z exponentially fast for some constant< 1. In particular,
the convergence rate does not depend either on the seqyence, (as long as it is
constructed in the manner described above). Moreover, seéas a bounded metric (i.e.
sup, ,ex d(7, y) < 00), the convergence rate does not depend even on the choice of t
initial pointy € X.

Proof. Since all the functiong; have the same fixed point it is clear by induction that
Vn we haveg,(z) = z. SinceF is an equi-contraction family, in accordance with def-
inition69 3k < 1 such thatd(f(z), f(y)) < k- d(z,y). We now havel(g:1(y), z) =
d(f1(y), [1(z)) < k- d(y, 2). F d(gm(y), z) < E™ - d(y, 2), thend(gm+1(y), 2) =
d(frr1 (g ®))s fn1(2)) < k- dlgm(y), 2) < k- (k™ - dy, 2)) = k™ - d(y, 2) s0
that by induction it follows that'n € N we haved(g, (y), z) < k™ - d(y, z). Butk < 1

so thatd(g,(y), z) — 0 exponentially fast a& — oo which is another way of stating
the first desired conclusion.sfip, , . x d(z, y) < oo thend(g.(y), z) < k™ - d(y, 2) <

k™ - sup, yex d(z, y). |

6.2. What does Theorem[Z1tell us about Markov Chains?

SupposeM is a Markov chain on a finite state spa&ewith transition matrixP =
{pz—y}z yex- Clearly P extends to the linear map on the free vector spaéespanned
by the point mass probability distributions which form athanormal basis of this vector
space (isomorphic tB!*!, of course) under thé; norm defined as the sum of the absolute
values of the coordinate$ | ., 72|, = D>, cx I72|. The linear endomorphisif de-
fined by the matrix{p,_,,}, ycx With respect to the basi¥& restricts to the probability
simplex

A)(—{ZT1I|VI6X0§T1S127’I—1} (43)
reX TEX

(which is closed and bounded &* and hence is compact which is way stronger than we
need). The following well-known fact from basic Markov chdheory allows us to apply
the tools from subsectidn .1. For the sake of completenpssd is included.

Theorem 72. SupposeM with notation as above is an irreducible Markov chain. (mean
ing thatVz,y € X we havep,_,, > 0). ThenP = {pyy}us yex : Hx — Dx (S€€
equatiorf4B) is a contraction (see definitiod 67) on the cetephnd bounded probability
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simplexA x with respect to the metric induced by the norm i.e.||udlr, = > x Uzl
whereii =} _ . u, !l Moreover, the contraction rate (see definition 67) is at mesfX'|e

wheree > 0 is any number smaller thamin, yex pz—sy-

Proof. First notice that given any Markov transition matfik= {r,_,}, yex, and any
two probability distributionsr ando € Ay, we have

[R(m =o)L, = Z Z Tay(m(z) —o(2))| < Z Z Tasy|m(z) — o(z)] =

yeX |lzeX yeEX X
=D reylr@) —o@) =) In(@ z)| = |lm—ollL,
rzeX yexX reX

In summary, we have shown that

vV Markov transition matrix®@ = {r,_, }., yex On the state spac¥ and
v probability distributionsr, o € A x we have

[1R(m = o)z, = [|1R(m) = R(o)l|z, <llm— o]z, (44)

There is one more simple fact we observe:.dedenote ant’ x X matrix with all entries
equal tol. Given any vectoli = ) ., u,x, we haveJ -4 = 7 = ) _, v,x Where
Vy € X we havev, = . u, independently of. Itis clear then that the kernel of the
matrix J,

Ker(J)={u|d= ZuwxandZum—O}
zeX reX
In particular, ifr ando are probability distributions o, then the sums of coordinates
Yowex(m(®@)) =3 cx(o(x)) = 1sothatthe vector — o € Ker(J)i.e.J(r—o)=0.
In summary, we deduce the following:

Vv probability distributionsr ando € Ay we haveJ(r — o) = 0. (45)

The assumption that,_,, > 0 together with the assumption thatis a finite set imply
that we can find a positive number> 0 such thaD < ¢ < min{p,_,, |z, y € X'}. Let

N = |X| denote the size of the state spaXeand notice that by the choice efin the
previous sentenc&,z € X we haveN - ¢ < Zyexpzﬂy = 1sothatae =1 — Ne > 0.

We can now write

P_(P—eJ)—l—eJ—oz(é(P—eJ))—|—eJ—0¢Q+eJ (46)

nOf course, the total variation norm, which is a constantisgadf the L; norm by a factor o%, can be used in
place of theL; norm alternatively.
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whereQ = %(P —€J) = {¢a—y }a, yex IS @ Stochastic matrix, i.&.z € X the sum of the

entries
Z - Z Pesy —€ ZyGX(pCE_’y —¢) _ (Zyexpw—w) e =1
Qoy = « - 1— Ne - 1— Ne o
yeX yeX

so that() is a matrix representing a Markov chain on the state spadéow, given any two
distributionsr ande € A x, using the decomposition of the matiikgiven in equation 46
together with the facts expressed in equdfidn 45 we obtain

Pr—o)=(aQ+eJ)(m—0)=aQ(r—0)+eJ(m —0) =aQ(r —0)

so that, since) is a matrix which represents a Markov chain, the fact exge:es equa-
tion[44 readily gives us the desired conclusion that

[1P(r = o)llL, = [leQ(r = 0)llz, = al|Q(r = 0)llz, < allr —ol|L,

which shows thafP’ is a contraction since we demonstrated beforedhata < 1. O

In corollary[70 we saw that any finite family of contraction psas an equi-contraction
family. For Markov transition matrices (also called stosfiamatrices in the literature)
significantly more is true. The following notion is natugathotivated by definition 89 and
theoreni 7P.

Definition 73. Given a family of Markov transition matrices

F={{p._,}oyex|i € I,m € Ay andVic T andvVy € X we have

;{pé%y% = my andf = ieZ,migrgdyeXp;Hy >0}

xr

indexed by some sét, sharing a common stationary distributiorand such that the great-
est lower bound of all the entries from all the matrice&irlet’s call it 3, is strictly positive
(or, equivalently, is nod) we say thatF is a family ofinterchangeabléarkov transition
matriceswith lower bounds.

Apparently, theorerm 72 immediately implies the following

Corollary 74. Every interchangeable famil§ of Markov transition matrices with lower
bounds is an equi-contraction family with a common contractiorerat mosty = 1—|X|e
foranyewith0 < e < 3.

Moreover, families of interchangeable Markov transitioatrices can often be easily ex-
pended as follows.

Corollary 75. Suppose that a familf of Markov transition matrices over the same state
spaceX’ is interchangeable with lower bourft] Then so is the convex hull of the family
k k
A(F)={T|T = t;M;wherek € NandV0 < i < kwe have) <t; <1 t; =1}.
i=1 i=1
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Proof. Given a matrixl” = {t;y}z, yex € A(F), we can writel' = Z?:l t;M; €

. ; k
A(F) with M; = {p;_w}z_,yex € F,0<t;<landd ;_,t; =1 Butthenvz, y € X
we havet,_,, = Zle tj Phy = Zle t; - b = b so that the desired conclusion follows
atonce. O

Combining theorern 712, corollaky 170 and corollary 75 readilies the following

Corollary 76. Suppose we are given a finite famifyof Markov transition matrices such
that all the entries of each matri’{ € F are strictly positive. Ther\(F) is an equi-
contraction family.

Corollary{76 extends the applicability of the finite popidatGeiringer theorem appearing
in [13] and in [12] (and, possibly some other homogenoustvarkov chain construc-
tions) to non-homogenous time Markov chains generatedltitrary stochastic processes
in the sense below.

Theorem 77. Consider any finite set’. LetF denote a finite family of Markov transition
matrices ont’ such that all the entries of each matix € F are strictly positive and all
the matrices inF have a common stationary distributian Now consider any stochastic
process{ Z,, }22 ; with eachZ,, = (F,,, X,,) onF x X having the following properties:

Fy and X are independent random variables. 47
Forn > 1 F, does notdepend ol ,,, X,,+1, ..., (however, it may depend on
Xo, X1,...,X,—1 as well as many other implicit parameters). (48)

The stochastic process,, is a non-homogenous time Markov chain&nwith transition
matricesF;, (w). More explicitly

If Fr(w) = {ph_,,}2,yex thenvVy € X we have

P(X,=y) =Y P(Xp_1 =2)p}=) (49)
reX
Then the non-homogenous time Markov chain converges tortiggi@l stationary distri-
bution = exponentially fast regardless of the initial distributiaf X,. More precisely,
Ja € (0, 1) such thatVt € N we have

[P(X; =) = 7|z, <o
where P(X,; = -) denotes the probability distribution of the random varl;.
Proof. Observe that if we want to compute the distribution’df given the distribution of
Xo, we need to select a Markov transition mathik = {m,_., }+ yex € F with respect

to the probability distribution of, which isindependentf X,. The value ofX; is then
obtained by selecting a valueof X with respect to the initial distributio® (X, = -)
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and then obtaining the next statg = y with probability P(X; = y) = my_,. Thereby
Yy € X we may write
PXi=y)= > Y P(Fy=MandXy = a)m, , > e
MeF zeX

= 3 % P(Xo = @)P(Fo = Mymay, =

MeF xeX
=Y P(Xo=x) Y P(Fo=M)ms,,. (50)
reX MeF

SinceF is afinite sety M < F we haveP(Fy, = M) € [0,1]and}__ , P(Xo = z) = 1,
we deduce that the matri&, = >, . » P(Fo = M) - M € A(F) is a Markov transition
matrix and equatioin 0 can be alternatively written in theteeform as

P(Xy=)=Ty P(Xo="). (51)
Continuing inductively, if we assume
P(Xy=-)=Tg-10...0ThoTy-P(Xo=") (52)

for k > 1 where the Markov transition matric&% € A(F), then it follows analogously to
the above reasoning that

P(Xps1=y)= Y _ > P(F=MandXy = z)m,_,,
MeFzeX

by independen_czeka and X,

= Z P(X, =x) Z P(Fp = M)mg_sy

TEX MeF

so that for the same reasons as before we may conclude that

P(Xjp1=)=Ts P(Xp=)=Ts (Ty_10...0T 0Ty P(Xog =-)) =

:TkOkalo...OTloTo'P(XOZ'). (53)

whereTy, € A(F) =)y er P(F. = M) - M € A(F) for the same reason d3 € F.
We now conclude by induction th&tt € N we have

P(Xt:-):Tt_lo...OTloTO'P(XO:') (54)

whereVi € NU {0} we haveTl; € A(F). According to corollary 76 the family of Markov
transition matriceg\(F) is an equi-contraction family with the same common statipna
distribution7 and now the desired conclusion follows immediately fronoteei71. O

Remark 78. It is interesting to notice that the non-homogenous timekdaprocessx,,

in theoreni 7I7 may be generated by non-Markovian procdsseghere the Markov tran-
sition matricesF,, depend not only on the past histoFy, Fi, ..., F,_1 but also on the
history of the stochastic proceds, itself. This property is interesting not only from the
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mathematical point of view but also in regard to the main satf the current paper: the
application to the Monte Carlo Tree search method. Due t@#s¢ history in a certain
game as well as other possibly hidden circumstances (suatmagan mood, psychological
state etc.), a player may suspect the states being intagebble to bigger or smaller de-
gree. Theorems like_T7 demonstrate that in most cases thisatimatter in the limiting
case which strengthens the theoretical foundation in stippthe main ideas presented in
this work.

One can extend theordml|77 further to be applicable to a wides of families of Markov
transition matrices having a common stationary distridouthan just these having all pos-
itive entries.

Definition 79. We say that a family# of Markov transition matrices igreducible and
aperiodicwith a common stationary distributianif = is a stationary distribution of every
matrix in 7 and3 k € N such thaty sequence of transformatiofid/; }*_, with M, € F
the composed Markov transition matfix= M; o Mso. ..o M, has strictly positive entries
andr is a stationary distribution of every Markov transition mpat)/ € F. We also say
thatk is thecommon reachable index

If we were to start with a finite irreducible and aperiodic fgrmoef Markov transition matri-
cesF with a common reachable indé&jin the sense of definitidn ¥9 then the corresponding
family

F={L|L=MoM,o...oM,withM, € F} (55)

has the sizéF| = | F|* < oo and every matrix in the familyF has strictly positive entries.
It follows immediately from corollary_46 thatx(]?) is an equi-contraction family. Now
suppose that we are dealing with the same stochastic praseescribed in the statement
of theorenf_ 77 with the only exception that the famHis a finite irreducible and aperiodic
family with a common reachable indéxrather than “a finite family of Markov transition
matrices ont’ such that all the entries of each matfix € F are strictly positive”. No-
tice that the proof of theorem 177 does not use the assumptiairttie Markov transition
matrix entries are strictly positive up to the last stepdaiing equationi 54. Therefore, it
follows that the same equation holds for a finite irreducé#rid aperiodic family of Markov
transition matrices, i.e.

Vit e Nwe haveP(Xt = ) =Ti_10...0T10Tp- P(XO = ) (56)
whereV: € N we haveT; € A(F). We now observe the following simple fact.

Lemma 80. The family of linear transformations (and Markov transitimatrices in par-
ticular)

where

—_~

AF)={T|T=TioTso...0TywithT; € A(F)} (57)
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and the faminA(}N‘) is the convex hull of the famil¥7‘ introduced in equatiop 85 in the
sense of the defining equation in corollant 75.

Proof. Given a transformation

T=TioTyo...0T, € AF), (58)
since eaclT; € A(F), we have

1(3) 1(4)
Viwith 1 <i < kwe havel; =Y ¢/ M with0 <t; <land) # =1. (59)
j=1 j=1

Plugging equationh 9 into equatibn] 58 and using the lingafifl;s we obtain

1(2) 1(3) (k)

(1)
Zt;M Zt 0...0 Zt;Mj(i) ©...0 Zt;?Mj(k) =
i=1 =t o

Z Z Z (H%) i) © My 0.0 M) € F

J)=1j2)=1  j(k)=1 \i=1
sincel < Hl 1 )<1and
1)  12) (k) k 1(1) 1(2) 1(k)
1 2 k) _
> >y (I5e) - (20 (24) - (2e) -
J)=14(2)= J(k)=1 \i=1 j=1
from equatio@ so that the desired conclusion follows aton |

Now continue with equatidn 56 so that we can write

VtENWehaveP(Xt:'):thlo...OTloTQ'P(X():'):

=Ti10...0Tnkt19Tmk 0Tmp-10-. 0 Tm_1)ks1 0 T(m—1)-k O - -

r—fold composition k—fold composition

..OTgk_lO...OT/H_loTkOTk_l...OTlOTO'P(XOZ')Z

k—fold composition k—fold composition

ZTt_lo...O m.]H_lOTm.kOFm_loFm_QO...OFlOFO'P(XOZ-) (60)

wherem = | £] andr < k is the remainder after dividingby k and each; € Z?]-{) -
A(F) thanks to lemm&80. SincA(F) is an equi-contraction family (see equatfon 55
and the discussion which follows this equation), it followsnediately that we can find a
constantx € [0, 1) such that

||Fm_1 OFm_2 O...OFl OFO P(Xo = ')HLl <a™- ||P(X0 = ')HLl'
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Furthermore, according to equatiod 44 which concludes teedart of the proof of theo-
rem[72, we also have

| Ti—10...0Tmikt10Tmr o Fmo10Fp_20...0F o Fy-P(Xg=")|1, =

=||(Tic10...0Tmpt10Tmpg) o (Fe1 0 Fpoo...oFy o Fy - P(Xo="))|ln, <

< HFm—l oF, _20...OF1 OFO'P(XO = ')HL] <a™- HP(XO = -)HL].
The observations above lead to the following extensionebteni 7V .
Theorem 81. Consider any finite set’. SupposeF a is a finite irreducible and aperi-
odic family with a common reachable indéxand all the matrices inF have a com-

mon stationary distributionr. Now consider any stochastic procesg,, }>° , with each
Zn, = (F,, X,) onF x X having the following properties:

Fy and X are independent random variables. (61)
Forn > 1 F, does not depend ol ,,, X,,+1, ..., (however, it may depend on
Xo, X1,...,X,—1 as well as many other implicit parameters). (62)

The stochastic process,, is a hon-homogenous time Markov chain&nwith transition
matricesF;, (w). More explicitly

If Fr(w) = {ph_,,}z,yex thenvVy € X we have

P(X,=y) =Y P(Xn1=a)pi5), (63)
reX
Then the non-homogenous time Markov chain converges tortiggi@i stationary distri-
bution = exponentially fast regardless of the initial distributiaf X,. More precisely,
Ja € (0, 1) such thatVt € N we have

IP(X; =) = allz, <a™®

where P(X; = -) denotes the probability distribution of the random varat,; and

m(t) = [£].

7. Conclusions and Upcoming Work

This is the first in a sequel of papers leading to the developmued applications of very
promising and novel Monte Carlo sampling techniques farfiecement learning in the
setting of POMDPs (partially observable Markov decisioogasses). In this work we have
established a version of Geiringer-like theorem with nemblogous recombination well-
suitable for the development of dynamic programming Morael@search algorithms to
cope with randomness and incomplete information. Moreieitiyl the theorem provides
an insight into how one may take full advantage of a samplesefréngly independent
rollouts by exploiting symmetries within the space of obaéipns as well as additional
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similarities that may be provided as expert knowledge. Dugpaace limitations the actual
algorithms will appear in the upcoming works. Additionallye general finite-population
Geiringer theorem appearing in the PhD thesis of the firstads well as in[13] and [12]
has been further strengthened with the aim of amplifying#&asons why the above ideas
are highly promising in applications, not mentioning thetineanatical importance.
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