
0 

A Multi-dimensional City Data Embedding Model for Improving 

Predictive Analytics and Urban Operations 

Purpose- A smart city is a potential solution to the problems caused by the 

unprecedented speed of urbanization. However, the increasing availability of big data 

is a challenge for transforming a city into a smart one. Conventional statistics and 

econometric methods may not work well with big data. One promising direction is to 

leverage advanced machine learning tools in analyzing big data about cities. In this 

paper, we propose a model to learn region embedding. The learned embedding can be 

used for more accurate prediction by representing discrete variables as continuous 

vectors that encode the meaning of a region. 

Design/methodology/approach- We use the random walk and skip-gram methods to 

learn embedding and update the preliminary embedding generated by Graph 

Convolutional Network (GCN). We apply our model to a real-world dataset from 

Manhattan, New York, and use the learned embedding for crime event prediction. 

Findings- Our results show that the proposed model can learn multi-dimensional city 

data more accurately. Thus, it facilitates cities to transform themselves into smarter 

ones that are more sustainable and efficient.  

Originality- We propose an embedding model that can learn multi-dimensional city 

data for improving predictive analytics and urban operations. This model can learn 

more dimensions of city data, reduce the amount of computation, and leverage 

distributed computing for smart city development and transformation. 

Keywords: Smart city; Big data; Machine learning; Region embedding; Graph 

Convolutional Network (GCN) 
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1. Introduction 

With the continuous growth of the global population and the fast development of 

urbanization, the urban population is increasing rapidly (World Bank, 2017). The ever-

increasing urban population and rapidly changing demographics complicate the urban 

structure (Boeing, 2018). At the same time, the natural environment is susceptible to 

various threats, such as energy shortages, air pollution, and global warming (Dong et 

al., 2018; Ogura & Jakovljevic, 2018). Nowadays, many people living in cities face 

various risks and problems, such as the shortage of water resources and the unbalanced 

distribution of medical resources (Hadadin et al., 2010). Therefore, better developing 

and managing urban areas has become increasingly important in addressing these 

problems.  

A smart city is a potential solution to the problems caused by the unprecedented 

speed of city development and urbanization (Hall et al., 2000). The concept of smart 

cities can be traced back to 1974, when the first big data project for cities was created 

in Los Angeles (Los Angeles Community Analysis Bureau, 1974). Since then, academia 

and industry have invested time and effort in advancing smart city research. IBM 

proposed that policymakers treat a city as a complex interconnected network that can 

proactively predict and solve problems, maximize resources, and use the information 

to make better decisions (Wiig, 2015). Many academic studies in this domain have 

explored the constituent elements of smart cities and the interrelationships among them 

(Hollands, 2008; Allwinkle & Cruickshank, 2011; Lombardi et al., 2012; Chourabi et 

al., 2012). Based on the definitions and concepts of smart cities put forward by different 

scholars, a smart city should be able to make conscious efforts to use information 

systems strategically, seeking to achieve prosperity, effectiveness, and competitiveness 

at multiple levels of the urban society (Angelidou, 2014). While the goals of a smart 

city are relatively straightforward, the approaches to transforming a city into a smart 

one remain unclear.  

In recent years, the development of the digital infrastructure, such as the Internet of 

Things (IoT) and information and communication technologies (ICT), has enabled the 



2 

 

rapid growth of big data at the city level (Batty, 2013; Hashem et al., 2016; Chen et al., 

2017). The big data of a city can be considered a spontaneous, objective, and accurate 

recording of the multi-dimensional characteristics of the city. Big data is usually 

generated by the passive recording of various people’s activities (Rathore et al., 2016). 

As a result, big data can more comprehensively, objectively, and accurately capture the 

information of city residents and other physical objects (George et al., 2014; Chen et 

al., 2015). Therefore, the availability of multi-dimensional city data provides a valuable 

opportunity to develop smart cities.  

However, the increasing availability of big data is also a challenge for transforming 

a city into a smart one (Li et al., 2019). One of the biggest challenges scholars and 

governments face is the diversity and hierarchy of data sources—sensors, mobile phone 

apps, social media, web activities history, and tracking devices, all of which can 

generate enormous amounts of data (Ghosh et al., 2016). Thus, leveraging big data to 

achieve smart city transformation has become an influential research topic. In the past, 

many scholars focused on studying how to develop sustainable and smart cities by 

analyzing data with statistical and econometric tools. For example, Neirotti et al. (2014) 

performs a regression analysis of a sample of 70 international cities to identify the 

crucial factors that influence the coverage index that measures the impacts on the 

development of smart-city initiatives. Their study helps policymakers under budget 

constraints prioritize smart-city initiatives, thereby maximizing the return of smart city 

investments. Liu et al. (2021) use a spatial econometric model to identify key factors 

influencing smart city development with a sample of 83 Chinese cities. Their results 

show that governmental support, innovativeness, economic development, and human 

capital are the four key factors that help policymakers make decisions to develop smart 

cities.  

However, conventional statistics and econometric methods may not work well with 

big data (Varian, 2014). First, the massive dynamic data renders data manipulation tools 

in econometrics useless. Second, in many cases, people have to select appropriate 

predictors from a large number of available variables to improve predictive accuracy. 
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However, this task cannot be efficiently achieved with conventional econometric 

models. Third, linear models often do not accurately reflect the relationships among 

variables in big data. Thus, we need to introduce more flexible models to examine the 

complex relationships among many variables. 

Machine learning techniques such as decision trees, neural networks, and deep 

learning support the analysis of multi-dimensional city data. The predictions based on 

machine learning enable cities to achieve the goal of high efficiency and sustainable 

development (e.g., Din et al., 2019; Shafiq et al., 2020; Zekić-Sušac et al., 2021). 

Recent studies attempt to predict regional characteristics such as crime rate or traffic 

flow by learning region embedding from big data to support the development of smart 

cities (Zhang et al., 2018; Liu et al., 2020). This approach represents discrete variables 

as continuous vectors that encode the meaning of regions. The learned embedding can 

be used for identification or prediction, as the regions that are closer in the vector space 

are expected to have similar regional characteristics (Jurafsky, 2000). The advantages 

of this method are mainly in two aspects. First, region embedding can be learned from 

data of different types and from different sources. For example, the data of location, 

people mobility, and building type are difficult to be handled in conventional 

econometrics and statistics. However, machine learning can use region embedding to 

represent such data more effectively. Second, identification or prediction through the 

learned region embedding is less limited by the scene. The principle of prediction is to 

leverage the similarity of region embedding. With the appropriate data and a reliable 

method of learning embedding, people can accurately predict many things in urban 

areas, such as identifying urban functional areas and predicting local crime rates. These 

two advantages make this approach particularly suitable for supporting the better 

development of smart cities. 

Accurately learning embedding from big data has become a very important research 

field. Previous studies have used city data to learn embedding. Some scholars use 

human mobility flow data to learn embedding. For example, Pan et al. (2012) explore 

the relationship between taxi trajectory and urban land use. Zheng et al. (2014) use 



4 

 

human as a sensor and model the New York city noise situation with embeddings that 

include regions, noise categories, and time slots information. Yao et al. (2018) represent 

urban function through learned zone embeddings by exploiting large-scale taxi traces. 

However, these methods only consider region correlations hidden in a single dimension 

of data, such as people’s mobility. A few other studies have combined region attributes 

with human mobility data (Zhang et al., 2019; Fu et al., 2019). While multi-dimensional 

data are used in these studies, there are at least two directions from which we can 

improve the learning of region embedding. First, the weights of different attributes of 

the same region should be considered during the learning process. For example, Zhang 

et al. (2019) assign the same weight to different attributes in the point of interest (POI) 

in learning, which reduces the accuracy of learned embeddings. It is challenging to 

assign weights for different attributes because the weights change dynamically with the 

city and selected regional attributes. Second, more dimensions of city data need to be 

analyzed to learn embedding more accurately. In the existing research, embedding has 

been learned mainly from mobility and POI data. However, there are other types of data, 

such as labels of regional functions, which represent such main functional areas of the 

region as the business area. This regional label data is different from mobility and POI 

data, so it is not easy to learn using past methods. Therefore, we propose a new model 

to learn region embedding. The proposed method can learn from high-dimensional city 

data so that the learned embedding can more accurately capture the characteristics of a 

region. This method can significantly improve the accuracy of our forecasts, thereby 

facilitating cities to transform themselves into smarter ones that are more sustainable 

and efficient. 

The proposed method in this study is different from those in the previous studies in 

three aspects. First, we propose a comprehensive method to learn the embedding of 

different regions from multi-dimensional city data. In this research, we first use self-

supervised deep learning methods to learn embedding for point of interest (POI), the 

type of data describing the attributes of a point in the city. Then we employ Graph 

Convolutional Network (GCN), an approach for semi-supervised learning to update the 
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learned embeddings. Our method can integrate more data types into embedding and 

learn embedding more accurately compared with existing methods. Second, our model 

is more suitable for practical use in the smart city setting because of its nature of 

unsupervised learning (our model uses a nearly unsupervised learning method, i.e., only 

a tiny amount and readily available samples are needed for training). In the preliminary 

embedding learning process, we use deep walk (an unsupervised deep learning method) 

and conduct adaptive learning to get the weights of different dimensions in POI data. 

Therefore, with our method, the only manual intervention for supervised learning is to 

label each region with its urban function. There is no need to manually label the regions 

for supervised learning because the type of functional regions in a city can be easily 

obtained from the government’s urban development plan. Consequently, this model can 

learn embedding from a large number of multi-dimensional unstructured and structured 

city data with little manual intervention. Third, we demonstrate the proposed method 

using a real-world dataset from Manhattan, New York from NYC open data website1. 

The dataset includes 5854 POIs, the people mobility data, 12 labels of regional function, 

and the number of crime events in different regions. We compare the predictive 

performance of our method against three others to demonstrate the effectiveness and 

superiority of our proposed method. To sum up, our method can learn the embedding 

more accurately, and the learned embedding can better present regional characteristics, 

thereby improving predictive accuracy which is usually imperative for developing 

smarter cities.  

The remainder of our paper is organized as follows. The following section presents 

the deep learning method and the neural network used in our research. It also includes 

the method of learning embedding and the description of the datasets. Section 3 shows 

the images of dimensionality reduction of embedding by deep walk and GCN. It also 

presents the results that demonstrate the predictive performance of four different 

methods, including ours. We discuss the limitations and implications of this study in 

Section 4.  

 
1 opendata.cityofnewyork.us 
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2. Method 

 We propose a framework that utilizes the big data generated by all kinds of sensors, 

IoT, and manual statistics in a smart city. As shown in Fig. 1, this framework can be 

divided into three phases. The first phase is to collect city big data, which is in the form 

of high-dimensional vectors. The second phase is to learn preliminary region 

embeddings from the original high-dimensional data in the city using random walk and 

skip-gram, then update it using a graph convolutional network (GCN). The last phase 

shall be predicting urban characteristics (such as function and crime rate) leveraging 

the learned region embeddings. 

 

2.1 Preliminary Embeddings 

An important task is to learn preliminary region embeddings based on the POI data 

in the city. Embeddings preserve region characteristics in the form of high-dimensional 
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vectors. Through this representation, regions with similar characteristics (i.e., have the 

same function or geographically adjacent) will be close to each other in the embedding 

space. Based on this key peculiarity, we can further use embeddings to identify or 

predict a region’s characteristics (e.g., number of crimes). 

There are four steps to learn the preliminary embeddings (see Fig. 2 and Fig. 3) 

including pairing connection of POI in a limited distance, constructing a graph, forming 

paths through the random walk, embedding with skip-gram. These steps are not limited 

to a specific type of sample and thus have strong applicability to multiple dimensions 

of information in smart cities. 

 

Types of facilities count % 

Commercial 432 7.40% 

Cultural Facility 304 5.20% 

Education Facility 970 16.60% 

Government Facility (non-public 

safety) 
422 7.20% 

Health Services 112 1.90% 

Miscellaneous 273 4.70% 

Public Safety 150 2.60% 

Recreational Facility 980 16.70% 

Religious Institution 506 8.60% 

Residential 850 14.50% 

Social Services 375 6.40% 

Transportation Facility 447 7.60% 

Water 33 0.60% 

Total 5854 100% 

Table 1 the main types of facilities 

 

Our empirical studies are conducted in Manhattan, New York. which is one of the 
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most developed areas in the world and is in the process of becoming a smart city. There 

are two main benefits to using Manhattan as a research environment. First, Manhattan 

has not only rich and accurate building data, but also taxi mobility data. Second, the 

blocks of Manhattan use streets as the dividing line, so the boundaries of different 

blocks are clear, which is convenient for us to learn the region embedding next. We use 

the data of Point of Interests (POIs), which is a point together with its attributes 

including its location and facilities such as school, garden, and bus stop. In Manhattan, 

New York, there is a total of 5854 points (the POI data is publicly available from the 

Department of Information Technology and Telecommunications of New York). This 

dataset includes 13 types of facilities (see Table 1). The top three categories are 

Education Facility (16.6%), Recreational Facility (16.7%), and Residential (14.5%). In 

addition to the information on facility types, each point has other attributes (there is a 

total of 11 attributes for a point of interest as shown in Table 2).  

Attribute Description 

Field 

Type 

SEGMENTID Point is assigned the closest roadbed SegmentID. double 

COMPLEXID Point is assigned a ComplexID if it is a part of a Complex. double 

SOS Indicates which side of the street the CommonPlace is on. text 

FACI_DOM Facility Domains are valid values for each FACILITY_TYPE: text 

BIN 

BIN is an abbreviation of Building Identification Number. Point is assigned 

a BIN if it falls within a building. 

double 

FACILITY_T This is a SubType field organizing the CommonPlace points into categories. integer 

SOURCE The agency that defined the CommonPlace location. text 

B7SC The Street Code assigned to a CommonPlace. text 

PRI_ADD The Addresspoint ID if the CommonPlace is related to any Addresspoint double 

NAME The name of the CommonPlace. Most name come from Feature name table. text 

SAFTYPE Point is assigned a SAFTYPE if it is a part of a Complex text 

Table 2 the attribute information for point of interest (POI) 
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2.1.1 Construction of the Urban Functional Corpus 

In natural language processing (NLP), corpus is a collection of a large number of 

processed texts in a predetermined format (Ng & Zelle, 1997), including documents 

that can be used to simulate natural language on a large scale. In text analysis, the 

connection between different words in human language can be simulated by the context 

ranking relationships of different words in the document. Taking advantage of these 

relationships, we can present the meaning of the word through the context in an 

unsupervised way. While a POI has accurate latitude and longitude to describe the 

geographic relationship, the contextual relationships between different POIs are unclear 

in a city. Therefore, in order to use this method to learn embeddings, we first need to 

construct the relationships between different POIs. In this paper, we analogize the area 

to a natural language corpus, since the distribution of POI is similar to the word 

frequency distribution in a natural language corpus (Yan et al., 2017). We build the 

corpus through the following steps: 

1) Pairing 

According to the size of the city and the density of the POIs, we choose a distance as 

the radius. In this study, we choose a radius of 500 meters. We select a POI and form a 

one-to-many pairing relationship with all other POIs within a chosen radius. After all 

the POIs are paired, we get 5854 pairing relationships. 

2) Composition 

According to the obtained pairing relationships, we combined 5854 groups of pairing 
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relationships to generate a network structure (see Fig. 2). In this way, we transform the 

geographical coordinates that do not have interrelationships between POIs into a 

contextual network structure. For example, in Fig. 2, the closest relation between A and 

B is connected by two lines. From A to C, A can reach C directly, or firstly reach B then 

to C. However, from A to I, we can only go from A to B and then to I, which means that 

the distance between A and I is greater than that between A and C.  

 

2.1.2 Embedding the Area 

In this part, there are two processes including random walk and skip-gram, which 

are together called the deep walk. 

1) Random walk 

We have generated a POI network by composition. While this network can capture 

the distance relationships between different POIs, this global network structure makes 

it difficult to directly learn embedding by skip-gram. Therefore, we choose the method 

of random walk to extract local structural information from the global network.  

𝑃(𝑣𝑗 ∣ 𝑣𝑖) = {

M𝑖𝑗

∑ M𝑖𝑗
𝑗∈𝑁+(𝑣𝑖)

0

𝑣𝑗 ∈ 𝑁+(𝑣𝑖),

𝑒𝑖𝑗 ∉ ℰ,
               (1) 

In Equation (1), 𝑃(𝑣𝑗 ∣ 𝑣𝑖)  is the probability of the random walk. M𝑖𝑗  denotes the 

weight of the edge from point 𝑖  to point 𝑗 . This random walk process can get 

sequences as shown in Fig. 3. Using random walk here has two advantages. First, 

random walk is easy to compute parallelly. Through distributed computing or multi-

threaded computing, different parts of the structured network can be explored at the 

same time. Second, when there are some minor changes in the authority domain, we 

only need to iteratively update the learning model with the information obtained by the 
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new random walk, instead of recalculating the entire structure diagram.  

2) skip-gram with attributes 

We learn embeddings using the skip-gram algorithm, a self-supervised method. 

This method maximizes the co-occurrence probability of two points in the obtained 

order from the random walk. Therefore, this method transforms the problem into the 

following optimization problem: 

minimize
Φ

− log Prob ({𝑣𝑖−𝑤, ⋯ , 𝑣𝑖+𝑤} ∖ 𝑣𝑖 ∣ Φ(𝑣𝑖))           (2) 

where 𝑤 is the window size of the context points that we set. Because the probability 

distribution is independent, we get  

Prob ({𝑣𝑖−𝑤 , ⋯ , 𝑣𝑖+𝑤} ∖ 𝑣𝑖 ∣ Φ(𝑣𝑖)) = ∏ Pr (𝑣𝑗 ∣ Φ(𝑣𝑖)

𝑖+𝑤

𝑗=𝑖−𝑤,𝑗≠𝑖

)        (3) 

Using negative sampling, the prob function can be transformed into the following 

objective function. 

minimize 
Φ

log 𝜎(Φ(𝑣𝑗)𝑇Φ(𝑣𝑖)) + ∑ log 𝜎(−Φ(𝑣𝑡)𝑇Φ(𝑣𝑖))

𝑡∈𝑁(𝑣𝑖)′

      (4) 

where 𝑁(𝑣𝑖)
′ is the negative samples for 𝑣𝑖 and 𝜎(𝑥) =

1

1+ⅇ−𝑥. 

 

With this embedding method, we can capture the similarity among POIs in the city. 

However, it is still impossible to get accurate embedding for POI because the 

information contained in each point is high-dimensional. As shown in Table 2, each 

POI contains 11 types of information including main category, subcategory, etc., which 

are important information that can reflect regional characteristics. To get the required 

aggregated embedding of POIs, we need to add the information of different dimensions 

of a POI according to their weights. We can average the sum of each dimension of 

information to get the aggregated embedding of the POI, which implies that the 

contributions of different dimensions to embedding are the same. However, for real 

world data from a city, different dimensions of information usually have different 

importance. For example, in our POI data, the contribution of the main type and subtype 



12 

 

to the expression of regional characteristics is greater than that of the source. Therefore, 

we adopt a self-adaptive method to get the weights of different dimensions (see Fig. 4). 

 

we use 𝑎𝑖
𝑠 to denote the weight of the s-th type of attributes of point 𝑖, and use 𝑎𝑖

0  

denote the weight of the first type of attributes of point 𝑖. Then the weighted average 

layer is defined by the following formula: 

 

𝐇𝑖 =

∑ 𝑒𝑎𝑖
𝑗

𝐖𝑣
𝑗

𝑛

𝑗=0

∑ 𝑒𝑎𝑖
𝑗𝑛

𝑗=0

       (5) 

The core idea of this method is to construct an objective function. For point 𝑖 and its 

context point 𝑢 in the training data, we use 𝑦 to denote the label. Then, the objective 

function is 

ℒ(𝑖, 𝑢, 𝑦) = −[𝑦log (𝜎(𝐇𝑖
𝑇𝐙𝑢)) + (1 − 𝑦)log (1 − 𝜎(𝐇𝑖

𝑇𝐙𝑢))]      (6) 

 

2.2 GCN  

Convolutional Neural Network (CNN) (Krizhevsky et al., 2012; He et al., 2016) 

has been a popular deep learning tool for many years. However, CNN can only be 

applied in Euclidean space. For non-Euclidean data structure, especially graph data, it 

has limited potential. Thus, Graph Convolutional Neural Network (GCN) (Kipf & 

Welling, 2016) is proposed to apply convolution to graph data. As a feature extractor 

that targets graph data, GCN can update node embeddings by aggregating the 
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information from neighboring nodes. In this study, we consider a two-layer GCN for a 

semi-supervised node classification task on a graph (note that too many layers in GCN 

will lead to the over-smoothing problem, Chen et al., 2020). The graph can be denoted 

as 𝜍 = (𝜈, 𝜀) , with 𝑁 nodes 𝑣𝑖 ∈ 𝑣, edges (𝑣𝑖, 𝑣𝑗) ∈ 𝜀. The symmetric adjacency 

matrix is marked as 𝐴, 

𝐴 ∈ ℝ𝑁×𝑁 

and the degree matrix is denoted as 𝐷𝑖𝑖. 

𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗

𝑗

 

𝐴
~

= 𝐴 + 𝐼𝑁 

𝐴
~

 is denoted as the adjacency matrix of the graph added with self-connections, where 

IN is the identity matrix. And 𝐷
~

𝑖𝑖 is calculated by 

𝐷
~

𝑖𝑖 = ∑ 𝐴
~

𝑖𝑗
𝑗

.  

Thus, our GCN model can be described as: 

𝑍 = 𝑓(𝑋, 𝐴) = Softmax (𝐴
^

ReLU (𝐴
^

𝑋𝑊(0))𝑊(1))            (7) 

𝐴
^

= 𝐷
~

−
1
2𝐴

~

𝐷
~

−
1
2                (8) 

Softmax (𝑥𝑖) =
1

𝒵
exp (𝑥𝑖), 𝒵 = ∑ exp (𝑥𝑖)

𝑖

           (9) 

where 𝑊(0) ∈ ℝ𝐶×𝐻  is a trainable weight matrix for the first hidden layer with H 

dimensions, and 𝑊(1) ∈ ℝ𝐻×𝐹 is the trainable weight matrix for the second hidden 

layer with F-dimendional output. For the task of semi-supervised multi-class 

classification, we optimize the model using cross-entropy loss over all labeled examples: 

𝐿 =
1

𝑁
∑ 𝐿𝑖𝑖 = −

1

𝑁
∑ ∑ 𝑦𝑖𝑐log (𝑝𝑖𝑐)

𝑀

𝑐=1
𝑖

           (10)   

where 𝑀 is the number of categories. 𝑦𝑖𝑐 is a symbolic function. If the ground truth 

category of sample 𝑖  is 𝑐 , then 𝑦𝑖𝑐 =1. Otherwise, 𝑦𝑖𝑐 =0, where 𝑦𝑖𝑐  is the 

probability of sample 𝑖 belongs to category 𝑐. 
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Fig. 5 Boundaries of 180 regions split 

by streets and 12 types of functional regions in Manhattan, New York.  

 

In this paper, we construct the graph by regarding the 180 regions as 180 nodes 

(see Fig. 5). Two nodes are connected (i.e., there is an edge between two nodes) if there 

are taxi flows between the corresponding two regions. The adjacency matrix 𝐴 is a 

180 × 180 matrix and its element 𝐴𝑖𝑗 is weighted by the amount of taxi flow from 

the nodei to the nodej. The diagonal elements of the matrix A are zero because there is 

no flow between the same nodes. For the GCN model, the inputs are preliminary node 

embeddings of the 180 regions obtained from POIs and the adjacency matrix 𝐴. The 

labels are 12 types of functional regions Thus, in Equation 10, we have 𝑁 = 180, 𝑀 =

12. 

We divide the dataset into train (40 samples), validation (20 samples), and test 

splits (120 samples). It is worth noting that we use stratified sampling when splitting 

the dataset. We train the model for 500 epochs with learning rate 0.001 using Adam 

optimizer. For all experiments, the Dropout rates are set as 0.5. After finishing training 

the model on train split, the parameters can be saved to inference F-dimensional 

representations of all the samples. In such a way, the updated region embeddings can 

be obtained. 
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2.3 Predicting the number of crimes 

After updating the previously learned embeddings through the classification labels 

of urban functional areas and people mobility data, we performed the task of crime rate 

prediction to validate the accuracy of the learned embedding. By predicting using the 

same set of real crime data, we can compare the goodness of fit of embeddings learned 

using different methods. In this task, we use the data of different dimensions of the city 

including POI, urban functional area, people mobility, and learn embeddings through 

deep learning and GCN. The basic principle of forecasting is that, as the embedding of 

a high-dimensional vector can accurately express the data, the similarity of embeddings 

can be used to predict the regional attributes of the city.  

We use the Lasso (Least absolute shrinkage and selection operator) regression 

model for our prediction (Tibshirani, 1996). Lasso estimate compresses some 

coefficients by constructing a penalty function, and makes some coefficients zero. Thus, 

Lasso regression has the functions of shrinkage and selection. Compared with OLS, 

Lasso regression can quickly and effectively extract important variables and simplify 

the model when there are many variables. Because the regional embedding is a high-

dimensional sparsity vector and the information of each dimension is low, we need to 

exclude some covariates that have little influence on the dependent variable to improve 

the accuracy of our prediction.  

The Lasso regression model consists of two parts. In Equation 11.a, this is an 

objective function, which is similar to the objective function of OLS, but Lasso 

regression added a restriction function (see Equation 11.b).  

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑃

𝑗=1

)

2
𝑁

𝑖=1

   (11. a) 

Subject to ∑ |𝛽𝑗|  ≤  𝑡
𝑃

𝑗=1
   (11. b)       

The smaller the t, the stronger the compression effect on the estimated parameters. 

When the objective function is minimized, the coefficients of some unimportant 
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independent variables will be compressed to 0 to achieve the selection of variables. We 

set the t equal 3 in this research. 

 

The data of the number of crimes comes from the nearly 40,000 criminal records 

recorded by the New York police department (NYPD) during the year of 2020 in 

Manhattan, New York. We aggregate these criminal records based on the 180 regions 

we studied (see Table 3). The highest number of crimes in a region is 946, the lowest 

is only 17, and the average is 196. The large fluctuations in the number of crimes in 

different regions make the dataset suitable for evaluating predictive performance. The 

effectiveness of our method is tested by comparing the size of the goodness of fit 

obtained using different methods. 

 

describe value 

count 180 

mean 196.31 

std 148.27 

min 17 

25% 90 

50% 155 

75% 251 

max 946 

Table 3 The describe of the number of crime events in 180 regions in a year 

 

3. Results 

This section summarizes the initial embedding results learned by the deep walk 

method. We first illustrate the clustering effect of learned embedding by two 

dimensionality reduction methods, TSNE and PCA. Then we learn the urban regional 

function labels with some samples using the GCN method. The accuracy of the 
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prediction can be used to evaluate the effectiveness of the embeddings. Next, we use 

Lasso regression to predict the number of crimes based on the learned embeddings. 

Finally, we compare our method with previous embedding methods for learning urban 

areas to test the effectiveness of our method. 

3.1 Graph Embedding 

We learned the embedding of 180 regions in Manhattan, New York from POI data 

by the deep walk method. There is a total of 5854 points, each contains 11 attributes 

including location, building types and others (see Table 2). Embedding is a high-

dimensional vector, which is 128 dimensions in this study. Every vector of a single 

dimension has no practical meaning. Therefore, we can show the learned embedding 

graphically through dimensionality reduction. Dimensionality reduction aims to map 

the data from original dimension (high dimension) to lower dimension space while 

minimizing information loss. Because dimensionality reduction will lead to some 

information loss, we choose two different types of dimensionality reduction methods, 

Principal Component Analysis (PCA) and T-SNE, to reduce the dimensionality of the 

embedding. 

PCA is a type of linear mapping, projecting high dimensional data into lower 

dimensional space, while T-SNE is a type of non-linear mapping, modeling high 

dimensional data into lower dimensional space. PCA is a very well-known 

dimensionality reduction method because it is simple, fast, and easy to use, but it can 

only retain overall variance. Compared to PCA, T-SNE is capable of preserving the 

local and global structure of the data, which is suitable for converting high dimensional 

data into lower dimensional data for visualization. The core concept of the T-SNE 

method is to measure the pairwise similarity between high-dimensional and low-

dimensional objects. It first converts the high-dimensional Euclidean distance between 

data points into a conditional probability that represents similarity. We use Kullback-

Leibler Divergence as the objective function to measure the similarity between two 

probability distributions.  
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𝑝𝑗∣𝑖 =
exp(−∥ 𝑥𝑖 − 𝑥𝑗 ∥2/2𝜎𝑖

2)

∑ exp (−∥ 𝑥𝑖 − 𝑥𝑘 ∥2/2𝜎𝑖
2)

𝑘≠𝑖

      (12) 

𝑞𝑗∣𝑖 =
exp(−∥ 𝑦𝑖 − 𝑦𝑗 ∥2)

∑ exp (−∥ 𝑦𝑖 − 𝑦𝑘 ∥2)
𝑘≠𝑖

           (13) 

𝐶 = 𝐾𝐿(𝑃 ∥ 𝑄) = ∑ ∑ 𝑝𝑖𝑗log 
𝑝𝑖𝑗

𝑞𝑖𝑗

𝑗≠𝑖
𝑖

 (14) 

In the cost function of Equation 14, the 𝑝𝑖𝑗  is similarity of data points in high 

dimension, while 𝑞𝑗∣𝑖 is similarity of data points in low dimension. The smaller 𝐶 is, 

the closer the distribution probability of high-dimensional and low-dimensional is. By 

solving the smallest 𝐶 , we can preserve the distribution information of the high-

dimensional vector as much as possible. 

 

  

Fig. 6 The original region distribution 

From the graphical presentation of the results, we can observe the results of 

preliminary embedding. In addition, we can use this graph as a benchmark embedding 

to observe the effect of GCN’s update in the next step. Fig. 6 shows the embedding 

learned from the 11-dimension data of 5854 POIs in Manhattan, New York (reduced to 

two dimensions through dimensionality reduction). Each point represents an area of 

Manhattan, which is divided into 180 districts. Thus, there are 180 points in total. There 

are a total of 12 colors, representing the 12 types of functional areas as mentioned in 

Section 2 (see Fig. 4). In the dimensionality reduction graph by the T-SNE method, the 

regions belonging to the same functional area are clustered closer together, suggesting 
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that our preliminary embedding results are relatively good. The result of dimensionality 

reduction by PCA is not very good, which may be due to the loss of some information 

during PCA linear dimensionality reduction. Nevertheless, we can still show it as a 

benchmark embedding to observe the effect of updating the learned embedding by GCN 

in the next step.  

 

3.2 GCN 

In this part, we have completed two tasks using the GCN method. The first one is 

to learn the classification labels of 12 types of urban functional areas (see Fig. 5) from 

40 random samples and use the remaining 140 samples for prediction. The overall 

accuracy rate of the prediction is 0.85. We have a total of 12 types of labels, and 40 

samples are drawn for learning. Although each label is learned only 3.33 times on 

average, the accuracy rate is as high as 0.85 when we use them to predict the remaining 

140 regional samples. This result shows that the embedding initially learned through 

the deep walk method can accurately learns the 11 dimensions of POI. In deep learning 

and neural networks, the unique attributes of a region are measured by high-

dimensional vectors. Only when the result of embedding is accurate can the unique 

attributes of each region be accurately expressed through high-dimensional vectors. 

Therefore, our method can achieve a higher recognition success rate by learning from 

a relatively small sample. 

Next, we will use GCN to learn the classification labels of the 12 types of urban 

functional areas in all 180 areas. During the learning process, the population flow data 

is also used to update the embedding. We take the preliminary embedding as input and 

get the updated embedding. We also illustrate our result with PCA and T-SNE two 

dimensionality reduction methods (shown in Fig. 7), so that we can compare the 

embedding before and after the update. 
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Fig. 7 The updated region distribution 

We can see that the clustering situation of Fig. 7 through PCA method is greatly 

improved, although the effect is still slightly inferior compared to the graph of T-SNE 

method. Through T-SNE dimensionality reduction, the previous good clustering effect 

is still maintained (see Fig. 7). However, classifying regions through embedding is not 

the ultimate goal of our embedding. The existing embedding incorporates multiple 

dimensional data, including 11 dimensions of POI points, urban functional areas data 

and population flow data. 

 

3.3 Predicting the Number of Crimes 

Our goal is to integrate multi-dimensional data to represent each area through 

embedding, so that embedding can reflect the unique attributes of each area. In this way, 

we can perform more downstream tasks through embedding. Through the crime rate 

prediction task, we demonstrated our method of predicting some characteristics of the 

city through embedding. We use the number of crimes as the dependent variable and 

the learned embedding as the independent variable in the Lasso regression. The dataset 

of the number of crimes comes from the nearly 40,000 criminal records recorded by the 

New York police department (NYPD) during the year of 2020 in Manhattan, New York. 

We aggregate these criminal records based on the 180 regions to calculate the number 

of crimes in each region (see Table 3). 
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Method MSE: RMSE: R2: 

Skip-gram POI embedding 18710.98 119.64 0.12 

TF-IDF POI embedding 15480.27 103.35 0.16 

EGES 16266.65 97.53 0.21 

EGES+GCN(Ours) 6098.38 65.54 0.68 

Table 4 the prediction error and goodness of fit by different method 

We use three previous research methods and the methods proposed in this study to 

make predictions based on the same dataset. These methods include Skip-gram POI 

embedding, TF-IDF POI embedding (Yao et al., 2018), and EGES (Wang et al, 2018). 

The Skip-gram POI embedding method only learns embedding from POI data and 

assigns the same wight on different POI attributes. The TF-IDF POI embedding method 

uses the number of unique POI categories as the number of the vector dimension. The 

vector measures the importance of different POI categories to a node. The EGES 

method adopts a self-adaptive method to get the weights of different dimensions but 

lacks a GCN compared to our method. We use Mean Square Error (MSE) and Root 

Mean Square Error (RMSE) to measure the prediction error and use coefficient of 

determination (R2) to measure the goodness of fit of models. Our results are shown in 

Table 4. From these results, we can observe that, compared with these methods from 

previous studies, our method not only reduces the prediction error to a large extent, but 

also greatly improves the goodness of fit (reaching 0.68). These results demonstrate 

that the embedding learned using our method can more accurately reflects the regional 

characteristics. 

 

4. Discussions and Conclusion 

This study proposes a regional embedding model for learning multi-dimensional 

city data. The learned embedding is a high-dimensional vector that can accurately 

reflect the attribute characteristics of the region. As a result, we can perform tasks such 

as prediction or recommendation through embedding. We use machine learning and 

neural network methods to learn embedding. First, we learn preliminary region 
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embedding from POI data through random walk and skip-gram methods. In this process, 

we transform the global network into a local network through random walk. This 

change not only greatly reduces the computational workload, but also facilitates 

distributed computing. In skip-gram process, we use an adaptive weight calculation 

method to learn the multiple attributes of POI data. Using two different dimensionality 

reduction methods, we show the effect of embedding learned. In the next step, we 

update the learned embedding using the GCN method. We use the initially learned 

embedding as input, the regional population mobility data as the adjacency matrix, and 

the type of urban functional regions as the label for supervised learning to generate 

more accurate embedding. Although supervised learning is used in this step, there is no 

need for excessive manual intervention. Finally, to verify the effect of learned 

embedding, we used different embedding methods to perform the task of predicting the 

number of crimes in different regions. The results show that our method has better 

predictive performance over the other methods. We also use Lasso regression to 

evaluate the prediction effect. Compared with other methods, the coefficient of 

determination is as high as 0.68 and the smaller MSE and RMSE show that the 

embedding we have learned can more accurately represent regional attributes.  

This research makes two contributions to the literature on smart city. First, it 

proposes a method to use multiple dimensions of data in the city to learn region 

embedding. In a smart city, the large amount of data collected through various sensors 

usually have different dimensions. Thus, it is challenging to use the big data to help 

cities improve their operations and decision-making. Our study shows that, through our 

machine learning and neural network methods, we no longer need to pre-suppose 

predictive equations, and we can rigorously analyze multiple types of data including 

intra-regional data and inter-regional population mobility data. Second, because the 

learned embedding can accurately reflects the data, it can be used as an independent 

variable of the attributes of urban areas for various prediction and recommendation 

tasks for managing smart cities. 
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Our study has several limitations. First, the data of our empirical research is limited 

to Manhattan, New York. Future studies need to analyze data from other cities to assess 

the general applicability of the model. Second, this research used three types of city 

data to learn embedding. Future studies can improve the method by incorporating more 

types of data to increase the accuracy of learned embedding. Third, this research uses 

crime number prediction to evaluate the learned embedding. Other prediction or 

recommendation tasks related to smart city management can be used to assess this 

method, suggesting a rich avenue for future research.  
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