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Abstract

The development of a given discipline in science and technology often
depends on the availability of theories capable of describing the processes
which control the field and of modelling the interactions between these
processes. The absence of an accepted theory of information retrieval has
been blamed fo’r the relative disorder and the lack of technical advances
in the area.

The main mathematical approaches to information retrieval are examined
in this study, including both algebraic and probabilistic models, and the
difficulties which impcde the formalization of information retrieval pro-
cesses are destribed. A number of developments are covered whero new
theoretical understandings have directly led to the improvement of retrieval

techniques and operations.
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1. Information Retrieval Operations
Three different cultures currently share the information retrieval

field. 1In data base retrieval, simple structured files are normally pro-

cessed, using a small numbor of well-defined attributes to characterize
each record, and a restricted set of prespecified query types to access

the data base. Fewer restrictions exist in reference retrieval where the

records represent books, documents and other library materials, and the
number of different attributes available for the identification of the
information items is effectively unlimited. In that case, the queries
often refer to the information content of individual documents. In the
;oat general case, a retrieval system might be designed to handle any kind
of query, and the system might furnish direct replies to such queries.

In such guestion answering, or fact retrieval systems a wide variety of

different types of information identifiers may be needed, and the answers
may have to be based no; only on a deep analysis of each individual infor-
mation item, but also on general world knowledge and other extraneous
factors.

No matter what retrieval environment is actually involved, four main
system components must be taken into account in any mathematical !ozm;lation
of the retrieval problem:

a) first, the objects, documents, or records themselves which
in the aggregate constitute the information files to be
processed;

b) second, the information identifiers, terms, index terms, key
words, attributes, etc., which characterize the records and

represent the information content in each case;



-3-

c¢) third, the information requests which enter into the systom
and are to be compared with the stored records prior to
retrieval;

d) finally, the relevance information often supplied by the users
of the system connecting the information requests to the

stored information items.

To describe a particular retrieval system and relate the system com-
ponents to each other, certain characteristics of the system may be quantified.
Among these characteristics are the number, sizes, types and joint-distributions
of the term occurrences in the data base, and various costs associated with

response time, record access time, and the quality of the retrieved data.

In principle, it is possible to use mathematical models in a retrieval
environzent for descriptive purposes only. Such an approach provides an
explicit system formulation and a careful specification of the assumptions
which govern the system design. 1In general, it scems more valuable to go
beyond pure description, and to relate the mathematical treatment to actual
system design parameters. 1Ideally this makes it possible to perform changes
in the operating environment while observing the corresponding effects on
system performance. Eventually optimum design parameters may be generated

by such an abstract treatment of the retrieval problem.
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The following processing operations must participate in any compre=-
hensive retrieval formulation:
a) indexing, that is the assignment of terms and content
identifiers to records and information requests;

b

~

classification, that is the specification of affinity

groups between records, or record identifiers;

c) term matching, that is the comparison of analyzed infor-

mation requests with stored records;

4d) searching, that is the utilization of available file access
paths to locate designated records;
e)

retrieving, that is extracting answers in response to the

information requests;

f) query and record updating through appropriate interactions
between users and system;

g) evaluating systems performance in terms of user satis-

faction, search effort, and retrieval cost.

Certain retrieval operations naturally lend ' themselves to mathematical
formulations. 1In particular, since records and information items are often
represented by sets or vectors of terms, or sometimes by higher order
structures such as graphs, algebraic models can be utilized to describe
indexing, searching, and retrieving. Probabilistic considerations may also
apply if one assumes that system characteristics such as the term assignment
to the records, or the yelevance properties of the records are probabilistic
in nature. Other mathematical techniques that have been used include decision
theory, information theory, pattern classification, mathematical linguistics,

and feature selection methods.
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The first formal approaches to information retrieval problems were
initiated about twenty years ago. [1-6] However, successful implementations
of formal results in operational environments are quite recent. 1In the
remainder of this study, various mathematical developments are described
with emphasis on algebraic and probabilistic procedures. The improvements
in retrieval techniques and operations which may result are stressed when-

ever possible.

2. Quantitative Considerations

Quantitative models have been used to describe a Qide variety of
phenomena in document processing environments, including the characteristics
of existing file access mechanisms, and the criteria leading to the gene-
ration of optimun indexing vocabularies. 1In particular, indicators such
as the size of a useful indexing vocabulary, the characteristics of the fre-
quency distribution of the terms across the documents of a collection, and the
statistical characteristics of the indexing vocabulary have been described by
using algebraic and probabilistic formulations.

Typically, the quantitative aspects of certain parameters are expressed
mathematically, and conclusions are drawn concerning useful operating modes
or optimum system conditions. Thus, the Poisson distribution is believed to
apply whenever rare events occur independently of each other at constant
average rates. Since most 1ibra¥y items circulate only rarely among library
patrons, and since the circulation characteristics of the items are normally
unrelated to each other, a Poisson distribution has been used to de;czibe the
number of books and the circulation characteristics of books in a library

within a given period.



Of particular interest in information dissemination are phenomena
whose behavior is hyperbolic in nature, that is, for which the product of
fixed powers of the variables is constant. (7] 1In their simplest discrete
formulation such laws apply to situations in which an input increasing geo-
metrically produces a yield increasing arithmetically, the objects in question=—-
letters of the alphabet, words in the language, authors of documents, journals
in a given subject, etc.--being chosen from a finite repertoire of elements
whose co-occurrences are only weakly correlated and whose quantitative pro-
perties are additive. In all these cases, all items are presumably equally
open to selection, but a success-breeds-success mechanism appears to operate
in thevsense;hat when an item has been successfully selected, its chances of
being sdected again increase. Thus, certain letters of the alphabet tend
to occur much more frequently than some others; so do certain words in
written text.

In information processing, the quantitative yield of the technical journal
articles written by a specified author provides a case in point: the appearance
of a journal article by a certain author makes it more likely that additional
articles will be written by the same author. The class of events obeying such
success-breeds-success mechanisms have been characterized mathematically by the

so-called cumulative advantage distribution, which is derived by rewarding

success by increasing the chance of further success, yhile keeping the chance
of failure constant when failure occurs (lack of publication is a nonevent
instead of being counted against the particular author). (8]

If the items under conside;ation are arranged in decreasing order of
yield--for example, authors of journal articles in decreasing order of the

number of articles publishéd. or words in a long running text in decreasing
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order of their frequency of occurrence--the total yield from the most pro-

ductive fraction x of the items is expressed as ‘

F(x) = A log(l+Bx) , (1)
while the yield of the item with rank x is

F(x) = C/1+Bx (2)

where A, B, and C are suitable constants.

The latter formula is a form of the well-known law by Zipf which states
that the.frequency of an item (letters of the alphabet, words in running
text, etc.) is inversely related to the rank of the item in decreasing
frequency order. (9] 2Zipf-type frequency distributions are often assumed to
characterize a variety of phenomena of interest in retrieval system design
and simulation, for example, the occurrence probabilities of the index terms
assigned to the documents of a collection. [10,11)

Another quantitative indicator in document processing is the log-
normal distribution where the loga:ithm of the dependent variable is normally
distributed about the mean value of the independent variable. Such a distribption
is believed to characterize, for example, the number of documents indexed by
term sets of a certain size, a fact that might be utilized in deciding on
an optimum size for the indexing vocabulary used in a given document environ=
ment. [12,13] Studies of many document accessing devices, such as directories,
indexus, catalogs, titles, and so on, also indicate that in each case the size
distributions (in terms of the number of words in titles, the number of entries

in a back-of-the-book index, etc.) are log-normal of the form

2
1) = e expl-1/2[le2Xm )%y (3
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where m is the mean and s the standard deviatiorn of the distribution. [14,15)

Log-normal distributions can be transformed int; a form a Zipf's law by
letting m and s approach infinity in séch a way that n/s2 approaches a single
paramcter k. This may explain the fact that both types of distributions
appear useful in the same general context.

Various theoretical justifications have been advanced for the regularities
expressed by the several quantitative laws in the document processing field.
Appeal is made in particular to file search theories and to information

theoratical considerations relating to optimum ¢ ication pr dures across

information channels, and to the information content of the indexing vocabu-
lary. [16,17] The practical usefulness of the quantitative distributions is
in any case clear when it comes to designing indexing and dictionary processing
systems, and the size and distribution of these mechanisms is known in advance.
Furthermore, the memory space requirements needed to implement various
search and accessing procedures can also be determined more easily when the
corresponding quantitative parameters obey certain definite rules. In general,
however, it remains to be seen whether the quantitative models will ever take

on more than peripheral importance in the study of information retrieval

operations.

3. Set Theoretic Models

The set theoretical view of information retrieval is based on the
recognition that information requests are normally formulated by choosing
collections or sets of item identifiers, or keywords. The keyword sets in

turn lead to the retrieval of record subsets chosen froa among the stored
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collection of records. The fundamental data of retrieval theory are
provided in this view by the relations which exist between the set of item
descriptions and the corresponding record sets.

In the simplest case, one could start with a query set R and a set of
stored records D. The retrieval operations may then be expressed as a map-
ping T:R+2P which assigns to each query reR some element of 20, the set of
all subsets in 'the record space. This is illustrated in the schema of
Fig.1l(a). [18'] The main task then consists in studying the properties
of the mapping between descriptor and record subsets. Since the concept of
record relevance is absent from the model, an attempt is made to relate the
abstract model to search efficiency rather than to retrieval effectiveness.
Of particular interest in this connection are theories of file organization
and access speed considerations.

The mapping between queries and records may be studied by noting that
an order relati_on is normally definable in the query and record subspaces.
The normal set inclusion relations between subsets of records provides the
order in the record space D; furthermore, a partially ordered relation ()
is automatically also defined in the query space R when each request is formu=-
lated by choosing subsets from among the set of query identifiers. In these

circumstances, it is easy to show that for queries r,seR

r> s = T(r) ¢ T(s) ,
that is, the more comprehensive the query, the smaller the record set actually
retrieved. (18] 1In the limit, if nothing is specified, that is if the set of
records to be obtained is left completely unrestricted, one retrieves every-

thing; on the contrary, when every possible topic area is specified in the

Query, nothing may be expected to be retrieved.
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In most retrieval systems, the physical records are not the direct
images of the retrieval function, but the system operates on some description
of the records, for example keyword sets. Furthermore the set of record
descriptions may not be identical with the set of all possible queries. An
indexing function X may then be defined from the record space D into the space
C of all possible record descriptions which assigns to each element 4d¢D a
value X(d) called the description of d. The mapping X:D+C defines an equiv-
alence relation on D, where a given element d;eD is equivalent to dj if and
only if x(di) - x(dj). In such a system, the set of documents T(r) retrieved

in response to some query recR is then a union of equivalence classes in D under

the equivalence r¢lation defined by X.

|

Specifically, the complete retrieval system may now be taken as a query
language R, a record set D, and an indexing language C, together with the

functions X:D+C, and F:R+2C. The retrieval function T:R*2D is now defined as
T(r) = {d:X(d)eF(r)} .

Thus F maps queries into sets of possibly relevant record descriptions, and T
80 defined retrieves all items corresponding to one of these assigned descrip~

tions. The model is represented in Fig. 1(b). (18]

A substantial amount of effort has been devoted to the study of mapping
systems of the kind represented in Pig. 1. In particular, various indexing
techniques can be simulated, by using for example an equivalence relation
within the descriptor set C to represent term grouping or thesaurs
functions. Descriptor phrase generation methods can be similarly simulated

in the abstract model. [19-21]
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The set theoretical models can be related to questions of retrieval
efficiency by considering differer;t types of storage- organizations for the
record set D. Two main problems arise in practice: first one would like to
obtain rapid access to the set ©f records corresponding to individual user
queries; second one would give preference to a storage organization in which
the basic retrieval methodology is not grossly affected when small perturbations
are introduced in the make-up of the record and query sets. Both of these
requirements translate themselves into a file organization in which related
record sets are stored in close proximity to each other.

A typical investigation in this connection concerns the so-called

consecutive retrieval property which obtains whenever all records pertinent

to a certain set of information queries are stored in consecutive, or adja-
cent storage positions. [22,23] Records with that property can normally be
retrieved in a single file access in a linear storage device such as a drum or
a tape. It is easy to show that when the records pertinent to a given query
set form a nested set (p(Q;) c P(Qi41)s i = 1,2,....,n , where P(Q;) is the
set of records pertinent to query Qi)+ the consecutive retrieval property
necessarily obtains; the same is true for any set of two arbitrary queries,
but not unfortunately for an arbitrary set of thrce or more queries.

While the set mapping model produces many interesting formulations and
research problems, practical results at-e not easy to come by, and the aim
of relating the mathematical work to actual system design parametors may be

difficult to fulfill.
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4. Retrieval as Vector Matching Operations
A) Attribute and Record Space
Consider a collaction D of n records, and a set A of t attributes
or properties used to identify the records. A particular record Dj can then

be represented by an attribute vector

Dj = (aj),8i2,...,ait) (4)

where agy represents the weight, or degree of importance of attribute Aj in D;.
A complete collection of records is characterized in such a formulation by an
attribute-record matrix C of dimension n by t as shown in Pig. 2(a). Each row
of the matrix identifies a record D; and each column corresponds to the assign-
ment of a particular attribute to the records of the collec.ticn. In practice,
the term vectors are all sparse because most attributes will be absent

from each particular record; when an attribute is absent, the corresponding

Altttibute weight is assumed to be zero. *

Consider now a standard retrieval operation consisting of a comparison
between the attribute vectors identifying queries and stored information

records, respectively. If a query is represented by a t-dimensional property

vector
Q= ‘qx'qz""'%’

where q is the weight of the ith query attribute, a similarity measure :1

is computable between query Q and record D, as

i

t
r(Q,D,) =L a,.q, . (S)
i o1 i37%3

1The vector representation can be applicd to business-type records where a given
attribute (for example, the age of a given person, or the salary of an employee)
can take on a variety of values. In that case, the properties then represent
the individual attribute-values, and a given ajj is the weight, or degree of
importance of the j‘h attribute-value in vector i. Por each attribute, all .
values except one are then assigned a zero weight.
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When the property vectors representing the queries and records are binary,

that is, when the attribute weights are restricted to O and 1, expression (5)

es the ber of matching attributes between query Q and record D

T
Other well-known vector similarity measures are the cosine function
t
a,.q
ri (Q'Di) - jEl i37%)
[ t (6)
I q 2 L. a 2
3=1 73 Vi=1 i)
or the correlation function
t
a, .q
r; (Q.0)) = 35 1373 n

t 2§t 2

t
q a - q.2
1 5 M Tz Wi
For retrieval purposes it suffices to compute one of these similarity coef-
ficients between queries and records, and to withdraw from the file those
records which exhibit sufficiently high similarity with the given queries.
It should be pointed out that the use of similarity measures such as

those shown in equations (S5) to (7) is based on the premise that the under=-

lying basis vectors of which the attribute vectors are linear combinations,
are orthogonal. In actual fact, however, this may not be true because
relationships may exist between individual vector attributes. 1In
particular, from the attribute-record matrix C it is possible to compute an
attribute similarity matrix T of dimension t by t, by pair-wise comparison

of the columns of C. The ijth matrix element ti of T then represents the

b
similarity coefficient between the Lth and jth attributes, expressed by

similarities in the attribute assignments to the records of the collection.
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In an analogous manner, record similarities can be obtained by similarity
computations between pairs of rows of matrix C. This produces ann by n

similarity matrix V shown in Pig. 2, where vy 3 represents the similarity

coefficient between records DL and Dj’
An extended retrieval system is now envisaged in which attribute

and record similarities are taken into account by making use of matrices

T and V respectively. [18] Consider first the standard retrieval system

of equation (5). In vector notation this becomes
r=0Cq . (8)

An alternative retrieval function may be written as

r = VCTq . (9)

Here the t-dimensional query vector is first premultiplied by matrix T to
produce a new query vector q' which takes into account the attribute similari-
ties contained in T (' = Tq). The altered query vector q' is then

further processed with the attribute record matrix C, producing an initial
n-dimensional response vector r (r = CTq). The latter finally is improved
by incorporating the record similarities of matrix V thereby changing the
record coefficients in the response vector r. [18]

The similarity matrices T and V reflect first order similarities between
pairs of attributes and pairs of records respectively. Higher order simi-
larities between triples, quadruples, etc., of items can also in principle
be utilized, although the practical usefulness may be expected to diminish

rapidly as the similarity order increases.
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B) Indexing Theory
Of all the basic inf;xmation processing ‘operations carried out
in a retrieval environment, the term assignment, or indexing operations is
most crucial, since the retrieval results and all subsequent processes are
directly based on the attributes identifying the information items. The
Gereration of a viable theory of indexing is then of considerable importance
in the formalization of the retrieval process. [24-26) The vector processing
model which characterizes each record by a t-dimensional attribute vector may
be directly translated into a useful indexing theory. [27-28)
Consider a t-dimensional attribute space. Since each record is assigned
a unique position in the space based on the attributes that are present in
each case, the indexing problem can be translated into a question of space
configuration by asking what type of record space leads to the best retrieval
results. The first thought is to construct a clustered record space which
collects in adjacent positions those records jointly identified as relevant
to individual user queries. A typical example of aAclustexed object space
is given in Pig. 3 (a) showing the envelope of the t-dimensional space and
the relative positions of the records jdentified by x's. The distance
‘between two x's in Fig. 3 (a) is inversely proportional to the similarity be-
tween the corresponding vectors; hence vectors appearing in close proximity
to each other in the space may be expecéed to be jointly retrievable in
response to certain queries.
.Hhile the space representation of Fig. 3(a) may lead to ideal retrieval
conditions, the space based on relevance clusters is difficult to construct

a priori because the set of records jointly relevant to the queries is
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unknown at indexing time. The next best space configuration may then be a
separated record space in which each record exhibits the widest possible
separation from all its neighbors. Such‘a separated record space is shown
in Fig. 3(b). The notion of a separated record space may be explained by
reference to the parameters used to measure retrieval effectiveness. A dual
objective is normally pursued in retrieval: on the one hand one wants to
achieve reasonably high recall by retrieving a substantial portion of
relevant materials; at the same time one would like to reject a large pro-
portion of the extraneous items thereby obtaining also a high grecision.f

When adequate separation is achieved between the records in the record
space, it is possible in principle to retrieve a given item in response to
a query without at the same time retrieving its immediate neighbors. The
clustered space of Fig. 3(a) may then be recall-oriented since it favors
the retrieval of clusters of adjacent records that may be either relevant
or nonrelevant; the separated record space of FPig. 3(b) on the other hand
favors search precision since it leads to the rejection of extraneous items
that may be intern'ingled with the relevant.

The notion of record space separation produces an indexing model known

as the discrimination value theory. Specifically, the value of an index

term is assumed to depend on its ability to effect separation in the space
when assigned to the records of a collection. Thus a useful term (a good
discriminator) is one which spreads out the space when assigned to the
records, as illustrated in Fig. 4. An indifferent discriminator leaves the
space density unchanged, whereas a poor discriminator compresses the space.

(27,28,29]) .

%bcall is the proportion of relevant items retrieved, while precision is the
proportion of retrieved items that are relevant. Normally, most relevant items
should be retrieved, while most nonrelevant should be rejected, leading to high
recall, as well as high precision.
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If the density of the record space is computed as the sum of the
similarity coefficients between all pairs of distinct records (or alter-
natively, as the sum of the similarity coefficients between each record and
a calculated centroid record located at the center of space), a term
discrimination value can be ;omputed for each terr k as the difference in
space densities obtained first with term k present in the record vectors
and then with term k removed.

In particular, consider a set of n record vectors of the type shown in
equation (4). A centroid K of the record space can be computed as the average
record in such a way that ki the ith vector element of X is
n
z

1
k-;jlaij . (10)

i

The space density Y is now computed as

n

Y r(X.D,) (11)

gD 3
where r is the standard similarity coefficient between records 1)j and centroid
K. When 0<r<l, then 0<Y<n. If Yk represents the space density Y with term k
removed: from all record vectors, the discrimination value ka of term k is
defined simply as Yk-\'. Obviously, for good discriminators Yk-‘l is positive,
because removal of term k will cause the space to become more dense; hence
Yk>Y. For poor discriminators the reverse obtains.

Term discrimination value measurements can be used as an indexing aid by
c‘h;osing as record identifiers terms which exhibit sufficiently high discrimi-

nation values. Purthermore the discrimination values can be incorporated into

a term weighting function by defining

wij-‘ij 'Wj (12)

where v“ is the weight of term Aj in recorad Di' a“ is the old, record-

dependent factor--for example, the frequency in occurrence of AJ in Dx--nnd .
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va is the collection-dependent discrimination value.

Experimental output is shown in Table 1 for three sample col- -
lections of research documents in the areas of aerodynamics (CRAN), medicine
(MED), and newspaper articles in world affairs (TIME). In each case the
search precision is given at certain specified levels of the recall,
averaged over 24 user queries for each collection. Collection sizes vary
from 424 documents for aerodynamics to 450 items for medicine. The improve~

ment obtainable with the DV factor is obvious in each case. [28,30]

C) Retrieval with Puzzy Sets
In the vector theoretic model of retrieval weights are assigned

to the vector attributes and similarity coefficients are computed between
attributes or between records. Obviously the term weights represent the
degree to which the attributes may be pertinent to the information items.
Degrees of relationship can also be recognized between different attributes
and different records, degrees of relevance between queries and records, and
degrees of vector similarity between queries and information items. This
suggests that the sct theoretic model may be supplemented by fuzzy set con-
siderations. [31-34)

A fuzzy set may be regarded as an extension of a conventional set with
the added provision that each clcment of the sot carrics a parameter specifying
the degree of membership of the element in the set. Specifically, if
U = {u} is a collection of objects, then a fuzzy subset W of U is a set of
ordered pairs ((u,uw(u)), ueU, where u,(u) represents the grade of membership

of u in W, and v, is the membership function.
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Using a set membership function, it is now possible to define the
retrieval system components in fuzzy set terms. ([34] ' In particular let t
represent a term or attribute, and let x be a record or an information

request, then a fuzzy relation P can be defined of the form
F = {<x,t,u(x,t)> |xeDug, tea} (13)

where ur(x,t) is a function determining for each pair <x,t> a real number
from the interval [0,l1] representing the degree of importance, or weight, of
term t in the attribute vector of x. The normal term vector for a given

record or query vector xeDuQ is now defined as a fuzzy set Px' where

Fo= {<tougtx,0)> ltea) . (14)

Additional fuzzy relations are easily introduced giving rise to new
fuzzy sets. - Thus similarities between records and queries can be modelled
by using a fuzzy association relation G between pairs of fuzzy sets Fx and

Py. specifying the degree of membership of Fx and Fy in G:

G = (<Px'Fy'uG(Fx'Py) > x,yebuQ} . (15)

As before, ug is a membership function which for each pair i‘x,!‘y assigns a
_real number vc(l’x.i'y)c[o,ll representing the degree of membership of the
pair in G.

If a fuzzy relevance relation R is defined to express the degree of

relevance of some record deD with respect to an information query qeQ, that is
R= (<qu d'uR(Pq'Fd)) . (16)

the ideal response of a retrieval system is a set of items deD for which

the membership degree of ordered pairs <Pq,? d> in the relevance relation R

exceeds some threshold A. [34)
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It is not difficult to see that other retrieval operations fit comfort-
ably under the fuzzy set umbrella. Fuzzy set models have become popular in
recent years, but fundamentally new insights have not so far materialized by

using this approach.

5. Probabilistic Retrieval Models
A) Retrieval as a Decision Theoretic Model
In the vector processing models of retrieval similarities are

computed between attributes and records, and between records and queries.
It is obvious that the degree of similarity between the various entities of
interest in retrieval can also be expressed probabilistically; indeed pro-
babilistic retrieval models have received extensive use in the past. [35,36]

From a decision-theoretic viewpoint, the basic retrieval task may be
expressed in terms of three main parameters: é(rel), the probability of
relevance of a record; a.,a loss parameter associated with the retrieval
of a nonrelevant or extraneous record; and aa loss associated with the
nonretrieval of a relevant record. A loss minimizing rule can be Qevised by
noting that the retrieval of an extraneous item causes a loss of [1-P(rel)la,,
whereas the rejection of a relevant item produces a loss of P(rel)az. In
these circumstances the total loss is minimized by opting for retrieval of

an item whenever
P(xel)az > (l—P(xel)]a1 . Qa7

Equivalently a discriminant function g may be defined, and an item may be
retrieved whenever ¢>0, (10,37,38]

P(rel) _ 21

9 *1P (rel) a, ° (18)

where
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A retrieval rule of the kind produced by equation (18) is not useful in
practice because the relevance properties of the individual records cannot of
course be divorced from other system parameters. Thus, it becomes necessary
to relate the discriminant function to other design parameters, and most

notably to the indexing process. This can be done by defining two conditional

probability parameters:

P(gj_‘ vl) the probability of term x, occurring in a record
given that the record is relevant to a given query

P(x‘l "2) the probability of term xg given that the record
is not relevant to the query. [(38,39)

Using Bayes®' formula, a retrieval function P(wil X) can be obtained, where wl

and v, indicate relevance and nonrelevance of the record, and x is a vector

of one or more terms X

P(x)w,) P(w,)

Plvy ) = 1=1,2 (19)

P(x)
Here P(vi) is the a priori probability of relevance or nonrelevance of an

item, and
2
P(x) -iglP(ilwi) Plw) . (20)

If one assumes that the two loss parameters are equal to 1 (.1"2-1)' the

N

obvious retrieval rule now calls for retrieval whenever
P(w, [x) > Py lx) (21)
or whenever the discriminant function g > 1 where

p(wllx) . P(il"l) Pw,) -
Plwy|x) — P(x]w,) Pwy) ° (22)

gix) =
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The discriminant function may also be linearized by taking logarithms as

follows °
P‘l"'l’ P(w)
g(x) = log + log ——— . (23)
P(glwz) Plw,)

The foregoing rule relates the retrieval of the records to the occur-
rence characteristics of the terms in both the relevant and the nonrelevant
items. For pratical application, it is necessary to specify how the proba-
bilities P‘El"'i) are to be determined. The problem is two-fold in that first
one must determine the occurrence characteristics for each term separately,
and next the interactions between terms must be specified. In most abstract
rétrievél models the second problem is settled either by considering single=-
term queries only, where term interactions are obviously of no consequence
[38,40], or more drastically by disregarding term interactions altogether, and
assuming that terms occur independently of each other in the records of the
collection. The first question relating to the term occurrences can be
handled either by using a simple probability distribution, such as the
Poisson distribution to characterize the oc;':urrence characteristics of the
terms, or by studying the actual occurrences of the terms in a typical sample

record collection and applying the findings to other collections at lar;;o.

Consider the case where term independ is a d and where the occur-
rence characteristics are obtained from a sample collection. In such circum-

stances one can write

Plxjw,) = P(xllwi) P(lewi) vsee Ph‘nl'i) . (2¢)
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Assuming for convenience that the information vectors are binary, that ig
xi-l whenever the ith term is present in a vector, and xi-o othexwise,
equation (24) becomes

noooX 1-x
P(glwl) -illl Py (l-pi) i

n
i 1-x
Plx[wy)) =M q * (1-q) 4
where

Py = P(x;=1|w)) and q -P(xi-llwz) . (25)

The discriminant function g of equation (23) is now rewritten

n p; p P(wl)
g(x) = E {x, loqa—ib (l-xi) log ( )} + log —— Py (26)

It remains to determine the occurrence probabilities of each term x;
separately in both the relevant and the nonrelevant items in a collection.
Consider fo;' this purpose a sample collection of N records and assume that
R records out of N are relevant to a given query Q and N-R items are nonrele=-
vant. The term occurrence characteristics for a texrm x; are listed in
Table 2.

1f one assumes that the term occurrences in the sample record coneccion.
. of Table 2 are typical of the term occurrences at large, one can postulate
that

P, = fi/R and q = ni-ti/N-R .

so that the retrieval function g(x) of equation (26) becomes

P(w,) n 1-p. n i/R-r

1p; L (27
92 = log 5oy udy 19 g <, *+I) %y log, ngE N Rer,
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The first two terms in (27) are constant for a given query. Only the
last factor involves term xg. In particular, for each query term x; a weight
proportional to

ri/R—ri

L I /N-n.Rr (28)
i ni'ri/N'"i R: £,

is added to the discriminant function g. The expression Li represents the
proportion of the relevant items in which x; occurs divided by the proportion
of nonrelevant items in which the term occurs; Li may be called the term
relevance of term X . Since Li expresses in some sense the value of term

x; in the retrieval environment, the term relevance may be usable in inter-

active retrieval to adjust the term weights as explained later.

B) Poisson Model
The earlier development shows that adequate information must be

available concerning the occurrence probabilities of the terms in the records
of a collection if probabilistic models are to be used in retrieval. When
actual term occurrence data of the kind shown in Table 2 for simple records
and queries are available, the problem can be circumvented. Unfortunately
the complete retrieval and relevance information necessary for the construction
of a full contingency table is generally not known a priori. It becomes
necessary then to use information derived from theoretical probability dis-
tributions while assuming that the actual data in fact follow the theoretical
model.

The Poisson distribution has often been used for this purpose because

that distribution is easy to treat mathematically, and more importantly
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because its properties appear to reflect accurately the occurrence character-
istics of many words or terms in written documents and records. The Poisson
distribution in fact reflects a random scattering of a word, or term,
throughout a running text, with text units of equal length having equal
probability of containing an occurrence of the word.

Specifically, if p occurrences or tokens of a term are scattered over
records or documents of approximately equal length, the probability P(k) that

a given document receives k tokens of that term is

1 px -2
P (X) -;!<§) en (29)

Since p/n = A represents both the mean and the variance of the
distribution, the total frequency of occurrence p of a term is proportional
to the variance. This fact has been used in many of the early automatic
indexing models by noting that specialty words capable of representing infor-
mation content tend to be clustered in a few documents, whereas nonspecialty
words exhibit more uniform occurrence characteristics. By computing a measure
of deviation from the Poisson model, it is then possible to separate the con-
tent words which provide effective indexing elements from others that do not. [40-45)
A The Poisson model can be extended by -assuming that the distribution re-
flects the occurrence data not only for the common nonspecialty words, but also
for content and specialty terms. In the latter case, however, a distinction
must be made between various classes of documents and records. If only two
relevance classes exist, that is, if a given document is either relevant or
nonrelevant, one may assume that two different Poisson distributions characterize
the occurrences of the specialty words, the first one pertaining to the relevant

items, and the other to the nonrelevant ones. [46] If w and (1-%) represent the



probabilities of a record belonging to classes 1 and 2 respectively, and Al

and Az, are the means of the respective Poisson distributions the probability

that a document receives k tokens of the given specialty word is then

x -
e

+ (1-w)

-
P(k) =7 © 1&1

3]

X
2 Az
k1 °

(30)

Under similar assumptions, the decision function of equation (22) may

be rewritten as
—(Xl-xz) A ) 3

g0 = e r = - 31 .
2

The term independence problem is ignored by replacing the vector x of
equation (22) by a single term x assumed to exhibit k occurrences in the
document or record.

Although the two-Poisson model operates imperfectly, very likely because
the separation of the stored records into only two homogeneous classes may be
unrealistic in practice [47], similar considerations have led to the gener-
ation of various retrieval evaluation models. [48-49] Once again two dis-
tinguished populations of objects are recognized, termed A and B, and
identified in an information retrieval environment with the nonrelevant and
the relevant records, respectively, with respect to some information query. A
measurable characteristic Z is then chosen for the two populations, for example
the query-record similarity coefficient between each member of A and B and the
given query. An appropriate indication of system effectiveness may then be
provided by measuring the differences between the respective probability

density functions f£(Z) for the two distinguished populations.
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A typical distribution for the similarity coefficients pertaining to
the relevant items (f£(Z|B)) and the nonrelevant ones'(t(zlh)) respectively
is shown in Fig. S. If the means and variances for the two popoulations are
xl and Az, and 012 and 022 respectively, an evaluation measure can be
generated based on the differences between these parameters. For example, a
cut-off value Z=C may be chosen as shown in Fig. 5 and the proportion of
objects B for which 2>C may then be computed as the area under the B curve
to the right of cut C, and similarly for the A curve. The former measure
may be intcrpreted as the probability of retrieval of a relevant item, pro-
viously defined as the recall; the latter is the probability of retrieval of
a nonrelevant item and is known as the fallout. Several other retrieval
evaluation procedures make use of differences in measurements between

relevant and nonrelevant items, respectively. [50,51)

C) Term Independence
The probabilistic models described earlier involve estimates of
the occurrence probabilities of query term combinations X in the relevant
and nonrelevant document populations. Solutions have been provided for two
* special cases, namely when a single query term x is present rather than a
multiplicatiy of terms, and when the various query terms occur independently
of ;ach other in the stored collection. It may be of interest to inquire
to what extent the term independence assumption violates the actual occur-
rence characteristics of terms (words and phrases) in natural language texts.
An accepted measure of the degree of statistical dependence between

randoa variables x and y is the correlation coefficient
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[} - E.‘..‘..’Sﬂ!l:ﬂ_’:__ -1l<p<] (32)
XY \E(x-3 2 IVEly-P 2]
where E is the expected value, and X and ¥ are average values for x and y
respectively. A correlation p close to 1 indicates linear dependence
between the variables; p near -1 indicates perfect negative correlation,
while correlation values near O are assumed to reflect statistical independence.
In a collection of written documents, the variables x and y of equation
(32) may be interpreted as the occurrence frequencies of two terms across
the documents of a collection, and X and ¥ as the average frequencies in
each case. For n documents, the correlaioncoefficient then becomes
n
VAN e

where x; and y; are the occurrence frequencies of x and y in the ith docu-

(33)

ment. Experimental output containing percentages of the pair-wise correlation
within certain ranges of the correlation coefficient p .y is shown in Table 3
for 2,590 terms (or about -3.4 million term pairs) occurring in 3,469 titles
of research articles in computer science, and for 2,651 terms (or about 3.5
million pairs) occurring in 424 document abstracts in aerodynamics. [52]
Column 2 of Table 3 shows that almost all correlation cocfficients are
near 0 for the title words in computer science; only a small fraction of
one percent of the pairs exhibits any kind of positive correlation. For word
pairs chosen from document abstracts, about 3 percent of the pairs are posi-
tively correlated, although the value of the correlation coefficient is
generally small (below 0.2). The last column of Table 3 again shows the
correlation coefficient for the 2,651 terms in aerodynamics; however in that
case a clustered collection is used in which documents are grouped into classes

or clusters according to similarities in their term vectors, and the term
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pairs chosen are those that co-occur in any of the document clusters. Since
the document classes are constructed by using affinities between the items,
the restricted environment within which the pair-wise correlation coef-
ficients are computed in that case is known in advance to contain substantial
term similarities. The output of Table 3 shows that in that case about 30
percent of the terms exhibit nontrivial positive correlations. In fact
about ten percent of term pairs, consisting mostly of terms occurring only
once in the-same document of a given cluster, exhibit a perfect correlation
of 1.

The data of Table 3 indicate that if a large enough environment is
chosen -- for example, a complete document collection -- the deviations from
zero correlation are minor. However, when the environment is restricted and
consists of items with obvious similarities, the independence assumption is
not tenable.

Various retrieval system models have been proposed for which at least
some dependencies between terms are taken into account. Thus, the vocabulary
may be divided into thesaures classes of similar terms where perfect
dependence exists within each thesaurus class, but independence is assumed
between classes. [10] Alternatively, the pair-wise term similarities may
be assumed to be describable by specified probability distributions. [11)

In one recent model, the extent to which two terms xg and xj deviate
from independence is measured by the expected mutual information measure

!(xl.xj)a
P(xi,x )
P(xi)P(x

- : (34)
I(xi,yj) xi’xj P(x*,xj) log )

3



where P(xi,xj) is the joint probability of occurrence of xg and xj. (39}
A graph is then constructed in which the nodes represent the terms, and the
edge weights represent the dependencies I(xi,xj). Since for t terms there
may be t2/2 dependent pairs, it becomes important to concentrate on the most
important pairs by eliminating less important edges from the dependency
graph. This can be done by constructing the maximum spanning tree which
spans the graph by covering each node while maximizing the sum of the edge
weightsizl I(xi'xj(i))' A retrieval decision function g(x) is then pro-
duced analogous to the one shown in equation (23); the function is, however
qonlinear in that case, and requires knowledge of the pair-wise occurrence
probabilities. (39} .

It is likely that experimental output will become available soon for

retrieval models incorporating at least some term dependencies.

6. Interactive Searching

Many of the existing, successful retrieval operations
are currently implemented in an interactive mode permitting the user, or a
search intermediary, to submit the information requests using a console
device with direct access to the stored information files. [S3] In such an
environment it is possible to conduct a search iteratively by modifying the
initial search statements until a final, satisfactory search output is event-
ually obtained. Various strategies suggest themselves for the reformulation
and improvement of the original search requests. [54) Vocabulary displays
can be used to add new terms related to the ones already present in the

search request. Alternatively, it is possible to use information obtained
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from documents retrieved in an earlier search iteration to improve subsequent
query statements.
One particularly effective interactive retrieval methods is known as the

relevance feedback process. It consists in returning to the system information

concerning the relevance, or nonrelevance of previously retrieved items. [(5S)
The query can then be automatically modified by rendering it more similar to
previously retrieved items identified as relevant (for example, by increasing
the weights of query terms also found in the relevant items), while simultan-
eously rendering the query less similar to the retrieved items identified as
nonrelevant.

Since relevance assessments of records with respect to queries are thus

made available for at least some query-document pairs, the question arises
about the proper use of this information for retrieval purposes. Consider
again the contingency listing of Table 2 which exhibits the breakdown of
relevant and nonrelevant records that do, or do not, contain a given query
tern x- The information of Table 2 can be used as.a basis for various kinds
of term weighting functions: [56]

a) If only the presence of the terms is used (xi-l) and the terms are
assumed to occur independently in the set of relevant items, and
independently also in the whole'collection, an appropriate expression of
term value is the proportion o? relevant items in which the term occurs
civided by the proportion of the whole collection in which the term

occurs:

"
[ ]
ol

Ry

-,
N

(35)
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.b) 1If only term presence is used as before, but the independence
assumption extends separately to the relevant and the nonrelevant

items, the corresponding term weighing obtained from Table 2 is
n.-r,

£ N-R

- i’; + . (36)

2 R

€) Using the term independence assumptions of case a) but assuming
that both the presence as well as the absence of query terms is
important, one obtains as a function of term importance the por-
portion of relevant items in which term x; either does or does not
occur divided by the ratio of the whole document set in which the
term does or does not occur

T n
£ m ot i

+
3 R-ri N-ni

(37)

d) The last possibility consists in taking into account both the
presence as well as the absence of query terms while assuming term
independence in the set of relevant records as well as the set of

nonrelevant items. This produces the formula

r n,-r,
£, - —=— } ———— (38)
4 R ri N ni R+zi

Equation (38) is identical with the term importance criteria of equation
(28) obtained earlier by using the formal probabilistic model under appropriate
term independence assumptions. It appears then that this last expression is
formally correct, and should be utilized in Lrteractive retrieval when infor-
mation is available about the term occurrences in the relevant and nonrele-

vant records. [S6] (When the full contingency information cannot be generated
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directly, the table can be filled in little by little as relevance data are
furnished during interactive retrieval for more and more items. In the
latter case, approximate term importance indicators are computed by using
a subcollection N' of N + a subset R' of R of relevant records, a subset
N'-R’ of the nonrelevant items.)

The term relevance factor (equation (28) and (38)) has been studied
theoretically and used experimentally in various retrieval tests. Thus, it
can be shown formally that when records are retrieved in decreasing order
according to the number of matching terms with the query, a term weighting
systen derived from the relevance factor permits a stricter ranking of the
items in decreasing order of presumed relevance which proves at least as
effective in terms of recall and precision as the original system without
relevance weights. [57] Evaluation output of this type showing the average
search precision at fixed values of the recall is shows in Table 4 for a
collection of 425 articles in world affairs from Time magazine, averagced
over 41 different user queries. [58) In Table 4 a standard term weighting
system is used where ulj' the weight of term j in document i, is defined
as the frequency of term j in the document. This factor is multiplied by
Lj' the term relevance factor for term j, in the output shown on the right-
hand side of the Table. It is seen that precision improvements varying from

10 to 20 percent are obtainable even though the theoretically required term

independence ptions are not totally verified for the experimental col-

lection under study. [S8]
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When term relevance information is obtainable through the interaction
with the system, many other possibilities become available for effecting
improvements in retrieval. For example, if the accuracy of term i is defined
as the ratio of the relevant items in which the term occurs to the total
number of items containing the term (ri/ni), then formal proofs can be
furnished of the usefulness of a thesaurus method in which high accuracy
terms related to the ones originally available are added to the queries;
similarly, a phrase generation method in which two or more terms each with
lower than average term accuracy are replaced by a single "phrase” term with
h}gher than average accuracy will necessarily prove effective in retrieval.
Finally, a term weighting system in term accuracy order also furnishes
improved retrieval output. -[59]

Another approach to the use of term occurrence data in the relevant
and nonrelevant items of a collection consists in computing occurrence pro-
babilities for certain term combinations, in both relevant and nonrelevant
records. This makes it possible to add t§ (or to subtract from) the query
formulations term sets exhibiting sufficiently high (or sufficiently low)
occurrence probabilities in the relevant records of a collection. Once again
the effectiveness of the process can be proved formally under well-defined
conditions. [60]

Consider again the contingency information of Table 2, and assume that
an original query Q contains m terms. The probability of a relevant item

containing a term j of Q, 1<i<m, is pj-r /R where tj is the number of

3
relevant records containing term j, and R the total number of relevant in the

collection. Similarly, the probability of a relevant item not containing
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term j is (l-pj). If once again the terms are assigned independently to the

relevant records, the probability ‘that a relevant item contains exactly the terms

i m
(xl,xz,...,xi) but not the terms (*i+1'xi+2""'xm} will be(klll pk) (k_ll+1 (X-Dk)).
m

Since there are exactly |i| ways of choosing i terms out of m, the probability

' that a relevant record has exactly i terms in common with the query is

i m
- n n -
C(Plo .oe .P..i) (E) (k-l pq(k))(k-i+1 (1 pg(k) )) (39)
i

where g is a permutation of the integers 1,2,...,m and the summation is takea
over all(‘:) combinations of choosing i terms out of m. Finally, the expacted
nuzber of relevant items exhibiting i or more term matches with a query Q will
be kzi Cpysennipyik).

Analogously, if nj-rj is the number of nonrelevant items containing term
j. and qj = (nj-rj)/(N—R), 1<j<m, is the probability that a nonrelevant item
contains a term j of Q, and if the terms occur independently in the nonrelevant
records, the expected number of nonrelevant items exhibiting i or more terms
in common with query Q will be (N-R)kzi C(ql,...,qm,k) . Given these expres=
sions, it is not difficult to prove that new, improved queries are produced

by adding terms x when the C-factors exhibit appropriate

m#l'xm+2" e ¥ne
relationships. For example, L new terms can be added to a query, each with
weight 4/ t, 0<A<], provided for every i,. 1<i<2, (60)

¢ I
kEiC PpygeeseoPpy k) 2\ 2y Clap ) coevqy oK) . (40

In the same way, terms with appropriate negative characteristics can use- -

fully be subtracted from the query.



Obviously, if the term occurrence information necessary to compute the
P; and 9 probabilities is not available for a sufficient number of terms, or
if the sample collections used to obtain the probabilities are not typical of
the record collections that one must process in practice, none of the inter-
active query alteration methods examined in this section is guaranteed to

lead to improved retrieval results.

7. File Organization and Record Clustering

One aspect of retrieval that has not so far been mentioned is the
choice of a file organization providing effective access to the records. 1In
some situations one can store related records in the same general vicinity
within the storage medium so that the number of required storage accesses
is limited. Alternatively, even when the related records themselves are
scattered in storage, retrieval may be speeded up by storing in a common area
the addresses of the related records. The latter strategy is used in the well-
known inverted file systems where an auxiliary index stores references to all
records sharing a ‘given key word.

Since the computation of vector similarity coefficients is natural when
records and information requests are identified by keyword sets, it is easy to
extend similarity computations to apply to larger groups of records instead of
only to vector pairs. This leads to the notion of a classified file where
records whose pair-wise similarity is sufficiently large are grouped into
common classes, or clusters. If one assumes that records which are jointly
relevant to certain search requests are likely to be identified by similar

attribute vectors, such records may then appear in cl and b
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may be retrievable together. [61] In any case, the idea of record classifi-
cation is well-known and has received extensive use in retrieval. [62-66]

A typ;cal clustered file organization is shown in Fig. 6, where each x
represents a record, and the circular configurations are the clusters. The
distance between two x's is once again assumed tc be inversely related to
the similarity between the corresponding attribute vectors. Thus, when two
clusters appear close together, and in particular when there is overlap be-
tween clusters, the respective records may present considerable similarity.
In the diagram of Fig. 6, each record cluster is identified by a central
item known as the centroid, which is ~btained from the other records in the
cluster by a computation similar to that shown in equation (10). - The
best known cluster generation systems are expensive to use when the number
of records to be classified is large. ([67) However cheaper methods are known
which may be applicable to information files of realistic size. [68,69)

Consider now the file search problem. In general a clustered file search
may be carried out by initially comparing the query formulations with the
cluster centroids only. This operation is then followed by a comparison
between the query and those individual records whose corresponding query-
centroid similarity was previously found to be sufficiently large. In principle,
a clustered search can be quite rapid because under favorable circumstances
large portions of the file are rejected at an early stage of the search, and
the detailed examination of the records is restricted to areas in the record

space that prove to be productive.
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Various strategies are possible in order to isolate the clusters which
may contain useful records. The standard approach consists in computing a
similarity coefficient between a given query and each cluster centroid, and in
submitting to a detailed scarch clusters whose query-centroid similarity
exceeds a given threshold; alternatively, the top i clusters, that is the i
clusters with the largest query-centroid similarity coefficient may be
examined. The standard strategy is effective when the clusters are of approx-
imately equal size, and when the useful records are concentrated in only a few
Clusters.

Another possibility consists in computing a probability measure which
gives an estimate for each cluster of the number of records in the cluster
containing at least k matching attributes with the query. [70) 1In fact,
if p 5 is taken as the probability that a random record in a particular cluster
contains the jth query attribute, a development analogous to the one leading
to the estimate of equation (39) shows that the expected number of records

in the cluster having at least k attributes in common with query Q is

m i -m
- L n -
Et(k) qi_k (f‘) (j-l pg(j)) (jgiﬂ. (1 Pg(j)9 (41)
i,

where r is the index of the cluster under consideration, q is the number of
records in cluster r,and g is again a permutation of the integers {1,2,...,m).
By computing the E value for the various file clusters, and assuming that
a record containing a sufficient number of matching query attributes is in fact
relevant to that query, it becomes possible to devise a reasonable cluster
search strategy. Let s be the total number of records to be retrieved in a
given search, and let 4> 0 be a constant such that any cluster containing 4 or

fewer expected number of desired records will not be included in the search
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(because the expected search payoff would be too small in such a case) .
An appropriate search strategy may then be the following:
a) retrieve records from clusters for which the expected number of

desired records is greater than A for each cluster, that is
Er(k) >4 (r=1,...,n)

B) since the aggregate number of records to be retrieved is s for

properly chosen k, the added condition is
z E (k) > 8.

When overlap exists among the clusters, it is necessary to subtract from
the E value the expected number of records having at least k matching query
tern that are situated in the intersection between adjacent clusters. When
the overlap is small, as it generally must be in an efficient storage organi-
zation, the calculated E value of equation (40) may be expected to hold also
in the more complicated situation.

The zt(k) value of expression (40) specifically excludes term relevance
information, since pj is simply the probability that a given query term is
contained in a record. Hence a cluster search based on the computation of
Brtk) values will be effective only when the prescnce of many query terms in
a record automatically implies relevance. When term relevance probabilities
are available, expression (40) can be modified to include them.

Let P(vl,xi) be the probability that a record is relevant to a given query
and that it contains tem X;» and consider P(wl,xi,xj) - P[wl,xi)n(wl,xj)].

If the events (vl,xil and (wl,xj] are independent, P((wl,xi)n(wl,fj)] -

Plw ox.) o P(vl.xj) - P(vllxi) P(x,) P(wllxj) P(xj). (41)



Defining P(x,) again as Py P(wll x;) as u,, and P(').[’TL) as w;, it is obvious

that expression (40) for E (k) is now transformed into

m i ] )
R (k) =q L, L (n P’ u ) n (l1-p_) © (41)
r i=k (2} {j=1 g g - 9 9
(1) 3 I3/ \s=1a1 3 %

1]
where Rx (k) now represents the expected number of relevant records with at

least k attributes in common with tha query. Appropriate estimates for u, and

i

Gi for pratical use are :

r R-zi
u = = and “'1 - ¥

Experimental cluster search output is shown in Table S for the standard
cluster search, as well as for the Er(k) and Rr(k) strategies. [71]) 1It is
clear from the data of Table 5, that the Er (k) function provides improvements
only for high-precision searches when it is important to find the most useful
single cluster of records. When recall is important, that is, when more than
one cluster must be examined, the R » (k) function incorporating term relevance
probabilities must be used to obtain improvements in the cluster search effect-

iveness. Once again, the probabilistic parameters lead to more effective

retrieval results, even though the required term independ assumptions may

not be met in some instances.

8. Summary

Various formal approaches to information retrieval problems are
examined in this study, including purely quantitative criteria reflecting the
occurrence characteristics of various entities in a retrieval environment, and

more complete structural models of the whole retrieval process. Of particular



-41-

interest are models based on set mapping operations, vector processing
_methodologies, and decision theory.

The vector space approach leads to the notion of a low-density space in
which the various records exhibit substantial separations from each other.
This in t;znu creates the term discrimination theory which defines a useful
index term as one capable of expanding the record space.

The decision theory model produces a linear discriminant function leading
to the retrieval or rejection of individual records under specified conditions.
An effective term weighting function incorporated into the discriminant
function uses both the presence and absance of query terms in the records, and
makes assumptions about term independence in both the relevant and the non-
relevant records. The term independence assumption in the records of a col-
lection is found to be nearly correct in many retrieval environments.

Two special retrieval situations are also considered including interactive
retrieval using relevance information concerning previously retrieved records,
and clustered file arrangements permitting rapid searches based on estimates
of the cluster productivity in terms of number of included relevant records.

It appears that the large variety of formal approaches to the retrieval
process may lead to real advances in ie::ieval capabilities in the foreseeable

future.
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) CRAN 424 MED 450 TIME 425
Recall 3y aij-wj 3y ij'va ay aij-v.wj
0.1 0.68 0.68 +0 0.79 0.80 +1% 0.75 0.84 +12%
0.3 0.47 0.54 +15% 0.55 0.59 +7% 0.67  0.72 +7%
0.5 0.31 0.36 +16% 0.44 0.45 +2% 0.64 0.67 +5%
0.7 0.20 0.25 +25% 0.34 0.37 +9% | 0.54  0.57 +6%
0.9 0.13 0.13 +0 '1 0.18 0.20 +11s ﬁ 0.39  0.42 +8%

Search Precision at Fixed Recall Values With and

Without Discrimination Value Weights
(24 user queries for collection)

Table 1
'1 w 2
xi-l ti ni-ri
x‘-O R-:i N-ni-Ri-zi
R N-R

Hx relevant

"2 noarelevant

Occurrence Table for Term xg and Query Q

Table 2
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Clustered
Computer Science Aerodynamics Aerodynamics
Py y Titles Abstracts Collectinn
‘ (3.4 M pairs) (3.5 M pairs) (59 M pairs)
“1<p <=0.1 0 0.03% 0.10%
-0.1 < p <-=0,02 0.06% 8.57% 22.37
=0.02 < p < 0.02 99.26% 84.71% 47.52%
0.02 < p < 0.1 0.39% 3.55% 0.77%
0.1 <p < 0.2 0.12% 2.70% 0.78%
0.2 <p < 0.99 0.15% 0.38% 19.26%
p = 1.0 0.02% 0.06% 9.20%
Statistical Correlation Coefficient for Term Pairs
in Document Collections
Table 3
Term Freguency Term Frequency with
Recall Weights Aij Texrm Relevance '1j. 5
o.r ° 0.42 0.46 +10%
0.3 0.41 0.46 +11¢
0.5 0.39 0.45 +13s
0.7 0.33 0.39 +17%
0.9 0.30 0.36 +19%

Search Precision at Fixed Recall Values
with and Without Term Relevance Weights
(Time Collection 425 documents, 41 user queries)

Table 4
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Search with

Number of Standard Search with
Expanded Cluster E_(k) Estimate R_(k) Estimate
r x
Clusters Search
1 0.21 0.25 +19% 0.30 +43%
3 0.42 0.33 -=21% 0.49 +17%
5 0.52 0.42 -19% 0.61 +17%
7 0.56 0.48 -143% 0.66 +18%
9 0.62 0.59 -9% 0.73 +18%
14 0.75 0.68 -9% 0.80 +7%
20 0.82 0.75 -9% 0.87 +6%
a) Average Recall Results for Various
Cluster Search Strategies
Number of Standard Search with Search with
Expanded Cluster E_(k) Estimate R_(k) Estimate
r r
Clusters Search
1 0.24 0.29 +21% 0.36 +50%
3 0.17 0.14 -18% 0.21 +24%
5 0.13 0.11 -15% 0.16 +23%
7 0.10 0.05 -10% 0.12 +20%
9 0.08 0.08 0 0.11 +38%
14 0.07 0.06 - -14% 0.09 +29%
20 0.05 0.05 0 0.07 +40%

b) Average Precision Results for Various
Cluster Search Strategies

Recall and Precision for Cluster Search Methods
(424 document abstracts in aerodynamics, 24 user queries)

Tahla §
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