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Abstract
Purpose – The purpose of this paper is to propose a concept of cloud auction robot (CAR) and its execution
platform for transforming perishable food supply chain management. A new paradigm of goods-to-person
auction execution model is proposed based on CARs. This paradigm can shift the management of traditional
manual working to automated execution with great space and time saving. A scalable CAR-enabled execution
system (CARES) is presented to manage logistics workflows, tasks and behavior of CAR-Agents in handling
the real-time events and associated data.
Design/methodology/approach – An Internet of Things enabled auction environment is designed.
The robot is used to pick up and deliver the auction products and commends are given to the robot in
real-time. CARES architecture is proposed while integrating three core services from auction workflow
management, auction task management, to auction execution control. A system prototype was developed to
show its execution through physical emulations and experiments.
Findings – The CARES could well schedule the tasks for each robot to minimize their waiting time. The total
execution time is reduced by 33 percent on average. Space utilization for each auction studio is improved by
about 50 percent per day.
Originality/value – The CAR-enabled execution model and system is simulated and verified in a ubiquitous
auction environment so as to upgrade the perishable food supply chain management into a new level which is
automated and real-time. The proposed system is flexible to cope with different auction scenarios, such as
different auction mechanisms and processes, with high reconfigurability and scalability.
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1. Introduction
As the increasing attention paid by the modern consumers, food that is fresh, safe,
nutritious, and palatable brings new opportunities to the supply chain management which
represents the management of the food production, distribution, marketing activities, and
recycling (Opara, 2003; Wang et al., 2015). Thus, the perishable supply chain management
(PSCM) plays a critical role in ensuring the demands. However, perishable products such as
fruit, vegetables, seafood, etc. are very difficult to handle through traditional supply chain,
for example, the vibration of trucks will cause mechanical damage to fruit and vegetables
(Nakandala et al., 2016).

Auction is widely used for fast trading of perishable products to achieve fair and
transparent price, especially for perishable agricultural commodities such as fruits and
fresh fish (Kambil and Van Heck, 1998). This trend remains strong in the Netherlands with
transactions for 12.4 billion plants and flowers each year (The New York Times, 2014).
Major third-party auction service providers such as FloraHolland have
solved technological problems of dealing with millions of simultaneous biddings
(www.floraholland.com). But logistics that fulfills the massive and lumpy auction
demands is still challengeable (Qin et al., 2014). The concept of auction logistics (AL) is
thus proposed to transform and upgrade the PSCM using advanced technologies such as
Internet of Things (IoT), robot-enabled processes, and cloud-based services (Huang and
Kong, 2013; Zhong et al., 2013; Qiu et al., 2014).

Three phases are defined in the AL. The first phase is pre-auction consolidation on
inbound goods from different farming suppliers. Auction orders can initiate the process in
an auction logistics center (ALC). The second phase is auction studios where auction
products are picked, traded, and dispatched by delivering the perishable products with
trolleys. The third phase is post-auction sortation and packing on outbound goods based on
customer orders. The logistics operations at the first and third phases are relatively mature
while the second phase often creates the bottleneck under bulky auction demands in limited
transaction windows.

Practically, most of existing auction execution activities are still relying on traditional
manual operations or fixed material handling systems. It has been extremely labor intensive,
often involving long distance of auction trolley movements at different positions. Such
systems are structured with the limited flexibility which is unable to cope with lumpy auction
demands (Huang et al., 2015). Moreover, auction execution workflows change frequently in
terms of different auction mechanisms. However, all auction tasks are centrally assigned by a
traditional allocation method and it typically requires a huge and expensive effort
to implement, maintain, or reconfigure the control application (Zhang et al., 2015). Finally,
due to the shortage of real-time interaction in the current auction ambient, the auction
schedule and execution is often inconsistent (Kong, Chen, Luo and Huang, 2015a).

To address the above challenges, this paper introduces IoT-enabled cloud robots for
auction execution. The cloud robots in auction execution can utilize their cognitive capabilities
and share their knowledge by connecting themselves to cloud infrastructures (Kuner, 2010;
Xu et al., 2015). This study will contribute to the PSCM by the following aspects:

(1) using cloud auction robot (CAR) to achieve a new paradigm of goods-to-person in a
ubiquitous auction execution environment;

(2) using a centralized, reconfigurable, and scalable cloud execution system for dealing
with the global and complicated decisions in auction execution from workflow
configuration, task allocation to auction navigation and control; and

(3) implementing and evaluating the proposed CAR-enabled execution system (CARES)
via a case study.
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In this research, a representative CAR-enabled execution model is presented in a ubiquitous
auction execution environment based on the analysis of existing operations and challenges.
Then, a CARES architecture is proposed by integrating three core services from auction
workflow management, auction task management, to auction execution control. Finally,
through a case study, the designed auction execution hardware and software systems
are evaluated.

The remainder of the paper is organized as follows. Section 2 reviews the related and
recent literature. Section 3 introduces the existing auction execution challenges. Based on
the concept of CAR, an execution model is proposed with typical operation characteristics.
Section 4 further describes the proposed backbone system for CARs management. In detail,
the agent model of CAR, the cloud architecture and three core services are elaborated. A case
study is then given in Section 5 with quantitative and qualitative analysis, and Section 6
concludes the whole paper and discusses the future works.

2. Literature review
2.1 Perishable Supply Chain Trading
A perishable supply chain is a network of enterprises that typically involves stakeholders
of growers, auctioneers, wholesalers, retailers, and logistics service providers for
perishable products whose value diminish over time (Cheng et al., 2014). Fruits and
vegetables are representative agri-food products in perishable supply chain. Recently,
fruit and vegetable supply chains have faced additional complications due to some
food-specific characteristics such as quality variations between growers, products freshness,
and special packaging demands (Taylor and Fearne, 2006; Pieter van Donk et al., 2008).
Therefore, the pricing and logistics decision process involves lengthy consideration of many
factors such as shorter delivery time, and the efficiency of PSCM often becomes a concern
(Mendelson and Tunca, 2007).

Driven by the prospect of better matches between suppliers and buyers in perishable
supply chain, auctions have been adopted to automate the process of buying, selling,
or transferring products, services, and/or information. In auction markets, supply chain
participants transact directly through a centralized intermediary (Garbade, 1982). Major
auction intermediary such as FloraHolland have solved technological problems of dealing
with millions of simultaneous biddings for flower transaction. The adoption of such
practices could not only reduce the time suppliers spend at markets but also reduce the time
buyers spend in bidding or bargaining for products.

2.2 Auction Logistics
Various visibility and traceability tools have been used to manage perishable food supply
chain and related service operations (Buhr, 2003; Martínez-Sala et al., 2009). Despite significant
progress achieved by research and practitioner communities, major challenges still exist in
applying agile logistics to facilitate auctions (De Koster and Yu, 2008). The concept of
AL is thus proposed to ensure required throughput time with large trading volumes
(Kong, Chen, Luo and Huang, 2015a). The following definition is developed using the
definition of logistics management of the Council of Supply Chain Management Professionals:
AL is that part of perishable supply chain trading that plans, implements, and controls the
efficient, effective flow and storage of products, services and related information driven by the
auction to meet customers and operators’ requirements, considering the quality worsening of
perishable products. Most key activities of AL are operated in a centralized ALC. Auction
studios is the core of ALC where goods trading are taken place. For example, Dutch auction in
the auction studio starts with a high asking price which is lowered until a buyer accepts the
asking price by using a clock. In this way, millions of perishable products (e.g. fish, flowers,
and fruits) could be sold and shipped quickly.
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A generic cloud-enabled system architecture has been presented to enable adaptive
decision supports for the configuration of auction studios/sessions, bidding
synchronization between onsite and remote auction as well as the associated logistics
activities in a typical ALC (Kong, Fang, Luo and Huang, 2015b). Qin et al. (2014) have
introduced a modified class-based location policy to improve put system performance in
AL with traditional person-to-goods method.

2.3 Robot-enabled warehouse automation system
Robotic warehouse automation solutions are commercially available (Caputo and
Pelagagge, 2006). Examples include the well-known Kiva robots owned by Amazon
(www.kivasystems.com) and AutoStore from Swisslog (www.swisslog.com).
Wurman et al. (2008) introduced some aspects of Kiva management system that draw
on artificial intelligence for pick-pack-and-ship warehouses. Its central controller is a
warehouse execution system that orchestrates mobile robots and human pickers to fulfill
orders (Dev Bahadur Poudel, 2013; Huang et al., 2015). Gue et al. (2014) proposed a new
paradigm “GridStore,” a special variant of AS/RS by implementing decentralized control.
Those robotic warehouse paradigms often appear to outperform traditional solutions in
space requirements, investment, response time, emissions, and flexibility to layout/order
changes (Furmans et al., 2011). Nevertheless, a direct application of these solutions into
AL is practically impossible and there are still some gaps worthy of discussion as follows:

• Although the robot-enabled warehouse automation is widely applied in the general
warehousing processes such as order picking, the application in perishable auctions
is limited. AL is more complicated and time-sensitive since it combines the general
functionalities of warehousing process with an added perishable transaction process.

• The existing warehouse execution and control system is only developed and deployed
for managing a kind or certain types of special equipment (Faber et al., 2002). However,
a typical ALC consists of a large variety of heterogeneous equipment, multiple
information carriers, and communication standards. Therefore, system
reconfigurability, usability, and scalability should be paid specifical attention with
seamlessly accommodation of new services (Cheng et al., 2012).

To deal with practical challenges and research gaps in AL, cloud robots could be utilized
to support auction task offloading and information sharing. Cloud robots have potential to
speed up many computationally intensive applications such as warehouse navigation
(Riazuelo et al., 2014). Cloud robots are also endowed with collective learning capabilities by
collecting data from many instances of physical environments such as parallel planning and
trajectory adjustment over many tasks (Berenson et al., 2012). From the literature review,
research and practices on CAR in the AL for PSCM are limited.

3. Overview of CAR
3.1 Current challenges in auction execution
An ALC has one or more auction studios. An auction studio consists of several auction
clocks and AL (de)consolidation areas, each of which involves a variety of objects, such as
operators, machines, materials, buffers, etc.

Currently, based on predefined and fixed auction plans, auction executions are conducted
through a crowd of staffs from products receiving, auction trolley loading and consolidation to
auction transaction with associated internal distribution. Figure 1 presents the processes in a
typical auction environment. First of all, auction products are unloaded from the delivery
vehicles and randomly stored at the receiving zone. They are categorized and loaded into trolleys
with same quality grade level. Loaded trolleys are then manually put-awayed to the pre-auction
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trolley staging zone. Loaded trolleys are batched and sequenced to a train based on specific
auction requirements. Second, once the trolleys are chained together, each train can only be
moved into the appointed auction session. Finally, traded trolleys are sent to the post-auction
stage (e.g. sorting and packing) and towing vehicles are returned back for the next delivery.

Typically, there are several operational challenges in such manual auction environment:

(1) Repetitive and tedious material handling operations are based on manual working
fashion which is with low efficiency, high instability, and error prone. Moreover,
real-time information (e.g. trolley location) cannot be collected to support bidders,
auctioneers, and logistics team for decision makings.

(2) A specific fixed space of pre-auction trolley staging zone is set. That thus takes
much more time and costs.

(3) It lacks effective scheduling and control methods for auction execution so that the
vehicle congestion increases during internal distribution.

(4) It is also difficult to scale up the existing facilities when auction businesses expand.
The existing system is unable to deal with fluctuated demands at peak seasons and
becomes under-utilized during off-peak periods.

With the increasing daily number of auctions, the existing inefficient logistics operation
mode will lead to unsatisfactory bidding experience, and therefore the loss of onsite bidders
since some perishable products are prone to deterioration. Therefore, an advanced AL
system with high modularity, scalability, agility, and reconfigurability is needed.

3.2 The conceptual model of CAR
Mirroring the definition of cloud asset (Xu et al., 2015), CAR refers to a cloud controlled
autonomous robot in the auction floor that is augmented with the capability of perception,
communication, and mobility. Through utilizing sufficient cloud computing and storage
resources, CARs could handle the mass data collected during the whole process of auction
execution. Basically, CAR consists of two parts: hardware and software, and its concept
model is depicted in Figure 2.

The hardware also called “smart transportation unit” consists of industrial robot and smart
devices like RFID readers. Each CAR is equipped with sensor, auto-localization, and local

Auction trolleys
(before consolidation)

OUT OUT OUTININ

Auction trolleys
(after consolidation)

Towing vehicle

Internal
distribution
by vehicles

Auction studio
Pick-up and

put-away by workers
Worker

Auction trolley
receiving zone

Pre-auction trolley
staging zone

Figure 1.
Typical auction
environment
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navigation subsystems running independently and informing regularly its execution system
about the status of each task (i.e. position, problem found, or task finished). The software refers
to the “CAR agent” that is used to wrap and represent smart transportation unit in the cloud.

Based on the conceptual model, a representative auction execution scenario with CAR is
exemplified in Figure 3. Movable auction trolleys that can be lifted by small, autonomous
CARs are used. A few rows of auction trolleys are randomly staged on the floor and aisles
are set aside for moving trolleys back and forth by CARs. The auction execution procedures
from trolley pick-up, put-away, consolidation are all processed by CARs. A CAR can deliver
multiple auction trolleys. The CAR-based operations have several characteristics:

(1) Distinguishing from the traditional person-to-goods method in AL, a new paradigm
of goods-to-person (goods are brought to human operators who complete order
picking, put-away and possibly have to distribute trolleys to fixed positions at
auction studio) can be achieved through the proposed execution model.

(2) The space for trolley consolidation and internal distribution (the fixed pre-auction
trolley staging zone) can be significantly reduced. Moreover, it is flexible to scale up
the existing facilities when auction businesses expand.

(3) CARs’ queueing sequence can be dynamically adjusted with the real-time
auctioneers’ instructions. Hence, it can adapt to bidders’ fluctuating behaviors
through operation synchronization between auction and logistics department.

Cloud Auction Robot

Cloud Service

Cloud Auction Robot Agent

Smart Transportation Unit

Ubiquitous Devices

Figure 2.
The conceptual model
of cloud auction robot

Auction trolleys
(before consolidation)

Pick-up, put-away,
consolidation and

internal distribution by CARs Auction studio

OUT

CAR

Auction trolley
receiving zone

IN

Figure 3.
CAR-enabled
representative

execution scenario
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4. CARES
CARES is a centralized cloud platform to manage the parallel execution of autonomous
CARs. As a bridge between CARs and CARES platform, smart IoT gateway is designed to
manage heterogeneous assets (Fang et al., 2013). Smart IoT gateways are capable of
making online control of CARs. Once operation disturbances are detected, real-time
information will be rapidly fed back to decision makers for replanning or rescheduling.
CARES can also facilitate sharing of data for CARs’ learning by collecting data from many
instances of physical trials and environment, and therefore more intelligent performance
can be achieved.

4.1 CAR agent
To manage CAR, (CAR-agent) is proposed. CAR-Agent is a software agent that is used to
wrap the physical part of CAR and represent it as autonomous software agent in the cloud.
As a typical software agent, it is built upon The Foundation for Intelligent, Physical Agents
(FIPA) specification. With their properties and parameters abstracted as attributes of CAR-
Agents, and functions and behaviors as services, CAR-Agent serves as a mirror of auction
robot and could run in parallel and independently. In addition, CAR could be easily
controlled remotely by invoking the corresponding services of its CAR-Agent.

Figure 4 shows the logic framework of CAR-Agent. Generally, CAR agent model can be
divided into three layers. The bottom is the physical layer that consists of sensors and
actuators. Sensors are responsible for collecting the real-time data. Actuators control the
basic actions of CAR. The second layer is control layer which has two main functions. First,
it provides data processing service for the real-time data collected from the physical layer,
and sends the processed data to the upper layer for decision making. Second, it interprets
the planning information and generates concrete workflow as well as control command for
the execution of CAR. Information layer is responsible for high-level decision making.
The tasks are first analyzed based on the real-time status of CARs and predefined
knowledge stored in knowledge base. Then, the local path planning for each allocated task
could be made with intelligent anti-collision capability. Particularly, this logic model builds a
close loop for the task execution, which enables CARs to flexibly and robustly work in the
changing environment.

CAR-enabled Execution System (CARES)

Communication Interface

Information
Layer Database Task Analysis Tactical Plan Knowledge Base

Control Layer

Physical Layer

Data Processing Module

Sensors Actuators

Ubiquitous Auction Logistics Environment

Motion Control Module

Figure 4.
Logic model of cloud
auction robot agent
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4.2 System architecture
CARES is essentially a multi-agent system, following FIPA (2004) specification. CARES
deals with the scalability and reconfigurability of CAR-Agents. CAR can be added or
deleted, and their configuration properties can be adjusted without affecting each other.
Moreover, it manages behavior and workflows of CARs (agents) in handling the real-time
events and associated data. Figure 5 presents the supportive cloud databases or repository
and three core cloud services in the proposed layered architecture.

CAR agent manager contains four key components: agent management system (AMS),
agent directory facilitator (ADF), lifecycle manager (LM), and message transportation
system (MTS). AMSmaintains a directory of agent identifiers and their transport addresses.
It is responsible for handing agent requests, and providing global control for CAR-Agents,
including their evolvement, scheduling, etc. ADF provides yellow page services for
CAR-Agents. CAR-Agents can register one or more services with ADF, and query ADF for
services provided by other agents. LM offers complete and systematic lifecycle management
for agents in terms of requisition, installation, execution, relocation, maintenance, and
disposals. MTS is the default communication method between agents. All the interactions
and communications between agents and services are done by MTS.

There are three supportive cloud databases or repositories that are virtualized as cloud
services to be shared by cloud users, including cloud asset agents and applications in the
upper layer. One is execution database for collection of real-time operation and sensory data.
The other two parts are knowledge repositories that provide basic control supports and
knowledge resources, such as CAR routing strategies, etc.

Cloud service layer is built to manage decision support services in cloud for auction
execution such as workflow management service, task allocation service, auction
navigation, and control service as well as local applications deployed at gateways.
It contains several built-in services, at the same time, allows user to add other new
applications which comply with the required protocol through several setting steps.

Workflow Mgmt.
Service

Workflow
Configurator

Workflow
Executor

Lifecycle
Manager

Agent Management
System

Agent Directory
Facilitator

Communication Networks

CAR
Agent

Operator
Agent

Other Asset
Agent

Message Transportation System (MTS)

Execution Database

Map and Path
Repository

Trajectory and
Regulation Repository

Task Manager

Task Allocation
Engine

Routing Planner

Map and Path
Manager

Task Allocation
Service

CAR Agent Manager

Navigation and
Control Service

Figure 5.
Architecture
of CARES
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4.3 CARES core services
4.3.1 Workflow management service. Different from traditional production processes
(Zhang et al., 2010), auction execution workflows varied from different auction mechanisms.
In this case, for example, supposing a simple task execution under Dutch auction is conducted
by a robot formation with five auction robots (i.e. CAR A, B, C, D, and E). CAR A and B are
equipped with flexible manipulators and responsible for auction products picking and auction
trolley loading in the pre-auction trolley staging zone. The rest of CAR robots undertake the
subsequent delivery of loaded trolleys across the specified auction studio. However, once the
auction mechanism and process requirement changes, the workflow will be reconfigured
accordingly. CARs’ queueing sequence should be dynamically adjusted with the real-time
auctioneers’ commands. Considering those emergency situations in auction, the matching
process of workflow with physical assets should also be done in a very short period of time.

To fulfill these requirements, CAR-enabled workflow management is worked out along
with the following three steps. First, ALC resource managers define the workflows
according to the process planning, and indicate the requirements of CAR-Agents that would
be involved. Generally, different auction mechanisms probably have different execution
processes. Second, each activity in the workflow search works for the qualified and
available CAR-Agents automatically. Mapping relationship between the executable activity
and CARs (agents) is established. The workflow facility in CARES also provides graphic
interfaces (i.e. workflow configurator) for related decision makers to edit the workflow.
Third, the selected CAR-Agents will be invoked through the internet, and actions could be
taken according to the predefined parameters. Workflow execution engine not only
facilitates the execution of CAR-Agents according to the defined workflow and logic,
but also monitors, coordinates, and controls these agents during the auction execution. Since
every CAR is published as a cloud service, it could be found and invoked by different
workflows. Meanwhile, the domain specific knowledge could also be easily transferred to
the selected CARs as rules, so that it could easily adapt to new working scenario and execute
immediately after being invoked.

4.3.2 Active auction task allocation service. After auction workflows are well defined and
configured, task manager in CARES provides real-time auction task allocation service.
Before the actual execution, all the auction tasks will form a task pool at first regarding the
task status and execution requirements. Then, each CAR will automatically send its real-
time status and request of the auction tasks when it is available. The CARES continuously
interacts with the CARs and checks their real-time status using an automated form of
“negotiation” so that the optimal auction tasks will be assigned to the optimal CARs.
The task allocation engine follows the rule that only one optimal task is selected and assigned
for one CAR at each time. Moreover, CARES wants less robot to be used to complete
maximum tasks. This decreases the crowd of robot in the auction floor and eases the obstacle
detection problem. The key benefit of such active task allocation approach is that if the actual
execution is disrupted or reorganized in some way, the same negotiation process still takes
place and hence the system is relatively robust to change. In addition, the process of real-time
task allocation is simplified as far as possible by using the concept of task pool that it only
needs to determine the optimal sequence of tasks in the task pool (Zhong et al., 2013).

4.3.3 Auction navigation and control service. Before implementing the proposed auction
execution, the auction floor should be placed with fiducial markers and other sensors during
the system installation. Using sensors as node, a grid of path is constructed by interconnecting
these sensors between the storage location in the pre-auction trolley staging zone and the
auction studio. The CARs’ local navigation system involves a combination of dead reckoning
and cameras that look for these sensors. Map and path manager in CARES will help to guide
the CAR motion from one position to another from the global perspective.
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After tasks allocation, the responsibility of finding optimal path to the destination is
assigned to the CAR through routing planner. The workflow of auction execution can be
explained as follows, which presents a sequence of processes/activities to be taken along a
time sequence: the CAR receives information (e.g. the coordinate of task locations)
about the required tasks from CARES. Taking into account the global route, each CAR
calculates its own local path to reach its goal and monitors its surroundings looking for
unexpected obstacles along the planned path. Based on sensor data and an environment
model, each auto-localization subsystem of CAR updates its estimated position and
informs these data to the local navigation subsystems. The local navigation subsystem
compares the current position with the desired one. If the CAR deviates from the route,
the local navigation subsystem will send commands to correct its orientation for returning
the planned route. If the local navigation subsystems verify that the route has
exceeded the limited runtime, the CAR will communicate with CARES and its neighboring
CARs while recalculating and ensuring conflict-free routes. During the whole
process of auction execution, CARES continuously interacts with the CARs to notify
the possible collisions, traffic jams, etc. Meanwhile, CARES regularly verifies the progress
of all tasks.

5. Case study
To verify the effectiveness and efficiency of the proposed solution, a prototype of the system
has been developed, with a test bed of CAR-enabled fruit auction execution.

5.1 Test bed for CARES
A test bed has been set up in the laboratory environment (around 50 square meter)
to simulate the operating mechanism of auction execution. The general structure of the
test bed is shown in Figure 6(a). Basically, the test bed has three working zones. The first
one is auction studio. It contains two independent auction sessions via developed e-auction
clocks. Different auctions cloud be made paralleled. The second working zone is
pre-auction trolley staging zone. It serves as the buffer for storage and consolidation of all
the goods that are waiting for auction. All these goods are well graded, categorized,
and loaded in the auction trolleys. After each trolley retrieving, the available staging
place could be automatically replenished until all assigned tasks have been completed.
The third working zone is the CAR parking lot which is the base for all the idle CARs.
Due to the limitation of experimental space, only 50 mimic auction trolleys are selected in
the test bed. The simulation data used for the auction trading are based on the
empirical measurements from our collaborating company. Other key parameters are
summarized in Table I.

Currently, we have finished phase one of the simulation test bed for CARES in the lab,
including hardware and software, as seen in Figure 6(b). From the hardware
deployment perspective, the ground is labeled by black lines as the main guide path in
the test bed so that robots can move automatically according to the commands send from
the proposed CARES. In addition, two types of robot are deployed in the test bed.
One is a fetch and freight robot with intelligent manipulator. It is responsible for picking
up goods from the trolley staging location, putting these goods on its own trailer, and then
delivering them to the auction studio. This robot has two infrared sensors so that
it could move according to the lines on the ground. The other two are mobile auction
robots, which are also line-tracking robots. From the software deployment perspective, the
prototype of CARES has also been developed. To work with the application programing
interfaces given by these robots, the system was developed under Java Runtime
Environment, and could cover all the working processes in auction execution.
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Two server computers are deployed to simulate the cloud environment in our
laboratory, and several mobile devices, including iPad and smart phones are used for
onsite controllers.

5.2 Execution control with CARES
The system execution processes can be divided into three phases: workflow management
phase, task management phase, and execution control phase. Their working logic is shown
in Figure 7. Generally, two major flows are involved in the process. One is control flow.
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It contains the management strategies, working rules, and control parameters, which flows
from the workflow management phase, to task management phase, and finally to the
auction execution phase. The other flow is the feedback data flow. It contains the real-time
sensing data collected from the onsite execution robots, and flows from the bottom phase to

Parameters Value

Average auction rate 1 trolley per 10-20 seconds
Total number of trolleys 50
Average percentage of trolleys with multiple transactions 80%
Total number of bidders 4
Number of pre-auction staging zones 3
Number of robots 3
Number of manual operators 3
Travel speed and acceleration/deceleration of robots in movement 2.5 m/s, 1.5 m/s2

Travel speed and acceleration/deceleration of manual operators in movement 0.9 m/s, 0.3 m/s2

Time for dropping off or picking up a trolley by a robot 2 s
Time for dropping off or picking up a trolley by a manual operator 7 s

Average distance of a round trip
Staging zone 1-AC1-CAR parking lot 26 m
Staging zone 2-AC1-CAR parking lot 23 m
Staging zone 3-AC1-CAR parking lot 20 m
Staging zone 1-AC2-CAR parking lot 34 m
Staging zone 2-AC2-CAR parking lot 31 m
Staging zone 3-AC2-CAR parking lot 29 m

Table I.
Parameters used in

simulation of test bed
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the upper phase. In this way, a closed-loop could be formed to enable the dynamic and
robust control of various involved robots. The detailed working processes of the three
execution phases are as follows.

5.2.1 Phase 1: workflow management. This phase is done by auction managers at
auction studio. It is responsible for generating concrete workflows for different auctions
according to the requirements. The input of this phase is the detailed requirements for each
auction, and output is a well-structured workflow. Three basic steps are included in this
phase as follows:

• define the basic information for an auction working scenario, such as its proposed
auction session, goods for auction, amount, quality grades, and so on;

• configure detailed auction parameters, such as auction mechanism, auction places,
auctioneers, and so on; and

• after the auction has been well defined and configured, a well-structured workflow
for the auction could be generated automatically according to the predefined format,
and then it will be released to the next phase.

5.2.2 Phase 2: task management. This phase is done automatically by the CAR-enabled
auction execution system. It is responsible for generating concrete tasks for CARs according
to the requirements of the auction workflow. The input of this phase is the well-structured
workflow, and output is the assigned tasks for each robot. The main working steps of this
phase are listed as follows:

• make detailed analysis for the workflow, and generate sequenced tasks/activities lists
for executing the workflow on real-time basis;

• according to the requirements of tasks/activities and the real-time environmental
status, the task execution plan is made automatically; and

• based on real-time status of each robot, the system would optimize the distribution of
tasks, and then release them to corresponding robots with detailed information.

5.2.3 Phase 3: execution control. This phase is done by various CARs, and their
corresponding control modules. It executes the released tasks and keeps updating their real-
time execution status to the upper layer. The input of this phase is the released tasks, and
the output is the executed tasks and the real-time status of them. This phase also contains
the following three steps:

• Make detailed analysis for the received tasks. According to their requirements, and
the real-time status of the environment, generate an optimized execution sequence for
these tasks.

• Make detailed execution plan for each task, such as local routes and corresponding
collision avoidance actions, based on the environmental information, and the
real-time status of itself and other CARs.

• Execute the task and report its real-time status to the upper layer.

5.3 Discussion
5.3.1 Quantitative improvements. Before the CARES implementation, each auction studio
has conditioned eight working hours per day. Each trolley needs ten sheets of paper-based
documents for manual consolidation and the cost of each sheet is one cent. According to a
random task list sent from CARES, the auction execution for mimic 50 trolleys is extracted
to demonstrate the system performance. Table II shows the rudimentary comparison results
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from manual-handling operations, robot-handling operation, and estimated improvements
in physical emulation.

Through using the robots, the trolley picking time could be greatly saved, as these robots
and trolleys are designed for automatic operations, and the routes are optimized according
to the real-time position of robots and goods. In addition, the CARES could well schedule the
tasks for each robot to minimize their waiting time. Hence, the total auction execution time is
reduced by 33 percent on average. Space utilization (referring to the trolley buffering
turnover capacity) for each auction studio is improved by almost 50 percent per day.
Auction execution data are available for managers without delay after the CARES
implementation. The amount of paperwork is also cut down greatly, resulting in a paperless
operation environment. Smoother task handling and cooperation, accurate and timely data
and better-informed execution decisions are also achieved.

Figure 8 analyzes the total execution time of both human-operating system and
manual-operating system for different amounts of auction trolleys. The time curve of
human-operating system slightly climbs in the early stages and has a rapid growth after
35-trolley amount is achieved. This is because traditional person-to-goods method is still
adopted in the existing manual-operating system. Goods are brought to human operators
who complete order picking, put-away and possibly have to distribute trolleys to fixed
positions at auction studio. The whole system bottlenecks may appear when a relatively
large auction order size arrives. In contrast, the time increase of robot-operating system is
slightly slow. It is also observed that the difference between human-operating system and
manual-operating system grows larger with the increase of auction trolleys. It thus implies
that CARES could easily improve the auction execution efficiency and the effect will be
more obvious if auction businesses expand.

Item
Human-operating

system
Robot-operating

system
Estimated

improvements

Total auction execution time for 50 trolleys (minute) 22.4 15 ~33%
Space utilization for each auction studio per day
(trolley buffering turnover/m2) 21.4 32 ~50%
Cost of daily paperwork (RMB) ~1,000/auction

studio
Paperless Paperless

Auction execution data capturing and entry Delay Real-time Real-time
Level of false trolley pickup, delivery and drop off High Low Low

Table II.
System comparisons

and estimated
improvements in the
physical emulation
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5.3.2 Qualitative improvements. For qualitative aspect, there are several improvements.
First, the system is flexible enough to cope with different auction scenarios. In the
simulation, several different types of auctions are involved. The system is able to handle
different working logics, and the mixed auction scenarios to maintain an acceptable output.
For example, CARs’ queueing sequence can be dynamically adjusted with the real-time
auctioneers’ instructions. Using the proposed system, operation synchronization between
auction and logistics department could be enabled.

Second, the system is flexible to scale up when auction businesses expand. In the
simulation, adding one or more robots to the existing running system is tested and the
added robots could be easily configured and participated in the working processes.
Meanwhile, the system can also well handle the situation when the amount of auction
demands increases greatly (e.g. during valentine’s period) with high reliability.

Third, the system standardizes the decision-making procedures through a rich set of services,
which are developed as interactive explorers for end-users to fulfill their daily operations. It can
also enhance the coordination among different decision-making parties through seamlessly
integrating auction planning, scheduling, execution, and control in the light of the real-time
sharing and feedback of IoT-enabled operation and sensory data. Therefore, the decisions based
on individual and subjective experience previously could be greatly lessoned.

6. Conclusions
As auction markets become increasingly IT-reliant, distributed, and agile-demanding, there
are valid reasons and perhaps requirement for auction intermediary to embrace the massive
use of cloud robots in a ubiquitous auction environment. Effective management of them is
always of great importance for the PSCM. To manage these robots more flexibly and
accurately, this paper proposed a concept of CAR and its execution models. Besides,
to facilitate parallel execution of autonomous CARs and to fulfill the massive and lumpy
auction demands through the cloud, CAR agent model and the supportive CARES cloud
platform are designed. CARES integrates three core services from auction workflow
management, auction task management, to auction execution control. Furthermore,
a demonstrative test bed is also given to verify the effectiveness of the proposed concept.

The contributions of this paper can be concluded as follows. First, this paper
innovatively proposes a new paradigm of goods-to-person auction execution model based
on CARs. It helps adapt to the increasing daily number of auctions. Besides, from the
managerial point of view, this paradigm also shifts the management of traditional manual
working to automated execution with great space and time saving. Second, a scalable
CARES management platform is proposed based on the integration of various technologies.
With CARES, CARs can be easily added or deleted, and their configuration properties can
be adjusted independently. Moreover, it manages workflows, tasks, and behaviors of
CAR-Agents in handling the real-time events and associated data. Third, the proposed
system is flexible enough to cope with different auction scenarios with high
reconfigurability. Once the auction mechanism and process requirement changes,
the workflow will be reconfigured accordingly via workflow management service.
Besides, using active task allocation and navigation services, CARs’ queueing sequence
could be dynamically adjusted with the real-time auctioneers’ commands.

In the future, this work could be further extended in three aspects. First, considering the
specific situation in auction execution, corresponding decision making models should be further
explored to evaluate the impacts of products category size, storage assignment scheme and the
length of auction trolley chain on the proposed CAR-enabled execution models. Second,
Big Data Analytics tools for mining frequent trajectory pattern and knowledge of CARs is
critical for determining the accurate plans and layout optimization of ALC. Third, the concept
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should be taken into some real-life auction execution cases to make more sophisticated
performance measurement of our proposed concept. Furthermore, other significant process in
ALC could also be involved such as post-auction sortation and package operations.
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