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1 Introduction 

Business processes represent transactions internal to or between companies, which take 

place over a certain amount of time. Business processes do not necessary have to be 

supported or be executed by a business process management (BPM) system. If they do, 

however, they have the benefit of coordination, which greatly reduces the effort of the 

process owner to keep track of unclaimed tasks, sequence, logging and so forth. 

At the time of execution, business processes are commonly instantiated by the BPM 

system with all relevant parameters to distribute tasks correctly. The Workflow 

Management Coalition (WfMC) (1999) defines these parameters, workflow relevant data, 

as “data that is used by a Workflow Management System to determine the state 

transitions of a workflow instance, for example within pre- and post-conditions, transition 

conditions or workflow participant assignment.” 

However, long running processes may require that these parameters, the process’s 

context, are updated or extended during execution and that the flow of the process can be 

adapted. For example, fluctuations in exchange rates, change of weather patterns, or 

traffic congestions can have an impact on logistics processes and change their 

profitability or lead to failed instances (e.g., late deliveries). However, not all parameters 

may be known at initialization. While WfMC’s definition does not explicitly exclude this 

understanding, its aim is to define data internal to the BPM system (Workflow 

Management Coalition, 1999). 

Consider for example a logistics process of the delivery of a spare part for mining 

machine. Once the need for a spare part has been signaled, the machine provider may 

have only a certain timeframe to replace the part due to the current service level 

agreement (SLA). If the delivery is bound to delay beyond that SLA due to a context 

factor (e.g., weather: road washed away, delay at the port), the machine provider may 

elect to use a different means of transportation to stay within the timeframe allotted by the 

SLA. This requires the adaptation of running processes based on context data. 

Having recognized this issue, in recent years the concept of context-aware information 

systems has gained more traction (Wieland et al., 2007). The aim is to provide some sort 

of context to the execution of applications. However, in the area of BPM most research 

has touched only aspects of context-awareness, such as process adaptation, process 

modeling, or managerial aspects of processes (Hallerbach et al., 2008, Rosemann et al., 

2006). The description or implementation of an architecture to capture and process 

context outside the process’s control flow has been absent from the discussion or has only 

been focused on a mostly static part of model configuration (Hallerbach et al., 2008) or a 

closed environment scenario, for example of a smart factory (Wieland et al., 2011). 
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This poses the following research question: 

“How can we model the context of a business process, and how can we realize a system 

architecture for context management and dynamic process adaption in support of these 

models?” 

In the following, we propose to use a context engine to add the missing flexibility to 

BPM using business rules and complex event processing (CEP) technology. While rules 

engines are typically tightly integrated with BPM systems, a CEP engine is considered a 

separate system. CEP provides technology to process a large amount of events (Luckham, 

2002), which can signify context changes in real-time. 

We describe an architecture to manage context and the context-aware execution of 

processes, which involves a process execution environment, a rules engine to take or 

suggest decisions, and a context engine to maintain and provide context for the former 

two systems. In this paper, we explicitly focus on an architectural view of the application 

and do not go into details on possible methods to mine and analyze context change. 

The paper is structured as follows: In Section 2, we elaborate on related work to context 

and context modeling and provide the baseline for a context-aware architecture for BPM. 

Section 3 comprises the formal scope of our context model. In Section 4, we introduce 

the architecture and capabilities of the proposed system. In Section 5, we describe the 

general process of context-driven process adaptation and decision support and give an 

example. The paper closes with a discussion, summary and outlook. 

2 Related Work 

2.1 Business Process Management Systems, Rules Engines, and Complex Event 

Processing 

Processes are commonly seen as activities or tasks executed within or across enterprises 

or organizations (Object Management Group Inc., 2013). Thereby, activities may be 

complex tasks or atomic tasks. Complex tasks do not need to be analyzed further. Atomic 

tasks cannot be divided any further. Each activity is either of automated or manual nature. 

BPM is regarded as a collection of methods and tools for creating a common 

understanding of a company’s process portfolio and then for managing and improving 

this portfolio (zur Muehlen and Indulska, 2010). The aim is to plan, to control, and to 

monitor intra- and inter-organizational processes with regards to existing operational 

sequences and structures in a consistent, continuous, and iterative way of process 

improvement (Becker et al., 2011). A BPM system or engine allows for the definition, 

execution, and logging of business processes. The modeling of business processes aims at 

condensing complex process descriptions into an accessible graphical representation, 

which can be used to simplify and discuss as well as to document and specify for 

implementation. 

A (business) rules engine executes a set of rules to find a solution for a business problem 

based on some input variables. “Rules” can include rule statements, facts, priorities, 

mutual exclusion, preconditions or complex decision processes. While rules engines can 

stand alone, they often complement a BPM system. Here, the main aim is to separate 

business logic from the application or process model (von Halle, 2001). 
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The central concept in CEP is the event. In everyday use, an event is something that has 

occurred. In CEP, an event signifies an activity, which has happened, by recording this 

information in a data object. The event signifies the activity, for example a context 

change. Events comprise of several attributes (Luckham, 2002). CEP encompasses 

techniques for collecting and analyzing events in any system by gathering lower-level 

system events and deducing higher-level knowledge from those in real-time (Etzion and 

Niblett, 2011, Luckham, 2002). CEP engines execute an event processing network in 

which individual agents filter, match, and derive events. In this way, they can reduce the 

amount of events to the desired selection, correlate them with other events to find 

causalities or derive new complex events. In terms of derivation, CEP can translate, 

aggregate, split, and compose events. By translating, it can reduce the information 

contained by projecting it or it can increase the information by enriching the individual 

event. Aggregations are used to define complex events based on a set of low-level events 

using defined abstraction relationships. Composition merges two events stream while the 

split operation breaks up one event into multiple events (Etzion and Niblett, 2011). 

The topic of event management for BPM has received some attention in recent years. 

However, publications focus either on general considerations on an overall architecture 

(Janiesch et al., 2011, von Ammon et al., 2009), the modeling of process events (Kunz et 

al., 2010) or focusses only parts of the overall concept (i.e. local workflows Wieland et 

al., 2011). Janiesch et al (2012) provide an example of an event-driven process analysis 

architecture, which goes beyond process monitoring. For an overview and challenges of 

event-driven BPM cf. Krumeich et al (2014). 

Furthermore, Adams et al. (2010, 2007), Mundbrod et al. (2015), and Nunes et al. (2016) 

provide situational implementations of context-aware BPM. However, neither of them 

consider a context engine as a separate entity or established technology such as rules 

engines or CEP engines for implementation. All approaches provide a good starting point 

for flexible process adaptation also at run-time. Yet, their results are confined to their 

proprietary implementations. 

2.2 The Notion of Context and Context-aware Information Systems 

The notion of context is widely used in different research areas. Examples can be found 

in the areas of formal logic (Arló-Costa, 1999), knowledge representation and reasoning 

(Brézillon et al., 1998, Sowa, 1999), computational and sociological linguistics (Clark 

and Carlson, 1981, Halliday, 1978), cognitive psychology (Kokinov, 1999), and BPM 

(Hallerbach et al., 2008). 

A generic definition of context reads as “the circumstances relevant to an event or fact” 

(Crozier, 2006). Dey and Abowd (2000) understand context as “any information that can 

be used to characterize the situation of an entity. An entity is a person, place, or object 

that is considered relevant to the interaction between a user and an application, including 

the user and application themselves.” In the context of BPM, Rosemann et al. (2006) 

propose a working definition of context as “the relevant subset of the entire situation of a 

business process that requires a business process to adapt to potential changes in the 

context variables.” 
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Thus, context is understood as the combination of all implicit and explicit circumstances, 

which might have an impact on the situation in which it is embedded. If information can 

be used to characterize the situation of a process, then it is context. 

Chen and Kotz (2000) understand context-aware systems as computer systems, which 

offer information and services to users based on their context. Examples include tool 

support for the design of spatial databases and management of context models (Cipriani et 

al., 2011) or Provop, an approach for configuring context-based process variants based on 

static context information (Hallerbach et al., 2008). Herzberg et al. (2015) present an 

approach to use events of object state transitions to observe process progress but do not 

consider external context. 

Other research in BPM has been conceptual work for the most part. It has only touched 

aspects of context-awareness, such as reference model configuration (Delfmann et al., 

2006, Rosemann and van der Aalst, 2007), context-aware process modeling (Rosemann et 

al., 2006, Saidani and Nurcan, 2009), or the context-aware management of processes 

(Ploesser, 2013, Ploesser et al., 2010). Exception handling is also related to what we 

understand as context-aware. Exception handling deals with the management or failure, 

expiry, unavailability, and violations apart other triggers. Hence, workflow exception 

patterns (Russell et al., 2006) can be a basis for context-based adaptation. 

To structure context, several models have been developed. Anastassiu et al (2016) 

develop the ORGANON method to derive relevant context. Yet, they do not provide a 

system architecture top operationalize this information. Gu et al. (2005) use an ontology-

based approach with the help of OWL (Web Ontology Language) to model context. None 

of the above has been designed for or applied to BPM. Serral et al. (2014) have started to 

adapt OWL context representations to BPM. The reference frame of Rosemann et al. 

(2006) facilitates the identification and integration of relevant context into business 

process models. Yet, the authors do not define specific context categories but only rough 

layers. They do not specify a data structure. Michelberger et al. (2012) formalize a 

context model for BPM. However, it is static and does not allow for dynamic extensions 

or change. 

Dey (2001) applies context to the domain of computing devices and applications. They 

argue that it is useful to categorize context for a better, systematic comprehension due to 

the broad diversity of context information. For this purpose, he defines four basic context 

categories: identity, location, status, and time. Apart from academic approaches, there are 

models such as the core components and the unified context methodology using the 

context driver principle (UN/CEFACT, 2009) and World Wide Web Consortium’s 

(W3C) delivery context overview for device independence (World Wide Web 

Consortium, 2006). Stettner and Janiesch (2009) present a list of predefined context 

categories based on the above. Möhring et al. (2014) also provide an initial classification 

of context categories. Bettini et al. (2010) provide a thorough survey of context modeling 

and reasoning techniques. All of the above can be valuable input when formulating a 

concrete context model, which is not the aim of this publication. 

Summarizing, many disciplines consider and have defined context as a relevant factor. In 

BPM, internal variables are used as local context in a mostly static way in commercial 

BPM system when initializing a process model. Approaches, which deal with dynamic 

context in a wider sense, are of conceptual nature or proprietary implementations. 
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Nevertheless, several context models exist and suggest how to structure context relevant 

to information systems in general. None of them has been applied to BPM. In addition, 

the link of these models to a technical BPM system architecture using established 

technology for sensing and actuating is missing. 

3 Context Model 

3.1 Overview 

We evolve the abstract notion of context into a model to define concrete context data 

structures: a context model. The context model represents the context of a business 

process or business process instance. It may be part of a larger context cloud available to 

a context engine. A context master model carries the global context of the process model 

or the process definition. A context instance model is initialized for a process instance or 

a group of process instances. It can be based on this master context model, which then 

acts as a context template for the process instance. Context instance models can be nested 

for business or performance reasons. 

Based on the definition of context, we argue that information in these models can be 

represented by context values. Each context value within a context model is associated to 

a single context category c ⊆ 𝐶 with 𝐶 representing the set of context categories such as 

place, role, or time. One category can relate to other categories. 

We propose a context data structure in form of a context intersection. A context 

intersection is represented by a directed, acyclic graph 𝐺 = (𝑉, 𝐸) with vertices V and 

edges E. 𝑉 represents a subset of context categories 𝑉 ⊆ 𝐶 that are included into the 

context intersection. It is related to the concept of a situation from CEP (Etzion and 

Niblett, 2011), which represents a certain set of context values. Cf. Figure for a UML 

meta model as an overview. 

 

Fig. 1. Context Model Meta Model 

*0..1

Context Model

Context Master Model Context Instance Model

Context Intersection Context Category

1 *1 *

*

0..1

id:string
value:string
origin:string
timestamp:date

Context Value

Context Cloud

*
0..1

Process Model Process Instance

*

1

1

1

*1



6 

Context intersections are hierarchical, extensible, and flexible, and context categories and 

their value are time-variant and may be in a cause-and-effect relationship with other 

context categories. In addition, there are non-functional attributes, which may be 

important for context processing. First, a context intersection groups multiple context 

categories within a hierarchy. Second, a context intersection can be extended by 

additional context categories before and during the execution of an instance of a business 

process model. Third, context intersections can differ between executions of two 

instances of the same business process model. Fourth, context values of one context 

category can be used to derive/ calculate context values of another context category. 

Fifth, context information is prone to decay. The older the information is, the less 

accurate and relevant it is towards the current situation. The five characteristics of context 

intersections are non-exhaustive and discussed in detail in the following. Cf. Figure 2 for 

an example of two hierarchical context at configuration steps 𝑇 and 𝑇 + 1 with the latter 

containing updated context values (weather) and extended context categories (packaging 

method, shipping method) in an example from the logistics sector. 

 

Fig. 2. Exemplary Context Intersection at 𝐺𝑇 and 𝐺𝑇+1 

This simple context intersection contains elements from three different context 

categories: geospatial, roles, and process object. The process, freight forwarding, was 

instantiated with the elements ordered items, item damage history, and customer and 

freight forwarder information as well as the current traffic and weather information. In 

the course of the process execution, the shipping method and packaging method was 

added. At one point during execution, the weather information was updated. This may 

have been a routine update or a weather hazard warning. The context engine interprets the 

current context intersection and propagates the information to the BPM system. 

3.2 Characteristics 

Hierarchical. The context intersection provides a context framework and a generic 

structure. The generic structure enables the context engine to construct the concrete 

hierarchy for the context categories (cf. Figure 2 for an exemplary hierarchy). We extend 

the definition of 𝐺 to represent a hierarchy of context categories. 

𝑉 =  𝑉1 ∪ 𝑉2 ∪ 𝑉3 ∪ … ∪ 𝑉𝑘 , 𝑉𝑖 ∩ 𝑉𝑗 = ∅, 𝑖 ≠ 𝑗 (1) 

𝑒 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, 𝑖 < 𝑗 (2) 

Context
Intersection

G

Freight Forwarder

Customer

Geospatial
Roles

Traffic

Weather

Process Object
Packaging Method

Ordered Items

Shipping Method

Extended Context Information

Updated Context Value

Context
Intersection

G

Geospatial
Traffic

Weather

Process Object

Ordered Items

T

T+1

History

Item Damage

Freight Forwarder

Customer

Roles

History

Item Damage



7 

We further introduce a predefined context intersection 𝐶𝑝𝑟𝑒. 𝐶𝑝𝑟𝑒 only includes the set of 

predefined context categories within the first step of the hierarchy. Therefore, we can 

conclude: 

𝐶𝑝𝑟𝑒 ⊆ 𝑉1(3) 

Extensible. The structure of a context intersection can change during the execution of an 

instance 𝐵𝑃 of a business process 𝑃. We suggest that such changes should be limited to 

adding additional context categories to the current context intersection. This limitation 

helps to ensure correct execution of the business process as the deletion of context 

categories within long-running business processes can result in unexpected behavior. It 

also enables data provenance. For example, packaging information for an ordered item 

may not be available at the start of the process and will be added to the model later. 

We represent changes to a context intersection during the execution of an instance of a 

business process as a multi-step configuration problem 𝑀𝑃. The multi-step configuration 

problem helps to identify valid extensions to the context intersection. 𝑀𝑃𝐵𝑃
 is defined by 

a 4-tuple 𝑀𝑃𝐵𝑃
= (𝑀𝐶, 𝐾, 𝐺𝑆𝑡𝑎𝑟𝑡 , 𝐺𝐸𝑛𝑑), where: 

𝑀𝐶 is a set of model constraints that must be satisfied in each configuration step. 

𝐾 is the number of configuration steps during the execution of the instance of the 

business process model. 

𝐺𝑆𝑡𝑎𝑟𝑡 is a start configuration of the context intersection at the beginning of the execution 

of the instance of the business process model. A master context model can serve as a 

template to create 𝐺𝑆𝑡𝑎𝑟𝑡. The upper model of Figure 2 can act as a master context model, 

which is then copied to the context instance model of all new process instances. 

𝐺𝐸𝑛𝑑 is the end configuration of the context intersection at the end of the execution of the 

instance of the business process model. 

We define a configuration path from configuration step 𝑇 up to 𝑁 configuration steps as a 

tuple. 

𝑊𝐵𝑃
= (𝐺𝑇 , 𝐺𝑇+1, 𝐺𝑇+2, … , 𝐺𝑇+𝑁−2, 𝐺𝑇+𝑁−1, 𝐺𝑇+𝑁),   𝑇 + 𝑁 ≤ 𝐾 (4) 

𝐺𝑇 describes the configuration of the context intersection at configuration step 𝑇. 

Therefore, 𝑊𝐵𝑃
 describes changes to the context intersection for 𝐵𝑃. The set of 

constraints 𝑀𝐶 includes additional constraints besides (1) and (2). We define that only 

extensions are allowed to a context intersection during run-time, by stating: 

∀𝑇 ∈ (0. . 𝐾 − 1), 𝑉𝑖,𝑇 ⊆ 𝑉𝑖,𝑇+1, 𝐸𝑇 ⊆ 𝐸𝑇+1(5) 

Therefore, the graph 𝐺𝑇 is a subgraph of 𝐺𝑇+1. 

Flexible. Flexibility refers to how context intersections differ between the executions of 

different instances of the same business process and the global context (context master 

model). During the initialization of the execution of a business process instance, a context 

intersection, which was based on the context master model, can be extended according to 

the rules presented in this Section. Therefore, the start configuration 𝐺𝑆𝑡𝑎𝑟𝑡 of a context 

intersection might differ between two instances of the same business process. For 
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example, not all products are shipped the same way and different context categories may 

apply for surface or air delivery. Furthermore, the configuration path 𝐵𝑃 of the context 

intersection can differ for two instances of the same business process. Therefore, 

𝑊𝐵𝑖𝑃
⇏ 𝑊𝐵𝑖𝑃

= 𝑊𝐵𝑗𝑃
, 𝑖 ≠ 𝑗 (6) 

holds where 𝐵𝑖𝑃 and 𝐵𝑗𝑃 denote the instance i of the business processes 𝑃 and the 

instance 𝑗, respectively. 

Cause-and-effect. Context categories and their context values are not necessarily 

independent but often rather inter-dependent. Changes in one context value may affect 

other context values. Hence, there exist complex interrelationships between context 

categories, which may be based on aggregation or other (mathematical) functions. They 

can be relevant to process execution. It may therefore be necessary to specify these 

relationships in the context models. The resulting changes in context values are similar to 

derived/ calculated attributes in data models. For example, a delay in the execution of a 

sub-process such as a partial order delivery may cause an increase in a possible 

compensation payment. 

We refer to a single context value by 𝑣𝑖𝑑,𝑡𝑠 with 𝑖𝑑 denoting a global identifier for the 

context value and 𝑡𝑠 denoting a timestamp for the context value, respectively. Over the 

execution of a business process instance, an existing context value 𝑣𝑖𝑑,𝑘 can be updated 

with a new context value 𝑣𝑖𝑑,𝑙, 𝑘 < 𝑙. 

The update of a context value can trigger an automated update of another context value 

based on a function 𝑓: 𝑋 → 𝑌. We denote 𝑓 as cause-and-effect relation, X as the domain 

of the context value causing the update and Y as the domain of the effected context value. 

If a context value is effected by multiple cause-and-effect relations, potential update 

conflicts can arise due to latencies during update propagation. Thus, as a solution, the 

timestamp of the context value causing the update is propagated. 

𝑣𝑥,𝑘 = 𝑓(𝑣𝑦,𝑘), 𝑥 ≠ 𝑦 

Time-variant. Time-variance entails that the usefulness of information relevant to 

process execution is depending on its and the process’s time stamp. Each context 

information stored in a context category is time-variant. Consequently, there are several 

conflicts or trade-offs that a context engine needs to process with respect to time. For 

example, context information for one context category may has different time stamps. 

New information is preferred over old information as context information depreciates 

over time. 

In addition, information older than a certain time windows and which cannot be refreshed 

for some reason is associated with a lower level of reliability and importance. It may be 

of less relevance for extreme actions such as breaking and rolling back of a process. 

Furthermore, two context information sources may provide conflicting context 

information for the same context category (e.g., weather information for a region for the 

same time window). In this case, additional variables such as reliability (see below) may 

need to be defined. 
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Non-functional attributes. Lastly, context information may have different non-

functional attributes. They can be important factors in the operation of a context-aware 

BPM system. 

For example, reliability or veracity of information may be an issue. It is unlikely that a 

company will be able to obtain all relevant context value by itself. Hence, trustworthy or 

certified context providers/ sources with their systems external to the context-aware BPM 

system are preferred over context information from tertiary or unverified sources. This 

may result in a tradeoff decision, as context information may come at a charge. Naturally, 

cheap or free sources are more economical than expensive sources, but may result in 

delayed or course-granular context information. 

4 Architecture and Context and Process Adaptation 

Operations 

4.1 Architecture 

This section presents the software architecture of a system for context-aware BPM. 

Figure 3 shows a BPMN conversation diagram (Object Management Group Inc., 2013), 

which illustrates the high-level architecture of the system. 

 

Fig. 3. An Architecture for Context-aware BPM 

The BPM system comprises a process engine and a rules engine. The business process 

engine executes instances of business process models, which are stored within a (business 

process) model repository. Furthermore, the process engine has access to services which 

it can call, for example via a service repository. The process engine can access the rules 

engine to evaluate rules for decision gates within a business process model. Only the rules 

engine can interact with a context engine to obtain context information. This context 

information enables an evaluation according to the business logic available at decision 

gates based on relevant, real-time context values. The rules engine can request context 
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values from the context engine. Furthermore, the context engine can push new context 

information to a registered BPM system. Therefore, the BPM system and context engine 

communicate in a bidirectional way. The communication process is always started by the 

BPM system, which notifies the other engines of a new process or process instance. 

The context engine uses and administrates the context cloud to store context information 

in context models. The context models and their included context categories determine 

which context information is directly available to the context engine. If a BPM system 

requests context information outside the current scope of the context model, the context 

model can be altered by a context administration agent. The context engine accesses 

external systems to obtain the required context information if it is not available or current 

in the context cloud. The context administration agent then extends the context model to 

include the required context categories. External systems can be manifold and depend on 

the execution context. Apart from private third-party corporate systems such as enterprise 

systems or supply chain management systems, we consider public information systems 

for weather, traffic, financial information, but also social media as conceivable external 

systems. 

Furthermore, the context engine polls for updated context information and external 

systems can push context information to a registered context engine. External systems can 

include systems internal or external to an organization. Examples for internal systems to 

an organization are customer relationship management systems, enterprise resource 

planning systems or the BPM system itself. Examples for external systems to an 

organization are weather information systems or credit reporting systems providing 

weather information, exchange rate updates, or traffic information. 

The context engine could be based on CEP technology as this allows the concurrent 

observation and processing of a large number of context categories and context update 

events. Context information can be correlated, aggregated, filtered and, hence, be 

transformed into higher-level context information which can provide additional benefit to 

the process execution. 

4.2 Context Evaluation and Process Adaption 

A context aware BPM system has access to several methods for context evaluation and 

process adaptation. The following selection is non-exhaustive but caters for most use 

cases. 

Selection of process variants. Business process models can include alternative process 

branches for a single business process. Within a business process model, decision gates 

precede process branches. We refer to alternative execution paths represented by 

processes branches as process variants. While executing an instance of a business process 

model, the BPM system evaluates decision gates to select a process branch. The rules 

engine evaluates decision gates. However, it is conceivable that decision gates, which 

represent simple rules (e.g., checking a single value against a threshold), may be 

evaluated by the process engine itself. Both types of evaluations require context 

information provided by the context engine. We limit our observations to evaluations by 

the rules engine only. 

Relevant context. The evaluation of a decision gate does not necessarily require all 

context information included in a context model and provided by the context engine for 
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an instance of a business process model. The set of context information that is required to 

evaluate a decision gate 𝐷 is called relevant context 𝐼𝐷. The context engine stores and 

structures context information within context categories of a context model (cf. previous 

Section). Therefore, relevant context can be represented by a sub-graph of the context 

intersection at a configuration step 𝑇. 

ID ⊆ GT (7) 

During the execution of an instance of a business process model, the same decision gate 

might be evaluated multiple times. 

Threshold-guarded evaluation. The context engine does not provide means to evaluate 

the significance of a monitored change in context information. However, the context 

engine provides notification and updated context information for registered BPM 

systems. To reduce the number of notifications sent, a BPM system can provide context 

notification thresholds for different types of context information. If the context engine 

identifies a significant change in relevant context information, the context engine checks 

specified context notification thresholds. Only if the change is relevant and context 

information transgresses the specified context notification threshold, a notification is sent 

to the BPM system. 

(Native) evaluation and re-evaluation. The evaluation of a decision gate can be 

triggered in two different ways during the execution of an instance of a business process 

model. (Native) evaluation of a decision gate refers to an evaluation according to the 

process flow. Therefore, multiple evaluations of the same decision gates based on loops 

within the business process model are considered (native) evaluations. Re-evaluation 

refers to the evaluation of a decision gate exclusively based on change in context 

information. If a native evaluation of a decision gate depends on context information, the 

context engine monitors subsequent changes to the used context information. Based on 

these changes the rules engine can re-evaluate decision gates and trigger appropriate 

measurements, for example a break and/ or rollback. 

Break and rollback. Break and rollback are actions, which can be performed by the 

process engine. They can only be issued by the rules engine. A break stops the execution 

of an instance of a business process model. A rollback is the reset of an instance of a 

business process model to the start or to a previously evaluated decision gate or the start 

of a process model. Break and rollback can follow an evaluation of a decision gate. In 

combination with re-evaluations, they allow for the specification of global constraints for 

a business process. This may include the initialization of compensation processes with or 

without resorting break and rollback. 

5 Application and Example 

5.1 Application 

This section describes an archetypical application of the context-aware BPM system from 

model initialization to process adaptation and completion. Figure 4 shows a BPMN 

collaboration diagram (Object Management Group Inc., 2013), which illustrates activities 

and relationships within the architecture presented in Section 4.1. It details Fig.2 and 

provides a reference process of how the system in the above system architecture interact. 
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Fig. 4. A Reference Process for Context-aware BPM 
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process engine and rules engine. However, to better demonstrate messaging interaction on 
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itself, is regarded as an external system by the context engine in that respect. 

The application includes the three phases of initialization, execution, and shutdown. 

Initialization includes activities required at the start of the execution of a business process 

instance to configure the build-time model to the current execution context. Execution 

refers to all activities taking place during the execution of a process instance. Shutdown 
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model does not include all required information, the context engine polls external systems 

until all context requirements are satisfied. Furthermore, the context engine starts to listen 

for context changes based on the context model to keep all values current. If context 

cannot be published to the subscribed engine, it has to polls for context periodically. 

Whenever the context engine receives updated or additional context information, the 

context model is updated or extended. After initialization, the context model is accessed 

and the context engine posts initial context information to the rules engine. Then it listens 

for further context value requests. The rules engine evaluates affected rule IDs and 

configures the initial process variant for execution. Note that at this stage, sub-processes 

are not initialized but will only be contextualized on a need-to-execute basis. Then the 

rules engine listens for rule evaluation requests by the process engine. After the process 

execution is initialized, the process engine starts the execution of the business process 

instance. 

Execution. During the execution phase, activities are performed within all four pools. 

The process engine executes an instance of a business process and listens to break and 

rollback requests from the rules engine (cf. Section 4.2). If a decision gate is reached 

during the process execution, the process engine sends a request to the rules engine to 

start an evaluation and to select the appropriate process variant (cf. Section 4.2). The 

decision of the rules engine is posted back to the process engine. Based on the decision, 

the process engine selects the according process variant. Similarly, the initialization of 

sub-processes can be handled by these tasks. 

Furthermore, in extreme cases where context changes make it imperative to cancel the 

execution of a process as it will not complete or not be economical any more, the process 

engine can receive a request from the rules engine to break and rollback (cf. Section 4.2). 

The rules engine listens for rule requests by the process engine for rule evaluations at 

decision gates. When a request is received, the rules engine requests the required context 

values from the context engine and applies the rules connected to the decision gate and 

posts the decision back to the process engine. It then continues to listen to rule evaluation 

requests. Rule identifiers associated to the decision are stored to be able to identify 

relevant decisions taken in case of context change notifications by the context engine. 

Furthermore, the rules engine listens to changes of relevant context posted by the context 

engine. If a change is received, a re-evaluation (cf. Section 4.2) of the stored rule IDs is 

triggered and the decision is forwarded to the process engine. The decision can include 

the request to break and rollback or to continue process execution as if nothing happened. 

The context engine performs three main activities. It listens for context requests from a 

rules engine, updates and extends the current context model, and identifies changes to the 

current processes context. If a request from the rules engine is received, the context 

engine accesses the context model and posts the requested context information back to the 

rules engine. Accessing the context model might include an extension and/ or update of 

the current context model. Updates to the context model are received in two ways. First, 

the context engine can simultaneously poll various external systems for context 

information. Second, the context engine listens to context changes sent from external 

systems. If the context engine identifies change in the current context model’s values that 

transgress specified context notification thresholds (cf. Section 4.2), the context engine 

posts the updated context information to the rules engine, regardless if it was requested or 

not. 
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Shutdown. If the instance of the business process completes or cancels, the process 

engine informs the rules engine, which notifies the context engine, respectively. 

Therefore, the rules engine stops waiting for rule requests from this business process 

instance from the process engine and does not longer listen to context changes from the 

context engine. Furthermore, the rules engine notifies the context engine to shut down the 

of the context model instance. Therefore, the context engine stops listing to context 

request from the rules engine and stops to extend and update the context model instance. 

If a context model is being maintained for a process model rather than only for the 

process instance, this master model may not be affected by the shutdown. 

5.2 Example 

In an example from the logistics sector, a process for the delivery of high-value mining 

spare parts is being executed by a machine provider. It is crucial for the process that the 

spare parts reach the destination as a perfect order, which includes (a) a correct order 

entry, (b) correct picking, (c) delivery in time, (d) the item being shipped without 

damage, and (e) invoiced correctly. In this example, we focus on (c) and (d). Figure 5 

depicts the process in multiple simplified BPMN models: a master model, an instantiated 

instance model, and an instantiated compensation model. The figure does not include the 

rules engine. An example for a rule statement is included in the description below. 

Furthermore, the figure does not depict a context model. Figure 2 already supplies all 

necessary information. It is important to note that though we describe the process for one 

delivery, it may as well be relevant for all deliveries (i.e., the process model) or a subset 

of deliveries (e.g., all truck-based deliveries or all deliveries in or to a certain region). 

 

Fig. 5. An Exemplary Run-time- and Build-time-Process for Context-aware BPM 

The built-time process model (master model) includes variants for different shipment 
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After initialization of run-time process model (instance model) and the context instance 

model 𝐺𝑇 (cf. Figure 2) (1), the process can start. At this stage, the SLA with the 

customer allows both shipping methods (2). The more economical option of ground 

delivery is chosen. During process execution, a decision has to be made on the packaging 

of the spare part. The rules engine queries the context engine for relevant packaging 

option to the order. Accordingly, the context engine provides the information on the 

minimal packaging requirements. The rules engine either selects the most economical 

option or leaves the decision of the relevant alternatives to the user. It may enhance the 

decision process by providing historical information on customer shipments. If similar 

goods had been damaged in an economical but theoretically suitable packaging before, it 

may suggest selecting a more rugged variant. In the case of truck delivery, the 

economical option is sufficient (3). 

After the truck has been loaded and left the warehouse, the context engine notifies the 

rules engine that the context instance model has updated to 𝐺𝑇+1 (cf. Figure 2) since 

heavy thunderstorms have formed en route and have washed away a crucial dirt road 

making the mining site inaccessible from the truck’s direction. The truck would have to 

be rerouted significantly (4). The rules engine will evaluate this information, calculate a 

new estimated delivery time, and instruct the BPM system according to rules such as: 

RULE Delivery SLA 

WHEN executionTimeConstraint < estimatedDeliveryTime 

     AND maxSLAFineAmount < estimatedSLAFine 

THEN start process.compensation.deliveryVariant 

END 

Due to the strict SLA, the rules engine notifies the BPM engine to break and rollback the 

process and recall the truck as the execution time constraint would be violated (5). At the 

same time, it initializes a compensation process with the same order data and choses the 

air delivery variant as SLA can still be met if an identical spare part is dispatched right 

away. Also, this decision is more economical than paying the fine. Again, packaging 

options are queried (for air shipment) and the order is dispatched (6). It is to be received 

as a perfect order from the customer’s point of view. 

Naturally, as mentioned above this scenario is not limited to adapting the process of a 

single truck since context instance models can be nested. But it can be extended to all 

trucks that are impacted by the same context change, for example a massive traffic 

congestion on a highway since the trucks are all in or moving towards a geospatial 

coordinate. 

This basic scenario already exemplifies some of the core aspects we introduced above. 

More complex scenarios in different sectors such as banking, urban management, or high 

value asset management (e.g., oil fields) are conceivable. Not all decisions have to be 

automated. Naturally, the system can operate at different levels of autonomy 

(Parasuraman et al., 2000), either taking decisions itself or merely suggesting them. 
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6 Conclusion 

6.1 Discussion and Limitations 

We argue that changes in context such as variation in exchange rates, traffic, or weather 

can have an impact on the execution of a business process. It can cause slowdowns, even 

hinder completion, or impact a process’s profitability. Most process models are being 

executed based on static context variables also called workflow relevant data. For long-

running processes, it is likely that these static context variables depreciate and are not 

valid for the duration of the overall process. 

Hence, this static assumption is not realistic in a large-scale and inter-organizational 

process deployment. Therefore, we argue that the execution of a process must be context-

aware and, thus, the BPM system should to be accompanied by a context engine, which 

shadows the process engines process execution and provides updates to the execution 

context of process instances via a rules engine. 

We provide a general system architecture to implement such a system using a master 

context model and instance context models. This reference architecture assists the full 

process instance lifecycle: the initialization, execution, and shutdown phase of process 

execution. Processes can be supplied with an initial context, which is adapted and updated 

during run-time. Successful or unsuccessful process completions as well as process 

terminations are handled as well. 

The architecture is of generic nature to suit multiple use cases and domains. Therefore, it 

may lack precision in one domain and it then needs to be contextualized itself. For 

example, in healthcare there may be other restrictions and requirements than in logistics 

or life sciences. However, our overall architecture is applicable to all of them and can be 

adapted to each case. We consciously did not include any domain-specific attributes to 

keep the architecture applicable to more scenarios. 

In literature, there are further context models being discussed. While we propose a 

context model, models such as those available in formal logic, knowledge representation 

and reasoning, computational and sociological linguistics, or cognitive psychology should 

be revisited for concrete implementation. Before use, they need to be reviewed for their 

dynamic extensibility and the possibility to represent links between master and instance 

models. 

Despite our architecture, the successful application of context-aware BPM is not 

guaranteed. Context-aware BPM is dependent on current and accurate internal as well as 

external context information. Thus, companies do not only rely on their own systems for 

information but also on third-party information providers. These companies’ SLA need to 

be managed carefully as their availability may be an issue and require compensation 

mechanisms. 

Furthermore, context-aware BPM does only provide significant improvements in cost, 

timeliness, and quality of process execution if decisions due to context can be automated 

to some respect. Human involvement in decision making is most likely a bottleneck and 

will slow process adaptation. Context information does not only impact the BPM system 

but also other associated systems such as the (virtualized) hardware the system is running 
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on. Here, the knowledge of context change can be used to adapt the run-time environment 

as well, for example to provide more resources to the BPM system to accelerate task 

execution and, thus, overall process performance. This entails that context 

communication channels need to be open and flexible (yet secure) enough to allow for the 

registration of further system at the rule or context engine. 

Finally, context-aware BPM might not be the right solution for all types of processes as 

running and maintaining a context engine in conjunction with a BPM system will require 

adequate skills and cause additional cost. Ultimately, the value of information timeliness 

plays a similar role as in the decision for or against real-time systems (Olsson and 

Janiesch, 2015). 

6.2 Summary and Outlook 

In this paper, we presented an architecture for context-aware BPM consisting of a BPM 

system, comprising a process engine, a rules engine, and context engine, which collects 

and analyzes context information from external systems. We also describe the workflow 

of a typical context-aware process execution and give an example from the logistics 

sector. The example is supposed to illustrate the capability with a comprehensible 

example. Naturally, high volume processes with automatable lower value decisions are a 

primary candidate for this system architecture proposal. 

Future work will focus on the sophistication of the context model as well as the 

concretization of the architecture components. Furthermore, there is a need to define 

integrated modeling languages for analytic and procedural tasks (cf. also blinded) as well 

as interaction patterns for context engines und BPM systems to understand better the 

impact that context change can have on process instances. Furthermore, we plan to 

integrate context engines with novel tracing systems to populate context models with 

short latencies (blinded). In the domain of smart grids, we currently evaluate an 

integration of context engines with different context systems, for example weather 

forecast and smart meter gateways. 
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