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Purpose- In recent years Monte-Carlo sampling methods, such as MonteCarlo tree search, have
achieved tremendous success in model free reinforcement learning. A combination of the so called
upper confidence bounds policy to preserve the “explorationvs. exploitation” balance to select actions
for sample evaluations together with massive computing power to store and to update dynamically a
rather large pre-evaluated game tree lead to the development of software that has beaten the top human
player in the game of Go on a 9 by 9 board. Much effort in the current research is devoted to widening
the range of applicability of the Monte-Carlo sampling methodology to partially observable Markov
decision processes with non-immediate payoffs. The main challenge introduced by randomness and
incomplete information is to deal with the action evaluation at the chance nodes due to drastic dif-
ferences in the possible payoffs the same action could lead to. The aim of this article is to establish
a version of a theorem that originated from population genetics and has been later adopted in evo-
lutionary computation theory that will lead to novel Monte-Carlo sampling algorithms that provably
increase the AI potential. Due to space limitations the actual algorithms themselves will be presented
in the sequel papers, however, the current paper provides a solid mathematical foundation for the de-
velopment of such algorithms and explains why they are so promising.
Design/Methodology/Approach-In the current paper we set up a mathematical framework, state and
prove a version of a Geiringer-like theorem that is very well-suited for the development of Mote-Carlo
sampling algorithms to cope with randomness and incompleteinformation to make decisions. From
the framework it will be clear that such algorithm increase what seems like a limited sample of roll-
outs exponentially in size by exploiting the symmetry within the state space at little or no additional
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computational cost. Appropriate notions of recombination(or crossover) and schemata are introduced
to stay inline with the traditional evolutionary computation terminology. The main theorem is proved
using the methodology developed in the PhD thesis of the firstauthor, however the general case of non-
homologous recombination presents additional challengesthat have been overcome thanks to a lovely
application of the classical and elementary tool known as the “Markov inequality” together with the
lumping quotients of Markov chains techniques developed and successfully applied by the authors in
the previous research for different purposes. This methodology will be mildly extended to establish
the main result of the current article. In addition to establishing the Geiringer-like theorem for Monte
Carlo sampling, which is the central objective of this paper, we also strengthen the applicability of
the core theorem from the PhD thesis of the first author on which our main result rests. This provides
additional theoretical justification for the anticipated success of the presented theory.
Findings- This work establishes an important theoretical link between classical population genetics,
evolutionary computation theory and model free reinforcement learning methodology. Not only the
theory may explain the success of the currently existing Monte-Carlo tree sampling methodology, but
it also leads to the development of novel Monte-Carlo sampling techniques guided by rigorous math-
ematical foundation.
Practical implications- The theoretical foundations established in the current work provide guidance
for the design of powerful Monte-Carlo sampling algorithmsin model free reinforcement learning to
tackle numerous problems in computational intelligence.
Originality/value- Establishing a Geiringer-like theorem with non-homologous recombination was a
long standing open problem in evolutionary computation theory. Apart from overcoming this chal-
lenge, in a mathematically elegant fashion and establishing a rather general and powerful version of
the theorem, this work leads directly to the development of novel provably powerful algorithms for
decision making in the environment involving randomness, hidden or incomplete information.

Keywords: Reinforcement learning; partially observable Markov decision processes; Monte Carlo tree
search; upper confidence bounds for trees, evolutionary computation; Geiringer Theorem; schemata;
non-homologous recombination (crossover); Markov chains; lumping quotients of Markov chains;
Markov inequality; contraction mapping principle; irreducible Markov chains; non-homogenous
Markov chains.

1. Introduction

A great number of questions in machine learning, computer game intelligence, control the-
ory, and numerous other applications involve the design of algorithms for decision-making
by an agent under a specified set of circumstances. In the mostgeneral setting, the prob-
lem can be described mathematically in terms of the state andaction pairs as follows. A
state-action pair is an ordered pair of the form(s, ~α) where~α = {α1, α2, . . . , αn} is
the set of actions (or moves, in case the agent is playing a game, for instance) that the
agent is capable of taking when it is in the state (or, in case of a game, a state might be
sometimes referred to as a position)s. Due to randomness, hidden features, lack of mem-
ory, limitation of the sensor capabilities etc, the state may be only partially observable by
the agent. Mathematically this means that there is a function φ : S → O (as a matter of
fact, a random variable with respect the unknown probability space structure on the setS)
whereS is the set of all states which could be either finite or infinitewhile O is the set
(usually finite due to memory limitations) of observations having the property that when-
everφ(s1) = φ(s2) (i.e. whenever the agent can not distinguish statess1 ands2) then the
corresponding state action pairs(s1, ~α) and(s2, ~β) are such that~α = ~β (i.e. the agent
knows which actions it can possibly take based only on the observation it makes). The gen-
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eral problem of reinforcement learning is to decide which action is best suited given the
agent’s knowledge (that is the observation that the agent has made as well as the agent’s
past experience). In computational settings “suitability” is naturally described in terms of a
numerical reward value. In the probability theoretic sensethe agent aims to maximize the
expected reward (the expected reward considered as a randomvariable on the enormous
and unknown conditional probability space of states given aspecific observation and an
action taken). Most common models such as POMDPs (partiallyobservable Markov deci-
sion processes) assume that the next state and the corresponding numerical rewards depend
stochastically only on the current observation and action.In a number of situations the im-
mediate rewards after executing a single action are unknown. The so-called “model free”
reinforcement learning methods, such as Monte Carlo techniques (i.e. algorithms based
on repeated random sampling) are exploited to tackle problems of this type. In such al-
gorithms a large number ofrollouts (i.e. simulations or self-plays) are made and actions
are assigned numerical payoffs that get updated dynamically (i.e at every simulation of an
algorithm). While the simulated self-plays started with a specific chosen action, sayα, are
entirely random, the actionα itself is chosen with respect to a dynamically updated proba-
bility distribution which ensures the exploration versus exploitation balance: the technique
known as UCB (Upper Confidence Bounds). It may be worth emphasizing that the UCB
methodology is based on a solid mathematical foundation (see [1], [10] and [3]). A combi-
nation of UCB with Monte Carlo sampling lead to tremendous break through in computer
Go performance level (see [5] and [6], for instance) and muchresearch is currently under-
going to widen the applicability of the method. Some of the particularly challenging and
interesting directions involve decision making in the environments (or games) involving
randomness, hidden information and uncertainty or in “continuous” environments where
appropriate similarities on the set of states must be constructed due to runtime and mem-
ory limitations and also action evaluation polices must be enhanced to cope with drastic
changes in the payoffs as well as an enormous combinatorial explosion in the branching
factor of the decision tree. In recent years a number of heuristic approaches have been
proposed based on the existing probabilistic planning methodology. Despite some of these
newly developed methods have already achieved surprisingly powerful performance levels:
see [23] and [24], the authors believe there is still room fordrastic improvement based on
the rigorous mathematical theory originated from classical population genetics ([8]) and
later adopted in traditional evolutionary computation theory ([18], [13] [12]). Theorems of
this type are known as Geiringer-like results and they address the limiting “frequency of
occurrence” of various sets of “genes” as recombination is repeatedly applied over time.
The main objective of the current work is to establish a rather general and powerful version
of a Geiringer-like theorem with “non-homologous” recombination operators in the setting
of Monte Carlo sampling. This theorem leads to simple dynamic algorithms that exploit
the intrinsic similarity within the space of observations to increase exponentially the size
of the already existing sample of rollouts yielding significantly more informative action-
evaluation at very little or even no additional computational cost at all. The details of how
this is done will be described in sections 3 and 4. Due to spacelimitations, the actual algo-
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rithms will appear in sequel papers. As a matter of fact, we believe the interested readers
may actually design such algorithms on their own after studying sections 3 and 4.

2. Overview

Due to the interdisciplinary nature of this work the authorsdid their best to make the pa-
per accessible on various levels to a potentially wide audience having diverse backgrounds
and research interests ranging from practical software engineering to applied mathematics,
theoretical computer science and high-level algorithm design based on solid mathematical
foundation. The next section (section 3) is essential for understanding the main idea of the
paper. It provides the notation and sets up a rigorous mathematical framework, while the
informal comments motivating the various notions introduced, assist the reader’s compre-
hension. Section 4 contains all the necessary definitions and concepts required to state and
to explain the results of the article. It ends with the statement of Geiringer-like theorem
aimed at applications to decision making in the environments with randomness and incom-
plete information where no immediate rewards are available. This is the central aim of the
paper. A reader who is only after a calculus level understanding with the aim of developing
applications within an appropriate area of software engineering may be satisfied reading
section 4 and finishing their study at this point. Section 5 isdevoted to establishing and
deriving the main results of the article in a mathematicallyrigorous fashion. Clearly this
is fundamentally important for understanding where these results come from and how one
may modify them as needed. We strongly encourage all the interested readers to attempt
understanding the entire section 5. Subsection 5.1 does require familiarity with elementary
group theory. A number of textbooks on this subject are available (see, for instance, [7])
but all of them contain way more material than necessary to understand our work. To get
the minimal necessary understanding, the reader is invitedto look at the previous papers
on finite population Geiringer theorems of the first two authors: [13] and [12]. Finally, sec-
tion 6 is included only for the sake of strengthening the general finite-population Geiringer
theorem to emphasize its validity for nonhomogenious time Markov chains, namely the-
orem 23. Example 24 explains why this is of interest for the algorithm development. The
material in section 6 is entirely independent of the rest of the paper. One could read it either
at the beginning or at the end. The authors suspect this theory is known in modern math,
but the literature emphasizing theorems 77 and 81 is virtually impossible to locate. More-
over, mathematics behind these theorems is classical, general, simple and elegant. While
section 6 is probably not of any interest to software engineers (theorem 23 may be thought
to strengthen the justification of the main ideas), more mathematically inclined audience
will find it enjoyable and easy to read.

3. Equivalence/Similarity Relation on the States

Let S denote the set of states (enormous but finite in this framework). Formally each state
~s ∈ S is an ordered pair(s, ~α) where~α is the set of actions an agent can possibly take
when in the state~s. Let∼ be an equivalence relation onS. Without loss of generality we
will denote every equivalence class by an integer1, 2, . . . , i, . . . ,∈ N so that each element
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of S as an ordered pair(i, a) wherei ∈ N anda ∈ A with A being some finite alphabet.
With this notation(i, a) ∼ (j, b) iff i = j. Intuitively, S is the set of states and∼ is the
similarity relation on the states. For example in a card gameif the 2 states corresponding
to the same player have cards of roughly equivalent value (for that specific game) and
their opponent’s cards are unknown (and there might be some more hidden and random
effects) then the 2 states will be considered equivalent under∼. We will also require that
for two equivalent states~s1 = {s1, ~α1} and ~s2 = {s2, ~α2} under∼ there are bijections
f1 : ~α1 → ~α2 andf2 : ~α2 → ~α1. For the time being, these bijections should be obvious
from the representation of the environment (and actions) and reflect the similarity between
these actions.

Remark 1. In theory we want functionsf1 andf2 to be bijections and inverses of one
another for the theoretical model to be perfectly rigorous,but in practice there should prob-
ably be no strict requirement on that. In fact, we believe that in practice one may even want
to relax the assumption on∼ to be an equivalence relation.

As described in sections 1 and 2, the most challenging question when applying an MCT
type of an algorithm to deal with randomness and incomplete information or simply with a
large branching factor of the game tree is to evaluate the actions under consideration mak-
ing the most out of the sample of independent rollouts. Quitesurprisingly, very powerful
programs have already been developed and tested in practiceagainst human players (see
[11]), however the action-evaluation algorithms used in these software are purely heuristic
and no theoretical foundation is presented to explain theirsuccess. In fact, most of these
methods use some kind of a voting mechanism to deal with rather weak classifiers. In the
next section we will set up the stage to state the main result of this paper which motivates
new algorithms for evaluating actions (or moves) at the chance nodes and hopefully will
provide some understanding for the success of the already existing techniques in the future
research.

4. Mathematical Framework, Notion of Crossover/Recombination and
Statement of the Finite Population Geiringer Theorem for Action
Evaluation.

Definition 2. Suppose we are given a chance node~s = (s, ~α) and a sequence{αi}bi=1 of
actions in~α (it is possible thatαi = αj for i 6= j). We may then call~s a root state, or a
state in question, the sequence{αi}bi=1, thesequence of moves (actions) under evaluation
and the set of movesA = {α |α = αi for somei with 1 ≤ i ≤ b}, the set of actions (or
moves) under evaluation.

Definition 3. A rollout with respect to the state in question~s = (s, ~α) and an actionα ∈ ~α

is a sequence of states following the actionα and ending with a terminal labelf ∈ Σ where
Σ is an arbitrary set of labelsa, which looks as{(α, s1, s2, . . . , st−1, f)}. For technical
reasons which will become obvious later we will also requirethatsi 6= sj for i 6= j (it is

aIntuitively, each terminal label in the setΣ represents a terminal state that we can assign a numerical value to
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possible and common to havesi ∼ sj though). We will say that the total number of states
in a rollout (which isk − 1 in the notation of this definition) is theheightof the rollout.

Remark 4. Notice that in definition 3 we included only the initial moveα made at the
state in question (see definition 2) which is the move under evaluation (see definition 2).
The moves between the intermediate states are chosen randomly and are not evaluated so
that there is no reason to consider them.

Remark 5. In subsection 3 we have introduced a convenient notation forstates to empha-
size their respective equivalence classes. With such notation a typical rollout would appear
as a sequence{(α, (i1, a1), (i2, a2), . . . , (it−1, at−1), f)} with ij ∈ N while ai ∈ A.
According to the requirement in definition 3,ij = ik for j 6= k =⇒ ak 6= aj .

A single rollout provides rather little information about an action particularly due to the
combinatorial explosion in the branching factor of possible moves of the player and the op-
ponents. Normally a large, yet comparable with total resource limitations, number of roll-
outs is thrown to evaluate the actions at various positions.The challenging question which
the current work addresses is how one can take full advantageof the parallel sequence of
rollouts. Since the main idea is motivated by Geiringer theorem which is originated from
population genetics ([8]) and later has also been involved in evolutionary computation the-
ory ([18], [13] and [12]) we shall exploit the terminology ofthe evolutionary computation
community here.

Definition 6. Given a state in question~s = (s, ~α) and a sequence{αi}bi=1 of moves un-
der evaluation (in the sense of definition 2) then apopulationP with respect to the state
~s = (s, ~α) and the sequence{αi}

b
i=1 is a sequence of rolloutsP = {r

l(i)
i }bi=1 where

ri = {(αi, s
i
1, s

i
2, . . . , s

i
l(i)−1, fi)}. Just as in definition 3 we will assume thatsik 6= sjq

wheneveri 6= j (which, in accordance with definition 3, is as strong as requiring that
sik 6= sjq wheneveri 6= j or k 6= q)b Moreover, we also assume that the terminal labelsfi
are also all distinct within the same population, i.e. fori 6= j the terminal labelsfi 6= fj

c

In a very special case whensij ∼ sqk =⇒ j = k we will say that the populationP is ho-
mologous. Loosely speaking, a homologous population is one where equivalent states can
not appear at different “heights”.

Remark 7. Each rolloutrl(i)i in definition 6 is started with the corresponding moveαi

of the sequence of moves under evaluation (see definition 2).It is clear that if one were
to permute the rollouts without changing the actual sequences of states the corresponding

via a functionφ : Σ → Q. The reason we introduce the setΣ of formal labels as opposed to requiring that each
terminal label is a rational number straight away, is to avoid confusion in the upcoming definitions
bThe last assumption that all the states in a population are formally distinct (although they may be equivalent)
will be convenient later to extend the crossover operators from pairs to the entire populations. This assumption
does make sense from the intuitive point of view as well sincethe exact state in most games involving randomness
or incomplete information is simply unknown.
cThis assumption does not reduce any generality since one canchoose an arbitrary (possibly a many to one)
assignment functionφ : Σ → Q, yet the complexity of the statements of our main theorems will be mildly
alleviated.
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populations should provide identical values for the corresponding actions under evaluation.
In fact, most authors in evolutionary computation theory (see [22], for instance) do assume
that such populations are equivalent and deal with the corresponding equivalence classes of
multisets corresponding to the individuals (these are sequences of rollouts). Nonetheless,
when dealing with finite-population Geiringer-like theorems it is convenient for technical
reasons which will become clear when the proof is presented (see also [13] and [12]) to
assume theordered multiset modeli.e. the populations are considered formallydistinct
when the individuals are permuted. Incidentally, ordered multiset models are useful for
other types of theoretical analysis in [19] and [20].

Example 8. A typical population with the convention as in remark 7 mightlook as below.

α 7→ 1a 7→ 5a 7→ 6a 7→ 3d 7→ 7a 7→ f1
β 7→ 2a 7→ 1b 7→ 3c 7→ 6d 7→ f2
γ 7→ 4a 7→ 6b 7→ 5b 7→ f3
α 7→ 1c 7→ 4b 7→ 2b 7→ 7b 7→ 5c 7→ f4
ξ 7→ 3a 7→ 2c 7→ 4c 7→ f5
ξ 7→ 2d 7→ f6
π 7→ 3b 7→ 1d 7→ 2e 7→ 6c 7→ f7

The height of the first rollout in the population pictured above would then be5 since it
contains5 states. The reader can easily see that the heights of the rollouts in this population
read from top to bottom are5, 4, 3, 5, 3, 1 and4 respectively. Clearly, the total number of
states within the population is the sum of the heights of all the rollouts in the population.
In fact, this very simple observation is rather valuable when establishing the main result of
the current article as will become clear in subsection 5.4 ofsection 5.

The main idea is that the random actions taken at the equivalent states should be inter-
changeable since they are chosen somehow at random during the simulation stage of the
MCT algorithm. In the language of evolutionary computing, such a swap of moves is called
a crossover. Due to randomness or incomplete information (together with the equivalence
relation which can be defined using the expert knowledge of a specific game being an-
alyzed) in order to obtain the most out of a sample (population in our language) of the
parallel rollouts it is desirable to explore all possible populations obtained by making var-
ious swaps of the corresponding rollouts at the equivalent positions. Computationally this
task seems expensive if one were to run the type of genetic programming described pre-
cisely below, yet, it turns out that we can predict exactly what the limiting outcome of this
“mixing procedure” would be.d We now continue with the rigorous definitions of crossover.

Representation of rollouts suggested in remark 5 is convenient to define crossover op-
erators for two given rollouts. We will introduce two crossover operations below.

dIn this paper we will need to “inflate” the population first andthen take the limit of a sequence of these limiting
procedures as the inflation factor increases. All of this will be rigorously presented and discussed in subsection 4.2
and in section 5.
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Definition 9. Given two rolloutsr1 = (α1, (i1, a1), (i2, a2), . . . , (it(1)−1, at(1)−1), f)

and r2 = (α2, (j1, b1), (j2, b2), . . . , (jt(2)−1, bt(2)−1), g) of lengths t(1) and t(2)

respectively that share no state in common (i.e., as in definition 3, ) there are
two (non-homologous) crossover (or recombination) operators we introduce here. For
an equivalence class labelm ∈ N and lettersc, d ∈ A define the one-point
non-homologous crossovertransformationχm, c, d(r1, r2) = (t1, t2) where t1 =

(α1, (i1, a1), (i2, a2), . . . , (ik−1, ak−1), (jq, bq), (jq+1, bq+1), . . . , (jt(2)−1, bt(2)−1), g)

and t2 =

(α2, (j1, b1), (j2, b2), . . . , (jq−1, bq−1), (ik, ak), (ik+1, ak+1), . . . , (it(1)−1, at(1)−1), f)

if [ ik = jq = m and either(ak = c and bq = d) or (ak = d and bq = c)] and
(t1, t2) = (r1, r2) otherwise.

Likewise, we introduce asingle position swap crossoverνm, c, d(r1, r2) = (v1, v2)

where v1 =

(α1, (i1, a1), (i2, a2), . . . , (ik−1, ak−1), (jq, bq), (ik+1, ak+1), . . . , (it(1)−1, at(1)−1), f)

while v2 =

(α2, (j1, b1), (j2, b2), . . . , (jq−1, bq−1), (ik, ak), (jq+1, bq+1), . . . , (jt(2)−1, bt(2)−1), g)

if [ ik = jq = m and either(ak = c and bq = d) or (ak = d and bq = c)] and
(v1, v2) = (r1, r2) otherwise. In addition, a singe swap crossover is defined notonly on
the pairs of rollouts but also on a single rollout swapping equivalent states in the analogous
manner: If

r = (α, (i1, a1), (i2, a2), . . . , (ij−1, aj−1), (ij, aj), (ij+1, aj+1), . . .

. . . , (ik−1, ak−1), (ik, ak), (ik+1, ak+1), . . . , (it(1)−1, at(1)−1), f)

and [ij = ik and either(aj = c andak = d) or (aj = d andak = c)] then

νm, c, d(r) = (α, (i1, a1), (i2, a2), . . . , (ij−1, aj−1), (ij , ak), (ij+1, aj+1), . . .

. . . , (ik−1, ak−1), (ik, aj), (ik+1, ak+1), . . . , (it(1)−1, at(1)−1), f)

and, of course,νm, c, d(r) fixesr (i.e.νm, c, d(r) = r) otherwise.

Remark 10. Notice that definition 9 makes sense thanks to the assumptionthat no rollout
contains an identical pair of states in definition 3.

Remark 11. Intuitively, performing one point crossover means that thecorresponding
player might have changed their strategy in a similar situation due to randomness and a
single swap crossover corresponds to the player not knowingthe exact state they are in due
to incomplete information, for instance.

Just as in case of defining crossover operators for pairs of rollouts, thanks to the assumption
that all the states in a population of rollouts are formally distinct (see definition 6), it is easy
to extend definition 9 to the entire populations of rollouts.In view of remark 11, to get the
most informative picture out of the sequence of parallel rollouts one would want to run the
genetic programming routine without selection and mutation and using only the crossover
operators specified above for as long as possible and then, inorder to evaluate a certain
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moveα, collect the weighted average of the terminal values (i. e. the values assigned to the
terminal labels via some rational-valued assignment function) of all the rollouts starting
with the moveα which ever occurred in the process. We now describe precisely what the
process is and give an example.

Definition 12. Given a populationP and a transformation of the formχi, x, y, there exists
at most one pair of distinct rollouts in the populationP , namely the pair of rolloutsr1
andr2 such that the state(i, x) appears inr1 and the state(i, y) appears inr2. If such
a pair exists, then we define the recombination transformation χi, x, y(P ) = P ′ where
P ′ is the population obtained fromP by replacing the pair of rollouts(r1, r2) with the
pair χi, x, y(r1, r2) as in definition 9. In any other case we do not make any change, i.e.
χi, x, y(P ) = P . The transformationνi, x, y(P ) is defined in an entirely analogous manner
with one more amendment: if the states(i, x) and(i, y) appear within the same individual
(rollout), call it

r = (α, (j1, a1), (j2, a2), . . . , (i, x), . . . , (i, y), . . . , (it(1)−1, at(1)−1), f),

and the state(i, x) precedes the state(i, y), then these states are interchanged obtaining
the new rollout

r′ = (α, (j1, a1), (j2, a2), . . . , (i, y), . . . , (i, x), . . . , (it(1)−1, at(1)−1), f).

Of course, it could be that the state(i, y) precedes the state(i, x) instead, in which case
the definition would be analogous: if

r = (α, (j1, a1), (j2, a2), . . . , (i, y), . . . , (i, x), . . . , (it(1)−1, at(1)−1), f)

then replace the rolloutr with the rollout

r′ = (α, (j1, a1), (j2, a2), . . . , (i, x), . . . , (i, y), . . . , (it(1)−1, at(1)−1), f).

Remark 13. It is very important for the main theorem of our paper that each of the
crossover transformationsχi, x, y andνi, x, y is a bijection on their common domain, that
is the set of all populations of rollouts at the specified chance node. As a matter of fact,
the reader can easily verify by direct computation from definitions 12 and 9 that each of
the transformationsχi, x, y andνi, x, y is an involution on its domain, i.e.∀ i, x, y we have
χ2
i, x, y = ν2i, x, y = 1 where1 is the identity transformation.

Examples below illustrate the important extension of recombination operators to arbitrary
populations pictorially.

Example 14. Suppose we were to apply the recombination (crossover) operatorχ1, c, d to
the population of seven rollouts in example 8. Once the unique location of states(1, c) and
(1, d) in the population has been identified (the first state in the forth rollout and the second
state in the seventh rollout), applying the crossover operator χ1, c, d yields the population
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pictured below:

α 7→ 1a 7→ 5a 7→ 6a 7→ 3d 7→ 7a 7→ f1
β 7→ 2a 7→ 1b 7→ 3c 7→ 6d 7→ f2
γ 7→ 4a 7→ 6b 7→ 5b 7→ f3
α 7→ 1d 7→ 2e 7→ 6c 7→ f7
ξ 7→ 3a 7→ 2c 7→ 4c 7→ f5
ξ 7→ 2d 7→ f6
π 7→ 3b 7→ 1c 7→ 4b 7→ 2b 7→ 7b 7→ 5c 7→ f4

On the other hand, applying the crossover transformationν1, c, d to the population in exam-
ple 8 results in the population below:

α 7→ 1a 7→ 5a 7→ 6a 7→ 3d 7→ 7a 7→ f1
β 7→ 2a 7→ 1b 7→ 3c 7→ 6d 7→ f2
γ 7→ 4a 7→ 6b 7→ 5b 7→ f3
α 7→ 1d 7→ 4b 7→ 2b 7→ 7b 7→ 5c 7→ f4
ξ 7→ 3a 7→ 2c 7→ 4c 7→ f5
ξ 7→ 2d 7→ f6
π 7→ 3b 7→ 1c 7→ 2e 7→ 6c 7→ f7

.

Example 15. Consider now the populationQ pictured below:

α 7→ 1b 7→ 3c 7→ 6d 7→ f2
β 7→ 2b 7→ 7b 7→ 5c 7→ f4
γ 7→ 4a 7→ 6b 7→ 5a 7→ 6a 7→ 3d 7→ 7a 7→ f1
α 7→ 1d 7→ 2c 7→ 4c 7→ f5
ξ 7→ 3a 7→ 2e 7→ 6c 7→ f7
ξ 7→ 2d 7→ f6
π 7→ 3b 7→ 1c 7→ 4b 7→ 2a 7→ 1a 7→ 5b 7→ f3

.

Suppose we apply the transformationsχ6, a, b andν6, a, b to the populationQ. The states
(6, a) and (6, b) both appear in the third rollout in the populationQ. Since these states
appear within the same rollout, according to definition 12, the crossover transformation
χ6, a, b fixes the populationQ (i.e. χ6, a, b(Q) = Q). On the other hand, the population
ν6, a, b(Q) is pictured below:

α 7→ 1b 7→ 3c 7→ 6d 7→ f2
β 7→ 2b 7→ 7b 7→ 5c 7→ f4
γ 7→ 4a 7→ 6a 7→ 5a 7→ 6b 7→ 3d 7→ 7a 7→ f1
α 7→ 1d 7→ 2c 7→ 4c 7→ f5
ξ 7→ 3a 7→ 2e 7→ 6c 7→ f7
ξ 7→ 2d 7→ f6
π 7→ 3b 7→ 1c 7→ 4b 7→ 2a 7→ 1a 7→ 5b 7→ f3

.
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Definition 16. Let n = {1, 2, . . . , n} denote the set of firstn natural numbers. Consider
any probability distributionµ on the set of all finite sequences of crossover transformations

F =

(
∞⋃

n=1

({χi, x, y |x, y ∈ A andi ∈ N} ∪ {νi, x, y |x, y ∈ A andi ∈ N})n
)

∪ {1}

which assigns a positive probability to the singleton sequencese and to theidentity element
1. (i.e. to every element of the subset

S = {1} ∪ ({χi, x, y |x, y ∈ A andi ∈ N} ∪ {νi, x, y |x, y ∈ A andi ∈ N})1 .

Given a sequence of transformations~Θ = {Θi(j), x(j), y(j)}
n
j=1 where eachΘ is eitherχ

or ν (i.e. ∀ j eitherΘi(j), x(j), y(j) = χi(j), x(j), y(j) or Θi(j), x(j), y(j) = νi(j), x(j), y(j)),
consider the transformation

Θ̃ = Θi(n), x(n), y(n) ◦Θi(n−1), x(n−1), y(n−1) ◦ . . . ◦Θi(2), x(2), y(2) ◦Θi(1), x(1), y(1)

on the set of all populations starting at the specified chancenode obtained by composing all
the transformations in the sequence~Θ. The identity element1 stands for the identity map
on the set of all possible populations of rollouts. Now definethe Markov transition Matrix
Mµ on the set of all populations of rollouts (see definition 6 andremark 5) as follows:
given populationsX andY of the same sizek, the probability of obtaining the population
Y from the populationX after performing a single crossover stage,pX→Y = µ(SX→Y )

where

SX→Y = {Γ |Γ ∈ F andT (Γ)(X) = Y }

where

T (Γ) =

{
Θ̃ if Γ = ~Θ

The identity map ifΓ = 1.

Example 17 below illustrates the first part of definition 16.

Example 17. Consider the sequence of five recombination transformations

~Θ = (χ1, c, d, χ2, c, e, χ5, a, b, χ1, a, b, χ2, a, b).

According to definition 16 the sequence~Θ gives rise to the composed recombination trans-
formation

Θ̃ = χ2, a, b ◦ χ1, a, b ◦ χ5, a, b ◦ χ2, c, e ◦ χ1, c, d.

The reader may verify as a small exercise thatΘ̃(P ) = Q whereP is the population
displayed on figure??while the populationQ is the one appearing in figure??. If one were
to append the recombination transformationν6, a, b to the sequence of rollouts~Θ obtaining
the sequence

−→
Θ1 = (χ1, c, d, χ2, c, e, χ5, a, b, χ1, a, b, χ2, a, b, ν6, a, b)

eThis technical assumption may be altered in various manner as long as the induced Markov chain remains
irreducible.



October 20, 2018 23:56 Emerald/INSTRUCTION FILE InvitedSubmittedFirst-
DraftForArchive

12 Mitavskiy, Rowe, Cannings

then, by associativity of composition, we havẽΘ1 = ν6, a, b ◦ Θ̃ so that Θ̃1(P ) =

ν6, a, b(Θ̃(P )) = ν6, a, b(Q) whereQ, as above, is the population displayed on figure??
so that, according to example 15, the population

−→
Θ1(P ) is the one appearing in figure??.

Remark 18. Evidently the mapT : F → PP introduced at the end of definition 16 can
be regarded as a random variable on the setF described at the beginning of definition 16
whereP denotes the set of all populations of rollouts containingk individuals so thatPP

is the set of all endomorphisms (functions with the same domain and codomain) onP
and the probability measureµT on PP is the “pushforward” measure induced byT , i.e.
µT (S) = µ(T−1(S)).f To alleviate the complexity of verbal (or written) presentation we
will usually abuse the language and use the setF in place ofPP so that a transformation
F ∈ PP is identified with the entire setT−1(F ) ∈ F . For example,

if we write µ({F |F ∈ F andF (X) = Y })we meanµ({Γ |Γ ∈ F andT (Γ)(X) = Y }).

It may be worth pointing out that the setT−1 is not necessarily a singleton, i.e. the mapT

is not one-to-one as example 19 below demonstrates.

Example 19. Consider anyi 6= j and anya, b, c andd ∈ A. Notice that the transforma-
tionsνi, a, b andνj, c, d commute since the order in which elements of distinct equivalence
classes are interchanged within the same population of rollouts is irrelevant. Thus the se-
quences~χ1 = (νi, a, b, νj, c, d) and ~χ2 = (νj, c, d, νi, a, b) induce exactly the same trans-
formationΘ on the set of populations of rollouts. Here is another very important example.
Notice that every transformationΘi, a, b whereΘ could be eitherχ or ν is an involution
on the set of populations of rollouts i.e.Θi, a, b ◦ Θi, a, b = e wheree is the identity map
since performing a swap at identical positions twice bringsback the original population of
rollouts. Therefore any ordered pair(Θi, a, b, Θi, a, b) of repeated transformations induce
exactly the same transformation as the symbol1, namely the identity transformation on the
population of rollouts.

One more remark is in order here.

Remark 20. Notice that any concatenation of sequences inF (which is what corresponds
to the composition of the corresponding functions) stays inF . In other words, the family
of maps induced byF is closed under composition.

Of course, running the Markov process induced by the transition matrix in definition 16
infinitely long is impossible, but fortunately one does not have to do it. The central idea
of the current paper is that the limiting outcome as time goesto infinity can be predicted
exactly using the Geiringer-like theory and the desired evaluations of moves can be well-
estimated at rather little computational cost in most cases. As pointed out in example 19
above, each of the transformationsΘi, a, b is an involution and, in particular, is bijective.

fThe sigma algebra onPP is the one generated byT with respect to the sigma-algebra that is originally chosen
on F , however in practical applications the sets involved are finite and so all the sigma-algebras can be safely
assumed to be power sets.
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Therefore, every composition of these transformations is abijection as well. We deduce,
thereby, that the familyF consists of bijections only (see remark 18). The finite population
Geiringer theorem (see [13]) now applies and tells us the following:

Definition 21. Given populationsP andQ of rollouts at a specified state in question as in
definition 6 (see also remark 5), we say thatP ∼ Q if there is a transformationF ∈ F

such thatQ = F (P ).

Theorem 22 (The Geiringer Theorem for POMDPs) The relation∼ introduced in defi-
nition 21 is an equivalence relation. Given a populationP of rollouts at a specified state
in question, the restriction of the Markov transition matrix introduced in definition 16 to
the equivalence class[P ] of the populationP under∼ is a well-defined Markov transition
matrix which induces an irreducible and aperiodic Markov chain on [P ] and the unique
stationary distribution of this Markov chain is the uniformdistribution on[P ].

In fact, thanks to the application of the classical contraction mapping principleg described
in section 6 of the current paper (namely theorem 81; interested reader is welcome to fa-
miliarize themselves with section 6, although this is not essential to understand the main
objective of the paper), the stationary distribution is uniform in a rather strong sense de-
scribed below.

Theorem 23. Suppose we are given finitely many probability measuresµ1, µ2, . . . , µN on
the collection of sequences of transformationsF as in definition 16 where each probabil-
ity measureµi satisfies the conditions of definition 16. Denote byMi the corresponding
Markov transition matrix induced by the probability measureµi. LetM = {Mi}Ni=1. Now
consider the following stochastic process{(Φn, Xn)}∞n=0 on the state spaceM × [P ]

where[P ] is the equivalence class of the initial population of rollouts at the state in ques-
tion as in theorem 22:Φn is an arbitrary stochastic process (not necessarily Markovian)
onM which satisfies the following requirement:

The random variableΦn is independent of the random variablesXn, Xn+1, . . . (1)

The random variableΦ0 is arbitrary whileX0 = P (recall thatP is the initial population
of rollouts at the node in question) with probability1.

∀n ∈ N the probability distribution of the random variableXn, namely

Prob(Xn = ·) = Φn−1(w) · Prob(Xn−1 = ·). (2)

It follows then thatlimn→∞ Prob(Xn = ·) = π whereπ is the uniform distribution on[P ].

We now pause and take some time to interpret theorem 23 intuitively. Example 24 below
illustrates a scenario where theorem 23 applies.

gThis simple and elegant classical result about complete metric spaces lies in the heart of many important theo-
rems such as the “existence uniqueness” theorem in the theory of differential equations, for instance.
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Example 24. Consider the setS of all finite sequences of populations in the equivalence
class[P ] of the initial populationP which start with the initial populationP (notice thatS
is a countably infinite set since[P ] is a finite set). Intuitively, each sequence inS represents
prior history. Every sequence~P = P, P1, P2, P3, . . . , Pt is associated with a probabil-
ity measureη(~P ) on the set of populations[P ]. Suppose further that to every population
Q ∈ [P ] we assign a probability measureµQ on the family of recombination transfor-
mations induced byF where each measureµQ satisfies definition 16. Intuitively, each
probability distributionµQ might represent the probability that the swaps (or sequences of
swaps) are reasonable to perform in a specific population regardless of the knowledge of
the prior history or experience in playing the game, for instance. Starting with the initial
populationP we apply the probability measureη(P ) (hereP denotes a singleton sequence)
to obtain a populationQ1 ∈ [P ]. Independentlywe now apply the Markov transition matrix
induced by the probability measureµP to obtain another populationP1 ∈ [P ]. Next, we
select a populationQ2 with respect to the probability measureη(P, P1) and, againindepen-
dently, apply the Markov transition matrixµQ1 to the populationP1 to obtain a population
P2 in the next generation. Continuing recursively, let’s say after time t ∈ N we obtained
a populationQt at stept and a sequence of populations~Pt = P, P1, P2, . . . , Pt. Select a
populationQt+1 with respect to the probability measureη(~Pt). Independentlyselect a pop-
ulationPt+1 via an application of the Markov transition matrix induced by the probability
measureµQt

to the populationPt. Theorem 23 applies now and tells us that in the limit as
t → ∞ we are equally likely to encounter any populationQ ∈ [P ] regardless of the choice
of the measures involved as long as the probability measuresµQ satisfy definition 16. A
word of caution is in order here: it is not in vain that we emphasize that selection is made
“independently” here. Theorem 23 simply does not hold without this assumption.

Evidently example 24 represents just one of numerous possible interpretations of theo-
rem 23. We hope that other authors will elaborate on this point. Knowing that the limiting
frequency of occurrence of a any two given populationsQ1 andQ2 ∈ [P ] is the same,
it is possible to compute the limiting frequency of occurrence of any specific rollout and
even certain subsets of rollouts using the machinery developed in [13] and [12] which is
also presented in section?? of the current paper for the sake of self-containment. To state
and derive these “Geiringer-like” results we need to introduce the appropriate notions of
schemata (see, for instance, [2] and [17]) here.

4.1. Schemata for MCT Algorithm

Definition 25. Given a state(s, ~α) in question (see definition 2), a rolloutHolland-Poli
schemais a sequence consisting of entries from the set~α ∪ N ∪ {#} ∪ Σ of the form
h = {xi}ki=1 for somek ∈ N such that fork > 1 we havex1 ∈ ~α, xi ∈ N
when 1 < i < k represents an equivalence class of states, andxk ∈ {#} ∪ Σ

could represent either a terminal label if it is a member of the set of terminal labels
Σ, or any substring defining a valid rollout if it is a# sign.h For k = 1 there is a

hThis notion of a schema is somewhat of a mixture between Holland’s and Poli’s notions.
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unique schema of the form#. Every schema uniquely determines a set of rolloutsSh =



{(x1, (x2, a2), (x3, a3), . . . , (xk−1, ak−1), xk)

| ai ∈ A for 1 < i < k} if k > 1 andxk ∈ Σ

{(x1, (x2, a2), (x3, a3), . . . , (xk−1, ak−1),

(yk, ak), (yk+1, ak+1), . . . , f)

| ai ∈ A for 1 < i < k, yj ∈ N andaj ∈ A} if k > 1 andxk = #

the entire set of all possible rollouts ifk = 1 or, equivalently,h = #.

which fit the schema in the sense mentioned above. We will often abuse the language and
use the same word schema to mean either the schemah as a formal sequence as above or
schema as a setSh of rollouts which fit the schema. For example, ifh andh∗ is a schema,
we will write h ∩ h∗ as a shorthand notation forSh ∩ Sh∗ where∩ denotes the usual in-
tersection of sets. Just as in definition 3, we will say thatk − 1, the number of states in the
schemah is theheightof the schemah.

We illustrate the important notion of a schema with an example below:

Example 26. Suppose we are given a schemah = (α, 1, 2, #). Then the rollouts
(α, 1a, 2c, 5a, 3c, f) and(α, 1d, 2a, 3a, 3d, g) ∈ Sh or one could say that both of them
fit the schemah. On the other hand the rollout(β, 1a, 2c, 5a, 3c, f) /∈ Sh (or does not fit
the schemah) unlessα = β. A rollout (α, 1a, 3a, 5a, 3c, f) /∈ Sh does not fit the schema
h either sincex2 = 2 6= 3. Neither of the rollouts above fit the schemah∗ = (α, 1, 2, f)

since the appropriate terminal label is not reached in the4th position. An instance of a
rollout which fits the schemah∗ would be(α, 1c, 2b, f).

The notion of schema is useful for stating and proving Geiringer-like results largely thanks
to the following notion of partial order.

Definition 27. Given schematah and g we will write h > g either if
h = # and g 6= # or h = (x1, x2, x3, . . . , xk−1, #) while g =

(x1, x2, x3, . . . , xk−1, yk, yk+1, . . . , yl−1, yl) whereyl could be either of the allowable
values: a# or a terminal labelf ∈ Σ. However, ifyl = # then we require thatl > k.

An obvious fact following immediately from definitions 25 and 27 is the following.

Proposition 28. Suppose we are given schematah andg. Thenh ≥ g =⇒ Sh ⊇ Sg.

4.2. The Statement of Geiringer-like Theorems for the POMDPs

In evolutionary computation Geiringer-like results address the limiting frequency of oc-
currence of a set of individuals fitting a certain schema (see[18], [13] and [12]). In this
work our theory rests on the finite population model based on stationary distribution of the
Markov chain of all populations potentially encountered inthe process (see theorems 22
and 23 and example 24). The “limiting frequency of occurrence” (rigorous definition ap-
pears in section 5, subsection 5.2, definitions 42 and 45, however for the readers who aim
only at “calculus-level” understanding with the goal of applying the main ideas directly in
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their software engineering work we will discuss the intuitive idea in more detail below)
of a certain subset of individuals determined by a Holland-Poli schemah among all the
populations in the equivalence class[P ] as time increases (i.e. ast → ∞) of the initial
population of rolloutsP will be expressed solely in terms of the initial populationP and
schemah. These quantities are defined below.

Definition 29. For any action under evaluationα define a set-valued functionα ↓ from
the setΩb of populations of rollouts to the power set of the set of natural numbersP(N)
as follows:α ↓ (P ) = {i | i ∈ N and at least one of the rollouts in the populationP

fits the Holland schema(α, i, #)}. Likewise, for an equivalence class labeli ∈ N define
a set valued function on the populations of sizeb, as i ↓ (P ) = {j | ∃x and y ∈ A

and a rolloutr in the populationP such thatr = (. . . , (i, x), (j, y), . . .) } ∪ {f | f ∈ Σ

and∃ an x ∈ A and a rolloutr in the populationP such thatr = (. . . , (i, x), f) }.
In words, the seti ↓ (P ) is the set of all equivalence classes together with the terminal
labels which appear after the equivalence classi in at least one of the rollouts from the
populationP . Finally, introduce one more function, namelyi ↓Σ: Ωb → N∪{0} by letting
i ↓Σ (P ) = |{f | f ∈ Σ ∩ i ↓ (P )}|, that is, the total number of terminal labels (which are
assumed to be all formally distinct for convenience) following the equivalence classi in a
rollout of the populationP .

As always, we illustrate definition 29 in example 30 below.

Example 30. Continuing with example 8, we return to the populationP in figure??. From
the picture we see that the only equivalence classi such that a rollout from the population
P fits the Holland schema(α, i, #) is i = 1 so thatα ↓ (P ) = {1}. Likewise, the
only equivalence class following the actionβ is 2, the only equivalence class following the
actionγ is 4 and the only one followingπ is 3 so thatβ ↓ (P ) = {2}, γ ↓ (P ) = {4} and
π ↓ (P ) = {3}. The only equivalence classesi following the actionξ in the populationP
arei = 3 andi = 2 so that the setξ ↓ (P ) = {2, 3}.

Likewise the fragment(1, a), (5, a) appears in the first (leftmost) rollout inP ,
(1, b), (3, c) in the second rollout,(1, c), (4, b) in the forth tollout and(1, d), (2, e) in the
last, seventh rollout. No other equivalence class or a terminal label follows the equivalence
class of the state1 in the populationP and so it follows that1 ↓ (P ) = {5, 3, 4, 2} and
1 ↓Σ (P ) = |{∅}| = 0. Likewise, equivalence class1 follows the equivalence class2 in the
second rollout,7 follows 2 in the forth rollout,4 follows 2 in the fifth rollout and6 follows
2 in the last, seventh rollout. The only terminal label that follows the equivalence class2 is
f6 in the6th rollout. Thus we have2 ↓ (P ) = {1, 7, 4, 6, f6} and2 ↓Σ (P ) = |{f6}| = 1.
We leave the reader to verify that

3 ↓ (P ) = {7, 6, 2, 1} so that3 ↓Σ (P ) = 0,

4 ↓ (P ) = {6, 2, f5} so that4 ↓Σ (P ) = 1,

5 ↓ (P ) = {6, f3, f4} and so5 ↓Σ (P ) = 2,
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6 ↓ (P ) = {3, 5, f2, f7} and so6 ↓Σ (P ) = 2

and, finally,7 ↓ (P ) = {5, f1} so that7 ↓Σ (P ) = 1.

Remark 31. Note that according to the assumption that all the terminal labels within the
same population are distinct (see definition 6 together withthe comment in the footnote
there). But then, since every rollout ends with a terminal label, we must have

∑∞
i=1 i ↓Σ

(P ) = b (of course, only finitely many summands, namely these equivalence classes that
appear in the populationP may contribute nonzero values to

∑∞
i=1 i ↓Σ (P )) whereb is

the number of rollouts in the populationP , i.e. the size of the populationP . For instance, in
example 30b = 7 and there are totally7 equivalence classes, namely1, 2, 3, 4, 5, 6 and7
that occur within the population in figure??so that we have

∑∞
i=1 i ↓Σ (P ) =

∑7
i=1 i ↓Σ

(P ) = 0 + 1 + 0 + 1 + 2 + 2 + 1 = 7 = b.

Another important and related definition we need to introduce is the following:

Definition 32. Given a populationP and integersi andj ∈ N representing equivalence
classes, let

Order(i ↓ j, P ) =





0 if i(P ) = 0 or j /∈ i ↓ (P )

|{((i, a), (j, b)) | the segment

((i, a), (j, b)) appears in one of the

rollouts in the populationP}| otherwise

.

Loosely speaking, Order(i ↓ j, P ) is the total number of times the equivalence classj

follows the equivalence classi within the population of rolloutsP .
Likewise, given a population of rolloutsP , an actionα under evaluation and an integer

j ∈ N, let

Order(α ↓ j, P ) =





0 if i(P ) = 0 or j /∈ α ↓ j

|{(α, (j, b)) | the segment

(α, (j, b)) appears in one of the

rollouts in the populationP}| otherwise

.

Alternatively, Order(α ↓ j, P ) is the number of rollouts in the populationP fitting the
rollout Holland schema(α, j, #).

We now provide an example to illustrate definition 32.

Example 33. Continuing with example 30 and populationP appearing in figure??, we
recall thatα ↓ (P ) = {1}. we immediately deduce that Order(α, j, #) = 0 unlessj = 1.
There are two rollouts, namely the first and the forth, that fitthe schema(α, 1, #) so that
Order(α ↓ 1, P ) = 2. Likewise,β ↓ (P ) = {2} and exactly one rollout, namely the
second one, fits the Holland schema(β, 2, #) so that Order(β, j, #) = 0 unlessj = 2

while Order(β ↓ 2, P ) = 1. Continuing in this manner (the reader may want to look back
at example 30), we list all the nonzero values of the functionOrder(action,�, P ) for the
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populationP in figure ??: Order(γ ↓ 4, P ) = Order(ξ ↓ 3, P ) = Order(ξ ↓ 2, P ) =

Order(π ↓ 3, P ) = 1.
Likewise, recall from example 30, that1 ↓ (P ) = {5, 3, 4, 2} so that Order(1 ↓

j, P ) = 0 unlessj = 5 or j = 3 or j = 4 or j = 1. It happens so that a unique rollout
exists in the populationP fitting each fragment(1, (j, something inA)) for j = 5, j = 3,
j = 4 andj = 2 respectively, namely the first, the second, the forth and thelast (seventh)
rollouts. According to definition 32, we then have Order(1 ↓ 5, P ) = Order(1 ↓ 3, P ) =

Order(1 ↓ 4, P ) = Order(1 ↓ 2, P ) = 1. Analogously,2 ↓ (P ) = {1, 7, 4, 6, f6} so
that Order(2 ↓ j, P ) = 0 unlessj = 1, 7, 4 or 6. The only rollout in the population
P involving the fragment with1 following 2 is the second one, the only one involving
7 following 2 is the forth, the only one involving4 following 2 is the fifth, and the only
one involving6 following 2 is the last (the seventh) rollouts respectively so that Order(2 ↓

1, P ) = Order(2 ↓ 7, P ) = Order(2 ↓ 4, P ) = Order(2 ↓ 6, P ) = 1. Continuing in
this manner, we list all the remaining nonzero values of the “Order” function introduced in
definition 32 for the populationP in figure??:

Order(3 ↓ 7, P ) = Order(3 ↓ 6, P ) = Order(3 ↓ 2, P ) = Order(3 ↓ 1, P ) = 1,

Order(4 ↓ 6, P ) = Order(4 ↓ 2, P ) = 1,

Order(5 ↓ 6, P ) = Order(6 ↓ 3, P ) = Order(6 ↓ 5, P ) = Order(7 ↓ 5, P ) = 1.

Remark 34. It must be noted that all the functions introduced in definitions 29 and 32
remain invariant if one were to apply the “primitive” recombination transformations from
the familyS as in definitions 16 and 12 to the population in the argument. More explicitly,
given any population of rolloutsP , an actionα under evaluation, an equivalence class
i ∈ N, a Holland-Poli schemah = (α, i1, i2, . . . , ik−1, xk) an integerj with 1 ≤ j ≤ k,
and any recombination transformationR ∈ S, we have

α ↓ (P ) = α ↓ (R(P )), i ↓ (P ) = i ↓ (R(P )),

i ↓Σ (P ) = i ↓Σ (R(P )), Order(q ↓ r, P ) = Order(q ↓ r, R(P )).

Indeed, the reader may easily verify that performing a swap of the elements of the same
equivalence class, or of the corresponding subtrees prunedat equivalent labels, preserves
all the states which are present within the population and creates no new ones. Moreover,
the equivalence class sequel is also preserved and hence theinvariance of the functionsα ↓

and i ↓ etc. follows. Since every transformation in the familyF is a composition of the
crossover transformations from the familyS, it follows at once that all of the functions
introduced in definitions 29 and 32 are constant on the equivalence classes of populations
under the equivalence relation introduced in definition 21.

Example 35. Recall from example 14 that the populations in figures??, ?? and?? are
equivalent and, likewise, according to example 15, the populations in figures?? and??
are equivalent. Moreover, example 19 demonstrates that thepopulations displayed in fig-
ures?? and?? are also equivalent. Thus all of the populations that appearin figures??,
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??, ??, ?? and?? belong to the same equivalence class under the relation∼ introduced in
definition 21. In view of remark 34, all the functions appearing in definitions 29 and 32
produce identical values on the populations displayed on figures??, ??, ??, ??and??

Observe that applying any recombination transformation ofthe formχi, a, b or νi, a, b to a
populationP of rollouts neither removes any states from the population nor adds any new
ones, and hence the following invariance property of the equivalent populations that will
largely alleviate theoretical analysis in section 5 follows.

Remark 36. Given any populationQ ∈ [P ], the total number of states in the populationQ

is the same as that in the populationP . Apparently, as we already mentioned, the the total
number of states in a population is the sum of the heights of all rollouts in that population
(see definition 3 and 6). It follows then, that the sum of the heights of all rollouts within a
population is an invariant quantity under the equivalence relation in definition 21. In other
words, ifQ ∼ P then the sum of the heights of the rollouts in the populationQ is the same
as the sum of the heights of the rollouts in the populationP .

There is yet one more important notion, namely that of the “limiting frequency of occur-
rence” of a schema as one runs the genetic programming routine with recombination only
we need to introduce to state the Geiringer-like results of the current paper. A rigorous
definition in the most general framework appears in subsection 5.2 of section 5 (namely,
definitions 42 and 45), nonetheless, for less patient readers, who aim only at the “calculus
level” understanding, we explain informally what the limiting frequency of occurrence is.

Informal Description of the Limiting Frequency of Occurrence: Given a schemah and
a populationP of sizem, suppose we run the Markov process{Xn}∞n=0 on the popula-
tions in the equivalence class[P ] of the initial population of rolloutsP as in definition 16,
or, more generally, the non-homogenous time Markov processas described in theorem 23
(where the Markov transition matrices introduced in definition 16 are chosen randomly with
respect to another stochastic process (not necessarily Markovian) that does not depend on
the current population but may depend on the entire history of former populations as well
as on other external parameters independent of the current population). As discussed in the
preceding paragraph, this corresponds to “running the genetic programming routine for-
ever” and each recombination models the changes in player’sstrategies due to incomplete
information, randomness personality etc. Up to timet a total ofm · t individuals (count-
ing repetitions) have been encountered. Among these a certain number, sayh(t), fit the
schemah in the sense of definition 25. We now letΦ(P, h, t) = h(t)

m·t to be the proportion
of these individuals fitting the schemah out of the total number of individuals encountered
up to timet. It follows from theorem 22 via the instruments presented insection 5.2 (also
available in [13] and [?]) that limt→∞ Φ(P, h, t) exists and the formula for it will be given
purely in terms of the parameters of the initial populationP (more specifically, in terms
of the functions described in definitions 29 and 32. Althoughit may be possible to derive
the formulas forlimt→∞ Φ(P, h, t) in the most general case when the initial population
of rolloutsP is non-homologous (in other words when the states representing the same
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equivalence class may appear at various “heights” in the same population of rollouts: see
definition 6), the formulas obtained in this manner would definitely be significantly more
cumbersome and would not be as well suited for algorithm developmenti as the limiting
result with respect to “inflating” the initial populationP in the sense described below.
Remarkably, the formula for the limiting result in the general non-homologous initial pop-
ulation case coincides with the one for the homologous populations.

Definition 37. Given a populationP = {r
l(i)
i }bi=1 of rollouts in the sense of definition 6,

whereri = {(αi, (j
i
1, a

i
1), (j

i
2, a

i
2), . . . , (j

i
l(i)−1, a

i
l(i)−1) fi)} and a positive integerm, we

first increase the size of the alphabetA by a factor ofm: formally, let the alphabet

A×m = {(a, i) | a ∈ A, i ∈ N and1 ≤ i ≤ m}.

Likewise, we also increase the terminal set of labelsΣ by a factor ofm so that

Σ×m = {(f, i) | f ∈ Σ, i ∈ N and1 ≤ i ≤ m}.

Now we let

Pm = {r
l(i)
i, k }1≤i≤b and1≤k≤m

where

r
l(i)
i, k = {(αi, (j

i
1, (a

i
1, k)), (j

i
2, (a

i
2, k)), . . . , (j

i
l(i)−1, (a

i
l(i)−1, k)), (fi, k))}.

We will say that the populationPm is aninflationof the populationP by a factor ofm.

Essentially, a populationPm consists ofm formally distinctcopies of each rollout in the
populationP . Intuitively speaking, the stochastic information captured in the sample of
rollouts comprising the populationPm (such as the frequency of obtaining a state in the
equivalence class ofj after a state in the equivalence class ofi) is the same as the one
contained within the populationP emphasized by the factor ofm. In fact, the following
rather important obvious facts make some of this intuition precise:

Proposition 38. Given a populationP of rollouts and a positive integerm consider the
inflation of the populationP by a factor ofm, Pm as in definition 37. Then the following
are true:

α ↓ (Pm) = α ↓ (P ), i ↓ (Pm) = i ↓ (P ), i ↓Σ (Pm) = m · i ↓Σ (P )

while

Order(α ↓ j, Pm) = m · Order(α ↓ j, P ), Order(q ↓ r, Pm) = m · Order(q ↓ r, P ) (3)

For any population of rolloutsQ let Total(Q) denote the total number of states in the
populationQ which is, of course, the same thing as the sum of the heights ofall rollouts in
the populationQ. Then clearlyTotal(Pm) = m ·Total(P ). In the special case whenP is a
homologous population,∀m ∈ N so is the populationPm.

iThis is an open question, yet it’s practical importance is highly unclear
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When using Holland-Poli schemata with respect to any populationQ ∈ [Pm] we will adopt
the following convention:

Given a Holland-Poli schemah = (α, i1, i2, . . . , ik−1, f) and a populationQ ∈ [Pm],
an individual (i.e. a rollout)r of the populationQ fits the schemah if and only if it is
of the formr = (α, (i1, (a1, j1)), (i2, (a2, j2)) . . . , (ik−1, ak−1, jk−1), (f, jk)). Infor-
mally speaking, everything is as in definition 25 with the exception that the terminal symbol
of the schemah, namelyf ∈ Σ while the terminal symbol of the rolloutr is an ordered
pair of the terminal symbolf coupled with a numerical label between1 andm so that we
require only the first element of the ordered pair, namely thefunction labelf , to match.

We are finally ready to state the main result of the current paper.

Theorem 40 (The Geiringer-Like Theorem for MCT) Repeat verbatim the assump-
tions of theorem 23. Let

h = (α, i1, i2, . . . , ik−1, xk)

wherexk ∈ {#} ∪ Σ be a given Holland-Poli schema. Form ∈ N consider the random
variableΦ(Pm, h, t) described in the paragraph just above (alternatively, a rigorous def-
inition in the most general framework appears in subsection5.2 of section 5: definitions 42
and 45) with respect to the Markov processXm

n wherem indicates that the initial popu-
lation of rollouts is the inflated populationPm as in definition 37 with the new alphabet
A×m labeling the states (see also example 24 for help with understanding of the Markov
processXn). Then

lim
m→∞

lim
t→∞

Φ(Pm, h, t) =
Order(α ↓ i1, P )

b
×

×

(
k−1∏

q=2

Order(iq−1, iq, P )∑
j∈iq−1↓

Order(iq−1, j, P ) + iq−1 ↓Σ (P )

)
· LF(P, h) (4)

where

LF(P, h)=





1 if xk = #

0 if xk = f ∈ Σ andf /∈ xk−1 ↓ (P )

Fraction if xk = f ∈ Σ andf ∈ xk−1 ↓Σ (P )

where

Fraction=
1∑

j∈ik−1↓(P ) Order(ik−1, j, P ) + ik−1 ↓Σ (P )

(we write “LF” as short for “Last Factor”). Furthermore, in the special case when the
initial populationP is homologous (see definition 6), one does not need to take thelimit
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asm → ∞ in the sense thatlimt→∞ Φ(Pm, h, t) is a constant independent ofm and its
value is given by the right hand side of equation 40.j

An important comment is in order here: it is possible that thedenominator of one of the
fractions involved in the product is0. However, in such a case, the numerator is also0 and
we adopt the convention (in this theorem only) that if the numerator is0 then, regardless
of the value of the denominator (i.e. even if the denominatoris 0), then the fraction is0.
As a matter of fact, a denominator of some fraction involved is 0 if and only if one of the
following holds:α(P ) = 0 or if there exists an indexq with 1 ≤ q ≤ k − 1 such that no
state in the equivalence class ofiq appears in the populationP (and hence in either of the
inflated populationsPm).

Theorem 40 tells us that given any Holland-Poli rollout schema and a generating population
P , ∀ ǫ > 0 ∃ a sufficiently largeM so that the right hand side of equation 40 provides
an approximation of the limiting frequency of occurrence ofthe set of rollouts fitting the
schemah starting with the initial populationPm which is the inflation of the populationP
by a factor ofm > M , namelylimt→∞ Φ(Pm, h, t), with an error at mostǫ.

Theorem 40 is the main result of the current work. It motivates a variety of algorithms
for evaluating the actions based on the entire, fairly largeand seemingly pairwise discon-
nected sample of independent parallel rollouts that fully take advantage of the exponen-
tially many possibilities already available within that sample and, at the same time, should
be rather efficient in many situations. These algorithms will be the subject of sequel papers.

5. Deriving Geiringer-like Theorems for POMDPs

5.1. Setting, Notation and the General Finite-Population Geiringer Theorem

Throughout section 5 (the current section) the following notation will be used:Ω is afinite
set, called asearch space. We fix an integerb ∈ N and we callΩb = {(x1, x2, . . . xb) |xi ∈

Ω} the set ofpopulations of sizeb; every element~x = (x1, x2, . . . xb)
T ∈ Ωb is called

a population of sizeb and every elementx ∈ Ω is called an individual. Notice that we
prefer to think of a population as a “column vector” (hence the “transpose symbol”). Of
course, this is just the matter of preference, but normally when we list the individuals it is
natural to write each individual as a string of “genes or alleles” which appear on the same
row and so theb individuals appear onb separate rows. It is important to emphasize here
that populations areorderedb-tuples so that(x1, x2, . . . xb)

T 6= (xb, x2, . . . x1)
T unless

x1 = xb. By a family of recombination transformationswe mean a family of functions
F = {F |F : Ωb → Ωb}. The general finite population Geiringer theorem then says the
following:

Theorem 41 (The Finite Population Geiringer Theorem for Evolutionary Algorithms)
Suppose we are given a probability measure on the family of recombination transforma-

jThe case of homologous recombination has been established in a different but mathematically equivalent frame-
work in [13] and [12] nonetheless we will derive it along withthe general fact expressed in equation 40 to illustrate
the newly enhanced methodology based on the lumping quotients of Markov chains described in subsection 5.3.
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tionsF on the set of populationsΩb of sizeb as described above. Suppose further there is a
subfamilyS ⊆ F which generates the entire familyF in the sense that∀F ∈ F ∃ a finite
sequence of transformationsS1, S2, . . . , Sl ∈ S such thatF = S1 ◦ S2 ◦ . . . ◦ Sl. Assume
the following about the probability measureµ:

∀S ∈ S we haveµ(S) > 0. (5)

The identity map1 : Ωb → Ωb is in S (6)

Most importantly, assume that every recombination transformationS ∈ S is bijective (i.e.
a one-to-one and onto function onΩb). Consider the Markov transition matrixM with
state spaceΩb defined as follows: given populations~x and~y ∈ Ωb, we let

p~x→~y = µ({F |F ∈ F andF (~x) = ~y}). (7)

Now define a relation∼ onΩb as follows:~x ∼ ~y if and only if∃ k ∈ N and recombination
transformationsF1, F2, . . . , Fk ∈ F such that[F1 ◦ F2 ◦ . . . ◦ Fk](~x) = ~y. We now assert
the following facts:

∼ is an equivalence relation. (8)

Given an equivalence class of some population~x, call it [~x],

the restriction of the Markov transition matrixM to [~x]

is a well-defined Markov transition matrix on the state space[~x], call it M |[~x]. (9)

∀ ~x ∈ Ωb the Markov transition matrixM |[~x] is doubly stochastic and

it defines an irreducible and aperiodic Markov chain on[~x]. (10)

∀ ~x ∈ Ωb the unique stationary distribution ofM |[~x] is the uniform distribution on[~x].
(11)

Theorem 41 is a simple yet elegant consequence from basic group theory. In this paper we
assume that the reader is familiar with fundamental notionsabout groups and group actions.
Nearly any standard textbook in Abstract Algebra such as, for instance, [7] contains way
more group theoretic material than necessary for our purpose. For a brief introduction we
invite the reader to study [13].

Proof. Since the family of transformationsS consists entirely of bijections and any com-
position of bijections is also a bijection, the familyF also consists solely of bijections. It
follows then that the familyF generates a subgroupG of the group of all permutations on
the finite setΩb. Notice that the probability measureµ naturally extends to the entire group
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G generated byF by definingµext(g) =

{
µ(g) if g ∈ F

0 otherwise.
. Clearly the Markov process

defined in the statement of theorem 41 (see 7) can be redefined as

p~x→~y = µext({g | g ∈ G andg(~x) = ~y}). (12)

Furthermore, notice that the groupG is of size no bigger than|Ωb|! < ∞ since|Ω| < ∞.
It follows then that every elementg ∈ G can be written as a finite compositiong =

F1 ◦F2 ◦ . . .◦Fk for F1, F2, . . . , Fk ∈ F (because every elementF ∈ F ⊆ G is a torsion
element ofG i.e.F l = 1 for somel ∈ N so thatF l−1 = F−1). But then the relation∼ can
be redefined as~x ∼ ~y if and only if∃ g ∈ G such thatg(~x) = ~y. We now quickly recognize
that the relation∼ is the orbit-defining equivalence relation which partitions the set of all
populations of sizeb, Ωb, into the orbits under the action of the groupG. The assertions
expressed in equations 8 and 9 now follow at once. To verify equation 10 we choose any
~y ∈ Ωb and compute directly

∑

~x∈Ωb

p~x→~y =
∑

~x∈Ωb

µext({g | g ∈ G andg(~x) = ~y}) =

=
∑

~x∈Ωb

µext({g | g ∈ G andg−1(~y) = ~x}) = µext(G) = 1

since the setsK(x) = {g | g ∈ G andg−1(~y) = ~x} clearly form a partition ofG. We have
now shown that the Markov transition matrixM is doubly stochastic. Irreducibility follows
from finiteness together with the fact thatS generatesF . Since1 ∈ S, aperiodicity follows
as well. Now the classical result about Markov chains tells us that there is unique stationary
distribution and sinceM is doubly stochastic it must be the uniform distribution so that the
final assertions expressed in equations 10 and 11 follow at once.

5.2. A Methodology for the Derivation of Geiringer-like Results

The classical Geiringer theorem (see [8]) from population genetics tells us something about
the “limiting frequency of occurrence of certain individuals in a population” rather than re-
ferring to the limiting distribution of populations. In fact, the mathematical model of the
classical Geiringer theorem in [8] is entirely different from that of the finite-population
Geiringer theorem described in the previous section. Nonetheless, the finite-population
Markov chain model is much more suited when dealing with evolutionary algorithms since
all the structures, including the search space and populations, in the computational setting
are finite and the model in [13] and [12] as well as in the current paper describes ex-
actly what happens during a stochastic simulation. Knowingthat some stochastic process
{Xt}∞t=0 on some equivalence class of populations[~x] tends to the uniform distribution
over the populations (i.e.∀ ~y ∈ [~x] we havelimt→∞ P (Xt = ~y) = 1/|[~x]|) it is often
possible to deduce what we call Geiringer-like theorems which express the limiting fre-
quency of occurrence of specific individuals and specific sets of individuals in terms of
the information contained in a single representative of theequivalence class only (say, the
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initial population). Of course, we need to formulate precisely what the “limiting frequency
of occurrence” is.

Definition 42. Consider a functionX : P(Ω) × Ωb → {0, 1, 2, . . . , b} whereP(Ω) de-
notes the power set ofΩ (i.e. the set of all subsets ofΩ) andΩb is the set of all pop-
ulations of sizeb, as usual, defined as follows: given a subsetS ⊆ Ω and a population
~x = (x1, x2, . . . , xb) ∈ Ωb, we define a functionX (S, ~x) = |{i | 0 ≤ i ≤ b, xi ∈ S}| to
be the number of individuals in the population~x which belong to the subsetS (counting
their multiplicities).

Example 43. Let’s sayS = {a} is a singleton set,b = 3 and~x = (u, v, u) whereu 6= v.
ThenX (S, ~x) = 2 sincex1 = x3 = u ∈ S while x2 = v /∈ S.

Remark 44. Observe that if we fix a subsetS ⊆ Ω and let the second argument in the
functionX vary, then we get a function of one variableX (S, �) : Ωb → {0, 1, 2, . . . , b}

defined naturally by plugging a population of sizeb in place of the�.

Definition 45. Choose a subsetS ⊆ Ω an equivalence class[~x] of populations of sizeb and
let{Xt}∞t=0 be any stochastic process on[~x] (~x could be an initial population, for instance).
It makes sense now to define a random variable

Φ(S, ~x, t) =

∑t−1
i=0 X (S, Xi)

b · t
.

Clearly the random variableΦ(S, ~x, t) counts the fraction of occurrence (or frequency of
encountering) the individuals from the setS before timet. In generallimt→∞ Φ(S, ~x, t)

does not exist. However, under “nice” circumstances described below everything works out
rather well.

Lemma 46. Suppose there is an “attractor” probability distributionρ on the equivalence
class[~x] for the stochastic process{Xt}

∞
t=0 in the sense that ifX0 = x with probability

1 thenlimt→∞ P (Xt = ·) = ρ whereP (Xt = ·) denotes the probability distribution of
the random variableXt which can be thought of in terms of a vector inR|[~x]| so that the
limt→∞ is taken with respect to theL1 norm, let’s sayk. Then

lim
t→∞

Φ(S, ~x, t) =
1

b
Eρ

(
X (S, �)|[~x]

)

whereEρ denotes the expectation with respect to the probability distribution ρ on [~x],
whileX (S, �)|[~x] is the restriction of the functionX (S, �) introduced in remark 44 to the
equivalence class[~x].

A sketch of the proof. Consider a “constant” stochastic processYt where each random
variableYt is distributed according toρ. By assumption‖P (Xt = ·)− P (Yt = ·)‖L1 → 0

kIt is well-known that any two norms on finite dimensional realor complex vector spaces are equivalent so that
the choice of the norm is irrelevant here
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ast → ∞. On the other hand, by the law of large numbers,

Eρ

(
X (S, �)|[~x]

)
= lim

t→∞

∑t−1
i=0 X (S, Yi)

t

after routineǫ-details
= lim

t→∞

∑t−1
i=0 X (S, Xi)

t
=

= b · lim
t→∞

∑t−1
i=0 X (S, Xi)

b · t
= lim

t→∞
Φ(S, ~x, t)

so that the desired assertion follows after dividing both sides of the equation above byb.

In our specific case, thanks to theorem 41, the probability distributionρ in lemma 46 is the
uniform distribution on the equivalence class[~x].

Notice that a random variable

X (S, �) =

b∑

1=1

Ii(S, �) (13)

whereIi(S, �) is the indicator function of theith individual in the argument population
with respect to the membership in the subsetS. More explicitly, if we are given a population
~x = (x1, x2, . . . xb)

T then

Ii(S, ~x) =

{
1 if xi ∈ S

0 otherwise.
(14)

Assume now that all transpositions of individuals within the same population are
among the transformations in the familyS (see the statement of theorem 41).
In other words, ∀ i < j the transformationTi, j sending a population~x =

(x1, x2, . . . , xi−1, xi, xi+1, . . . , xj−1, xj , xj+1, . . . , xb)
T into the populationTi, j(~x) =

(x1, x2, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xb)
T has positive probability of be-

ing chosen. Notice that this is usually a very reasonable assumption since the order of
individuals in a population should not matter in practical applications. Then we immedi-
ately deduce that any given population~y ∈ [~x] if and only if the corresponding population
Ti, j(~y) obtained by swapping theith and thej th individuals in the population~y is a member
of [~x]. Whenρ is the uniform distribution (as in theorem 41), this is equivalent to saying
that all the indicator random variablesIi(S, �) defined in equation 14 above are identically
distributed independently of the indexi. In particular, they are all distributed asI1(S, �).
Using equation 13 together with linearity of expectation, we now deduce that ifπ denotes
the uniform distribution on[~x] then

Eπ

(
X (S, �)|[~x]

)
=

b∑

1=1

Eπ

(
Ii(S, �)|[~x]

)
= b ·Eπ

(
I1(S, �)|[~x]

)
=

= b · π({~y | ~y = (y1, y2, . . . , yb)
T ∈ [~x] andy1 ∈ S}) = b ·

|V(~x, S)|

|[~x]|
. (15)

where

V(~x, S) = {~y | ~y = (y1, y2, . . . , yb)
T ∈ [~x] andy1 ∈ S} (16)



October 20, 2018 23:56 Emerald/INSTRUCTION FILE InvitedSubmittedFirst-
DraftForArchive

Geiringer Theorem, Partially Observable Markov decision Processes and other Monte-Carlo search Methods.27

is the subset of[~x] consisting solely of populations in[~x] the first individuals of which are
members of the subsetS ⊆ Ω. combining equation 15 with the conclusion of lemma 46
immediately produces the following very useful fact.

Lemma 47. Under exactly the same setting and assumptions as in theorem41 together
with an additional assumption that all the “swap” transformations defined and discussed
in the paragraph following equation 14 are members of the subfamilyS of the familyF of
recombination transformations, it is true that∀S ⊆ Ω we have

lim
t→∞

Φ(S, ~x, t) =
|V(~x, S)|

|[~x]|

where the setV(~x, S) is defined in 16.

Lemma 47 allows us to derive Geiringer-like theorems in a rather straightforward fashion
for several classes of evolutionary algorithms via the following simple strategy: suppose
we are given a subsetS ⊆ Ω. According to lemma 47, all we have to do to compute the
desired limiting frequency of occurrence of a certain subset S ⊆ Ω is to calculate the
ratio |V(~x, S)|

|[~x]| . For some subsets of the search space such a ratio is quite obvious, yet for
others it may be combinatorially non-achievable. In evolutionary computation, it is often
possible to define an appropriate notion of schemata (this isprecisely what we have done
in section 4.1 for the case of MCT) which has, intuitively speaking, a “product-like flavor”
that allows us to exploit the following observation: suppose we can find a sequence of
subsetsS1 ⊇ S2 ⊇ . . . ⊇ Sn−1 ⊇ Sn = S. We can then write

lim
t→∞

Φ(S, ~x, t) =
|V(~x, S)|

|[~x]|
=

|V(~x, S)|

|V(~x, Sn−1)|
·
|V(~x, Sn−1)|

|V(~x, Sn−2)|
· . . . ·

|V(~x, S1)|

|[~x]|
=

by lemmas 47 and 46
=

1

b
Eρ

(
X (S1, �)|[~x]

)
·
n−1∏

k=1

|V(~x, Sk+1)|

|V(~x, Sk)|
(17)

The idea is that the individual ratios in the right hand side of equation 17 may be quite
simple to compute as happens to be the case when deriving finite population Geiringer-like
theorems for GP with homologous crossover (see [13] and [12]). When deriving the fi-
nite population version Geiringer-like theorem with non-homologous recombination in the
limit of large population size, rather than computing the ratios in equation 17, we will in-
stead estimate each one of them from above and from below exploiting the main Geiringer
theorem (theorem 41) together with the methodology for estimating the stationary distribu-
tions of Markov chains based on the lumping quotient construction appearing in ([14], [16]
and [15]). All of the necessary apparatus and one enhanced lemma will be summarized and
presented in the next subsection for the sake of completeness.

5.3. Lumping Quotients of Markov Chains and Markov Inequality

Throughout the current subsection we shall be dealing with aMarkov chainM (not nec-
essarily irreducible) over a finite state spaceX . {px→y} denotes the Markov transition
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matrix with the convention thatpx→y is the probability of gettingy in the next stage given
x. Let π denote a stationary distribution of the Markov chainM (here we will assume
that at least one stationary distribution does exist). Furthermore we will assume that the
stationary distributionπ has the property that∀x ∈ X π(x) 6= 0. Suppose we are given
an equivalence relation∼ partitioning the state spaceX . The aim of the current section is
to construct a Markov chain over the equivalence classes under∼ (i.e. over the setX/ ∼)
whose stationary distribution is compatible with the distributionπ and then to exploit the
constructed lumped quotient chain to estimate certain ratios of the stationary distribution
values. In fact, this methodology has been successfully used to establish some properties
of the stationary distributions of the irreducible Markov chains modeling a wide class of
evolutionary algorithms (see [14], [16] and [15]).

Definition 48. Given a Markov chainM over a finite state spaceX determined by the
transition matrix{px→y}, an equivalence relation∼ on X , and a stationary distribution
π of the Markov chainM satisfying the property that∀x ∈ X π(x) 6= 0, define the
quotientMarkov chainM/ ∼ over the state spaceX/ ∼ of equivalence classes via∼ to
be determined by the transition matrix{p̃U→V}U ,V∈X/∼ given as

p̃U→V =
1

π(U)

∑

x∈U

π(x) · px→V =
1

π(U)

∑

x∈U

∑

y∈V

π(x) · px→y.

Herepx→V denotes the transition probability of getting somewhere inside ofV givenx.
SinceV =

⋃
y∈V{y} it follows thatpx→V =

∑
y∈V px→y and hence the equation above

holds.

Intuitively, the quotient Markov chainM/ ∼ is obtained by running the original chainM
starting with the stationary distributionπ and computing the transition probabilities of the
assiciated stochastic process conditioned with respect tothe stationary input. Thereby, the
following fact should not be a surprise:

Theorem 49. Letπ denote a stationary distribution of a Markov chainM determined by
the transition matrix{px→y}x,y∈X and having the property that∀x ∈ X π(x) 6= 0.
Suppose we are given an equivalence relation∼ partitioning the state spaceX . Then the
probability distributionπ̃ defined as̃π({O}) = π(O) is a stationary distribution of the
quotient Markov chainM/ ∼ assigning nonzero probability to every state (i.e. to every
equivalence class under∼).

Proof: This fact can be verified by direct computation. Indeed, we obtain
∑

O∈X/∼

π̃({O}) · p̃O→U =
∑

O∈X/∼

π(O) ·
1

π(O)

∑

x∈O

∑

z∈U

π(x) · px→z =

=
∑

x∈X

∑

z∈U

π(x) · px→z =
∑

z∈U

∑

x∈X

π(x) · px→z

by stationarity ofπ
=

=
∑

z∈U

π(z) = π(U) = π̃({U}).
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This establishes the stationarity ofπ̃ and theorem 49 now follows.

Although theorem 49 is rather elementary it allows us to deduce interesting and insightful
results (see [14], [16] and [15]) via the observations presented below. To state these results
it is convenient to generalize the notion of transition probabilities in the following manner
(which is coherent with definition 48):

Definition 50. Given a Markov chainM with state spaceX and a stationary distributionπ,
for any two subsetsA andB ⊆ X , we definepA→B =

∑
a∈A

π(a)
π(A)pa→B wherepa→B =∑

b∈B pa→b.

Remark 51. It is worth emphasizing that in case whenB = A orA∩B = ∅, the transition
probabilitiespA→B are precisely the transition probabilities of various quotient Markov
chains with states which haveA andB as their states according to definition 48. In partic-
ular, if we consider the quotient Markov chain comprised of the states,A andAc whereAc

denotes the complement ofA, we have1− pA→A = pA→Ac .

In the current paper we will use a lumping quotient chain consisting of only2 equivalence
classes,A andB = Ac (i.e. the complement ofA in the state spaceX ). For a2 by2 Markov
transition matrix we easily see that ifπ denotes the unique stationary distribution of the
original Markov chainM then, thanks to theorem 49, we haveπ(A)pA→A+π(B)pB→A =

π(A) so thatπ(B)pB→A = π(A)(1 − pA→A) = π(A)pA→B and, if neitherA norB is
empty, we have

π(A)

π(B)
=

pB→A

pA→B
(18)

Equation 18, tells us that in order to estimate the ratio of the stationary distribution values of
the Markov chainM on a pair of complementary subsets of the state spaceA andB = Ac,
it is sufficient to estimate the ratio of the generalized transition probabilitiespB→A and
pA→B. Although these transition probabilities do depend on the stationary distribution
itself, it is sometimes possible to estimate them using a convexity-based bound appearing
in ([14], [16] and [15]). For the purpose of the present work we need to introduce a mild
generalization of this bound appearing below:

Lemma 52. Suppose, as in definition 50,A andB ⊆ X andU ⊆ X such that

π(U ∩A)

π(A)
≤ ǫ < 1.

Suppose further that for some constantκ with 0 ≤ κ ≤ 1 the following is true:∀ a ∈ A∩U c

we havepa→B ≤ κ. Then we havepA→B ≤ (1−ǫ)κ+ǫ. Dually, assume that for a constant
λ with 0 ≤ λ ≤ 1 it is true that∀ a ∈ A∩U c we havepa→B ≥ λ. ThenpA→B ≥ (1− ǫ)λ.

Proof. Indeed, we have

pA→B =
∑

a∈A

π(a)

π(A)
pa→B =

∑

a∈A∩Uc

π(a)

π(A)
pa→B +

∑

a∈A∩U

π(a)

π(A)
pa→B. (19)
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Notice that
∑

a∈A∩Uc

π(a)

π(A)
=

π(A ∩ U c)

π(A)
= 1−

π(U ∩A)

π(A)
≥ 1− ǫ

while 0 ≤
∑

a∈A∩U

π(a)

π(A)
=

π(A ∩ U)

π(A)
< ǫ (20)

The desired inequalities now follow when we plug in the bounds in the assumptions into
equation 19 and then use the inequalities in equation 20 together with the fact that proba-
bilities are always between0 and1.

In a special case whenU = ∅ lemma 52 entails the following.

Corollary 53. Given any two subsetsA andB ⊆ X , if for some constantκ with0 ≤ κ ≤ 1

it is true that∀ a ∈ A we havepa→B ≤ κ thenpA→B ≤ κ. Dually, if for some constantλ
with 0 ≤ λ ≤ 1 it is true that∀ a ∈ A we havepa→B ≥ λ thenpA→B ≥ λ. Consequently,
if for some constantγ it happens that∀ a ∈ A we havepa→B = γ thenpA→B = γ.

Combining equation 18 with lemma 52 readily gives us the following.

Lemma 54. SupposeA andB ⊆ X is a complementary pair of subsets (i.e.A ∩ B = ∅

andA ∪B = X ). Suppose further thatU ⊆ X is such that

π(U ∩ A)

π(A)
< ǫ < 1 and

π(U ∩B)

π(B)
< δ < 1.

Assume now that we find constantsλ1, λ2, κ1 andκ2 such that∀ b ∈ U c ∩ B we have
λ1 ≤ pb→A ≤ κ1 and∀ a ∈ U c ∩ A we haveλ2 ≤ pa→B ≤ κ2. Then we have

(1− δ)λ1

(1− ǫ)κ2 + ǫ
≤

π(A)

π(B)
≤

(1 − δ)κ1 + δ

(1− ǫ)λ2

In order to apply lemma 54 effectively we need to know that both, π(U∩A)
π(A) and π(U∩B)

π(B)

are small. As we shall see in the next subsection, the inductive hypothesis will imply that
at least one of these ratios is small. The following simple lemma will allow us to deduce
that the remaining ratio is also small as long as a certain ratio of generalized transition
probabilities is bounded below.

Lemma 55. SupposeA and B ⊆ X with A ∩ B = ∅ (notice that we do not require
A ∪B = X ). Then

π(A) ≥ π(B) ·
pB→A

pA→Ac

.

Proof. Let C = X ∩ (A ∪ B)c. Consider the lumped Markov chain on the state space
{A, B, C}. Sinceπ is the stationary distribution of the Markov chainM, by theorem 49
(see also definition 50 and remark 51) we have

π(A) = π(B)pB→A + π(A)pA→A + π(C)pC→A
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so that

(1 − pA→A)π(A) = π(B)pB→A + π(C)pC→A ≥ π(B)pB→A

since probabilities are nonnegative. The desired conclusion now follows when dividing
both sides of the inequality above by1− pA→A = pA→Ac .

Finally, there is another very simple and general classicalinequality that will be elegantly
exploited in the next section to set the stage for the application of lemma 54 allowing us to
avoid unpleasant combinatorial complications.

Lemma 56 (Markov Inequality) SupposeH is a non-negative valued random variable
on a probability spaceΩ with probability measurePr. Then∀λ > 0 we have

0 < Pr(H > λ ·E(H)) ≤
1

λ
→ 0 asλ → ∞.

Proof. By definition of expectation we have

E(H) =

∫

Ω

HdPr
by positivity ofH

≥

∫

H>λ·E(H)

HdPr≥ Pr(H > λ ·E(H)) · (λ · E(H)).

Now, if Pr(H > 0) = 0 thenH = 0 almost surely so thatE(H) = 0 and

Pr(H > λ · E(H)) = Pr(H > 0) = 0 <
1

λ
.

Otherwise, Pr(H > 0) > 0 =⇒ E(H) =
∫
Ω
HdPr> 0 and the desired inequality follows

when dividing both sides of the equation above byλ ·E(H).

We end this section with a very well-known elementary fact about Markov chains having
symmetric transition matrices that will also be used in the proof of theorem 40.

Proposition 57. LetM be any Markov chain determined by a symmetric transition matrix.
Then the uniform distribution is a stationary distributionof the Markov chainM (notice
thatM is not assumed to be irreducible).

Proof. The reader may easily see that the Markov transition matrix is doubly-stochastic or
verify that the uniform distribution is stationary directly from the detailed balance equa-
tions.l

5.4. Deriving the Geiringer-like Theorem (Theorem 40) for the MCT algorithm

We now recall the setting of section 4. At first we will prove the theorem for a mildly
extended family of recombination transformationsF̃ where in addition to the transforma-
tions in definition 12F̃ also contains all the transpositions (or swaps) of the rollouts in a
population and these are selected with positive probability (a detailed description appears

lThis is also a particular case of the well-known reversibility property of Markov chains.
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in paragraph following equation 14). Since every transposition of rollouts is a bijection on
the set of all populations, theorem 41 still applies, exceptthat the equivalence classes will
be enlarged by a factor of(b · m)! i.e. [Pm]F̃ = (b · m)! · [Pm]F (this is so because ev-
ery permutation is a composition of transpositions). Thanks to the assumption we will be
in a position to apply the tools based on lemma 47, namely equation 17. This assumption
will be dropped at the end via apparent symmetry considerations. Indeed, any permutation
π of the rollouts in a populationQ ∈ [Pm] naturally commutes with all the recombina-
tion transformations in definition 16 thereby providing a family of bijections between the
equivalence class[Pm]F and each of the(b · m)! disjoint pieces comprising the partition
of the equivalence class[Pm]F̃ . Furthermore, permutations preserve the multisets of roll-
outs within a population so that the frequencies of occurrence of various subsets in the
corresponding pieces will be preserved and, thereby, the conclusion of theorem 40 with the
family of recombination transformationsF replaced byF̃ will be exactly the same.

Recall the schema

h = (α, i1, i2, . . . , ik−1, xk)

of heightk − 1 ≥ 0 in the statement of theorem 40. Notice that thanks to proposition 28
we can write the given schemah as

h = hk ⊆ hk−1 ⊆ hk−2 ⊆ . . . ⊆ h2 ⊆ h1 (21)

whereh1 = (α, i1, #) and, in general, when1 ≤ j < k

hj = (α, i1, i2, . . . , ij , #)

are Holland schemata. Thanks to equation 17,∀m ∈ N we have

lim
t→∞

Φ(h, Pm, t) =
1

b
Eρ

(
X (h1, �)|[Pm]

F̃

)
·
k−1∏

q=1

|V(Pm, hq+1)|

|V(Pm, hq)|
(22)

and, taking the limit asm → ∞,

lim
m→∞

lim
t→∞

Φ(h, Pm, t) =

=
1

b
lim

m→∞
Eρ

(
X (h1, �)|[Pm]

F̃

)
·
k−1∏

q=1

lim
m→∞

|V(Pm, hq+1)|

|V(Pm, hq)|
(23)

where ρ is the uniform distribution on[P ]m. First of all, notice that∀, m ∈ N the
random variableX (h1, �)|[Pm]

F̃
is a constant function which is equal to Order(α ↓

i1, Pm) = Order(α ↓ i1, P ) (see remark 34 and proposition 38). It follows trivially then

thatEπ

(
X (h1, �)|[Pm]

F̃

)
= Order(α ↓ i1, P ) giving us the first ratio factor in the right

hand side of equation 40. In particular, whenh = h1 is a schema of height0 ending with a
#, there is no need to take the limit asm → ∞ regardless of whether or not the population
P is homologous. To deal with the remaining ratios in the general case, when the popula-
tionP is not necessarily homologous, we will exploit the classical and elementary Markov
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inequality (lemma 56 in a rather elegant manner) to set up thestage for the application of
lemmas 52 and 54 in the following manner.

Consider the random variableHi : [Pm] → N where[Pm] is equipped with the uniform
probability measureρ, measuring the height of theith rollout in the populationQ ∈ [Pm].
In other words,

Hi(Q) = the height of theith rollout in the populationQ.

Notice that∀, i and j with 1 ≤ i ≤ j ≤ b · m the random variablesHi andHj are
identically distributed (indeed, thanks to theorem 41, theswap of the rolloutsi andj in
the populationPm is an isomorphism of the probability space[Pm] with itself, call it τ ,
such thatHi ◦ τ = Hj and vice versa). In particular, these random variables havethe same
expectation. Thanks to remark 36 and proposition 38, we deduce that

E(H1) =

∑b·m
i=1 E(Hi)

b ·m
=

E
(∑b·m

i=1 Hi

)

b ·m
=

=
Total(Pm)

b ·m
=

m · Total(P )

b ·m
=

Total(P )

b
. (24)

Notice that the right hand side of equation 24 does not dependon m. In other words,
∀m ∈ N the expected height of the first rollout in the populationPm is the same and is
equal toTotal(P )

b . At the same time, according to proposition 38, the functions

Order(α ↓ j, Pm) → ∞ and Order(i ↓ j, Pm) → ∞ asm → ∞. (25)

The above observation opens the door for the application of Markov inequality that will,
in turn, allow us to exploit lemma 54 with the aim of estimating the desired ratios involved
in equation 17 and then showing that the upper and the lower bounds on these fractions
converge to the corresponding ratios involved in the right hand side of equation 40 in the
conclusion of the statement of theorem 40. We now proceed in detail. Let δ > 0 be an
arbitrary small number (informally speaking,δ ≪ 1). ChooseM ∈ N large enough so that

δ2 ·M >
Total(P )

b
= E(H1)

(see equation 24). Form > M let

U δ
m = {Q |Q ∈ [Pm] andH1(Q) > δ ·m}. (26)

and observe that the Markov inequality (lemma 56) tells us that

ρ(U δ
m) = ρ({Q |H1(Q) > δ ·m}) = ρ

(
H1 >

1

δ
· (δ2 ·m)

)
sincem>M

≤

and by definition ofUδ
m in equation 26

≤ ρ

(
H1 >

1

δ
· E(H1)

)
by Markov inequality

≤ 1/
1

δ
= δ (27)

whereρ denotes the uniform probability distribution on the set[Pm].
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As the reader probably anticipates by now, our aim is to show that each of the ratios of
the form

lim
m→∞

|V(Pm, hq+1)|

|V(Pm, hq)|
=

Order(iq ↓ iq+1, P )∑
j∈iq↓(P ) Order(iq ↓ j, P ) + iq ↓Σ (P )

so that equation 40 in the conclusion of theorem 40 would follow from equation 22 when
taking the limit of both sides asm → ∞. First of all, let us take care of the “trivial ex-
tremes” when for someq with 1 ≤ q ≤ k− 1 we have either (Order(iq−1 ↓ iq, P ) = 0) or
(∀ j 6= iq we have Order(iq−1 ↓ j, P ) = 0 andiq−1 ↓Σ (P ) = 0)) or ((xk ∈ Σ) and (either
ik−1 ↓Σ (P ) = 0 or xk /∈ ik−1 ↓ (P )) or (∀ j ∈ N we have Order(ik−1 ↓ j, P ) = 0 and
xk is the only terminal label member of the setik−1 ↓ P i.e. ik−1 ↓ P ∩ Σ = {xk})) or
(xk = #). According to proposition 38, the statement above holds fora populationP if
and only if∀m ∈ N it holds when the populationP is replaced withPm. In the case when
either Order(iq−1 ↓ iq, Pm) = 0 or ik−1 ↓Σ (Pm) = 0 or xk /∈ ik−1 ↓ (P ), no individual
fitting the schemah is present in any populationQ ∈ [Pm] so that∀m andt ∈ N we have
Φ(Pm, h, t) = 0. Thereby the left hand side of equation 40 is trivially0. The right hand
side is0 as well in this case since the numerator of one of the fractions in the product is0
(see the convention remark in the statement of theorem 40). This finishes the verification of
one trivial extreme case. Suppose now for some indexq it is the case that∀ j 6= iq we have
Order(iq−1 ↓ j, P ) = 0 andiq−1 ↓Σ (P ) = 0. In this case we observe that any individual
occurring in a populationQ ∈ [Pm] which fits the schemahq−1, also fits the schemahq. In
particular, the setsV(Pm, hq+1) andV(Pm, hq) are equal and we trivially have∀m ∈ N
|V(Pm, hq+1)|
|V(Pm, hq)|

= 1. Of course, the corresponding ratio

Order(iq ↓ iq+1, P )∑
j∈iq↓(P ) Order(iq ↓ j, P ) + iq ↓Σ (P )

= 1

as well since Order(iq ↓ j, P ) is the only nonzero contributing summand in the denomi-
nator. The last factor ratio is supposed to coincide with theratio |V(Pm, h)|

|V(Pm, hk−1)|
. This ratio

is either0 or 1 in the extreme cases and verifying the validity of equation 40 is entirely
analogous to the above. We now move on to the interesting casewhen none of the trivial
extremes above happen. For schematax andy we write x \ y = Sx ∩ (Sy)

c (see def-
inition 25) to denote the set of rollouts fitting the schemax and not fitting the schema
y. Rather than estimating or, in case of homologous population P , evaluating exactly the
ratios of the form|V(Pm, hq+1)|

|V(Pm, hq)|
we estimate and, in case of homologous recombination,

evaluate the ratios of the form|V(Pm, hq+1)|
|V(Pm, hq\hq+1)|

since these are more convenient to tackle
using the tools in section 5.3. The following very simple fact demonstrates the connection
between the two:

Lemma 58. Suppose that∀m whenever1 ≤ q < k − 1

|V(Pm, hq+1)|

|V(Pm, hq \ hq+1)|
=

Order(iq ↓ iq+1, P )∑
j∈iq↓(P ) andj 6=iq+1

Order(iq ↓ j, P ) + iq ↓Σ (P )
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and neither the numerator nor the denominator of any of the fractions is0. Then

|V(Pm, hq+1)|

|V(Pm, hq)|
=

Order(iq ↓ iq+1, P )∑
j∈iq↓(P ) Order(iq ↓ j, P ) + iq ↓Σ (P )

.

Likewise, if

lim
m→∞

|V(Pm, hq+1)|

|V(Pm, hq \ hq+1)|
=

Order(iq ↓ iq+1, P )∑
j∈iq↓(P ) andj 6=iq+1

Order(iq ↓ j, P ) + iq ↓Σ (P )

and for all sufficiently largem neither the numerator nor the denominator of any of the
fractions involved vanishes, then

lim
m→∞

|V(Pm, hq+1)|

|V(Pm, hq)|
=

Order(iq ↓ iq+1, P )∑
j∈iq↓(P ) Order(iq ↓ j, P ) + iq ↓Σ (P )

.

Proof. ClearlyV(Pm, hq) = V(Pm, hq+1)⊎V(Pm, hq \hq+1) where⊎ emphasizes that
this is a union of disjoint sets. The rest is just a matter of careful verification: we have

|V(Pm, hq+1)|

|V(Pm, hq)|
=

|V(Pm, hq+1)|

|V(Pm, hq+1)|+ |V(Pm, hq \ hq+1)|
=

1

1 +
|V(Pm, hq\hq+1)|
|V(Pm, hq+1)|

. (28)

Taking the limit asm → ∞ on both sides of equation 28 yields

lim
m→∞

|V(Pm, hq+1)|

|V(Pm, hq)|
=

1

1 + limm→∞
|V(Pm, hq\hq+1)|
|V(Pm, hq+1)|

(29)

The right hand sides of equations 28 and 29 are easily computed directly from the corre-
sponding formulas in the assumptions and each of them is:

1

1 +

∑
j∈iq↓(P ) andj 6=iq+1

Order(iq↓j, P )+iq↓Σ(P )

Order(iq↓iq+1, P )

=

=
1

Order(iq↓iq+1, P )
Order(iq↓iq+1, P ) +

∑
j∈iq↓(P) andj 6=iq+1

Order(iq↓j, P )+iq↓Σ(P )

Order(iq↓iq+1, P )

=

Order(iq ↓ iq+1, P )∑
j∈iq↓(P ) Order(iq ↓ j, P ) + iq ↓Σ (P )

yielding the asserted conclusions.

Entirely analogously,

Lemma 59. Suppose that∀m

|V(Pm, hk)|

|V(Pm, hk−1 \ hk)|
=

1∑
j∈ik−1↓(P ) Order(ik−1 ↓ j, P ) + ik−1 ↓Σ (P )− 1

and the denominators do not vanish. Then

|V(Pm, hk)|

|V(Pm, hk−1)|
=

1∑
j∈ik−1↓(P ) Order(ik−1 ↓ j, P ) + ik−1 ↓Σ (P )

.



October 20, 2018 23:56 Emerald/INSTRUCTION FILE InvitedSubmittedFirst-
DraftForArchive

36 Mitavskiy, Rowe, Cannings

Likewise, if

lim
m→∞

|V(Pm, hk)|

|V(Pm, hk−1 \ hk)|
=

1∑
j∈ik−1↓(P ) Order(ik−1 ↓ j, P ) + ik−1 ↓Σ (P )− 1

and for all sufficiently largem the denominators of any of the fractions involved vanishes,
then

lim
m→∞

|V(Pm, hk)|

|V(Pm, hk−1)|
=

1∑
j∈ik−1↓(P ) Order(ik−1 ↓ j, P ) + ik−1 ↓Σ (P )

.

To estimate or, in the special case of homologous populationP , to compute exactly, the
ratios |V(Pm, hq+1)|

|V(Pm, hq\hq+1)|
the following strategy will be employed. For a givenm ∈ N consider

the set of all populationsV(Pm, hq) (i.e. the set of these populations in[Pm] the first
individual of which fits the schemahq). Let now πq,m denote the uniform probability
measure on the setV(Pm, hq). We then have

|V(Pm, hq+1)|

|V(Pm, hq \ hq+1)|
=

|V(Pm, hq+1)|
|V(Pm, hq)|

|V(Pm, hq)\hq+1)|
|V(Pm, hq)|

=
πq,m(V(Pm, hq+1))

πq,m(V(Pm, hq \ hq+1))
(30)

and, more generally,∀ set of rolloutsS,

|V(Pm, hq+1 ∩ S)|

|V(Pm, hq \ hq)|
=

|V(Pm, hq+1∩S)|
|V(Pm, hq)|

|V(Pm, hq)\hq+1)|
|V(Pm, hq)|

=
πq,m(V(Pm, hq+1 ∩ S))

πq,m(V(Pm, hq \ hq+1))
(31)

The idea behind equations 30 and 31 is to construct a Markov chain with a uniform station-
ary distribution on the state spaceV(Pm, hq) thereby opening the door to an application
of lemma 54. It seems the easiest construction to accomplishour task uses proposition 57.
Recall the transformations of the formχi, x, y as in definitions 9 and 12 from definition 16.
We now construct our Markov chain, call itMq, on the setV(Pm, hq) whereq < k as
follows: given a population of rolloutsQt ∈ V(Pm, hq) at timet, let (iq, x) be the state in
the first rollout andqth position in the populationQt. Consider the set

Statesm(iq ↓ Qt) = {(j, z) | j ∈ iq ↓ (Qt), z ∈ A×m and the state(j, z)

appears in the populationQt following a state with equivalence classiq}∪

∪ {(f, j) | 1 ≤ j ≤ m andf ∈ iq ↓Σ P}. (32)

Now select a state or a terminal label; call either one of these v, from the set finite set
Statesm(iq ↓ Qt) uniformly at random. Since each state appears uniquely in a population
Qt, by definition of the set Statesm(iq ↓ Qt) in 32, the state preceding the elementv

selected from Statesm(iq ↓ Qt), call it u, is of the formu = (iq, y) wherey ∈ A × m.
Now letQt+1 = χiq, x, y(Qt). Notice that there are two mutually exclusive cases here:

Case 1:The statesu and(iq, x) appear in different rollouts (or, equivalently, the state
u does not appear in the first rollout since the state(iq, x) does by definition). In this case
Qt+1 6= Qt and the state in the first rollout of the populationQt+1 in theq + 1st position
is v. In this case we will say that the elementv is mobile.
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Case 2:The statesu and(iq, x) appear in the same rollout (of course, it has to be the
first rollout). In this caseQt+1 = Qt. We will say that the elementv is immobile.

Notice that in either of the cases, the populationQt+1 ∈ V(Pm, hq) so that the Markov
process is well defined on the set of populationsV(Pm, hq) ⊆ [Pm]. We now emphasize
the following simple important facts:

Lemma 60. ∀Q ∈ V(Pm, hq) |Statesm(iq ↓ Q)| = m · |States1(iq ↓ P )| and
|States1(iq ↓ P )| =

∑
j∈iq↓(P ) Order(iq ↓ j, P ) + iq ↓Σ (P )

Proof. The fact that|States1(iq ↓ P )| =
∑

j∈iq↓(P ) Order(iq ↓ j, P )+ iq ↓Σ (P ) follows
directly from the definitions. Definition of the set Statesm(iq ↓ Q) in 32 together with
remark 34 tell us that Statesm(iq ↓ Q) = States1(iq ↓ Pm) (wherePm plays the role ofP
for the time being) so that

Statesm(iq ↓ Q) = |States1(iq ↓ Pm)| =
∑

j∈iq↓(Pm)

Order(iq ↓ j, Pm) + iq ↓Σ (Pm) =

by proposition 38
=

∑

j∈iq↓(P )

m · Order(iq ↓ j, P ) +m · iq ↓Σ (P ) =

= m ·


 ∑

j∈iq↓(P )

Order(iq ↓ j, P ) + iq ↓Σ (P )


 by the already proven fact

= m · |States1(iq ↓ P )|.

Another very simple important observation is the following:

Lemma 61. Given any two populationsQ andQ′ ∈ V(Pm, hq), let pqQ→Q′ denote the
transition probability of the Markov chainMq as constructed above. Then eitherpqQ→Q′ =

0 or pqQ→Q′ = 1
m·|States1(iq↓P )| . Moreover,pqQ→Q′ = pqQ′→Q and the uniform distribution

is a stationary distribution of the Markov chainMq.

Proof. From the construction it is clear that ifpqQ→Q′ 6= 0 then there must be an element
s ∈ Statesm(iq ↓ Q) which appears in a rollout in the populationQ different from the
first one and it is the state at theqth position of the first rollout of the populationQ′ while
definition 16 tells us that the state(iq, x) in the qth position of the first rollout of the
populationQ appears inQ′ in some rollout that is not the first one (the former position of
the states that is now in positionq of the first rollout ofQ′) and it is also a member of the
set Statesm(iq ↓ Q′) according to the way Statesm(iq ↓ Q′) is introduced in 32. According
to lemma 60 Statesm(iq ↓ Q) = Statesm(iq ↓ Q′) = m · |States1(iq ↓ Q)| so that the
desired conclusion thatpqQ→Q′ = pqQ′→Q follows from the construction of the Markov
chainMq. The uniform probability distribution is a stationary distribution of the Markov
chainMq since we have just shown that the Markov transition matrix issymmetric (see
also proposition 57).

Recall the generalized transition probabilities introduced in definition 50. For the remaining
part of this section it is convenient to introduce the following definition:
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Definition 62. Given a populationQ ∈ V(Pm, hq+1), let Mobileq(Q) denote the number
of mobile elements (seecase1 above) in the set Statesm(iq ↓ Q) that move the population
Q away from the setV(Pm, hq+1) (and hence, into the setV(Pm, hq \ hq+1)) under the
application of the Markov chainMq as constructed above. Dually, givenQ ∈ V(Pm, hq \

hq+1), let Mobileq(Q) denote the number of mobile elements in the set Statesm(iq ↓ Q)

that move the populationQ away from the setV(Pm, hq \ hq+1) (and hence, into the set
V(Pm, hq+1)).

Suppose, for the time being, that the setV(Pm, hq+1) 6= ∅. Given a populationQ ∈

V(Pm, hq+1), notice that

Mobileq(Q) ≤

{∑
j∈iq↓Q andj 6=iq+1

Order(iq ↓ j)(Q) + iq ↓Σ (Q) if q < k − 1
∑

j∈iq↓Q
Order(iq ↓ j)(Q) + iq ↓Σ (Q)−m if q = k − 1

(33)

Notice that in case the populationP is homologous (and hence so arePm andQ) there
are no immobile elements in the populationQ so that the inequality 33 turns into an exact
equation. In general, fromcase2 above it is clear that the total number of all the immobile
elements is crudely bounded above by the height of the first rollout in the populationQ,
H1(Q). We now obtain a lower bound on the total number of mobile elements in the set
Statesm(iq ↓ Q) that move the populationQ away from the setV(Pm, hq+1) into the set
V(Pm, hq \ hq+1): this number is at least

Mobileq(Q) ≥

≥

{∑
j∈iq↓Q andj 6=iq+1

Order(iq ↓ j)(Q) + iq ↓Σ (Q)−H1(Q) if q < k − 1
∑

j∈iq↓Q
Order(iq ↓ j)(Q) + iq ↓Σ (Q)−m−H1(Q) if q = k − 1

(34)

Analogously, if the populationQ ∈ V(Pm, hq \ hq+1) then the total number of mo-
bile elements in the set Statesm(iq ↓ Q) that move the populationQ away from the set
V(Pm, hq \ hq+1) (and hence, into the setV(Pm, hq+1))

Mobileq(Q) ≤

{
Order(iq ↓ iq+1)(Q) if q < k − 1

m if q = k − 1
(35)

and, as before, the inequality turns into an exact equation in the case whenQ is a homolo-
gous population. At the same time

Mobileq(Q) ≥

{
Order(iq ↓ iq+1)(Q)−H1(Q) if q < k − 1

m−H1(Q) if q = k − 1
(36)

In view of proposition 38 and remark 34 inequalities 33, 34, 35 and 36 can be rewritten
verbatim replacing Order(iq ↓ iq+1)(Q) with m · Order(iq ↓ iq+1)(P ), and Order(iq ↓

j)(Q) with m · Order(iq ↓ j)(P ).
For the case of homologous populationQ the situation is particularly simple:
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Lemma 63. Suppose the populationP is homologous. Suppose further, that neither one of
the setsV(Pm, hq+1) andV(Pm, hq \ hq+1) is empty. Then∀m ∈ N we have

pqV(Pm, hq+1)→V(Pm, hq\hq+1)
=





∑
j∈iq↓P andj 6=iq+1

Order(iq↓j)(P )+iq↓Σ(P )
∑

j∈iq↓P Order(iq↓j)(P )+iq↓Σ(P ) if q < k − 1
∑

j∈iq↓P Order(iq↓j)(P )+iq↓Σ(P )−1
∑

j∈iq↓P Order(iq↓j)(P )+iq↓Σ(P ) if q = k − 1
,

pqV(Pm, hq\hq+1)→V(Pm, hq+1)
=





Order(iq↓iq+1)(P )+iq↓Σ(P )∑
j∈iq↓P Order(iq↓j)(P )+iq↓Σ(P ) if q < k − 1

1∑
j∈iq↓P Order(iq↓j)(P )+iq↓Σ(P ) if q = k − 1

.

Consequently,∀m ∈ N

πq,m(V(Pm, hq+1))

πq,m(V(Pm, hq \ hq+1))
=





Order(iq↓iq+1)(P )+iq↓Σ(P )∑
j∈iq↓P andj 6=iq+1

Order(iq↓j)(P )+iq↓Σ(P ) if q < k − 1

1∑
j∈iq↓P Order(iq↓j)(P )+iq↓Σ(P )−1 if q = k − 1

Proof. The first and the second conclusions follow from equations 33and 35 combined
with lemma 61, definition 50 and comment following equation 36. The last conclusion is
an immediate application of equation 18 to the lumping quotient of the Markov chainMq

into the two statesA = V(Pm, hq+1) andB = V(Pm, hq \ hq+1).

All that remains to do now to establish theorem 40 in the special case of homologous
populationP is to show that whenever1 ≤ q ≤ k − 1 and none of the “trivial ex-
tremes” takes place (see the beginning of this subsection),the setsV(Pm, hq+1) and
V(Pm, hq \ hq+1) are nonempty. This will be done later jointly with the corresponding
fact needed for the general case. Meanwhile, we return to theestimation of the ratios of the
form πq, m(V(Pm, hq+1))

πq, m(V(Pm, hq\hq+1))
in the general case. Suppose, for now, the following statement

is true:

∀ q with 1 ≤ q < k ∃ const(q) ∈ (0, 1) such that∀ sufficiently largem

we haveρm(V(Pm, hq+1)) > const(q) andρm(V(Pm, hq \ hq+1)) > const(q) (37)

In the general case of non-homologous populationP the presence of immobile states sig-
nificantly complicates the situation. This is where Markov inequality comes to the rescue
telling us that asm increases the height of the first rollout (and hence the number of im-
mobile states) being large becomes more and more rare event so that the bounds in the
inequalities 33 and 34 as well as inequalities 35 and 36 get closer and closer together. We
now proceed in detail. Recall the construction of the setsU δ

m starting with equation 24
and ending with inequality 27. Letδ > 0 be given. According to inequality 27∃M1

large enough so that∀m > M1 we haveρm(U
δ·const(q+1)
m ) < δ · const(q + 1). where

const(q + 1) is as in the assumption statement 37. We now have

πq,m

(
V(Pm, hq+1) ∩ U

δ·const(q+1)
m

)

πq,m(V(Pm, hq+1))
≤

πq,m

(
U

δ·const(q+1)
m

)

πq,m(V(Pm, hq+1))
=
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=

|Uδ·const(q+1)
m |
|V(Pm, hq)|

|V(Pm, hq+1)|
|V(Pm, hq)|

=
|U

δ·const(q+1)
m |

|(V(Pm, hq+1)|
=

|Uδ·const(q+1)
m |
|[Pm]

F̃
|

|V(Pm, hq+1)|
|[Pm]

F̃
|

=

=
ρm

(
U

δ·const(q+1)
m

)

ρm(V(Pm, hq+1))
≤

δ · const(q + 1)

const(q + 1)
= δ. (38)

Analogously,

πq,m

(
V(Pm, hq \ hq+1) ∩ U

δ·const(q+1)
m

)

πq,m(V(Pm, hq \ hq+1))
≤

≤
πq,m

(
U

δ·const(q+1)
m

)

πq,m(V(Pm, hq \ hq+1))
=

ρm

(
U

δ·const(q+1)
m

)

ρm(V(Pm, hq \ hq+1))
≤ δ (39)

Now observe that as long as a populationQ ∈ V(Pm, hq+1) \ U
δ·const(q+1)
m , the hight of

the first rolloutH1(Q) ≤ (δ · const(q + 1)) · m ≤ δ · m (recall how the sets of the form
U ǫ
m are introduced from 26). Now, forq < k − 1 inequalities 33, 34 and lemma 60 tell us

that for∀m > M1 we have

m ·
((∑

j∈iq↓(P ), j 6=iq+1
Order(iq ↓ j, P )

)
+ iq ↓Σ (P )

)
− δ ·m

m · |States1(iq ↓ P )|
≤

≤ pQ→V(Pm, hq\hq+1) ≤
m ·

((∑
j∈iq↓(P ), j 6=iq+1

Order(iq ↓ j, P )
)
+ iq ↓Σ (P )

)

m · |States1(iq ↓ P )|

so that dividing the numerator and the denominator bym gives
(∑

j∈iq↓(P ), j 6=iq+1
Order(iq ↓ j, P )

)
+ iq ↓Σ −δ

|States1(iq ↓ P )|
≤

≤ pQ→V(Pm, hq\hq+1) ≤

∑
j∈iq↓(P ), j 6=iq+1

Order(iq ↓ j, P ) + iq ↓Σ (P )

|States1(iq ↓ P )|
(40)

Entirely analogous and, by now, well familiar to the reader reasoning with inequality 39
playing the role of inequality 38 shows that wheneverm > M1 and a populationQ ∈

V(Pm, hq \ hq+1) \ U
δ·const(q+1)
m we have

Order(iq ↓ iq+1, P )− δ

|States1(iq ↓ P )|
≤ pQ→V(Pm, hq+1) ≤

Order(iq ↓ iq+1, P )

|States1(iq ↓ P )|
(41)

Now inequalities 38, 39, 40 and 41 allow us to apply lemma 54 with A = V(Pm, hq+1),

B = V(Pm, hq \ hq+1) andU = U
δ·const(q+1)
m and concluding that∀m > M1 we have

(1− δ) · Order(iq↓iq+1, P )−δ
|States1(iq↓P )|

(1 − δ) ·

(∑
j∈iq↓(P ), j 6=iq+1

Order(iq↓j, P )+iq↓Σ(P )

|States1(iq↓P )|

)
+ δ

≤
πq,m(V(Pm, hq+1))

πq,m(V(Pm, hq \ hq+1))
≤
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≤
(1− δ) · Order(iq↓iq+1, P )

|States1(iq↓P )| + δ

(1 − δ) ·

(∑
j∈iq↓(P ), j 6=iq+1

Order(iq↓j, P )+iq↓Σ(P )−δ

|States1(iq↓P )|

) .

Multiplying the numerator and the denominator of the leftmost and the rightmost fractions
by the constant|States1(iq ↓ P )| which does not depend onm we obtain

(1− δ) · (Order(iq ↓ iq+1, P )− δ · |States1(iq ↓ P )|)

(1− δ) ·
(∑

j∈iq↓(P ), j 6=iq+1
Order(iq ↓ j, P ) + iq ↓Σ (P )

)
+ δ · |States1(iq ↓ P )|

≤

≤
πq,m(V(Pm, hq+1))

πq,m(V(Pm, hq \ hq+1))
≤

(1− δ) · Order(iq ↓ iq+1, P ) + δ · |States1(iq ↓ P )|

(1 − δ)
(∑

j∈iq↓(P ), j 6=iq+1
Order(iq ↓ j, P ) + iq ↓Σ (P )− δ · |States1(iq ↓ P )|

) (42)

Now simply observe that the leftmost and the rightmost sidesof the inequality 42 are both
differentiable (and, hence, continuous) functions ofδ on the domain(−0.5, 0.5) (notice
that the denominators do not vanish on this domain thanks to the assumption that neither
of the trivial extremes takes place). It follows immediately then that both, the leftmost and
the rightmost sides of the inequality 42 converge to the samevalue, namely to the desired
ratio

R =
Order(iq ↓ iq+1, P )∑

j∈iq↓(P ), j 6=iq+1
Order(iq ↓ j, P ) + iq ↓Σ (P )

as δ → 0. From the definition of a limit of a real-valued function at a point, it fol-
lows that given anyǫ > 0 we can choose small enoughδ > 0 such that both, the left-
most and the rightmost sides of the inequality 42 are withinǫ error ofR. We have now
shown that depending on thisδ we can then choose sufficiently largeM so that the ratio

πq,m(V(Pm, hq+1))
πq, m(V(Pm, hq\hq+1))

, being squeezed between the two quantities within theǫ error ofR,
is itself within the error at mostǫ of R. In summary, we have finally proved the following

Lemma 64. Assume that the statement in 37 is true. Then whenever1 < q < k − 1 we
have

lim
m→∞

πq,m(V(Pm, hq+1))

πq,m(V(Pm, hq \ hq+1))
=

Order(iq ↓ iq+1, P )∑
j∈iq↓(P ), j 6=iq+1

Order(iq ↓ j, P ) + iq ↓Σ (P )
.

An entirely analogous argument shows the following:

Lemma 65. Assume that the statement in 37 is true. Then

lim
m→∞

πk−1, m(V(Pm, hk))

πk−1, m(V(Pm, hk−1 \ hk))
=

=
1∑

j∈ik−1↓(P ) Order(ik−1 ↓ j, P ) + ik−1 ↓Σ (P )− 1
.
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According to lemmas 58 and 59, equations 30 and 31, lemmas 64,65, 63 and equations 22
and 23, all that remains to be proven to establish theorem 40 is the following:

Suppose neither of the trivial extremes takes place. Then the statement in equation 37
is true. Furthermore, in case of homologous recombination the statement is true for allm
(not only for large enoughm).

Proof. We proceed by induction on the indexq. First of all, recall from the beginning of
the current subsection that we have already shown that∀m ∈ N we have

ρm(V(Pm, h1))
by lemma 47

= lim
t→∞

Φ(h1, Pm, t) =
Order(α ↓ i1, P )

b
> 0

where the last inequality holds because none of the trivial extremes takes place so that
Order(α ↓ i1, P ) 6= 0 (recall thatρm denotes the uniform probability distribution on[Pm]

so thatρm(V(Pm, h1)) =
|V(Pm, h1)|

[Pm] ). SinceV(Pm, h1) = V(Pm, h2)⊎V(Pm, h1 \ h2)

we also haveρm(V(Pm, h2))+ρm(V(Pm, h1\h2)) = ρm(V(Pm, h1)) =
Order(α↓i1, P )

b =

const0 where1 ≥ const0 > 0 andconst0 is independent ofm. It follows then that at least
one of the following is true:ρm(V(Pm, h2)) ≥

const0
2 or ρm(V(Pm, h1 \ h2)) ≥

const0
2 .

In the general case, chooseM1 large enough so that∀ m > M1 we haveρm(U
const0

4
m ) ≤

const0
4 (recall the part of the proof starting with equation 24 and ending with inequality 27).

It follows then that either

ρm

(
V(Pm, h2) \ U

const0
4

m

)
≥

const0
4

or ρm

(
V(Pm, h1 \ h2) \ U

const0
4

m

)
≥

const0
4

.

An already familiar argument exploiting corollary 53, inequalities 33, 34, 35, 36 and
lemma 60 shows that, thanks to the assumption that no trivialextremes take place, and
observing that1− const0

4 ≥ 1
4 for all large enoughm the ratios

p1(
V(Pm, h2)\U

const0
4

m

)
→V(Pm, h1\h2)

p1V(Pm, h1\h2)→V(Pm, h2)

≥ κ1

and, likewise,

p1(
V(Pm, h1\h2)\U

const0
4

m

)
→V(Pm, h2)

p1V(Pm, h2)→V(Pm, h1\h2)

≥ κ2

where both,κ1 and κ2 > 0 and independent ofm. Now we apply lemma 55 to

the setsB = V(Pm, h2) \ U
const0

4
m and A = V(Pm, h1 \ h2) in the case when

ρm

(
V(Pm, h2) \ U

const0
4

m

)
≥ const0

4 or to the pair of setsB = V(Pm, h1 \h2)\U
const0

4
m

andA = V(Pm, h2) in the case whenρm

(
V(Pm, h1 \ h2) \ U

const0
4

m

)
≥ const0

4 , tells

us that if we letconst(1) = min{ const0
4 , const0

4 · κ1,
const0

4 · κ2} then the statement in
37 is true forq = 1. This establishes the base case of induction. Now observe that if the
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statement in 37 holds for someq then it is true, in particular, that∃ a constantconst(q)
independent ofm such that for all large enoughm we haveV(Pm, hq) > const(q). Now
the validity of the statement in 37 forq + 1 follows from an entirely analogous argument
to the one in the base case of induction withconst(q) playing the role ofconst(0) and the
Markov chainMq replacing the Markov chainM1. In the case of homologous recombina-
tion, an even simpler (since there is no need to worry about the height of the first rollout),
analogous argument shows that the statement in 37 holds∀m.

6. A Further Strengthening of the General Finite PopulationGeiringer
Theorem for Evolutionary Algorithms

6.1. A Form of the Classical Contraction Mapping Principle for a Family of
Maps having the same Fixed Point

The material of this section requires familiarity with elementary point set topology or with
basic theory of metric spaces (see, for instance, [21]). Throughout this section(X, d) de-
notes a complete metric space. We recall the following from classical theory of metric
spaces:

Definition 67. We say that a mapf : X → X is acontractiononX if ∃ k < 1 such that
∀x, y ∈ X we haved(f(x), f(y)) ≤ k · d(x, y). We also callk a contraction rate.m We
may then say thatf is a contraction with contraction rate at mostk.

The classical result known as contraction mapping principle states the following:

Theorem 68 (Contraction Mapping Principle) Suppose(X, d) is a complete metric
space andf : X → X is a contraction onX in the sense of definition 67. Then∃! z ∈ X

such that∀ y ∈ X we havelimn→∞ fn(y) = z.

Proof. The proof can be found in nearly every textbook on point set topology such as [21],
for instance.

In our application we will exploit the following natural extension of definition 67:

Definition 69. Suppose(X, d) is a complete metric space. We say that a family of maps
F ⊆ {f | f : X → X} is anequi-contraction familyif ∃ k < 1 such that∀ f ∈ F and
∀x, y ∈ X we haved(f(x), f(y)) ≤ k · d(x, y).

Evidently, if the familyF of contractions is finite, one can take the maximum of a set
K = {kf | ∀x, y ∈ X we haved(f(x), f(y)) ≤ kf · d(x, y)} so that we immediately
deduce the following important (for our application) corollary:

Corollary 70. If F is any finite family of contractions on the metric spaceX thenF is an
equi-contraction family.

mEvidently contraction rate is not unique with such a notion.Nonetheless, the minimal contraction rate does exist
since it is theinf{k | k is a contraction rate}.
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The classical contraction mapping principle says that every contraction map on a complete
metric space has a unique fixed point. Here we need a slight extension of theorem 68, which
probably appears as an exercise in some point set topology orreal analysis textbook, but
for the sake of completeness it is included in our paper.

Theorem 71. Suppose we are given an equi-contraction familyF on the complete metric
space(X, d). Suppose further that everyf ∈ F has the same unique fixed pointz (in
accordance with theorem 68). Consider any sequence of composed functionsg1 = f1, g2 =

f2◦g1 . . . , gn = fn◦gn−1 where eachfi ∈ F (it is allowed forfi = fj wheni 6= j). Then
∀ y ∈ X limn→∞gn(y) = z exponentially fast for some constantk < 1. In particular,
the convergence rate does not depend either on the sequence{gi}∞i=1 (as long as it is
constructed in the manner described above). Moreover, in cased is a bounded metric (i.e.
supx, y∈X d(x, y) < ∞), the convergence rate does not depend even on the choice of the
initial point y ∈ X .

Proof. Since all the functionsfi have the same fixed pointz, it is clear by induction that
∀n we havegn(z) = z. SinceF is an equi-contraction family, in accordance with def-
inition 69 ∃ k < 1 such thatd(f(x), f(y)) ≤ k · d(x, y). We now haved(g1(y), z) =

d(f1(y), f1(z)) ≤ k · d(y, z). If d(gm(y), z) ≤ km · d(y, z), thend(gm+1(y), z) =

d(fm+1(gm(y)), fm+1(z)) ≤ k · d(gm(y), z) ≤ k · (km · d(y, z)) = km+1 · d(y, z) so
that by induction it follows that∀n ∈ N we haved(gn(y), z) ≤ kn · d(y, z). But k < 1

so thatd(gn(y), z) → 0 exponentially fast asn → ∞ which is another way of stating
the first desired conclusion. Ifsupx, y∈X d(x, y) < ∞ thend(gn(y), z) ≤ kn · d(y, z) ≤

kn · supx, y∈X d(x, y).

6.2. What does Theorem 71 tell us about Markov Chains?

SupposeM is a Markov chain on a finite state spaceX with transition matrixP =

{px→y}x, y∈X . ClearlyP extends to the linear map on the free vector spaceRX spanned
by the point mass probability distributions which form an orthonormal basis of this vector
space (isomorphic toR|X |, of course) under theL1 norm defined as the sum of the absolute
values of the coordinates:‖

∑
x∈X rxx‖L1 =

∑
x∈X |rx|. The linear endomorphismP de-

fined by the matrix{px→y}x, y∈X with respect to the basisX restricts to the probability
simplex

△X =

{
∑

x∈X

rxx | ∀x ∈ X 0 ≤ rx ≤ 1
∑

x∈X

rx = 1

}
(43)

(which is closed and bounded inRX and hence is compact which is way stronger than we
need). The following well-known fact from basic Markov chain theory allows us to apply
the tools from subsection 6.1. For the sake of completeness aproof is included.

Theorem 72. SupposeM with notation as above is an irreducible Markov chain. (mean-
ing that∀x, y ∈ X we havepx→y > 0). ThenP = {px→y}x, y∈X : △X → △X (see
equation 43) is a contraction (see definition 67) on the complete and bounded probability
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simplex△X with respect to the metric induced by theL1 norm i.e.‖~u‖L1 =
∑

x∈X |ux|

where~u =
∑

x∈X ux.n Moreover, the contraction rate (see definition 67) is at most1−|X |ǫ

whereǫ > 0 is any number smaller thanminx, y∈X px→y.

Proof. First notice that given any Markov transition matrixR = {rx→y}x, y∈X , and any
two probability distributionsπ andσ ∈ △X , we have

‖R(π − σ)‖L1 =
∑

y∈X

∣∣∣∣∣
∑

x∈X

rx→y(π(x) − σ(x))

∣∣∣∣∣ ≤
∑

y∈X

∑

x∈X

rx→y|π(x) − σ(x)| =

=
∑

x∈X

∑

y∈X

rx→y |π(x)− σ(x)| =
∑

x∈X

|π(x) − σ(x)| = ‖π − σ‖L1 .

In summary, we have shown that

∀ Markov transition matrixR = {rx→y}x, y∈X on the state spaceX and

∀ probability distributionsπ, σ ∈ △X we have

‖R(π − σ)‖L1 = ‖R(π)−R(σ)‖L1 ≤ ‖π − σ‖L1 (44)

There is one more simple fact we observe: letJ denote anX × X matrix with all entries
equal to1. Given any vector~u =

∑
x∈X uxx, we haveJ · ~u = ~v =

∑
x∈X vxx where

∀ y ∈ X we havevy =
∑

x∈X ux independently ofy. It is clear then that the kernel of the
matrixJ ,

Ker(J) = {~u | ~u =
∑

x∈X

uxx and
∑

x∈X

ux = 0}.

In particular, ifπ andσ are probability distributions onX , then the sums of coordinates∑
x∈X (π(x)) =

∑
x∈X (σ(x)) = 1 so that the vectorπ − σ ∈ Ker(J) i.e.J(π − σ) = 0.

In summary, we deduce the following:

∀ probability distributionsπ andσ ∈ △X we haveJ(π − σ) = 0. (45)

The assumption thatpx→y > 0 together with the assumption thatX is a finite set imply
that we can find a positive numberǫ > 0 such that0 < ǫ < min{px→y |x, y ∈ X}. Let
N = |X | denote the size of the state spaceX and notice that by the choice ofǫ in the
previous sentence,∀x ∈ X we haveN · ǫ <

∑
y∈X px→y = 1 so thatα = 1 − Nǫ > 0.

We can now write

P = (P − ǫJ) + ǫJ = α

(
1

α
(P − ǫJ)

)
+ ǫJ = αQ+ ǫJ (46)

nOf course, the total variation norm, which is a constant scaling of theL1 norm by a factor of1
2

, can be used in
place of theL1 norm alternatively.
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whereQ = 1
α (P − ǫJ) = {qx→y}x, y∈X is a stochastic matrix, i.e.∀x ∈ X the sum of the

entries

∑

y∈X

qx→y =
∑

y∈X

px→y − ǫ

α
=

∑
y∈X (px→y − ǫ)

1−Nǫ
=

(∑
y∈X px→y

)
−Nǫ

1−Nǫ
= 1.

so thatQ is a matrix representing a Markov chain on the state spaceX . Now, given any two
distributionsπ andσ ∈ △X , using the decomposition of the matrixP given in equation 46
together with the facts expressed in equation 45 we obtain

P (π − σ) = (αQ + ǫJ)(π − σ) = αQ(π − σ) + ǫJ(π − σ) = αQ(π − σ)

so that, sinceQ is a matrix which represents a Markov chain, the fact expressed in equa-
tion 44 readily gives us the desired conclusion that

‖P (π − σ)‖L1 = ‖αQ(π − σ)‖L1 = α‖Q(π − σ)‖L1 ≤ α‖π − σ‖L1

which shows thatP is a contraction since we demonstrated before that0 < α < 1.

In corollary 70 we saw that any finite family of contraction maps is an equi-contraction
family. For Markov transition matrices (also called stochastic matrices in the literature)
significantly more is true. The following notion is naturally motivated by definition 69 and
theorem 72.

Definition 73. Given a family of Markov transition matrices

F = {{pix→y}x, y∈X | i ∈ I, π ∈ △X and∀ i ∈ I and∀ y ∈ X we have

∑

x∈X

pix→yπx = πy andβ = inf
i∈I, x andy∈X

pix→y > 0}

indexed by some setI, sharing a common stationary distributionπ and such that the great-
est lower bound of all the entries from all the matrices inF , let’s call itβ, is strictly positive
(or, equivalently, is not0) we say thatF is a family of interchangeableMarkov transition
matriceswith lower boundβ.

Apparently, theorem 72 immediately implies the following

Corollary 74. Every interchangeable familyF of Markov transition matrices with lower
boundβ is an equi-contraction family with a common contraction rate at mostα = 1−|X |ǫ

for anyǫ with 0 < ǫ < β.

Moreover, families of interchangeable Markov transition matrices can often be easily ex-
pended as follows.

Corollary 75. Suppose that a familyF of Markov transition matrices over the same state
spaceX is interchangeable with lower boundβ. Then so is the convex hull of the familyF ,

△(F) = {T |T =

k∑

i=1

tiMi wherek ∈ N and∀ 0 < i < k we have0 < ti ≤ 1

k∑

i=1

ti = 1}.
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Proof. Given a matrixT = {tx→y}x, y∈X ∈ △(F), we can writeT =
∑k

j=1 tjMj ∈

△(F) with Mj = {pjx→y}x, y∈X ∈ F , 0 < tj ≤ 1 and
∑k

j=1 tj = 1. But then∀x, y ∈ X

we havetx→y =
∑k

j=1 tj · p
j
x→y ≥

∑k
j=1 tj · b = b so that the desired conclusion follows

at once.

Combining theorem 72, corollary 70 and corollary 75 readilygives the following

Corollary 76. Suppose we are given a finite familyF of Markov transition matrices such
that all the entries of each matrixM ∈ F are strictly positive. Then△(F) is an equi-
contraction family.

Corollary 76 extends the applicability of the finite population Geiringer theorem appearing
in [13] and in [12] (and, possibly some other homogenous-time Markov chain construc-
tions) to non-homogenous time Markov chains generated by arbitrary stochastic processes
in the sense below.

Theorem 77. Consider any finite setX . LetF denote a finite family of Markov transition
matrices onX such that all the entries of each matrixM ∈ F are strictly positive and all
the matrices inF have a common stationary distributionπ. Now consider any stochastic
process{Zn}∞n=1 with eachZn = (Fn, Xn) onF × X having the following properties:

F0 andX0 are independent random variables. (47)

For n ≥ 1 Fn does not depend onXn, Xn+1, . . . , (however, it may depend on

X0, X1, . . . , Xn−1 as well as many other implicit parameters). (48)

The stochastic processXn is a non-homogenous time Markov chain onX with transition
matricesFn(w). More explicitly

If Fk(ω) = {pkx→y}x, y∈X then∀ y ∈ X we have

P (Xn = y) =
∑

x∈X

P (Xn−1 = x)pn−1
x→y. (49)

Then the non-homogenous time Markov chain converges to the unique stationary distri-
bution π exponentially fast regardless of the initial distributionof X0. More precisely,
∃α ∈ (0, 1) such that∀ t ∈ N we have

‖P (Xt = ·)− π‖L1 ≤ αt

whereP (Xt = ·) denotes the probability distribution of the random variableXt.

Proof. Observe that if we want to compute the distribution ofX1 given the distribution of
X0, we need to select a Markov transition matrixM = {mx→y}x, y∈X ∈ F with respect
to the probability distribution ofF0 which is independentof X0. The value ofX1 is then
obtained by selecting a valuex of X0 with respect to the initial distributionP (X0 = ·)
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and then obtaining the next stateX1 = y with probabilityP (X1 = y) = mx→y. Thereby
∀ y ∈ X we may write

P (X1 = y) =
∑

M∈F

∑

x∈X

P (F0 = M andX0 = x)mx→y
by independence

=

=
∑

M∈F

∑

x∈X

P (X0 = x)P (F0 = M)mx→y =

=
∑

x∈X

P (X0 = x)
∑

M∈F

P (F0 = M)mx→y. (50)

SinceF is a finite set,∀M ∈ F we haveP (F0 = M) ∈ [0, 1] and
∑

x∈X P (X0 = x) = 1,
we deduce that the matrixT0 =

∑
M∈F P (F0 = M) ·M ∈ △(F) is a Markov transition

matrix and equation 50 can be alternatively written in the vector form as

P (X1 = ·) = T0 · P (X0 = ·). (51)

Continuing inductively, if we assume

P (Xk = ·) = Tk−1 ◦ . . . ◦ T1 ◦ T0 · P (X0 = ·) (52)

for k ≥ 1 where the Markov transition matricesTi ∈ △(F), then it follows analogously to
the above reasoning that

P (Xk+1 = y) =
∑

M∈F

∑

x∈X

P (Fk = M andXk = x)mx→y
by independenceofFk andXk

=

=
∑

x∈X

P (Xk = x)
∑

M∈F

P (Fk = M)mx→y

so that for the same reasons as before we may conclude that

P (Xk+1 = ·) = Tk · P (Xk = ·) = Tk · (Tk−1 ◦ . . . ◦ T1 ◦ T0 · P (X0 = ·)) =

= Tk ◦ Tk−1 ◦ . . . ◦ T1 ◦ T0 · P (X0 = ·). (53)

whereTk ∈ △(F) =
∑

M∈F P (Fk = M) ·M ∈ △(F) for the same reason asT0 ∈ F .
We now conclude by induction that∀ t ∈ N we have

P (Xt = ·) = Tt−1 ◦ . . . ◦ T1 ◦ T0 · P (X0 = ·) (54)

where∀ i ∈ N∪ {0} we haveTi ∈ △(F). According to corollary 76 the family of Markov
transition matrices△(F) is an equi-contraction family with the same common stationary
distributionπ and now the desired conclusion follows immediately from theorem 71.

Remark 78. It is interesting to notice that the non-homogenous time Markov processXn

in theorem 77 may be generated by non-Markovian processesFn where the Markov tran-
sition matricesFn depend not only on the past historyF0, F1, . . . , Fn−1 but also on the
history of the stochastic processXn itself. This property is interesting not only from the
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mathematical point of view but also in regard to the main subject of the current paper: the
application to the Monte Carlo Tree search method. Due to thepast history in a certain
game as well as other possibly hidden circumstances (such ashuman mood, psychological
state etc.), a player may suspect the states being interchangeable to bigger or smaller de-
gree. Theorems like 77 demonstrate that in most cases this will not matter in the limiting
case which strengthens the theoretical foundation in support of the main ideas presented in
this work.

One can extend theorem 77 further to be applicable to a wider class of families of Markov
transition matrices having a common stationary distribution than just these having all pos-
itive entries.

Definition 79. We say that a familyF of Markov transition matrices isirreducible and
aperiodicwith a common stationary distributionπ if π is a stationary distribution of every
matrix inF and∃ k ∈ N such that∀ sequence of transformations{Mi}ki=1 with Mi ∈ F

the composed Markov transition matrixT = M1◦M2◦. . .◦Mk has strictly positive entries
andπ is a stationary distribution of every Markov transition matrix M ∈ F . We also say
thatk is thecommon reachable index.

If we were to start with a finite irreducible and aperiodic family of Markov transition matri-
cesF with a common reachable indexk in the sense of definition 79 then the corresponding
family

F̃ = {L |L = M1 ◦M2 ◦ . . . ◦Mk with Mi ∈ F} (55)

has the size|F̃ | = |F|k < ∞ and every matrix in the familỹF has strictly positive entries.
It follows immediately from corollary 76 that△(F̃) is an equi-contraction family. Now
suppose that we are dealing with the same stochastic processas described in the statement
of theorem 77 with the only exception that the familyF is a finite irreducible and aperiodic
family with a common reachable indexk rather than “a finite family of Markov transition
matrices onX such that all the entries of each matrixM ∈ F are strictly positive”. No-
tice that the proof of theorem 77 does not use the assumption that the Markov transition
matrix entries are strictly positive up to the last step following equation 54. Therefore, it
follows that the same equation holds for a finite irreducibleand aperiodic family of Markov
transition matrices, i.e.

∀ t ∈ N we haveP (Xt = ·) = Tt−1 ◦ . . . ◦ T1 ◦ T0 · P (X0 = ·) (56)

where∀ i ∈ N we haveTi ∈ △(F). We now observe the following simple fact.

Lemma 80. The family of linear transformations (and Markov transition matrices in par-
ticular)

△̃(F) ⊆ △(F̃)

where

△̃(F) = {T |T = T1 ◦ T2 ◦ . . . ◦ Tk with Ti ∈ △(F)} (57)
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and the family△(F̃) is the convex hull of the familỹF introduced in equation 55 in the
sense of the defining equation in corollary 75.

Proof. Given a transformation

T = T1 ◦ T2 ◦ . . . ◦ Tk ∈ △̃(F), (58)

since eachTi ∈ △(F), we have

∀ i with 1 ≤ i ≤ k we haveTi =

l(i)∑

j=1

tijMj(i) with 0 ≤ tij ≤ 1 and
l(i)∑

j=1

tij = 1. (59)

Plugging equation 59 into equation 58 and using the linearity of Tis we obtain

T =




l(1)∑

j=1

t1jMj(1)


 ◦




l(2)∑

j=1

t2jMj(2)


 ◦ . . . ◦




l(i)∑

j=1

tijMj(i)


 ◦ . . . ◦




l(k)∑

j=1

tkjMj(k)


 =

=

l(1)∑

j(1)=1

l(2)∑

j(2)=1

. . .

l(k)∑

j(k)=1

(
k∏

i=1

tij(i)

)
Mj(1) ◦Mj(2) ◦ . . . ◦Mj(k) ∈ F̃

since0 ≤
∏k

i=1 t
i
j(i) ≤ 1 and

l(1)∑

j(1)=1

l(2)∑

j(2)=1

. . .

l(k)∑

j(k)=1

(
k∏

i=1

tij(i)

)
=




l(1)∑

j=1

t1j






l(2)∑

j=1

t2j


 . . .




l(k)∑

j=1

tkj


 = 1

from equation 59 so that the desired conclusion follows at once.

Now continue with equation 56 so that we can write

∀ t ∈ N we haveP (Xt = ·) = Tt−1 ◦ . . . ◦ T1 ◦ T0 · P (X0 = ·) =

= Tt−1 ◦ . . . ◦ Tm·k+1 ◦ Tm·k︸ ︷︷ ︸
r−fold composition

◦Tm·k−1 ◦ . . . ◦ T(m−1)·k+1 ◦ T(m−1)·k︸ ︷︷ ︸
k−fold composition

◦ . . .

. . . ◦ T2k−1 ◦ . . . ◦ Tk+1 ◦ Tk︸ ︷︷ ︸
k−fold composition

◦ Tk−1 . . . ◦ T1 ◦ T0︸ ︷︷ ︸
k−fold composition

· P (X0 = ·) =

= Tt−1 ◦ . . . ◦ Tm·k+1 ◦ Tm·k ◦ Fm−1 ◦ Fm−2 ◦ . . . ◦ F1 ◦ F0 · P (X0 = ·) (60)

wherem = ⌊ t
k⌋ andr < k is the remainder after dividingt by k and eachFi ∈ △̃(F) ⊆

△(F̃) thanks to lemma 80. Since△(F̃) is an equi-contraction family (see equation 55
and the discussion which follows this equation), it followsimmediately that we can find a
constantα ∈ [0, 1) such that

‖Fm−1 ◦ Fm−2 ◦ . . . ◦ F1 ◦ F0 · P (X0 = ·)‖L1 < αm · ‖P (X0 = ·)‖L1 .
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Furthermore, according to equation 44 which concludes the first part of the proof of theo-
rem 72, we also have

‖Tt−1 ◦ . . . ◦ Tm·k+1 ◦ Tm·k ◦ Fm−1 ◦ Fm−2 ◦ . . . ◦ F1 ◦ F0 · P (X0 = ·)‖L1 =

= ‖(Tt−1 ◦ . . . ◦ Tm·k+1 ◦ Tm·k) ◦ (Fm−1 ◦ Fm−2 ◦ . . . ◦ F1 ◦ F0 · P (X0 = ·))‖L1 ≤

≤ ‖Fm−1 ◦ Fm−2 ◦ . . . ◦ F1 ◦ F0 · P (X0 = ·)‖L1 < αm · ‖P (X0 = ·)‖L1 .

The observations above lead to the following extension of theorem 77.

Theorem 81. Consider any finite setX . SupposeF a is a finite irreducible and aperi-
odic family with a common reachable indexk and all the matrices inF have a com-
mon stationary distributionπ. Now consider any stochastic process{Zn}∞n=1 with each
Zn = (Fn, Xn) onF × X having the following properties:

F0 andX0 are independent random variables. (61)

For n ≥ 1 Fn does not depend onXn, Xn+1, . . . , (however, it may depend on

X0, X1, . . . , Xn−1 as well as many other implicit parameters). (62)

The stochastic processXn is a non-homogenous time Markov chain onX with transition
matricesFn(w). More explicitly

If Fk(ω) = {pkx→y}x, y∈X then∀ y ∈ X we have

P (Xn = y) =
∑

x∈X

P (Xn−1 = x)pn−1
x→y. (63)

Then the non-homogenous time Markov chain converges to the unique stationary distri-
bution π exponentially fast regardless of the initial distributionof X0. More precisely,
∃α ∈ (0, 1) such that∀ t ∈ N we have

‖P (Xt = ·)− π‖L1 ≤ αm(t)

whereP (Xt = ·) denotes the probability distribution of the random variable Xt and
m(t) = ⌊ t

k⌋.

7. Conclusions and Upcoming Work

This is the first in a sequel of papers leading to the development and applications of very
promising and novel Monte Carlo sampling techniques for reinforcement learning in the
setting of POMDPs (partially observable Markov decision processes). In this work we have
established a version of Geiringer-like theorem with non-homologous recombination well-
suitable for the development of dynamic programming Monte Carlo search algorithms to
cope with randomness and incomplete information. More explicitly, the theorem provides
an insight into how one may take full advantage of a sample of seemingly independent
rollouts by exploiting symmetries within the space of observations as well as additional
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similarities that may be provided as expert knowledge. Due to space limitations the actual
algorithms will appear in the upcoming works. Additionally, the general finite-population
Geiringer theorem appearing in the PhD thesis of the first author as well as in [13] and [12]
has been further strengthened with the aim of amplifying thereasons why the above ideas
are highly promising in applications, not mentioning the mathematical importance.
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