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Abstract
Purpose – Knowledge- and communication-intensive domains still long for a better support of creativity
that considers legal requirements, compliance rules and administrative tasks as well, because current systems
focus either on knowledge representation or business process management. The purpose of this paper is to
discuss our model of integrated knowledge and business process representation and its presentation to users.
Design/methodology/approach – The authors follow a design science approach in the environment of
patent prosecution, which is characterized by a highly standardized, legally prescribed process and individual
knowledge study. Thus, the research is based on knowledge study, BPM, graph-based knowledge
representation and user interface design. The authors iteratively designed and built a model and a prototype.
To evaluate the approach, the authors used analytical proof of concept, real-world test scenarios and case
studies in real-world settings, where the authors conducted observations and open interviews.
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Findings – The authors designed a model and implemented a prototype for evolving and storing static and
dynamic aspects of knowledge. The proposed solution leverages the flexibility of a graph-based model to
enable open and not only continuously developing user-centered processes but also pre-defined ones. The
authors further propose a user interface concept which supports users to benefit from the richness of the
model but provides sufficient guidance.
Originality/value – The balanced integration of the data and task perspectives distinguishes the model
significantly from other approaches such as BPM or knowledge graphs. The authors further provide a
sophisticated user interface design, which allows the users to effectively and efficiently use the graph-based
knowledge representation in their daily study.

Keywords Knowledge work, Business process management, Human communication,
User interface concepts, Graph-based knowledge representation

Paper type Research paper

1. Introduction
Companies and other organizations today are faced with highly dynamic, competitive
environments. The digitization of communication-intensive knowledge work is not only one
of the greatest challenges but also one of the greatest opportunities. Knowledge workers
such as researchers, developers, consultants or lawyers heavily rely on communication.
From a knowledge perspective, observable communication data is mostly unstructured and
requires a-priori knowledge to extract semantic concepts.

The lack of a model that allows to define and handle mental concepts [1], which
evolve during daily work, hinders a continuous process of knowledge-applying data
transformation tasks of individual users. This might be one reason that business
process modeling, as well as individual and organizational learning processes, have not
yet been successfully applied to data- and knowledge-driven, process-oriented
knowledge work.

The need for a high degree of flexibility for non-routine, problem-solving tasks does not fit
with traditional business process management (BPM) systems, which mainly adopt a top-
down approach for predefined administrative processes while knowledge management
(KM) systems lack the task context. We regard processes as a sequence of tasks.
Furthermore, in an organizational setting not only knowledge work but also standardized
processes within the same context need to be supported, e.g. legal constraints or compliance
rules that clearly define procedures and also their tracing. Thus, both – highly dynamic
processes with a strong focus on communication and predefined, well-structured ones need
to be supported within one overall system.

We consider a flexible and adaptable, bottom-up approach to integrated knowledge and
process management, relying on an appropriate model as a promising approach. Therefore,
our research focuses on a model of integrated data and task perspectives, a seamless bottom-
up approach for the continuous maturing of these perspectives and the suitability of this
approach in real-world settings with a special focus on user-experience.

In this paper, we propose an easily adaptable knowledge- and process-centered model for
the exchange of data between knowledge workers in flexible and not only adaptable
business processes but also in well-defined administrative processes. As the building blocks
of the model are strongly linked, a graph-based representation of knowledge and process
artifacts is considered. Non-observable information artifacts are derived from observable,
communicated data along with different dimensions as follows:
� Knowledge in the form of structured and unstructured data, documents, graphics

and information extracted and stored in a graph; and
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� The dynamic behavior, i.e. data-centric processes that evolve in the graph when
knowledge is created.

To support efficient and effective use of the proposed TEAM model, we provide a
sophisticated user interface design which considers the high complexity of the graph-based
knowledge representation.

The further paper is structured as follows. In Section 2 we briefly present our overall
research methodology and provide the real-world example which we use throughout this
paper. Section 3 provides-related work in the area of knowledge work, flexible and adaptable
support for business processes, knowledge graph and user interaction modeling. Our
proposed model and modeling approach is presented in Section 4. In Section 5, we discuss
our TEAM model from a knowledge graph viewpoint. Section 6 provides insights into the
user interface concept, which supports users to handle the high complexity of the underlying
graph-based model. Our running example is further visualized with screenshots. We discuss
our most important results in Section 7. The paper concludes with a summary and an
outlook on future work in Section 8.

2. Research methodology
We follow a design science research methodology (Hevner et al., 2004; vom Brocke et al., 2020),
which relies on iteratively evaluating intermediate results. The environment for our research is
patent prosecution in the patent law firm of one of our project teammembers. It is characterized
by a highly standardized, legally prescribed process on the one hand and individual knowledge
work when translating new technical knowledge into legally binding language on the other
hand. Furthermore, this work requires intensive communication, within an organization, as
well as with clients and external partners. However, the current information technology (IT)
infrastructure consists of rather isolated tools, without integration of processes and data.

The following real-world example is used throughout this paper, to support the
discussion of our approach.

It is also a representative example for the test scenarios and use cases studied to evaluate
our results. The starting point of this example is the receipt of an e-mail from a client with
two distinct concerns as follows:

(1) It contains the notification that the address of one patent proprietor has changed;
and

(2) The client requests whether, in view of the first office action received, it is
appropriate to pursue a certain patent application.

The reply is urgently expected because the time limit for filing observations in reply to the
office action expires in a few weeks.

Thus, this e-mail initiates two different actions as follows: It cannot be assumed that the
e-mail is already an order to enter the address change in the relevant official registers.
Certain facts need to be clarified before as follows: property rights with the indicated patent
proprietor as the owner, costs of the changes and finally a professional assessment of
whether such a change should be indicated before the relevant offices at all. Furthermore,
this change potentially not only affects a single case but also several ones. Requires to study
the related case file, as well as the office action, to procure the prior art cited therein, to exam
the citation and to elaborate one or more means of defense. Experience and knowledge of the
practice of the patent office are needed for this. Furthermore, it is questionable whether the
stated urgency applies at all, whether extensions of time limits are possible or whether
alternative prosecution routes are available. Finally, an evaluation of the existing
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possibilities and a concrete recommendation for action is required. As all actions can have
serious legal consequences, in particular tracing of actions and decisions based on the
collected information is needed.

Throughout this paper we will focus on different aspects of this scenario such as
structuring data, reusing data, relating data to several tasks, tracing exchanges and
flexibility in the overall model evolution.

The contributions of our work to solve the problems identified before are as follows:
� A highly flexible and adaptable, user-centered model for integrated knowledge and

process management and its prototypical implementation using a graph database;
� A layered modeling approach that allows for flexibility while providing a certain

level of guidance to support individual users and traceability of communication;
task handling and data manipulation;

� A user interface concept which supports working on the complex integrated model
graph; and

� A demonstration case of applying the model in a real-world setting, i.e. in the
domain of patent prosecution, which already shows promising results.

The results are described in detail in Sections 4–7. To evaluate the concepts, models and
prototypes built during this project, we focused on an analytical proof of concept in the
initial phases, involving external experts into feedback circles and discussions. Based on
these results, the first prototypes were implemented to provide proof by construction with
selected real-world scenarios. To involve potential users, case studies have been conducted
in real-life environments, not only testing the core model but also especially user interaction.
The users were partly observed and also encouraged to individually play around with the
prototype. Besides their produced results, especially the open interviews with the users
provided valuable insights. The user interface design has been further supported by a pre-
study, where requirements have been identified and alternative user interface concepts have
been tested and discussed in a target group with user interface sketching.

3. Related work
Different areas of research, such as knowledge work, business processes and their
automation, document management and user interaction modeling, have a strong impact on
our work.

Drucker (1959) characterizes knowledge work by its adaptable and creative nature. It is
strongly related to KM (Dalkir, 2005), which is a multi-disciplined approach promising a
high benefit of knowledge for an organization (McElroy, 2003). In practice, KM (Bailey et al.,
2010; Drucker, 1999) is often criticized to provide few benefits but requiring high effort.
Even though large knowledge bases are available now, it is not straightforward to find the
right information and often results in intensive search processes.

While traditional knowledge work is heavily relying on the information, increasing
complexity in most work domains requires enhanced support for human communication. As
KM is about processes dealing with knowledge (e.g. acquiring, creating and sharing
knowledge), the three main interpretations include as follows: combining KM activities with
an independent process (Gronau and Weber, 2004; Papavassiliou et al., 2002), the
management of knowledge-intensive business processes (Karagiannis and Telesko, 2000;
Marjanovic, 2005) and the integration of knowledge-intensive activities into operational
business processes. These approaches are all rooted in the workflow tradition, i.e. an
activity-centric approach. None of them hadmuch impact, neither in research nor in practice.
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BPM (Dumas et al., 2013) is typically associated with well-structured, highly predictable
and, thus pre-definable business processes. Such processes show a high number of
repetitive activities and have been subject to automation for a long time (Weske, 2012;
Ter Hofstede et al., 2010). Common activity-centric BPM is often missing support for user
interaction modeling in the context of business processes and does not offer an appropriate
data model (Auer et al., 2009). Trætteberg (2008) identifies domain and data modeling as one of
the weakest points of business process modeling languages, such as business process model
and notation (BPMN). The increasing need to provide adequate support for knowledge work
demands new approaches in BPM. The focus is no longer on “what must be done,” but rather
on “what can be done” (Van der Aalst et al., 2005), enabling knowledge workers to prepare
working plans at run-time based on their knowledge and needs and to take decisions within the
working context.

Different strategies are used to deal with these shortcomings. However, despite the active
area of research on flexible and adaptable business processes, business process modeling
has not yet been successfully applied to data- and knowledge-driven, process-oriented
knowledge work.

One direction of research is to extend activity-centric approaches with special features to
allow for more flexibility (Reichert and Weber, 2012; Döhring et al., 2011; Hallerbach et al.,
2010), which enable some run-time planning – but only within a predefined frame. Rule-
based and constraint-based declarative models offer a higher level of flexibility than
traditional activity-centric approaches (Pesic and van der Aalst, 2006; Reichert and Weber,
2012). However, many of these approaches are generating process models from predefined
specifications, e.g. in the SDeclare language (Jiménez-Ramírez et al., 2015), still focusing on
control flow and rarely taking the data perspective into account. Another approach in the
field of variability modeling is based on graph transformation techniques (Geist et al., 2016)
to deal with the exponentially increasing number of business process variants; however,
again the definition of a base process model is required.

Flexibility and adaptability are often associated with data-driven approaches to business
process modeling and execution. The key driver for these processes is no longer a predefined
control flow, but the availability of data. Representatives of this approach are, for example,
case management (Marin et al., 2013; OMG, 2014; Van der Aalst et al., 2005) or object-aware
processes (Künzle, 2013; Künzle and Reichert, 2011). The most important drawback of case
management is the focus on predefined process types, determining the allowed planning
frame at run-time, which is often a limiting factor for knowledge workers’ variously
changing, specific and creative work. Object-aware processes, on the other hand, are not
designed for adaptability and dynamic model evolution at run-time.

In knowledge work, information is often coarse-grained (e.g. documents) and needs to be
processed to extract fine-grained information (e.g. structured and semi-structured, related
data). Common information and document management systems, by contrast, support
some kind of tagging, but they are not able to preserve the context when extracting
information, e.g. from an e-mail. This demand for integrating an underlying semantic model,
where processable knowledge can be modeled and stored using a network-oriented
representation in the form of human tasks consuming and producing data artifacts. Such
semantic-based modeling techniques (Domingue et al., 2011; Davies et al., 2009) to business
process specification allow to independently reuse the extracted data with respect to their
original context, which establishes a task context (similar to the notion of a shopping cart)
for executing unpredictable, collaborative processes.

Earlier works in the area of semantic BPM (Hepp et al., 2005; Hepp and Roman, 2007)
focus on combining semantic web services with BPM technology for supporting agile
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process implementation. However, the perspective is a rather technical one, focusing on the
lack of machine-accessible semantics but not taking into account dynamic communication
between knowledge workers.

Knowledge graphs Pujara et al. (2013) and Paulheim (2017) can be applied to flexibly tie
together domain knowledge from different source data structures and organizational
knowledge about the team of involved humans with operational tasks. Of particular
importance are the structured concepts of data, information, knowledge and wisdom,
commonly known as the DIKW hierarchy (Frické, 2019). Within this hierarchy, each concept
is related to the preceding concept, building a chain with increasing connectedness and
understanding (Ahsan and Shah, 2006; Zins, 2007).

In cognitive sciences, one way of explicating how humans perceive their current work
situation and make decisions based on previous knowledge is investigated by mental model
theory (MMT) (Johnson-Laird, 1980). Mental models have also been applied in KM to learn
from shared experiences in an organization (Firestone andMcElroy, 2012).

A more recent related approach for designing digital work is suggested by Oppl and
Stary (2019) by integrating subject-oriented business process management (S-BPM) and
MMT. In contrast to our vision of a highly flexible and adaptable user-centric system, where
knowledge workers shall be enabled to prepare working plans at run-time and to take
decisions within the dynamic working context, this approach defines explicit process
models (top-down approach). An opportunistic approach to BPM, called opportunistic
business process modeling (oBPM) (Grünert et al., 2014), supports bottom-upmodel creation,
though, the focus is rather on document-centric and object-oriented artifact specification but
not on human communication and process-oriented knowledge work.

4. The TEAMmodel
Aiming at a seamless, mature and integrated knowledge and process management, we must
start at the data and task level. In this context, we consider a process as a sequence of tasks
while knowledge is represented as relations between themodel components.

As a consequence, the overall vision for the TEAM model (integrated data and task
multi-dimensional graph) is to support people to effectively and efficiently work on their
predefined administrative tasks, as well as on flexible and adaptable knowledge-intensive
ones. A sequence of tasks is considered as a process. Besides the integration of data and
tasks, communication needs to be considered to seamlessly mature integrated knowledge
and process management.

4.1 Three-layer architecture
The model of the TEAM model follows a graph-based meta-modeling approach. The
multiple dimensions of the approach are represented by data and task components, which
are related to each other by task relations. Furthermore, a fine-grained representation of data
is considered by relating data components to each other via data relations. To allow for
seamless knowledge and process maturing, starting with only a small set of basic types and
instances, a highly flexible and adaptable model is needed, which can be easily enriched and
adapted by qualified users from the application domain. Therefore, we do not rely on rather
stable data types for the TEAM model, but on a schema-free approach using types for
classification. When installing the system, the domain model will only contain some core
types, such as NaturalPerson. All others will be defined by experienced users during their
daily work. As we follow a meta-modeling approach, these types are described by data and
can easily be added, changed, etc. during run-time.
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The TEAMmodel has a three-layer architecture as follows: themeta model, the domain
model and the instance model. All of these models reflect the data and task perspectives.
Figure 1 gives an overview of the models and their dependencies.

4.1.1 Meta model. Describes the core characteristics of the domain model and the
instance model, i.e. the building blocks and not only their attributes but also core
constraints. The meta model of the domain model defines the four basic kinds of type-level
concepts, i.e. data object type, data object type relation, task type and task type relation.
Furthermore, the attributes to describe each of these components are specified, such as code
(i.e. the name of the type), isAbstract, isPrimitive, isExtendable, created, lastChanged or
number of Instances. Also, constraints can be defined in the meta model, for example, a task
type relation only connects a task type and a data object type or data object type relation.
The meta model of the instance model defines the four basic kinds of instance concepts, i.e.
data object, data object relation, task and task relation. Furthermore, the describing
attributes for each of these kinds of instances are defined, such as type, created,
lastChanged, status History, is Validated or value. The attribute type is intended for
reference to the classifying type, e.g. for a data object to its classifying data object type.

4.1.2 Domain model. Defines the domain-specific types and their relations. These types
do not correspond to those in programming languages but are mental concepts used for
classifying instances. The types are constantly evolving while the TEAMmodel is used for
daily work. Also, domain-specific constraints can be specified, for example, on data
prerequisites, cardinalities or ordering.

4.1.3 Instance model. Holds all instances of the TEAMmodel. Each instance is classified
by a domain-specific type (domain model).

In the following, we discuss the core components data and tasks with their relations in
detail, before dealing with their integration.

Knowledge workers and administrative users constantly encode and decode a series of
symbols to or from mental concepts, when communicating information and knowledge.
Mental concepts are not only created for single instances, e.g. the natural person John Doe
but also for sets of instances, in the sense of classification, e.g. NaturalPerson. Therefore, we
consider mental concepts on the type (i.e. classification) and instance level.

Figure 1.
Overview of the three
layers of the TEAM

model
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In the following discussion of the meta model components, we start with a data-oriented
perspective, focusing on data components and their relations in Section 4.2. The dynamic
perspective, i.e. tasks and their integration with data, is discussed subsequently in Section
4.3. In the further presentation of the TEAM model we use Latin letters for instance
abbreviations and Greek ones for types.

4.2 Data components and their relations
Even though much information is stored in unstructured or semi-structured documents, we
strive to extract a fine-grained representation of the data. To increase data quality and to
build consistent process chains, each entity exists only once in the instance model, e.g. if
several people have the same first name, they all reference the same single instance.

The type-level components for data are data object type (d ) and data object type relation
(r ), which describe the concepts used to classify the instance-level components. The
instance-level components are data object (d) and data object relation (r). Both of them are
continuously evolving when working with the system.

Definition 4.1. – A data object (d) represents the mental concept for an instance, e.g. the
natural person John Doe. Each data object is unique within the TEAMmodel. Two different
kinds of data objects are distinguished – observable and non-observable data objects. An
observable data object contains an observable value, e.g. a data object (of data object type
String) immediately holds the string value. In contrast, a non-observable data object is a root
of a sub-graph, which further describes the data object. The non-observable data object does
not contain an observable value.

Definition 4.2. – A data object type (d ) describes a concept that classifies a set of data
objects, e.g. natural person or address.

Data objects and data object types are further described by attributes. Data object types
define characteristics, such as the name of the type or rules used to define different kinds of
constraints shared by all data objects classified by this type. Data object attributes differ as
they deal with run-time aspects, such as status history or the value of observable data
objects, i.e. transactional data. Partonomical relationships are not described by attributes,
but by relations. Therefore, entropy decreases along with the direction of these relations.

Definition 4.3. –A data object relation (r) can be either a partonomical (with the kinds has and
hasValue) or an associative (with kind role) relation (thus directed) between two data objects.

Non-observable data objects are always connected to their containing, superordinate
data objects via data object relations of the kind has, observable ones need the kind
hasValue. A data object relation of kind role links a data object to its role. The direction of
the relation is from role to object, i.e. the semantics of isRoleOf.

The corresponding concept on the type level is the data object type relation. The
partonomical relations of the kind has and hasValue, the associative of kind role, as well as
the generalization via the is relations are used to build the concept hierarchy.

Definition 4.4. –A data object type relation (r ) is a directed type-level relation, with a data
object type as its source and target and is further specified by its kind (taxonomical,
partonomical, associative or generalization).

Within the TEAM model, we have two connected semantic sub-graphs, the instance
graph (i.e. instance model) and the type graph (i.e. domain model), integrated via type
relations. To reduce the complexity of the further presentation of the data perspective of our
model, we focus on the instance model.

An observable data object d*i has exactly one unique value that can be observed, e.g. in
messages. Its value can be of any primitive data type. For example, the value of d*0, which is
an observable data object representing data of type String, is “John” in Figure 2. Non-
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observable data objects d
�
i have no value. They stand for abstract mental concepts which

are not only represented (encoded) by related observable but also non-observable data
objects (e.g. d

�
3 in Figure 2). Both, observable d*i and non-observable d

�
i data objects are

discrete, unorganized and have no specific meaning. The two sets of data objects are defined
in as follows equation (1):

D* ¼ fd*0; . . . ; d*ng D
� ¼ fd�0; . . . ; d

�
ng D ¼ D* [ D

�
(1)

R* ¼ fr*0; . . . ; r*ng R
� ¼ fr�0; . . . ; r

�
ng R ¼ R* [ R

�
(2)

Meaning, i.e. knowledge (Section 5), is added by the relations. We can partition the
edges R into two sets R* and R° [equation (2)]. R* connects observable data objects D*
and non-observable ones D° while R° only connects non-observable data objects D°.
Those disjoint independent sets contain the vertices D (i.e. data objects) of a directed
graph GD = (D, R), interconnected by the edges R (i.e. data object relations) [equation
(3)] as follows:

GD ¼ D [ R (3)

The instance graph GD in Figure 2 describes selected details of the non-observable data
object d

�
9 (e-mail of John Doe with all its components). Starting with the observable data

objects D*, a bottom-up approach is used to build enriched data objects along with a
path of aggregating hasValue and has relations, as well as the associating role relations
(e.g. r

�
2).

Thus, each element is finally assigned to an observable data object d*0 � d*3, which relates
to one or more non-observable data objects d

�
0 � d

�
9. The values of the observable data

objects are also added in Figure 2. The details for the data objects in Figure 2. i.e. its type
and value, are stated in Table 1.

Figure 2.
GD= (D| R) with
observable d$i and
non-observable d

�
i

data objects
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4.3 Task components and their relations
Besides the data components and their relations, the tasks and the relations between data
objects/data object relations and tasks build the overall integrated, dynamic model. Thus, it
is no longer just data enriched with semantics, but especially information and knowledge
within a dynamic context.
Definition 4.5. – A task (t) represents an instance of an atomic activity of information
processing.

Definition 4.6. – A task type (j ) describes a concept that classifies a set of tasks, e.g.
extracting sender information from an e-mail.

Similar to the data perspective, all entities of the task perspective have attributed at type
and instance levels.

Definition 4.7. – A task relation (y) is a bipartite, directed relation between a task and a
data object or data object relation.

Definition 4.8. – A task type relation (y ) is a bipartite, directed type-level relation between
a source and a target type with a specific kind k (e.g. specifying data dependency, the
validity of data objects or relations, user action on the task, etc.). Source and target types are
mutually a data object type or data object type relation and a task type.

Task type relations specify the data interfaces of the tasks (i.e. data consumed and
produced). The context of each task is, thus defined by all of its incoming and outgoing data
objects. Like the data perspective also this dynamic, process-oriented part of the model is
steadily maturing during use.

In further discussion, we focus on the instance model, as we did with the data perspective
before. Equation (4) provides the sets for the task perspective on instance level and for the
overall instance graphGI – data and task perspectives as follows:

T ¼ ft0; . . . ; tng Yk ¼ fyk0; . . . ; ykng GI ¼ T [ D [ Y [ Rð Þ (4)

As per definition, every data object is unique within the TEAM model, an integrated
instance graph GI is built via task relations, which further allows for traceability of the data
and the task perspectives.

The data and task perspectives are integrated via task relations of different kinds. An
example is given in Figure 3, considering data and tasks on instance level and a selected set of

Table 1.
Details for the data
objects d in Figure 2

Id Data object type Value

d$0 String “John”
d$1 String “Doe”
d$2 String “doe@polymind.gmbh”
d$3 String “request123”
d
�
0 FirstName –

d
�
1 LastName –

d
�
2 EMailAddress –

d
�
3 NaturalPerson –

d
�
4 EMailContact –

d
�
5 Sender –

d
�
6 Receiver –

d
�
7 Subject –

d
�
8 DateReceived –

d
�
9 EMail –
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task relations of different kinds. We show a small part of the scenario described in Section 2,
namely, when a user d

�
99 instantiates y

i
0 (i.e. y of kind i) the task t0, allocate ya1 (i.e. y of kind a)

and processes yp2 (i.e. y of kind p) the task to link the incoming e-mail d
�
9 to the relevant case file

d
�
11. Incoming data objects are related via task relations of kind reference (r), e.g. the task

relations yr3 and yr4. To trace all activities on data, task relations are also used on data object
relations. For example, the task relation yc5 indicates that the data object relation r

�
11 has been

created (i.e. y of kind c) by the task t0.
Table 2 provides an overview of the types of all instances involved in Figure 3.
Task relations also denote the exchange of data objects between tasks, thereby

describing the underlying processes and making communication between users explicit.
Thus, the orientation of the corresponding task type relations explicitly documents the
process direction.

As data objects are unique in the instance model, they can be used to identify traces. For
example, a data object, which was created by a first task and then further used in a
subsequent one, is linked to both tasks via task relations. Thus, an entire trace between a
start and an end node can be described. An example for such process traces is given in
Figure 4. The set of all paths between two tasks is created following all outgoing task
relations of kind creates yci and ingoing y

r
i of kind references. To get a description in terms of

tasks only, the number of paths can be reduced by eliminating the interim data objects, as
subsequent tasks are typically interconnected bymore than one data object.

As either tasks or data objects can be chosen as start and end points for these traces, not
only process traces but also data life-cycles can be identified.

Table 2.
Details for the

instances in Figure 3

Id Type

t0 ProcessEMail
d
�
99 User

d
�
9 EMail

d
�
11 CaseFile

r
�
11 ActHasEMail of the kind has
yi0 TTR.User-ProcessEMail.instantiates
ya1 TTR.User-ProcessEMail.allocates
yp2 TTR.User-ProcessEMail.processes
yr3 TTR.ProcessEMail-EMail.references
yr4 TTR.ProcessEMail-CaseFile.references
yc5 TTR.CaseFile-EMail.creates

Figure 3.
GraphGI, integrating

the data and task
perspectives
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5. The TEAMmodel and knowledge graphs
When studying the relevant literature, it becomes obvious that there is no single, commonly
accepted understanding of what constitutes a knowledge graph. Bergman (2019) collected
over 25 different definitions, going back to the 1970s and showing a significant spike in
citations (due to Google’s knowledge graph) from 2012 up to now. Considering all diverse
definitions, Bergman (2019) comes up with a free as possible definition, i.e. a representation
of knowledge (however defined) in the structural form of a directed (mostly acyclic) graph. As
this definition leaves an open space for great diversity in representation, application and
construction (Ji et al., 2020), we follow the recommendation of Hogan et al. (2019) and
highlight our view on knowledge graphs in the context of the TEAMmodel.

In general, we see knowledge graphs as follows:

5.1 Knowledge bases of types, instances and their attributes
[similar to the definitions in Paulheim (2017), d’Amato et al. (2019), Hogan et al. (2019) and
Paulheim (2017)]. As the early evolution of the semantic web, there have been tensions
between formalism and flexibility in knowledge representation. On the one hand, there is a
need for a formal representation (e.g. in an ontology written in Web Ontology Language
(OWL)) or at least for formal conceptual schemas and on the other hand, there is a tendency
toward diversity and decentralized approaches to vocabularies (Bergman, 2019).

Although knowledge graphs, in general, are rather data-focused (i.e. intuitive) than
schema-focused (i.e. descriptive) Polleres (2019), within the TEAM model we need a flexible
schema. We cannot use a strict ontology because we want the model to evolve dynamically
at run-time (driven by the user) and to integrate heterogeneous sources. However, complete
freedom of action is not applicable in many areas, e.g. the legal domain, where apart from
ensuring certain data quality, legal requirements must be fulfilled and decisions need to be
traceable at any time.

5.2 Guarded by constraints
We, therefore, defined types that represent templates used so far to guard the instances in the
TEAM model. Additionally, basic and domain-specific constraints are defined in the meta
model and the domain model.

5.3 User-driven construction
We start with a small set of trustworthy types and then let users dynamically extend the model.
The key idea is allowing the users to implicitly “build” types at run-time by constructing
instances. Afterward, it is consideredwhat should be added to the schema for learning purposes.

Figure 4.
Identifying paths P1,
P2 and P3 between
two tasks t1 and t5,
showing only task
relation yci ; y

r
i and

indicating sets of
interim data objects
with “. . .”

IJWIS
17,6

680



5.4 Organized in a logical and computable graph
Although there are several works that suggest resource description framework (RDF) (and
OWL) as a solid basis for knowledge graphs (Polleres, 2019; Ehrlinger and Wöß, 2016;
Villazon-Terrazas et al., 2017; Kejriwal, 2019), RDF is rarely used in classical information
systems for domain-specific applications. We do not base our knowledge representation on
RDF triples for the following reasons: The semantic web depends on complex standards of
the semantic web stack (Table 3), whereas we go for reduced complexity andmore flexibility
in the TEAM model. We further require a higher-level abstraction using an entity-relation
conceptual schema for modeling and querying data (then it is granted for the lower level
RDF data model) to prevent information overload for human users.

5.5 Integrated with a dynamic context
Knowledge graphs are designed rather statically, i.e. typically no temporal or actional
context is included, which is also proved by the definitions in (Bergman, 2019). In the
TEAM model, knowledge objects are also linked, however, not only in a static sense (e.g. a
natural person has an email address) but also through experience and use. We, thus enrich
the knowledge graph with process semantics to record dynamic aspects such as data
consumption/production of tasks, temporal validity of data and provenance (Polleres, 2019).
Special attention is paid to traceability – to be able to explain at any time why objects are
related to each other. Therefore, edges also have properties, such as timestamps, status
information, etc., which can be the target of another edge, thereby creating, referencing or
invalidating the relationship. This requires extending the classical understanding of graphs
as nodes connected by edges by also allowing “edges connected by edges” using a kind of
hyper-relation. Note that we do not use hypergraphs but rather an artificial node of type
“edge,” which is simply represented as an edge only. Thereby, the incoming/outgoing edges
remain the same and our extended view on graphs can be mapped to RDF (via reification).
Thus, equivalence to a classical graph is ensured.

5.6 Implemented in a multi-model graph database
For storing and managing the integrated knowledge and process graph, we deliberately
chose a multi-model database, where an edge has the same base type as a node (i.e.
document) and connects elements of the more general type document, to allow “edges-on-
edges” in a simple and straightforward way.

Besides presenting our TEAMmodel in terms of a knowledge graph, we nowwant to align
it to the very well-known classification in the area of knowledge and KM, i.e. the Data
Information Knowledge Wisdom (DIKW) pyramid, whose terms are still used and up-to-date
(Zeleny, 1987; Ackoff, 1989; Akerkar and Sajja, 2009; Gajzler, 2016; Jennex, 2017; Frické, 2019).

Table 4 compares and maps the terms of the DIKW pyramid to the components of the
TEAMmodel.

Table 3.
Comparing the

TEAMmodel to
semantic web

standards

Semantic web TEAMmodel

RDF triples (subject-
predicate-object)

Instance model (entities, relations, attributes on both of them)

RDFS (RDFþ schema) Domain model (types, concepts, hierarchies, constraints)
OWL (RDFSþ descriptive
logic)

No direct mapping allows similar constraint definition in the meta model and
domain model, graph-based knowledge representation

SPARQL Path query language (Gremlin-like syntax)

Presentation of
knowledge and

processes

681



Data, represented by symbols or static values, are expressed as observable data objects
in the TEAM model. Given a context, data become information, which represents
processed, aggregated and collected data. In the TEAM model, information is modeled
as a non-observable data object(s) (types). Data object (type) relations aggregate non-
observable data object(s) (types) to higher-level concepts and link them also to
observable data objects at the finest level of granularity. Information, given meaning in
a further step, becomes knowledge. Knowledge is obtained by (human) actors linking
information and data through experience and transactions (Jäger et al., 2016). In the
TEAM model, knowledge is made up by integrating data with tasks, i.e. how-to is
expressed by sequences of the data object(s) (types) and task(s) (types) connected via
task (type) relations.

In some domains, understanding is introduced as an additional level of an extended
DIKW pyramid model between knowledge and wisdom. This appreciation of why is mapped
to task (type) relations between task(s) (types) and data object (type) relations in the TEAM
model to support traceability. Further works also provide some extensions to the terms of
Zeleny (1987), such as know-who (Meyer, 2010), which can naturally be expressed in the
TEAMmodel.

From knowledge/understanding, it is possible to gain insights leading to evaluated
understanding (Ackoff, 1989) and actionable intelligence (Jennex, 2017). Thus, knowledge is
information” sufficiently believed to be acted upon” (Bergman, 2018), which can be used for
predictions and improvements within the TEAM model through learning and mining
methods.

In the following, concrete examples are provided based on our running example
(Figures 2 and 3). While data, information, knowledge and understanding are used to
conclude from the past, wisdom rather refers to the future (Jäger, 2019), which gives rise for
predicting and proposing, for example, the best next task to a user:

data = [doe@polymind.gmbh] (d*2)
information = [doe@polymind.gmbh is an EMailAddress used in an email]

d*2  r*2 � d
�
2  r

�
3 � d

�
4  r

�
4 � d

�
5  r

�
5 � d

�
9

� �

knowledge = [doe@polymind.gmbh is needed for task ProcessEMail] d
�
9�yr3 ! t0

� �

Table 4.
Mapping the TEAM
model to DIKW
terms

Terms Ackoff (1989) Zeleny (1987)
Akerkar and
Sajja (2009) TEAMmodel

Data Symbols Know nothing Raw observations Observable data objects
Information Data being

processed
Know what Aggregated,

collected data
þ Non-observable data
object(s) (types), data
object (type) relations

Knowledge Application of
data/information,
conveyed by
instructions

Know how how-to Human
understanding,
acquired by study
and experience

þ Task(s) (types), task
(type) relations

Understanding Appreciation of
why, conveyed by
explanations

na na þ Task (type) relations on
data object (type) relations

Wisdom Evaluated
understanding

Know why Higher level of
knowledge

Predictions and
recommendations

Source: Extended from Jäger (2019)
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understanding = [doe@polymind.gmbh is related to a CaseFile through task
ProcessEMail] d

�
11 � r

�
11 ! d

�
9; t0�yc5 ! r

�
11

� �

6. User interaction with a dynamic, graph-based knowledge representation
Knowledge cannot be transferred directly between people; it requires a sender-receiver
model, whereby the sender externalizes its knowledge and the receiver integrates it into her
body of knowledge (Burkhard, 2005; Meyer, 2010).

Knowledge communication, therefore, plays a major role, especially in the areas of KM,
communication studies and decision-making. Knowledge communication is defined as an
activity of interactively conveying and co-constructing insights, assessments, experiences or
skills through verbal and non-verbal means, which includes the successful transfer of know-
how, know-why, know-what and know-who. Thereby, the advantage of computer-based
visualization lies in the fact that it allows access, control, explore, combine and manipulate
different types of complex data, information and data (Eppler, 2004; Burkhard, 2005; Meyer,
2010).

For managing knowledge and information, digital concept maps have been proposed
(Tergan, 2005; Tergan et al., 2006), which are intended to represent meaningful relationships
between concepts in the form of propositions. Although it seems obvious to apply concept
map representation to knowledge graphs, it becomes apparent that the complexity of such
graphs quickly exceeds the capabilities of a visual representation. This applies in particular
to the proposed TEAM model, which, due to its multi-dimensional nature and the
associated complexity, goes beyond a usual presentation frame, even for the small scenario
shown in Figure 5, showing the instance graph of the proposed TEAM model after the
execution of 38 common tasks during the initial phase of patent drafting. It is, therefore,

Figure 5.
Resulting instance

graph for a small real-
world scenario with

data objects and data
object relations in

black, as well as tasks
and task in gray color
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necessary to simplify the complexity of the graph for the user, but in particular to select
suitable sections of the graph for user interaction.

Capturing the data objects required by a user to execute a task (that is relating those data
objects to the task via task relations) creates a work context (know-what) that maps all work
materials used. Therefore, a task contains a rationale for the changes made (know-why).
Observing the accessed data objects also facilitates the externalization of the users’
knowledge on what information is required to perform a certain task. Due to the fine-grained
actions in a task (creates, validates, invalidates) at the level of data objects and data object
relations, the detailed working approach of individual users becomes visible (know-how), not
only within a task but also across several tasks. Finally, special task relations to data objects
representing users were introduced to control access to tasks (know-who).

In the following, several key aspects of the user interface design are illustrated.

6.1 Representation of data objects
A first problem that arises in the visual representation of the proposed model is that only
observable data objects have a value assigned and can, therefore, be directly represented.
The displayable content of the majority of data objects results from their respective
subordinate data objects, which together make up the visually presentable content of the
superordinate data object. For example, after parsing, an e-mail is represented by a data
object that has subordinate data objects such as sender, receiver, subject or dateReceived.

Thus, the visual representation of data objects is not possible without aggregating
groups of data objects and, thereby, reducing graph complexity.

For a particularly simple representation of data objects, each corresponding data object
type can have a string template assigned that, once rendered, allows a textual representation
of the relevant data objects based on their related data objects. For example, a template for
displaying an e-mail data object via the related dateReceived, sender and subject can be
formulated as follows:

$fdateReceived?datetime $subject from : $senderð Þ

Simple text representation requires sequential visual processing. However, to get a fast
impression of the contents of a data object, a representation that is easily recognizable by
pre-attentive visual processing (Treisman, 1985) is preferred. Especially, as the lack of pre-
attentive visual processing is one of the common draw-backs of nowadays document and
data management systems. Therefore, and as shown in Figure 6 in a block view, a data
object component is introduced that allows for different visual representations of a data
object.

Figure 6.
E-mail data object
shown in block view
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As can be seen in Figure 6, subordinate data objects can be displayed via nested data object
components, like a status indicator as follows: (a) for displaying the presence of a related
dateProcessed data object, a simple text representation for the subject (b), the sender (c),
receiver (f), textBody (g) and dateReceived (h). In addition, the data object type name (d) can
be displayed together with action buttons (e, i) like a button (i) to pick the data object. The
nested structure allows for a fine-grained loading and updating of the user interface.

For a full visual representation of a data object, its user interface component supports a
detail view, which is shown as part (b) of Figure 7. Preferably, a list of data objects (a) acts as
an entry point for a detail view arranged next to the list, whereby multiple data objects can
be selected and are displayed next to each other.
Furthermore, for each data object in the detail view, it is possible to switch between a
predefined standard view and the data object’s subordinates and superordinate’s-related via
data object relations. This also shows that abstract data objects with no assigned value are
only abstract mental concepts that can only be visually represented and understood through
the data objects linked to them.

Apart from a general default layout for data objects, the content of the different views
can be overridden by assigning a specific renderer to the corresponding data object type.
However, the pre-set default layout supports an evolving model, where the user can also add
data object types and data object type relations as described in more detail in Section 6.5.

6.2 Searching for data objects
Similar to the representation of data objects, the search for data objects has to be based on
observable data objects which can, therefore, be searched for directly. To search for more
complex data objects, a graph traversal of predefined length against the direction of
neighboring data object relations is performed for each resulting data object with a
matching value. For the resulting paths, matching data object nodes are identified and
returned as the search result.

Continuing the example above, if a user enters the search term John polymind, the search
term is first split into the separate tokens John and polymind, for both of which a search for
data objects with a matching value is performed, resulting in the start nodes John Doe and

Figure 7.
E-mail data object of
Figure 6(a) shown in

detail view (b)
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doe@polymind.gmbh. Traversing from these two nodes upwards against the direction of
data object relations, the first matching node would be the eMailContact of John Doe and
further naturalPerson John Doe. Both would be returned as search results.

6.3 Enforcing the explicit selection of pre-requisite data objects
Another specific problem in this context is that in contrast to conventional user interfaces,
not only the data objects entered but also the data objects requested by the user should be
captured.

To enforce explicit referencing of data objects required to perform a certain task, the user
interface is split into areas for read-only presentation, search and navigation of data objects
and random access of data objects in the context of tasks.

As an interface between those two areas, the well-known metaphor of a shopping cart
was introduced as follows: Throughout the whole user interface, data objects can be picked
and collected into a cart. Depending on the data objects within the cart, corresponding task
types can be selected via an action-menu as shown in Figure 8. The selectable task types are
determined by searching the domain model for those task types, that have task type
relations to all data object types of the data objects within the cart.

Continuing the above example, for processing the incoming e-mail, a first administrative
user can pick the e-mail data object and open the action menu on the top right. Consequently,
a list of possible task types is shown, i.e. such task types, which have at least one task type
relation to the data object type of the picked e-mail data object. It should be emphasized that
the user is not restricted to select the complete e-mail data object but can also pick
subordinate data objects thereof as required.

6.4 Enforcing unique data objects within the system
One of the key concepts of the TEAM model is the uniqueness of data objects for relating
tasks with each other via task relations to common data objects. This is a prerequisite to
form interconnected process traces within the graph.

While the reusability of more complex data objects is generally seen as an advantage, it
is difficult to explain to users why simple data object types, such as string, date or other
primitive data types, should not be entered traditionally but need to be selected or created

Figure 8.
Picking one or more
data object(s) with the
button
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explicitly. To overcome this problem, the hierarchy levels of the least expressive data
objects were usually hidden and replaced by generally known input boxes.

However, when a data value is entered into these input boxes, the TEAM system first
searches for a data object with the respective value before creating a new one.

With more complex data objects, the concept of reusable, that means pick-, drag- and
drop-able, building blocks were pursued to support playful navigation and composition of
related data objects.

As shown in Figure 9, an administrative user, who changes the correspondence address
of the patent proprietor first invalidates the data object relation between the legalPerson and
the old address with the option to invalidate the address data object as well in case the old
address will or should not be reused. Afterward, she adds a new address data object by
opening up the editor, first searching for the new address and creating one in case no results
are found.

6.5 Execution of tasks and model evolution
Modifying data objects by creating, removing, validating or invalidating data object
relations is, according to the definition of the TEAM model, exclusively performed within
the scope of tasks. As shown in Figure 10, each possible modification action creates a
corresponding task relation, data modification can be tracked at a fine-grained level. As each

Figure 9.
Searching for new

address data objects
after invalidating the
data object relation to
the old address data
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task relation is reflected by a task type relation in the domain model, the way of performing
a task can be modeled beyond instance level and allows the support of users, who require
assistance on how to perform certain task types. However, knowledge workers with the
appropriate access rights can expand the domain model by simply adding task relations of
new task type relations, data object relations of new data object type relations or even by
adding or modifying data objects and tasks of new data object types and task types.

In the aforementioned example, the administrative user could add a new data object type
employee, relate it to legalPerson and add John Doe to the legalPerson polymind GmbH.

6.6 Context-based knowledge work
The introduction of tasks connected to data objects via task relations makes it difficult to
decide which data objects are to be displayed within the tasks as an entry point for further
navigation. For example, when assigning an e-mail to a case file, from a hierarchical
perspective, showing the case file as an entry point would be sufficient. However, that way,
the main aspects of the task performed remain hidden from the user. On the other hand,
displaying all modifications that occurred within a task by showing all task relations to the
user is not suitable either. Therefore, we decided to reuse the information learned from the
prescribed method of integrating a random-access task view with the possibility of picking
data objects throughout the system to allow for a context-based view of data objects
required to perform a task as follows: data objects explicitly selected by the user to perform
a task are related to this task via a separate task relation of kind displays, thereby modeling
what data objects matter to the user within the context of the task. Such an explicit selection
occurs during the initial picking of data objects required to execute the task but can be
altered andmodified later on, too.

Figure 11 shows a two-screen view of the random-access task area, allowing the
knowledge worker to arrange data objects as she prefers. At the same time, the user can
view data objects and create new ones, for example, in the above example, to write a
response e-mail taking into account all relevant data objects within the context of the current
task.

Figure 10.
Task history is based
on all task relations to
data objects and data
object relations and
gives a complete
overview of the
actions performed
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6.7 Delegation of tasks as a traceable alternative to other ways of communication
One problem of nowadays e-mail communication is that apart from using suitable file
formats, information is usually not exchanged in a structured, reusable way. In the legal
domain, tasks are delegated and assigned usually via deadlines, physical file handling or
subsidiary via e-mail communication.

Although within the TEAM system, e-mails can be processed as data objects, information
can also be shared by creating a task referencing the required data objects and assigning
this task to another user. Thereby, the unique data objects are linking tasks performed by
different users via task relations, thus building process traces.
For example, an administrative user can pass the task of substantially replying to an e-mail
to a knowledge worker by referencing the e-mail data object and any further information
such as client, case file and assign the task to that knowledge worker.

This results in a short setup time due to the pre-compiled set of referenced data objects.
However, task delegation requires that the task creator is aware of which data objects are
required for the subsequent task. Following the intention of the TEAM model, those
prerequisite data objects are identified over time and are available to other users via the
domain model. As a transitional solution, the TEAM model still allows for the creation of
intermediate data objects like time limits, which can be related to tasks by the executing
user.

6.8 Tracing knowledge work and switching between the graph dimensions
Once data object uniqueness is assured, each creation and usage of a data object creates
links (task relations) between two or more tasks. Therefore, the source task of every data
object, as well as every usage of the data object can be traced and recalled. As tasks relate to
all other data objects used and created while creating or using that data object, the
respective working context can be restored.

However, the representation of the process dimension in an ordinary user interface
environment is difficult because it has to be integrated into a static view of the data objects
and their data object relations to each other, providing information about their creation,
consumption andmodification over time.

Therefore, for each data object, a separate process popup view is developed, which
allows the creating and consuming tasks to be displayed and navigated to (Figure 12).

Figure 11.
Knowledge work:
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Displaying a trace of several consecutive tasks fails without further measures due to the
lack of a defined start and end point. Thus, starting from a data object, the model graph
expands in both process directions in the form of one or more trees, which already have an
enormous and no longer visually presentable dimension after traversing a few edges and
nodes in the emerging graph.

For enabling initial navigation through the emerging process traces, the user is,
therefore, enabled to select one subsequent or preceding task step by step from the
process popup view, and thus query a concrete task sequence based on a starting data
object.

Such a task sequence is shown in Figure 13, revealing the amount of connecting data
objects between two tasks and allowing the user to expand the view analogous to Figure 12
for displaying the interconnecting data objects between the relevant tasks.

7. Results
The TEAM system prototype was evaluated in two case studies with Austrian patent law
firms. User feedback was collected through open interviews with the administrative staff
and knowledge workers who participated in the case studies.

7.1 User perception
After working on the use cases, both user groups reported satisfying experiences concerning
the presentation of information within the test system. However, it took some getting used to
having to explicitly perform a task to change data objects. In particular, it was observed that
many users had difficulties in selecting the appropriate task type or in specifying a new task
type correctly before actually executing the planned activity. To change multiple data
objects regardless of their origin or context within one task was a new experience for the
users and enabled them to focus on the task in its context while requiring less user
interaction. However, due to the possibility to change existing task types and to edit all data
objects within a task, the users tended to extend existing general task types instead of
creating new specific ones.

Figure 13.
Navigating through
the traced process

Figure 12.
Creating and
consuming tasks for a
data object
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On the other hand, changing or specifying new data object types was intuitive for most
knowledge workers and the administrative staff within their own knowledge domains.
Defining types for both groups of users, which is needed when data objects are handed over
by tasks, requires more communication between the affected groups. The tests performed
showed that users tend to use more general task types and data object types in favor of more
specific ones. One reason, therefore, might be the extended effort to define types and to
choose whether to model aspects as task types or as data object types. For example, one can
model as follows: specific document types like eMail or letter, all referenced by the same
more general task type sendDocument or specific task types like sendEMail or sendLetter, all
referencing a more general data object type document.

7.2 Technical aspects
The TEAM system prototype shows that the integration of the knowledge and process
perspectives leads to a very complex graph model, especially with the process perspective,
as every change of a data object or a data object relation results in at least one task relation.

Despite the proposed TEAM system model having a limited set of core components, the
model graph derived from a real-world scenario (the user interactions of four users during
the application draft and initial prosecution phase of the Austrian patent AT521649)
exceeds an easily ascertainable level of complexity. For example, a relatively small data set
of 17 (t0), 27 (t2) and 38 (t4) common tasks during the initial phase of patent drafting lead to
the graphs shown in Figure 14.

For the evaluation of the first testing results, we introduce the following metrics to
describe graph characteristics at a certain point in time as follows:

Besides the cardinality of the sets D, P, N, !, D, D*, R, T and T (Table 5), we define the
relation between the number of observable data objects jD*j and the overall number of data
objects jDj as observabilitymobserve of the mental concepts within the graphGI.

mobserve ¼ jD
*j
jDj (5)

This metric gives an indication of howwell abstract, i.e. non-observable mental concepts can
be encoded within the information graphGI.

Furthermore, we observe whether the information representing the mental concepts is
entailed within the data objects or the data object relations. Therefore, we introduce the

Figure 14.
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and data object
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relation mentail between the total number of data objects jDj and the total number of data
object relations jRj as follows:

mentail ¼ jDjjRj (6)

Considering data objects as symbols within a hierarchical structure of mental concepts,
mentail is also a measure for the completeness of the symbol set. In other words, we expect a
saturation with respect to data objects as the model evolves because already existing data
objects are reused over time.
Finally, we introduce metrics for the graph shape in terms of dimension with respect to data
object components jDj, jRj and task components jTj, jPj, separated in a node-related metric
mN

shape and an edge-related metricmE
shape:

mN
shape ¼

jDj
jTj mE

shape ¼
jRj
jPj (7)

The total number of data object types and task types in the initial configuration (t0) is given
by a preset model and remained relatively constant throughout the test, which indicates a
nearly complete set of data object types and task types. However, the value progression of
the total count of data object type relations and task type relations shows that the relations
among data object types and task types were barely modeled initially, but completed during
user interaction. Especially process-related aspects, namely, which data object types and
data object type relations are created, validated or invalidated within which task type, were
captured over time, thereby resulting in a comprehensive description of the tasks performed.

With respect to instances, we observe a significant decrease of mobserve over time, which
confirms that more and more information is captured via abstract, non-observable data
objects. Although both data objects and data object relations increase over time, a sum of
squares regression analysis shows a greater increase of data object relations over time.

In this regard, it should be noted that the entailment metricmentail first increases from t0 –
t2 before decreasing slightly from t3 –t4. This confirms our initial expectation for mentail
being dependent on the completeness of the symbol set spanned by data objects. While
increasing during an initial phase of building up the symbol set, mentail decreases again as

Table 5.
Overview of metrics
collected during data
set generation

Metric t0 t1 t2 t3 t4

Data object type count jDj 208.000 208.000 209.000 212.000 214.000
Data object type relation count jPj 201.000 202.000 224.000 242.000 259.000
Task type count jNj 131.000 131.000 131.000 135.000 139.000
Task type relation count j!j 281.000 292.000 369.000 492.000 717.000
Data object count jDj 48.000 102.000 150.000 202.000 353.000
Observable data object count jD*j 33.000 60.000 76.000 91.000 137.000
Data object relation count jRj 62.000 125.000 181.000 247.000 435.000
mobserve 0.687 0.588 0.506 0.450 0.388
mentail 0.774 0.816 0.828 0.817 0.811
Task count jTj 17.000 26.000 27.000 31.000 38.000
Task relation count jYj 418.000 618.000 731.000 933.000 1,479.000
mN

shape 2.823 3.923 5.555 6.516 9.289
mE

shape 0.148 0.202 0.247 0.264 0.294
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existing data objects get reused and are only related to each other via new data object
relations.

Finally, the shape metric mN
shape reveals a much larger amount of data objects compared

to tasks, that even increases over time, which confirms that tasks establish a procedural
context for several data objects at once. The second shape metric mE

shape, related to data
object relations and task relations was already expected to be low, as task relations relate
not only tasks and data objects but also tasks and data object relations. Furthermore, the
task status is expressed as a group of task relations to data objects (representing users) as
well. However, mE

shape << 1 shows the importance of a task-centered modeling approach
when it comes to capturing observable user behavior.

Nevertheless, the vast majority of task relations indicates a possible bottleneck in
process-oriented graph traversals and can be seen as a hint to reduce and transfer parts of
the information contained therein.

8. Conclusion
To overcome the shortcomings of current approaches and IT systems concerning the
integration of knowledge and processes, as well as dynamically evolving mental concepts of
communication-intensive application domains, we propose the TEAMmodel.

A key research result is an approach to flexibly manage data, information, knowledge, tasks
and processes within a mixed administrative and knowledge work domain. This approach has
been evaluated with a prototypical implementation in real-world environments. The use cases
heavily support our hypothesis that the TEAM model is suitable to support knowledge and
administrative work equally within one integrated model. This makes a fundamental difference
to traditional BPM approaches with not only a focus on administrative work but also to more
flexible and adaptable approaches for knowledge-intensive business processes or case handling.

The TEAM model provides a meta model along with the dimensions as follows:
knowledge in the form of the domain, organizational, operational knowledge and the
dynamic behavior in the form of sequences of tasks and interconnecting data objects. The
meta model specifies how to describe both, the domain model with domain-specific mental
concepts (types) and their relations, as well as the instance model.

To allow for the required flexibility and adaptability, the domain model and the instance
model are continuously evolving by user interaction. The instance model is specified at run-
time based on information and communication flows in a bottom-up perspective,
considering execution-specific data and the dynamic assignment of tasks.

Creating the multi-dimensional knowledge/process graph (e.g. inserting basic domain
data, user and task types), we succeeded in designing a highly flexible and adaptable model,
which supports the evolution of the domain model, the instance model and the integration of
the static and dynamic aspects. The state-of-the-art approaches we discussed in the related
work section do not support these characteristics by far.

Evaluating the prototype in a real-world setting showed that the developed user interface
design is suitable to hide the complexity of the model from the users and still allows for flexibly
extending and adapting the system not only on the instance but also on the type level.

Business processes are recorded through traces of tasks and data objects in the
knowledge/process graph. In future work, we will use this fine-grained tracing to as follows:
identify new data object types and task types based on a set of instances and for graph-
based process mining on the sequences of tasks interconnected by data objects to discover
recurrent (hidden) execution patterns.
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Note

1. Despite of different definitions of the term mental concepts, we consider a mental concept as an
abstract representation of a certain thing or set of things, such as people, objects, places or
actions that can be organized in hierarchies.
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