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Abstract
Purpose – For aiding computer security experts in their study, log files are a crucial piece of information.
Especially the time domain is very important for us because in most cases, timestamps are the only linking
points between events caused by attackers, faulty systems or simple errors and their corresponding entries in
log files. With the idea of storing and analyzing this log information in graph databases, we need a suitable
model to store and connect timestamps and their events. This paper aims to find and evaluate different
approaches how to store timestamps in graph databases and their individual benefits and drawbacks.
Design/methodology/approach – We analyse three different approaches, how timestamp information can
be represented and stored in graph databases. For checking the models, we set up four typical questions that are
important for logfile analysis and tested them for each of themodels. During the evaluation, we used the performance
and other properties as metrics, how suitable each of the models is for representing the log files’ timestamp
information. In the last part, we try to improve one promising lookingmodel.
Findings – We come to the conclusion, that the simplest model with the least graph database-specific
concepts in use is also the one yielding the simplest and fastest queries.
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Research limitations/implications – Limitations to this research are that only one graph database
was studied and also improvements to the query engine might change future results.
Originality/value – In the study, we addressed the issue of storing timestamps in graph databases in a
meaningful, practical and efficient way. The results can be used as a pattern for similar scenarios and applications.

Keywords Security, Graph database, Logfile analysis, Time model representation

Paper type Research paper

1. Introduction
When analyzing logging information, the time domain is most important, as timestamps are
usually the only means for finding corresponding log entries when data from different
sources are combined. Therefore, it is crucial to have a data model at hand which allows all
sorts of different queries whilst at the same time, the model must not become too complex
for performance andmaintainability reasons. The overall topic this paper contributes to is to
get arguments, whether it is a good idea to use graph databases as combined storage for all
systems logs, ranging from one single machine up to a whole enterprise network. Following
a bottom-up approach for the overall design of such a data model, the part representing the
temporal domain appears to be a good starting point. This paper outlines the aspects our
proposed timestamp models are checked against, the data we used for testing and it then
analyses three different data model designs for processing time information.

Each model’s quality is measured by its expressiveness, the complexity of the queries
from a human being’s point of view and by the suitability for a graph database using
pattern matching for its queries. During the evaluation of these properties, the model must
be capable of answering the following questions:

� Q1: For a given event beginning, where is the corresponding ending?
� Q2: Which IP addresses were connected at a given timestamp?
� Q3: Which of the two given log entries occurred earlier?
� Q4: Which events occurred X-time units before/after a given event?

As a testing platform, Neo4J [1] was chosen because it is a native graph database [2] and
there exists an open-source community version. Furthermore, a web application called
Neo4J Browser [3] for developing queries exists which is also open source.

2. Related work
To the best knowledge of the authors, there is no related work dealing with time modelling
in graph databases in the specific context of this research. Nevertheless, there are some
scientific publications that can be used as anchor points for further literature research in this
field.

Theodoulidis and Loucopoulos (Theodoulidis and Loucopoulos, 1991) introduce time
modelling concepts in a conceptual schema. Patton (Patton, 2001) tries to model time-
varying dependencies between random distributed variables in the context of currencies
(exchange rates). Wiese and Omlin (Wiese and Omlin, 2009) give an approach for modelling
time with long short-term memory (LSTM) recurrent neural networks in the context of
security and safety applications in credit card transactions, fraud detection and machine
learning.

A more security-related research field is presented by Schwenk (2014), modelling time for
authenticated key exchange protocols. Semertzidis and Pitoura (Semertzidis and Pitoura,
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2016) give a first insight into managing historical time queries by using structured data,
represented in graph databases.

Recent literature was presented by Maduako and Wachowicz (2019), who model places
and events in a network with space-time varying graphs and by Chu et al. (2020), who
present a novel deep learning method for query task execution time prediction in graph
databases.

Using time spacial modelling methods in ontologies, Hobbs and Pan (Hobbs and Pan,
2013) describe an OWL-2 DL ontology of temporal concepts (OWL = web ontology
language), which was verified by Grüninger (2011) in 2011.

Further, non-scientific sources (GraphGrid, 2015) and (Bachman, 2013) propose
variations of the model introduced in Section 4.3 but do not give any recommendations for
which purpose their models should be used or how to query them.

More literature is found on the general use of graph databases for network security
monitoring like proposed by Diederichsen et al. (2019) or by Tao et al. (2018) but without
going into detail on the representation of the time domain.

3. Input data
Our testing data originate from a live and personal post-fix e-mail server. A small example
of the input data is shown in Listing 1. Due to privacy reasons, the public internet protocol
(IP) addresses from the original logging information were replaced by ones from the Private
Address Space defined in request for comments (RFC) 1918. All other values remained
unchanged.

Listing 1 Example of log information used as test data. For privacy reasons, the public IP
addresses were replaced by random private ones. 1 April 26 05:32:55 smtp postfix/
smtps/smtpd[728399]: connect from unknown[10.8.21.42]2 April 26
05:33:01 smtp postfix/smtps/smtpd[728399]: disconnect from unknown
[10.8.21.42]3 April 26 05:33:01 smtp postfix/smtps/smtpd[728399]:
connectfromunknown[10.8.21.42]

This type of test data was chosen because it is comparatively easy to read for a human
being, all lines share a common format and most importantly, the log file contains events
with an explicitly stated beginning and ending. For example, a connection initiation is
denoted by connect from X and its termination disconnect from X. Between these two lines,
we consider the connection to be alive.

In the analysis of the graph database models, the following information will be used:
� Timestamp (Apr 26 05:32:55): The main data of interest for our model.
� Process identifier (728399): As multiple remote systems can connect to post-fix

simultaneously, multiple instances need to run. As a result, the system wide process
identifier or process identifier (PID) is required for matching corresponding lines together.

� The action executed (connect from/disconnect from): Denoting the beginning and
ending of each event or in the following connection.

� The remote internet protocol (IP) address (10.8.21.42): Identifying the remote client.

By default, the timestamps produced by post-fix only have a granularity down to seconds. As a
result, multiple lines in the log file, each representing one event, can share the same timestamp,
rendering their order indistinguishable if we are only relying on the timestamp information. To
compensate this problem, we assume that the relative order of one line compared to its
neighbors is known during processing, and therefore, must be encoded in the datamodel.
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4. Our data models
We propose three different data models for storing timestamp information in graph
databases. The first one is basically a one-to-one translation originating from relational
databases. These would store log lines in rows and the timestamp would be one column. In
the graph database world, we store the time information as properties (the equivalent of the
column) in the nodes (the equivalent of the rows) representing events. In our case, these are
nodes to represent connection and disconnection. Our second model still keeps the timestamp
information inside one dedicated node for each entry, but the order of nodes is represented by
directed edges between the timestamp nodes, basically forming one long timeline. For the third
model, we exploit the hierarchical structure of a timestamp, basically building a tree like structure.

Most parts of the models are common for all three versions. For this reason, they are
described here once for all using generic names. In the remainder of this work, to
make nodes of one model distinguishable from other models, the naming convention
<model prefix>_<node type name> is used. Themodel prefix consists of two letters loosely
derived from the model’s name. In the case of the property-based model the prefix is Pt, for
the timeline model,Tl is used and the hierarchical model is marked withHr.

The core of all models are theEvent nodes. Each node of this type corresponds to one connect
or disconnect line in the processed log file. As the remaining properties like involved IP
addresses in each log line are reused, this information is modelled in dedicated nodes (except for
the timestamps of course). Edges are usually directed from the Event node to the referenced/
shared nodes. Remote IP addresses are represented by Ip nodes, connected to the event node by
ATTACKER_IP edges. Whilst the local IP also uses this type of node, it is connected using
TARGET_IP edges. The type of the event (connecting or disconnecting) is expressed by
IS_TYPE edges from said event node toType nodes. To aggregate events by PID, Process nodes
in conjunction with HAS_PID edges are used. Because a productive server environment might
be up for a long time, the process ID is bound to be reused at some point in time. Whilst this has
to be taken into account in the real world, the currently observed time frame is too short so that a
PID rollover can be neglected for the observations in this work (cnicutar, 2020; Chazelas, 2020).

An example for the common part of the data model based on the property-based model
can be found in Figure 1.

4.1 Property-based model
For this very basic model, the complete timestamp information is solely one property
contained in the Pt_Event node. Neo4J offers support for this by providing several dedicated

Figure 1.
Part of the graph
structure common for
all three versions of
the data model

192.1...64 66

735271

178.1...

conn... disco...
IS_TYPE IS_TYPETARGET_IPTARGET_IP

HAS_PID HAS_PID

ATTACKER_IPATTACKER_IP

Note: The red nodes (64 and 66) represent a log line for the property-based model 
in this example
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datatypes (Neo4j, I, 2020a). Apart from the timestamp itself, additional information is
required due to the coarse granularity of whole seconds for the timestamp. As a result, the
order for multiple events with the same timestamp is not distinguishable anymore. To work
around the problem, the property order is introduced. It contains an increasing number
starting at 1 and denotes the position in the logfile for a group of events sharing the same
timestamp. This property can then be used by the query to sort the events in such a group.
An example for an event node of the property-basedmodel can be seen in Figure 2.

4.2 Timeline model
In the timeline model, every log line from the input files receives a dedicated timestamp node.
All these nodes are connected byNEXT edges pointing towards younger timestamps. Event
nodes are then attached using HAPPENED_AT edges to their dedicated timeline nodes
(Figure 3). As for the property-based model, again problems concerning event order on equal
timestamps arise. For this model, our solution is to allow multiple timestamp-nodes per
actual timestamp. The order is maintained by the directedNEXT edges.

4.3 Hierarchical model
A timestamp itself is some kind of hierarchical composition. Every year has a fixed
amount of months which have a certain number of days, etc. The hierarchical model
tries to exploit this relationship by creating dedicated nodes for each level from years
down to the desired granularity. Every time unit is connected to the more granular one
with FINER edges. For lateral movement, NEXT edges are used for connecting nodes in
ascending order, but only if they share the same parent node. Afterwards, for the
sake of simplicity, we will refer to a part of the resulting structure as a time
tree, although the nodes on the year level do not share an existing parent node, and

Figure 3.
Example of the
timeline model

113 119 124 131NEXT NEXT NEXT

114 120 125 133

HAPPENEND_AT HAPPENEND_AT
HAPPENEND_AT

HAPPENEND_AT

Note: Nodes in the upper row contain timestamp 
information, the ones from the lower row represent events

Figure 2.
Example for an event
node of the property-

basedmodel

64

Pt_Event   <id>: 64   order: 1   timestamp: 2020-04-27T05:57:27.000Z

Note: The timestamp information is encoded as property
inside the node using a dedicated datatype
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therefore, only one year is a formally sound tree. An example for a part of the resulting
structure can be seen in Figure 4.

The Hr_Event nodes are then attached to the nodes representing seconds using
HAPPENED_AT edges. For solving the problem of equal timestamps, event nodes are
connected with NEXT_EVENT edges, if they belong to the same process. Edges are again
directed from older event nodes to younger ones. The name is chosen differently toNEXT to
make the difference explicit and avoid confusion during queries. In Figure 5, a whole
example is shown with several event nodes belonging to the same process and partly
sharing the sameHr_Second node.
As outlined in related work at Section 2, in non-scientific literature (Bachman, 2013; GraphGrid,
2015) the same and a very similar model is described. Especially (Bachman, 2013) contains not
only the same structure for the timestamp part as proposed here but also enhances it by adding
FIRST andLAST edges directing from a time unit to the next finer one.

5. Evaluation
In this part, we will propose specialized queries for the questions formulated in Section 1 for
each of the previously defined data models.

In an attempt of increasing the query’s readability and genericity, we tried to split each of
them in two parts. The first part is only responsible for fetching a specific event node by
different means. Our proposed examples here are simply using the ID of an already known
node or specific values. In any case, this part of the query delivers the event nodes or other
data a user might wish to operate on in a generic way to the remainder of the query so that
the implementation details are easily exchanged according to a use-case. The second part
does the actual work answering the user’s question. This part is specific for the data model
and the contained data, but should not require changes when working for different
applications.

Figure 4.
Example for a part of
a basic timestamp
tree

2020

4

26

45

10 15 27 33

5 6 7

27

FINER

FINER FINER

FINER
FINER

FINER

FINER

FINERFINER

FINER

FINER

year

month

day

hour

minute

second

Note: The top node represents the year and the FINER edges lead to the nodes 
with smaller time granularity
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In some cases, it might be possible to write a shorter expression for a query. Again, with the
intention to create more readable versions of the queries, the proposed ones have been
chosen.

Under the assumption, that not only connect and disconnect events are present but also
other types, it is always necessary to filter for the desired event node type. However, it is still
assumed a single process can only handle a single remote connection at a time.

5.1 Question 1: for a given event beginning, where is the corresponding ending?
For the first question, the beginning of an event is known, which is in the actual test data an
incoming connection and the user wants to knowwhen this event ends, which means for this
example, when the remote machine disconnects. The connect event node is found by a hard
coded ID, which simulates that a specific connection is currently under investigation and the
matching disconnect has to be found.

5.1.1 Property-based model. In Listing 2, the disconnect log entry is found by the shared
process ID between connection and disconnection log entry. As the process cannot handle
two connections simultaneously, filtering for nodes with the same process ID as shown in
Line 5 is enough, if only the node is returned which is from a time perspective point of view
the closest one.

Listing 2 Finding the disconnect event node for a given connects in the property-based
model.
1 MATCH (connect:Pt_Event) WHERE id(connect) = 17 WITH connect
2
3 MATCH
4(connect:Pt_Event),(process:Pt_Process),(disconnect:Pt_Event),
5(connect)-[:HAS_PID]->(process)<-[:HAS_PID]-(disconnect),
6(disconnect)-[:IS_TYPE]->(:Pt_Type{name:“disconnect”})
7WHEREconnect.timestamp<=disconnect.timestamp

Figure 5.
Complete example of

the hierarchical
model with several

event nodes

FINER FINER FINER FINER FINER FINER

FINER
FINER

FINER
FINER

HAS_PID
HAS_PID

HAS_PID
HAS_PID HAS_PID

FINER

TXENTXENTXEN NEXT

NEXT

NEXTNEXT

NEXT_EVENT NEXT_E NEXT_EV NEXT_EVENT

NEXTNEXT NEXT NEXT

FINER

FINER FINER

FINER

FINER

HAPPENED_ATHAPPENED_ATHAPPENED_ATHAPPENED_AT HAPPENED_AT

2020

4
26

6243 27 54

59 9 17 24 25 34

176 183 188 412202

7304

13 14 15

27

Notes: The nodes in the penultimate line represent log lines whilst the single node at the bottom 
stands for a process. The remaining structure expresses timestamps as described in Figure 4
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8
9RETURNdisconnect
10ORDERBYdisconnect.timestampASC,disconnect.orderASCLIMIT1

5.1.2 Timeline model. The query for the timeline model in Listing 3 is slightly more
complicated. It works by exploiting the single timeline bringing all time nodes in one global
order. As the disconnect event must have occurred later, the search can make use of the
directed edges (see Line 8). The shortest paths between the given start node and all
satisfying disconnect nodes are queried there. By selecting the minimal one, the connection
ending is found.

Listing 3 Finding the disconnect event node for a given connects in the timeline model.
1 MATCH (connect:Tl_Event) WHERE id(connect) = 172 WITH connect
2
3 MATCH
4 (connect)-[:HAPPENED_AT]->(connectTimestamp),
5 (disconnect)-[:HAPPENED_AT]->(disconnectTimestamp),
6(disconnect:Tl_Event)-[:IS_TYPE]->(:Tl_Type{name:“disconnect”}),
7(connect)-[:HAS_PID]->(t:Tl_Process)<-[:HAS_PID]-(disconnect),
8p=shortestPath((connectTimestamp)-[:NEXT*1.c]->

(disconnectTimestamp))
9WITHdisconnect,length(p)ASlenORDERBYlenASCLIMIT1
10
11RETURNdisconnect

5.1.3 Hierarchical model. For finding the disconnect log entry in the hierarchical model,
there are basically two different approaches possible.

The first is denoted in Listing 4. This query works by finding the shortest path in the
time tree but unlike the previous query for the timeline model, it is not possible to indicate
the direction, as the search must also go up the hierarchy. To ensure that only events after
the connect are returned, Line 8 is used which at the same time restricts to the right process.

Listing 4 Finding the disconnect event node for a given connect in the hierarchical model
using the time information.
1 MATCH (connect:Hr_Event) WHERE id(connect) = 121 WITH connect
2
3 MATCH
4 (disconnect:Hr_Event), (ip:Hr_Ip), (connect:Hr_Event),
5(disconnect)-[:ATTACKER_IP]->(ip)<-[:ATTACKER_IP]-(connect),
6(connect)-[:HAPPENED_AT]->(con_sec:Hr_Second),
7(disconnect)-[:HAPPENED_AT]->(dis_sec:Hr_Second),
8(connect)-[:NEXT_EVENT*]->(disconnect),
9(disconnect)-[:IS_TYPE]->(connectType:Hr_Type{name:

“disconnect”}),
10p= shortestPath((con_sec:Hr_Second)-[:FINERjNEXT*0..]-

(dis_sec:Hr_Second))
11
12RETURNdisconnect ORDERBYlength(p)ASCLIMIT1.

The part of the hierarchical model indicating the precedence of a event node over the other
(the NEXT_EVENT edges) is basically a special case of the timeline model. As a result, it is
possible to adapt the query from Listing 3 and create a slightly less complicated query
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shown in Listing 5. The main difference is that the detour over the time tree is not taken and
instead the information encoded by theNEXT_EVENT edges is sufficient. Nevertheless, for
the performance test later in Section 6.1, the first query from Listing 4 is used.

Listing 5 Finding the disconnect event node for a given connect in the hierarchical model
using the log entry precedence information.
1 MATCH (connect:Hr_Event) WHERE id(connect) = 121 WITH connect,
2
3 MATCH
4 disconnect:Hr_Event), (connect:Hr_Event), (ip:Hr_Ip),
5(disconnect)-[:ATTACKER_IP]->(ip)<-[:ATTACKER_IP]-(connect),
6(disconnect)-[:IS_TYPE]->(connectType:Hr_Type{name:

“disconnect”}),
7p=shortestPath((connect)-[:NEXT_EVENT*..]->(disconnect))
8RETURNdisconnectORDERBYlength(p)ASCLIMIT1

5.2 Question 2: which IP addresses were connected at a given timestamp?
For this question, it is required that the event type under investigation lives over a measurable
timespan, which is the case for a connection bound by the connect and disconnect log entries and
their associated event nodes. As input data, a point in time is given and as output, a list of IP
addresses is expected which were connected at the specified point in time. In the following
examples, the timestamp 2020–04-26 06:30:17 CEST is used. As datetime objects of Neo4J are
timezone aware, a conversion to UTCmight be required and is implicitly done if required (Neo4j,
2020a). It is also notable that the selected timestamp is not represented directly by any node
because nothing happened at this timestamp in the input log file. As a result, it is not possible to
directly use a node representing the desired timestamp for the subsequent queries.

5.2.1 Property-based model. The property-based model can work with the provided
timestamp directly, as the time information is, in any case, not stored in dedicated nodes. In
Listing 6, the aim of the query, apart from the usual restrictions, is to create a temporary
datetime object and compare all nodes in the database against it.

Listing 6 Finding the currently connected IP addresses for a specified point in time for
the property-basedmodel.
1 WITH datetime(“2020–04-26T06:30:17.000[Europe/Vienna]”) AS

timestamp
2
3 MATCH
4(connect:Pt_Event),(process:Pt_Process),(disconnect:Pt_Event),
5(connect)-[:HAS_PID]->(process)<-[:HAS_PID]-(disconnect),
6(connect)-[:IS_TYPE]->(:Pt_Type{name:“connect”}),
7(disconnect)-[:IS_TYPE]->(:Pt_Type{name:“disconnect”})
8WHERE
9connect.timestamp<=timestampAND
10disconnect.timestamp>=timestampAND
11(
12 connect.timestamp< disconnect.timestamp
13 OR
14 connect.timestamp=disconnect.timestampAND
15 connect.order< disconnect.order
16)
17WITHdisconnect
18MATCH(disconnect)-[:ATTACKER_IP]->(ip)
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19
20RETURNDISTINCTip.ipASconnected_ips

5.2.2 Timeline model. Finding the connected IP addresses at a specific point in time in
Listing 7 requires several steps. It works by first filtering all connect events before the given
timestamp. For all resulting nodes, possible disconnection nodes are found and the shortest
paths between them are calculated (multiple per connection node). In the next step, for each
connected node, only the shortest path is retained. Based on this result, in the third step, all
the disconnect nodes which have occurred before the desired timestamp are filtered out.
The resulting nodes now have a connection before and disconnection after the desired
timestamp. Now, the remaining task is fetching the remote IP addresses.

Listing 7 Finding the currently connected IP addresses for a specified point in time for
the timeline model.
1 WITH datetime(“2020–04-26T06:30:17.000[Europe/Vienna]”) AS

timestamp
2
3 MATCH
4 (connect:Tl_Event)-[:HAPPENED_AT]->

(connectTimestamp:Tl_Timestamp),
5 (connect)-[:IS_TYPE]->(:Tl_Type{name: “connect”}),
6 (disconnect:Tl_Event)-[:HAPPENED_AT]->

(disconnectTimestamp:Tl_Timestamp),
7 (disconnect)-[:IS_TYPE]->(:Tl_Type{name: “disconnect”}),
8(connect)-[:HAS_PID]->(:Tl_Process)<-[:HAS_PID]-(disconnect),
9p=shortestPath((connectTimestamp)-[:NEXT*1..]->

(disconnectTimestamp)),
10WHERE
11connectTimestamp.timestamp<=timestamp
12
13WITHtimestamp,connect,pORDERBYlength(p)ASC
14WITHtimestamp,connect,collect(p)ASpaths
15WITHtimestamp,connect,paths[0]ASp
16UNWINDnodes(p)ASdisconnectTimestamp,
17WITHtimestamp,connect,disconnectTimestamp
18
19MATCH
20(connect)-[:HAS_PID]->(:Tl_Process)<-[:HAS_PID]-(disconnect),
21(disconnect)-[:HAPPENED_AT]->(disconnectTimestamp),
22(disconnect)-[:ATTACKER_IP]->(ip:Tl_Ip)
23WHEREdisconnectTimestamp.timestamp>=timestamp
24
25RETURNip.ipASconnected_ips

5.2.3 Hierarchical model. For finding the currently connected remote machines at a point in
time in the hierarchical model, the approach from the timeline model is slightly adapted in
Listing 8. Because this model does not support different timezones by default, the reference
timestamp has to be adapted accordingly compared to the other models, which means
adding 2 h to convert UTC to CEST. Apart from this, the main difference is the way the time
information is processed, as the values for the datetime objects have to be extracted from the
time tree first.
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Listing 8 Finding the currently connected IP addresses for a specified point in time for
the hierarchical model.
1 WITH datetime(“2020–04-26T06:30:17.000Z”) AS timestamp
2
3 MATCH
4 (year:Hr_Year)-[:FINER]->(month:Hr_Month)
5 -[:FINER]->(day:Hr_Day)
6 -[:FINER]->(hour:Hr_Hour)
7 -[:FINER]->(minute:Hr_Minute),
8 -[:FINER]->(second:Hr_Second),
9 (connect:Hr_Event)-[:HAPPENED_AT]->(second),
10 (connect)-[:IS_TYPE]->(:Hr_Type{name: “connect”}),
11 (disconnect:Hr_Event)-[:IS_TYPE]->(:Hr_Type{name:

“disconnect”}),
12 p=shortestPath((connect)-[:NEXT_EVENT*1..]->(disconnect)),
13WHERE
14datetime({year:year.value,month:month.value,day:

day.value,hour:hour.value,minute:minute.value,second:
second.value})<=timestamp

15WITHtimestamp,connect,disconnect,p
16
17WITHtimestamp,connect,disconnect,pORDERBYlength(p)ASC
18WITHtimestamp,connect,collect(p)ASpaths
19WITHtimestamp,connect,paths[0]ASp
20UNWINDnodes(p)ASdisconnect
21WITHtimestamp,connect,disconnect
22
23MATCH
24(year:Hr_Year)-[:FINER]->(month:Hr_Month)
25-[:FINER]->(day:Hr_Day)
26-[:FINER]->(hour:Hr_Hour)
27-[:FINER]->(minute:Hr_Minute)
28-[:FINER]->(second:Hr_Second),
29(connect)-[:HAS_PID]->(:Hr_Process)<-[:HAS_PID]-(disconnect),
30(disconnect)-[:HAPPENED_AT]->(second),
31(disconnect)-[:ATTACKER_IP]->(ip:Hr_Ip)
32WHERE
33datetime({year:year.value,month:month.value,day:day.value,

hour:hour.value,minute:minute.value,second:
second.value})>=timestamp

34
35RETURNip.ipASconnected_ips

5.3 Question 3: which of the two given log entries occurred earlier?
For answering this question, two Event nodes are given by ID and the query answers, which
of the provided log entries occurred earlier. This time, the query solely uses the timestamp
and ignores the precedence information. The query takes the first given node A as a
reference and answers whether the second oneB is less, equal or greater.

5.3.1 Property-based model. Finding the query for the actual question is as easy as
Listing 9 which consists of selecting two nodes and then comparing their timestamp values.
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Listing 9 Answering which event occurred before/after the other one in the property-
based model.
1 MATCH (a), (b) WHERE id(a) = 168 AND id(b) = 48,
2
3 RETURN
4 a.timestamp> b.timestamp AS less,
5 a.timestamp = b.timestamp AS equal,
6 a.timestamp< b.timestamp AS greater

5.3.2 Timeline model. The query for the timeline model basically works like the previous one
and is shown in Listing 10. Mainly, the time comparison is based on the existence of a
directed NEXT path between the two nodes in question. For the case of value equality, an
appropriate check is done. This leads to the unique property that the equals answer can be
true in addition to less and greater.

Listing 10Answeringwhich event occurred before/after the other one in the timelinemodel.
1 MATCH (a), (b) WHERE id(a) = 51 AND id(b) = 140 WITH a, b,
2
3 MATCH
4 (a)-[:HAPPENED_AT]->(aTimestamp:Tl_Timestamp),
5 (b)-[:HAPPENED_AT]->(bTimestamp:Tl_Timestamp),
6
7 RETURN
8 EXISTS((aTimestamp)<-[:NEXT*]-(bTimestamp)) AS less,
9 aTimestamp.timestamp = bTimestamp.timestamp AS equals,
10 EXISTS((aTimestamp)-[:NEXT*]->(bTimestamp)) AS greater

5.3.3 Hierarchical model. The answer for the precedence of event nodes in the hierarchical
model is determined by the query in Listing 11.

Here, also a form of path existence check is used, but this time with the optional match.
The usage of optional allows the query to set the path variables to null if no appropriate path
is found. Like for the timeline model, the directions ofNEXT edges are used, but to overcome
the presence of the hierarchy of the time tree, the empty nodes, which are denoted by (), are
required. Also, it has to be differentiated between the case where the shortest path is built
usingNEXT edges and a special case where only a common parent node is found.

Listing 11 Answering which event occurred before/after the other one in the hierarchical
model.
1 MATCH (a)-[:HAPPENED_AT]->(timestampA) WHERE id(a) = 119 WITH *
2 MATCH (b)-[:HAPPENED_AT]->(timestampB) WHERE id(b) = 136 WITH *
3
4 OPTIONAL MATCH,
5 p=((timestampA)<-[:FINER*0..]-()<-[:NEXT*]-()-[:FINER*0..]->

(timestampB))
6WITH*
7
8OPTIONALMATCH
9q=((timestampA)<-[:FINER*0..]-()-[:NEXT*]->()-[:FINER*0..]->

(timestampB))
10WITH*
11
12OPTIONALMATCH
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13r=((timestampA)<-[:FINER*0..]-(commonA)<-[:FINER]-()-[:FINER]->
(commonB)-[:FINER*0..]->(timestampB))

14
15RETURN
16pISNOTNULLORcommonA.value> commonB.valueASless,
17timestampA=timestampBASequal,
18qISNOTNULLORcommonA.value< commonB.valueASgreater.

5.4 Question 4: which events occurred X time units before/after a given event?
When trying to find the root cause of an event, it may be of interest, which events occurred
in a timeframe before or after a specific event. Accordingly, the ID and timeframe of an event
are given as input for this question (in this example, 1 h ago). The expected results for the
queries are all event nodes enclosed by the calculated timestamp on one hand and the
previously given event on the other hand.

5.4.1 Property-based model. For answering the question in the property-based model, Listing
12 starts by querying an event node by ID and extracting the timestamp. With this information,
the second timestamp is calculated and then used forfiltering all events in the database.

Listing 12 Finding all events in a certain time frame in the property-based model.
1 MATCH (event:Pt_Event) WHERE id(event) = 1267
2 WITH event.timestamp AS timestamp
3
4 WITH
5 datetime ({year: timestamp.year, month: timestamp.month, day:

timestamp.day, hour: timestamp.hour-1, minute: timestamp.
minute, second: timestamp.second}) AS lowerTimestamp,

6 timestamp AS upperTimestamp
7
8 MATCH (events:Pt_Event)
9 WHERE
10 lowerTimestamp<= events.timestamp AND
11 events.timestamp<= upperTimestamp
12
13 RETURN events

5.4.2 Timeline model. The timeline model version is shown in Listing 13. As it is unknown
whether a timestamp node representing the second boundary exists, the timeline can only be
exploited for one boundary and for the second, roughly the same approach as for the
property-basedmodel is applied.

Listing 13 Finding all events in a certain time frame in the timeline model.
1MATCH(event:Tl_Event)-[:HAPPENED_AT]->(timestamp:Tl_Timestamp)
2WHEREid(event)=1179
3WITHtimestamp,timestamp.timestampAStimeVar
4
5MATCH
6(earlierTimestamp:Tl_Timestamp)-[:NEXT*0..]->(timestamp),
7(event:Tl_Event)-[:HAPPENED_AT]->(earlierTimestamp),
8WHERE
9earlierTimestamp.timestamp>=datetime({year:timeVar.year,month:

timeVar.month,day:timeVar.day,hour:timeVar.hour-1,minute:
timeVar.minute,second:timeVar.second})
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10
11RETURNevent

5.4.3 Hierarchical model. In the hierarchical model, we were not able to exploit the actual
data structure at all. Instead, the solution in Listing 14 consists of an approach in which the
data is read and converted from the hierarchical model and then processed like in the
property-basedmodel.

Listing 14 Finding all events in a certain time frame in the hierarchical model.
1 MATCH (event:Hr_Event)-[:HAPPENED_AT]->
2 (second:Hr_Second)<-[:FINER]-
3 (minute:Hr_Minute)<-[:FINER]-
4 (hour:Hr_Hour)<-[:FINER]-
5 (day:Hr_Day)<-[:FINER]-
6 (month:Hr_Month)<-[:FINER]-
7 (year:Hr_Year)
8 WHERE id(event) = 2150
9
10 WITH
11 datetime ({year: year.value, month: month.value, day: day.

value, hour: hour.value, minute: minute.value, second:
second.value}) AS upperTimestamp,

12 datetime ({year: year.value, month: month.value, day: day.
value, hour: hour.value-1, minute: minute.value, second:
second.value}) AS lowerTimestamp,

13
14 MATCH
15 (event:Hr_Event)-[:HAPPENED_AT]->
16 (second:Hr_Second)<-[:FINER]-
17 (minute:Hr_Minute)<-[:FINER]-
18 (hour:Hr_Hour)<-[:FINER]-
19 (day:Hr_Day)<-[:FINER]-
20 (month:Hr_Month)<-[:FINER]-
21 (year:Hr_Year)
22 WITH lowerTimestamp, upperTimestamp, event,
23 datetime ({year: year.value, month: month.value, day: day.

value, hour: hour.value, minute: minute.value, second:
second.value}) AS timestamp

24 WHERE lowerTimestamp<= timestamp AND timestamp<=
upperTimestamp

25
26 RETURN event

5.5 Summary of the evaluation
During this evaluation, we saw the necessary steps to get an answer for our queries stated in
the introduction in Section 1. We also saw, that there is a tendency for the easier models to
require less complicated queries, which means the property-based model needs smaller
queries whilst the hierarchical model the more convoluted ones. Furthermore, the long
NEXT chain considered to be an advantage of the timeline model is not always usable and,
in some cases, an approach similar to the property-based model is required.
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6. Comparison of the models
In the introduction, we set up some criteria we want the three different models to compare
against. The following only applies to the timestamp part of the models, whereas the
remaining information like EventType or Process is not of interest here.

Table 1 contains three dimensions for each model. Expressiveness covers, what kind of
semantics can be encoded inside the model. More accurately, this draws the line between implicit
knowledge located outside the model and knowledge explicitly stored and displayed by the
model. An example: a user of the property-based modelmust know, how timestamps in the nodes
can be accessed and how they have to be sorted. In contrast, the timeline model already covers
this knowledge by explicitly providing directed edges between the nodes. With complexity,
mainly the effort required by the user for writing the query is described. However, as we can
conclude from (Neo4j, I, 2020b), the with keyword divides the query into several logical parts,
limiting the possibilities for the query optimizer. Therefore, a query containing a lot of with
statements may also be costly to execute, which also flows to some extent into the complexity
measure. The row for suitability takes into account, that graph databases work by analyzing the
structure of stored data and comments andwhether such data is present in a usable form.

6.1 Performance measurements
For our performance measures, we used the same data set for all models and selected
one fixed event per query, covering some corner cases like a disconnect with a reconnect
in the same second. Before the test, we find them on all three different implementations
and retrieve their IDs. We then use this IDs in the queries proposed in Section 5. The
measurements consist of executing the query 1,000 times as warm up allowing caches
and optimizations to adapt and the execution times to converge, already with time
measurement in place. Immediately following, we execute the queries a further 10,000
times for the actual measurement. Finally, the arithmetic mean is used on the measurement
batch, yielding the numbers shown in Table 3 and for better comparability visualized as bar

Table 1.
Comparison of the

different data models

Property-based model Timeline model Hierarchy model

Expressiveness Low, simple property with
dedicated datatype (only
storage, no semantic
information), supports time
zones, the property is not
unique, needs an additional
property to resolve
timestamp equality, the
user must know how to
interpret stored data

Medium, simple property
with dedicated datatype in
dedicated node, supports
time zones, the node can be
unique, semantic
information: absolute
temporal order given by
directed edges

High, tree like structure with
shared nodes, each node is
unique, allows indication of
timestamp precision, fine
grained node fetching
possible, no time zone
support, the relative temporal
order of nodes of the same
level and sub tree by directed
edges, requires directed edge
to resolve timestamp equality

Complexity Low, comparable complex
as the equivalent query in a
relational database

Medium, the problem
described in Section 7.1
forces usage of two
different approaches for
node access and matching

High requires complex
queries due to different
levels when searching
specific nodes

Suitability Does not exploit graph
database specific
functionality

Basic usage of nodes and
directed edges by
constructing a global timeline

Extensive usage of nodes
and edges, most information
expressed by these elements

Study on time
models in

graph
databases

441



charts in Figure 7. These numbers are measured using the full-sized data set. Respectively,
Table 2 and Figure 6 show the results of the measurements for a data set which is
approximately half of the full set.

The abbreviations used in the tables are the same as described in Section 5 and Rl denotes
the relational database included for reference. All numbers are given inmilliseconds.

6.2 Description of the test setup
As data set, we used logging output from a post-fixmailserver as described in Section 3. In total,
we had 3,394 events, splitting up to 1,697 connect- and 1,697 disconnect-events. To determine the
growth of required computing time, we did two runs of the performance measurements, one
with 1,582 total events and another one with all 3,394 events. We did not use a split at 1,697
events becausewewanted to use a point in time for the split at which no connectionwas active.

The test hardware consisted of an HP Elitebook 850 G6 with an Intel
SSDPEKNW512G8H SSD and 16 GB of main memory, runningArch Linuxwith the kernel
version 5.11.13-arch1-1. The used database was Neo4J Community 4.2.5. Tests were
performed by a Spring Boot 2.3.0. RELEASE project, using the Neo4J JDBC 4.0.0 driver.
Furthermore, the relational database used for reference was MariaDB 10.5.9–1 and the
driver was the one delivered with Spring Boot Data 2.3.0. RELEASE.

Figure 6.
Average execution
time for each query in
milliseconds with
1,582 events in the
database

Table 3.
Absolute values of
Figure 7 (3,394
events in the
database)

Rl Pt Tl Hr

Q1 0.20 0.77 0.70 0.63
Q2 3.68 21.18 5.61 138.85
Q3 0.12 0.62 0.89 1.26
Q4 1.57 7.94 2.90 76.74

Table 2.
Absolute values of
Figure 6 (1,582
events in the
database)

Rl Pt Tl Hr

Q1 0.17 0.70 0.67 0.54
Q2 1.36 10.55 3.65 67.52
Q3 0.10 0.59 0.86 1.66
Q4 0.80 4.41 2.84 41.46
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7. Findings
The following section contains some remarkable findings which arouse during the
investigation of the three timestamp representations.

7.1 How to reference arbitrary timestamps
A major problem during the work with the three models was, how an arbitrary timestamp
can be accessed. Whilst this is not an issue for the property-based model because every
representation of a timestamp is only an instance of datetime with no further dedicated
objects, a fully-fledged representation of a custom timestamp not stored in the database can
be created instantly within the query without changing the database.
This is not the case for the timeline and hierarchical model. These two require at least
one dedicated node per represented timestamp. As a result, we are not able to use any
arbitrary timestamp in a query because this timestamp may not exist in the database
and would have to be created. Questions suffering from this problem are described in
Sections 5.2 and 5.4.

7.2 Encoding the order of entries is mandatory
It is not sufficient to only rely on the timestamps saved to each log entry. For one log source,
this problem might be omitted by adding precision to the timestamp, but in an environment
producing large amounts of log lines, also this approach is not guaranteed to work. Latest
when log entries from multiple machines need to be merged, precise timestamps require a
sufficient synchronization between all involved clocks. According to (Aichhorn et al., 2017),
clock synchronization in a local area network (LAN) using Linux in its default
implementation came down to 8 to 10 ms and with their proposed implementation down to 2
ms, which might still not be accurate enough, as a thousand events in one second for a large
enterprise are a very realistic number.

During our experiments without a sufficient encoding of log entry order, matching errors did
occur. For example, the question from Section 5.1 required precise information which events
happened after itself. Otherwise, a disconnect before the following reconnect could mistakenly
be recognized as the nearest event after the reconnect andwrongly be paired together.

7.3 Complexity of queries
Although this is not backed by metrics, the overall complexity of queries per question seems
to differ, whereas the property-based model being the model with the shortest queries, the
timeline model being an intermediate one and the hierarchical model yields the most complex
queries.

7.4 Expressiveness of the models
The idea behind modelling timestamps in graph databases was in exploiting graph
database specific characteristics for easier handling of the stored data. Due to the problem
described in Section 7.1, with our current capability, we are in some cases (especially 5.2 and
5.4) not able to make full use of graph database specific query techniques. Instead, the query
must force data into a representation which is alreadywell used in relational databases.

Furthermore, one idea behind the hierarchical modelwas being able to represent different
levels of precision by attaching event nodes to the according level. An approach which is
also proposed in (Bachman, 2013). Attaching and matching event nodes on different levels
might increase the queries complexity even more but assumption requires further
investigation.
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8. Attempt on improving the timeline model
An assumption wemade about the timeline model is, that graph databases can use their unique
modelling capabilities for improved performance during queries on this model. In Figure 7 we
saw that the property-based model is faster on query Q3 and Q4, the timeline model performs
better onQ2 and the result forQ1 is approximately the same for bothmodels.

One finding, previously proposed in Section 7.1, was, that the timeline model suffers from
the fact that out of the box, it is not possible to use arbitrary timestamps during queries. This is
especially the case for the queries Q2 and Q4 which are the two in which the timeline model in
its current version performs worst. Among the four queries, Q2 (IPs connected at a timestamp)
and G4 (events X time units ago) are also the two working with time spans. Our idea is when
the timeline model variants of the queries are able to exploit theNEXT edges instead of filtering
using the Tl_Timestamp.timestamp properties, the performance of the timeline model might
improve for the performance of these two queries.

The necessary steps are the following: At first we need to find a way to convert an
arbitrary timestamp into entities which are already present in the timeline model. These
entities, in our case nodes with the labelTl_Timestamp, can then be used instead of filtering
all nodes based on the properties. Of course, the queries need to be adapted accordingly so
that finally, we can again do performance measurements.

8.1 Converting arbitrary timestamps to entities of the timeline model
Because timestamps in the timeline model are represented by dedicated nodes, the
conversion needs to find the best fitting node for the desired timestamp. We have the
following three possible cases:

� Direct hit: The timestamp we need to convert is already present in the database and
represented by a Tl_Timestamp node.

� Unique neighbours: The timestamp is not already stored in the database, but there
are unique nodes representing a preceding and a successive timestamp. We are safe
to conclude that nothing happened exactly on our timestamp, and therefore, fetch
the neighbouring nodes with the minimal difference.

� Ambiguous nodes: In this case, there is more than one direct hit in the database. This
case occurs, when the accuracy of the stored or queried timestamp is not precise
enough and the represented events, therefore, appear to have happened
simultaneously. As a result, more than one pair of neighbours is valid for selection.

Figure 7.
Average execution
time for each query in
milliseconds with
3,394 events in the
database
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This conversion can be achievedwith a dedicated part in the query as is shown in Listing 15.
Listing 15 Cypher queries for converting an arbitrary timestamp into the closest
representation contained in the database.
1 WITH
2datetime(“2020–04-26T06:30:18.000[Europe/Vienna]”)AStimestamp
3
4MATCH
5(a:Tl_Timestamp)-[:NEXT*0..1]->(b:Tl_Timestamp)
6WHERE7a.timestamp< timestampANDtimestamp< b.timestamp
8OR
9a.timestamp=b.timestampANDa.timestamp=timestamp
10
11RETURNa,b

Line 5 tells the database, that we require two Tl_Timestamp nodes called a and b which are
at most one NEXT edge away from each other but might also be the same. Their
relationship to the timestamp variable introduced in Line 2 is then established in the
WHERE part in Lines 7–9. In Line 7, the case is covered in which the nodes a and b are not
the same and we do not have a direct hit in the database. This part delivers the next smaller
and larger nodes for our timestamp in the case of unique neighbors. Line 9 is true for the case
that the timestamp to convert is already contained in the database (direct hit) or when
multiple nodes with the same timestamp value exist (ambiguous nodes). In the latter case, all
neighbouring pairs with the same timestamp are returned. For example, if the nodes A, B
and C represent the same timestamp and are connected in this order by NEXT edges, the
result would consist of (A, B) and (B, C).

For the sake of completeness, we have to mention that the query in Listing 15 has not been
tested regarding the ends of the NEXT chain. Furthermore, in some cases, this conversion from
timestamp to two Tl_Timestamp nodes is not fully equivalent, as it may introduce new results.
An analogy of the problem is the choice of# instead of< in a Boolean expression.

8.2 Adapting Q2 to make use of the next edge chain
We can now use the query from the previous step and combine it with a part of the query
proposed in Listing 7 from Section 5.2.2. An intermediate, simplified query which is
sufficient for our purpose is shown in Listing 16.

Listing 16 Simplified combination of the queries from Listings 15 and 7. This version
only finds the shortest paths between the desired connect and disconnect timestamps.
1 WITH
2datetime(“2020–04-26T06:30:17.000[Europe/Vienna]”)AStimestamp
3
4MATCH
5(a:Tl_Timestamp)-[:NEXT*0..1]->(b:Tl_Timestamp),
6(connectTimestamp:Tl_Timestamp)-[:NEXT*0..]->(a),
7(b)-[:NEXT*0..]->(disconnectTimestamp:Tl_Timestamp),
8
9(connect:Tl_Event)-[:HAPPENED_AT]->(connectTimestamp),
10(connect)-[:IS_TYPE]->(:Tl_Type{name:“connect”}),
11(disconnect:Tl_Event)-[:HAPPENED_AT]->(disconnectTimestamp),
12(disconnect)-[:IS_TYPE]->(:Tl_Type{name:“disconnect”}),
13(connect)-[:HAS_PID]->(:Tl_Process)<-[:HAS_PID]-(disconnect),
14p=shortestPath(
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15 (connectTimestamp)-[:NEXT*1..]->(disconnectTimestamp)
16)
17
18WHERE
19a.timestamp< timestampANDtimestamp< b.timestamp
20OR
21a.timestamp=b.timestampANDa.timestamp=timestamp
22
23RETURNp

Line 2 just specifies the desired timestamp. The interesting part is found in Lines 5–7 which are
responsible for retrieving the best matching timestamp nodes and then exploiting the NEXT
edges for restricting the possible instances of connectTimestamp and disconnectTimestamp
according to the result of the previous search. At this point, the query has two groups of
timestamps left for further processing which are either before a for after b. The remaining Lines
9–16 are taken from already proposed queries and just restrict the nodes to the corresponding
events and Lines 18–21 are taken from Listing 15 and belong to the filtering andmatching for a
and b.

Unfortunately, it turned out that combining Lines 5–7 in Listing 16 resulted in the query
not terminating in a reasonable time frame. Further experiments showed, that the query
could be modified to find a solution in an expectable but still not a reasonable time, if the
upper bound for the NEXT hops was restricted, for example, by [: NEXT*0..100]. However,
the execution time would still increase as the upper bound was increased, effectively
rendering the query useless for large environments. For this reason, we did not further
extend the tested modification of the timeline model for queryQ4.

A trace of the query with the Cypher command PROFILE, using an upper bound of 100
showed that during Line 5 of Listing 16, about 23,000 rows are returned as an intermediate
result right before applying the WHERE part, narrowing them down to 58 rows. With an
upper bound of 200, the same intermediate rows consisted of about 41,000 and again 58 rows
after theWHERE and with an upper bound of 400, 61,877 intermediate rows were found and
again narrowed down to 58 rows in the next step.

However, according to Neo4J Browser, during these experiments, only 508 events
were represented in the database (only a small subset of the data used during
performance measurements) and 1,295 elements contained in the database altogether,
arising the question, about the content of the vast amount of intermediate rows. In any
case, the number of intermediate results and the execution time increased if the upper
bound was increased and consequently, the query becomes unusable for large
environments in which an upper bound of say 400 is not large enough. Without an
upper bound, there seem to be too many paths which need to be traversed to find the
results for the query.

9. Conclusion and outlook
In this paper, we proposed three different models for representing timestamps in graph
databases. These models were filled with test data originating from a live mail server and
we developed queries to retrieve certain predefined information useful during log analysis.
We benchmarked our resulting queries against each other according to their complexity,
their query performance and by properties about the quality of the models.

In the beginning, the hierarchical model appeared to be the most promising model
because of its usage of graph database specific structures and it allows indicating the
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precision of the data. Furthermore, variations of this model were proposed several times in
non-scientific sources (Bachman, 2013; GraphGrid, 2015). In fact, it turned out that this
model leads to very complex and inscrutable queries.

Another main finding was, that to fully use a graph database’s features, some
queries require temporary structures which must not persist in the database. This was
especially a problem of the timeline model because if an arbitrary timestamp was
needed for a query, which was not present in the database, the query needed an
extension or the overall query had to fall back to a query style like for the property-
based model. However, an extension of the queries finding fitting nodes for an arbitrary
timestamp in the database was theoretically possible, but not practically usable due to
excessive execution times.

Based on this information, until the query optimizer can improve the proposed queries
good enough, the best solution for storing timestamp information in graph databases is the
property-basedmodel, as it was the fastest and easiest of all models.

The research results presented in this work will further be used in the author’s ongoing
research about detecting and mitigating security issues by analysing log files and matching
them against the infrastructure topology with the help of graph databases.

Additionally, the resulting models and methods could be applied in the area of cyber
physical systems (Auer et al., 2019) or be useful for earlier research of the authors’, e.g. using
the time-modelling on secure token-based communications for authentication and
authorization servers, see (Kubovy et al., 2016).

Notes

1. https://neo4j.com/

2. Native graph databases are characterized by implementing ad hoc data structures and indexes
for storing and querying graphs.

3. https://github.com/neo4j/neo4j-browser
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