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Risk Quantification in Cold Chain Management: A Federated Learning-enabled 

Multi-Criteria Decision-Making Methodology 

 

Abstract 

Purpose: In the cold supply chain, effective risk management is regarded as an essential 

component to address the risky and uncertain supply chain environment in the handling 

temperature-time-sensitive products. However, existing multi-criteria decision-making 

(MCDM) approaches greatly rely on expert opinions for pairwise comparisons. Despite the 

fact that machine learning models can be customised to conduct pairwise comparisons, it 

is difficult for small and medium enterprises (SMEs) to intelligently measure the ratings 

between risk criteria without sufficiently large datasets. Therefore, this paper aims at 

developing an enterprise-wide solution to identify and assess cold chain risks. 

Design/methodology/approach: A novel federated learning-enabled multi-criteria risk 

evaluation system (FMRES) is proposed, which integrates federated learning and the best-

worst method to measure firm-level cold chain risks under the suggested risk hierarchical 

structure. The factors of technologies and equipment, operations, external environment, 

and personnel and organisation are considered. Furthermore, a case analysis of an e-

grocery supply chain in Australia is conducted to examine the feasibility of the proposed 

approach. 

Findings: Throughout this study, it is found that embedding the federated learning 

mechanism into the MCDM process is effective in acquiring knowledge of pairwise 

comparisons from experts. A trusted federation in a cold chain network is therefore 

formulated to identify and assess cold supply chain risks in a systematic manner.  

Originality/value: A novel hybridisation between horizontal federated learning and 

MCDM process is explored, which enhances the autonomy of the MCDM approaches to 

evaluate cold chain risks under the structured hierarchy.  

 

Keywords – Risk assessment, risk identification, cold chain, federated learning, multi-

criteria decision making 
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1. Introduction 

In recent years, cold chain management has attracted significant attention in the global 

economy in regard to assuring the quality of temperature-time-sensitive goods, such as 

fresh produce, seafood and pharmaceuticals, throughout supply chain activities. As such, 

the number of participants in the global cold supply chain has increased significantly, 

adding to the complexity and thus vulnerability of the supply network. In the globally 

connected world, failure at any point in the supply chain (SC) network has repercussions 

on product freshness, quality and safety (Pereira et al., 2014; Tse et al., 2016). In light of 

the novel coronavirus (COVID-19), customer behaviours and responses have been changed 

dramatically, for instance more customers are willing to do online shopping for the 

necessities and groceries, and the awareness of health and safety has increased 

substantially. In addition, questions on the effectiveness of existing supply chain risk 

management (SCRM) to maintain the resilience and robustness of supply chains (SCs) 

have been raised by academic scholars and industrial practitioners (El Baz and Ruel, 2020). 

A comprehensive cold chain management system is needed in the industry for effectively 

managing refrigerated transportation and storage, such as vaccine distribution around the 

globe, where the SCRM is one of the core components to identify and measure potential 

risks for eliminating impacts from supply chain risks. In cold chain management, a specific 

area, namely cold chain risk management (CCRM), is therefore considered to identify, 

assess, mitigate and control risks that occurr in cold supply chains. Apart from typical risk 

factors in SCRM, CCRM is required to further consider supply chain visibility, traceability, 

environmental impact, cost efficiency of adopting refrigeration equipment, and other cold 

chain-related risk factors. When the new normal in the supply chain management emerges, 

an improved systematic approach for the CCRM to quantify the risks is required to create 

a risk-averse and nimble environment in the industry. Among a number of existing 

methodologies to assess risk in the cold supply chain, multi-criteria decision-making 

(MCDM) approaches are well-known for evaluating the weights of the concerned risk 

categories (Dong and Cooper, 2016; Moktadir et al., 2018). However, the most significant 

weakness on the MCDM approaches, such as analytic hierarchical process (AHP) and the 

technique for order preference by similarity to the ideal solution (TOPSIS), is to over-rely 

on a group of domain experts or decision makers to conduct a series of pairwise 

comparisons. As shown in Figure 1, such methods in the existing supply chain risk 

evaluation framework solely rely on managers and experts, and thus inevitably contain a 

certain level of bias and subjectivity. Also, SC firms need to regularly employ appropriate 

talent for conducting pairwise comparisons, which is not favourable to small and medium 

enterprises (SMEs). Due to the advancements of machine learning, it is valuable to 

investigate the synergy between MCDM and machine learning so as to establish an 

intelligent and automatic risk assessment approach for cold chain management. Since 

standalone machine learning approaches are also not favourable for SMEs in collecting a 

vast amount of data for model training and validation, federated learning is deemed to be 

a promising solution to obtain an aggregated machine learning model for data analytics.  
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In this study, a novel federated learning-enabled multi-criteria risk evaluation system 

(FMRES) is proposed, which integrates horizontal federated learning and the best-worst 

method (BWM) for SC firms, involving the business of cold chain management to quantify 

cold chain risks in an intelligent and adaptive manner. With the use of horizontal federated 

learning, an improved global artificial neural network (ANN) model can be obtained in a 

privacy-persevering way, without disclosing any sensitive information to a third party for 

model training and validation. Subsequently, the ANN model learns the required 

knowledge from the decision makers so as to conduct the pairwise comparisons 

automatically for the deployment of BWM so as to prioritise and rank risk factors. Overall 

speaking, the study proposes an intelligent decision support system in designated SC firms 

that can identify, assess and analyse the potential risk factors so as to get rid of the 

traditional expert-intensive risk assessment process.  

Step 1: Identification
• Collection of risk 

information 

• Categorisation of cold 

chain risks

Step 2: Assessment
• MCDM methods, e.g., 

AHP and TOPSIS.

• Evaluation of consistency 

indices and ratios

Step 3: Analysis
• Weight determination of 

risk factors

• Rank of risk factors

Decision Makers

Pairwise Comparison
Challenge 2: 

Not favourable to SMEs 

which have limited talents and 

experts

Challenge 1: 

Solely rely on decision makers 

which may lead to bias and 

subjectivity in the evaluation.  

 

Figure 1. Challenges in the typical supply chain risk evaluation process 

This paper is organized as follows. Section 1 is the introduction. In Section 2, the related 

work of cold chain management, cold chain management risks, and emerging risk 

assessment methods are reviewed, and thus the hierarchical structure for the cold chain 

risks can be built accordingly. Section 3 presents the proposed methodology of the FMRES 

in detail. A case study in implementing the proposed methodology in an Australian SC firm 

is illustrated in Section 4. Section 5 gives the results and discussion related to the proposed 

system. Finally, conclusions are drawn in Section 6.  

 

2. Literature review 

In this section, a review of cold chain management and cold chain management risks are 

presented so as to formulate the hierarchical structure for the cold chain risks. In addition, 

the emerging risk assessment methods are summarised.  
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2.1 Review of Cold Chain Management 

The cold Chain has been well-defined as a particular SC to control and monitor 

temperature-time-sensitive products, or so-called perishables, throughout a series of SC 

activities and processes (Shashi et al., 2018). The integrity and quality of perishable 

products, such as pharmaceuticals, fresh produce, and dairy items, must be preserved in the 

cold chain management. The channel of the cold supply chain is characterized by the 

complex geographic, economic and legislative spread of the participating entities, exposing 

multiple points of delay and disruption of production, transportation, temperature control, 

services of third-party logistics providers, contamination transmitted via manual product 

handling, spoilage and quality problems (Nakandala et al., 2017). In practice, the cold 

supply chain can be distinguished from the general supply chain by the following 

characteristics (Yang et al., 2017):  

(i) Shelf life: The shelf life is referred to the perishability of food products, in which a 

limited timeframe is defined for supply chain activities from the suppliers to end 

customers.   

(ii) Seasonal production: Some food products can only be farmed and produced in a 

specific season, and therefore such products cannot be sold throughout the entire year.  

(iii) Refrigerated transport and storage: To ensure high food quality throughout the whole 

supply chain, refrigeration and other cold chain equipment are applied in 

transportation and storage so as to provide designated environmental conditions to 

food products.  

(iv) Small or zero inventories: Due to the effect of shelf life and demand fluctuation, the 

inventory policy in regard to perishable food is to keep a small or even zero amount 

of stock in the supply chain.  

(v) Food traceability: Since food products are perishable and sensitive to the surrounding 

environmental conditions, tracking and tracing the food products along the supply 

chain is necessary for all relevant stakeholders.  

(vi) Stochastic process yields: Process yields of food products in quantity and quality are 

subject to biological variations, seasonality, weather, pests, and other biological 

hazards. 

 

2.2 Related studies of Cold Chain Management Risks   

Generally speaking, risks are conceptualized as a “set of triplets”, which consists of a risk 

scenario, likelihood of that scenario, and consequences. The “set of triplets” characterizes 

the quantification of the likelihood and resulting consequence of risk scenarios and in 

extending to a supply chain, such risks can impact on multiple entities operating within the 

supply network, not just one individual or organization. Ho et al. (2015) differentiated 

supply chain risks into operational and catastrophic aspects where a risk event can trigger 

varying severity of consequences that significantly threaten normal business operations of 

the multiple firms in the supply chain. However, supply chain risks are directly related to 

how operations and processes are performed across various entities within the entire 
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network. As such, risk identification and assessment extend beyond the boundaries of one 

firm, and thus the situation is far more complex. Risks are identified as events with the 

potential of negatively impacting on supply chain performance objectives, like network-

wide service levels, responsiveness and efficiency (Kumar et al., 2018). Therefore, in 

designing a high performing supply chain as a whole, integrated risk management forms 

an indispensable core to minimise harmful impacts from risks. Regarding the effective 

management of supply chain risks, a variety of typologies and/or taxonomies of supply 

chain risks have been proposed in the literature to differentiate supply chain risks from 

other business risks. Firstly, equipment malfunction is deemed to be the most critical risk 

in cold chain management, which affects the environmental control of the perishables in 

SC activities and processes (Guo et al., 2018). Second, standardised processes and 

infrastructure are essential to prevent operational errors during transportation and storage, 

so as to maintain the high integrity and quality of the products. Although a short food 

supply chain is advocated to reduce the geographical distance and social relations between 

producers, processors, and consumers, supply chain risks, such as order fulfilment risk and 

supply risk, are not completely eliminated (Paciarotti and Torregiani, 2020). There is a 

room to further enhance the cold chain risk management in order to establish a risk-averse 

and nimble cold chain environment. Differing from the typical SC, cold chain risks may 

not only result in poor supply chain coordination, but also affect the integrity and quality 

of the temperature-time-sensitive products. Based on the above considerations, a firm-level 

risk management framework for each SC needs to be developed in the industry.  

 

2.3 Emerging Risk Assessment Methods 

In the field of SCRM, multi-criteria decision-making approaches are promising for 

evaluating the risk levels of defined risk criteria under a standardised hierarchical structure. 

Khan et al. (2019) adopted a fuzzy analytic hierarchical process to identify risk elements 

in the Halal food supply chain. It was reported that such a MCDM approach highly relies 

on experts’ subjective judgements, and thus the sensitivity analysis to the prioritisation is 

considered when using MCDM approaches. Junaid et al. (2020) combined the neutrosophic 

AHP and TOPSIS to conduct supply chain risk assessment in the automotive industry in 

order to deal with complexity, uncertainty, and vagueness in the decision-making process. 

In recent years, some studies started exploring hybrid approaches, which integrated the 

existing MCDM approaches and other advanced data science methodologies. Chand et al. 

(2017) integrated the analytical network process and multi-objective optimisation by 

rational analysis methods to select the best SC with the minimum risks, where the 

robustness of the MCDM approaches was further enhanced. Further, Baryannis et al. 

(2019) summarised various artificial intelligence (AI)-based methods in the context of 

supply chain risk management, including stochastic programming, robust optimisation, 

fuzzy programming, network-based approaches, agent-based approaches, reasoning, 

machine learning, and big data. Particular to machine learning approaches, a designated 

input-output model can be formulated to gain capability of risk estimation under different 

scenarios. However, modelling the non-linear relationship between risk criteria and risk 

levels in a mathematical expression is complicated. Although machine learning approaches 

are widely adopted in the supply chain risk assessment, a pitfall in consolidating a 

sufficiently large dataset by a single organisation exists, particular for SMEs. Therefore, 
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federated learning, which refers to machine learning approaches across decentralised edge 

devices without exchanging users’ data, is considered to formulate a global machine 

learning model within a federation of trusted organisations. In view of the above situations, 

the integration of MCDM and federated learning is therefore explored in this study in order 

to formulate a data-rich SCRM for the cold chain management.   

 

2.4 Federated Learning and its Applications 

Although some AI approaches have been developed to assist supply chain risk management, 

such approaches are not easily deployed in small and medium enterprises (SMEs) due to 

the challenges of the data island and concerns on data privacy and security (Kim et al., 

2019). Without inputting a sufficiently large dataset to the AI approaches, it is difficult to 

obtain an effective AI application, including supply chain risk management. To address the 

above challenges, federated learning (FL) with a decentralised, collaborative and privacy-

preserving mechanism is developed from the foundation of machine learning algorithms 

(Yang et al., 2019; Li et al., 2020). Generally speaking, FL is categorised into three types, 

namely horizontal federated learning, vertical federated learning, and federated transfer 

learning, subject to the overlap of feature and sample spaces. Instead of merely applying 

data to train local machine learning models, a secure protocol in FL is established to derive 

a global model, where the federated averaging (FedAvg) is the most common method 

according to the computation of the average of local stochastic gradient descent updates. 

According to the work (Li et al., 2020), most of the FL-based applications analytics in 

recent years are deployed in the areas of mobile devices, industrial engineering, and 

healthcare to enhance the capability of existing machine learning models. To our best 

knowledge, since the FL is still at in under exploration and preliminary stage, limited 

research study has considered FL in logistics and supply chain management. In recent years, 

some scholars determined the value of incorporating machine learning models into multi-

criteria decision-making methodologies (Özkan and İnal, 2014; Hassan and Hamada, 2017). 

Subsequently, there is a room to further explore the role of FL in multi-criteria decision-

making methodologies, and enhance the accuracy and reliability of the results. FL has a 

great potential to improve the capability of deiciosn support functionalities, such as risk 

management, in logistics and supply chain management (Lim et al., 2020). Therefore, the 

synergy of FL and BWM can be further investigated in the area of cold chain risk 

management.  

 

3. Hierarchical Structure of Managing Cold Chain Risks 

To establish effective cold chain risk management, SC firms should classify the potential 

risks into two aspects, namely known and unknown risks (Bailey et al., 2020). Regarding 

the unknown risks, their impact on SCs might be severer than known risks, but it is difficult 

and challenging to foresee and quantify the occurrence of such unknown risks. The primary 

measure to minimise the impacts from unknown risks is to formulate various layers of 

defence in the risk-aware SC culture. Apart from the unknown risks, known risks are 
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relatively imaginable and measurable, and require an effective risk management 

framework to determine a set of metrics for assessing the risks. Therefore, the assessment 

and quantification of known risks are the primary focus in this study, where the hierarchical 

structure of the cold chain risks with suggested measurement metrics are proposed in this 

section. Referring to Zhang’s work, a hierarchical structure for agricultural products cold 

chain logistics risks was proposed, while the risks were measured in the aspects of technical 

equipment, commodity distribution, external environment, and personnel organisation 

(Zhang et al., 2017). The above study provides a solid foundation to construct an improved 

hierarchical structure of modern cold chain risks at the firm-level in SCs. Zheng et al. (2020) 

illustrated the operational risks for the cold chain logistics system, in which processing 

packaging, transportation, warehousing and information management are four core 

perspectives. Due to the recent pandemic situation from the novel coronavirus (COVID-

19), the regulatory compliance on quality, environment, health and safety in SCs have 

become stricter and more essential, such that shipments are safely distributed in the supply 

chain network (Kecinski et al., 2020). The risks of carrying any novel virus and 

contaminating the shipment itself should be considered. 

In view of the above modern concerns on cold chains, an integrated hierarchical structure 

for modern cold chain risks is formulated, as shown in Figure 2. It consists of four primary 

criteria, namely (i) technologies and equipment (C1), (ii) operations (C2), (iii) external 

environment (C3), and (iv) personnel and organisation (C4). The detailed descriptions of 

the above four aspects are summarised in Table I, which are modelled to assess cold chain 

risks at the firm-level in cold chains. The criteria also have their corresponding sub-criteria 

to facilitate the risk quantification process, in which sets of measurement metrics are 

defined to assess the sub-criteria. In total, four primary criteria with sixteen sub-criteria are 

considered to formulate the hierarchical structure in this study. In C1, the essential 

technologies and equipment in the cold chain management are considered, including 

temperature control equipment in storage and transportation, monitoring and detection 

equipment, and traceability system. Effective temperature excursion management is 

guaranteed through the use of the above technologies and equipment to assure product 

quality throughout the cold chains. In C2, operational aspects, covering process packaging, 

refrigerated transportation, cold warehousing and storage, supply stability, and process 

stability, are considered to assess the internal capability of cold chains. Undesirable 

operational incidences, such as chain disruption and supply shortage, should be avoided in 

cold chains. In C3, external forces to the cold chains, including regulatory control on 

quality, environment, health and safety, environment impact, and market demand stability, 

are determined, which highly influence SC’s business environment. SCs with high 

adaptability to the macro-economic business environment are preferred. In C4, firm-

internal factors on personnel and organisation, including operational expertise, human 

resource management, and financial healthiness, are also considered. A human-centric and 

stable working environment is favourable to the development of cold chain businesses. 

Although the sub-criteria of cold chain risks are measured in a quantifiable manner through 

the set of metrics, as in Table I, the relative importance between the sub-criteria in the 

hierarchical structure is not effectively investigated. Therefore, this study proposes to 
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implement federated learning in regard to acquiring the behaviour of experts in cold chains 

on the process of pairwise comparison, based on the measurement metrics. Through 

analysing the pairwise comparisons in the selected MCDM approach, the above risk criteria 

can be prioritised effectively so as to establish and revise the risk mitigation and 

contingency plan to minimise the impact from the cold chain risks.  

Risk Quantification in the Cold Chain 

Management

Technologies and 

Equipment (C1)
Operations (C2)

External Environment 

(C3)

Personnel and 

Organisation (C4)

Temperature control 

equipment in storage 

(C11)

Traceability system 

(C14)

Temperature control 

equipment in 

transportation (C12)

Monitoring and 

detection equipment 

(C13)

Process packaging 

(C21)

Supply stability (C24)

Refrigerated 

transportation (C22)

Cold warehousing and 

storage (C23)

Process stability 

(C25)

Regulatory 

compliance on quality 

(C31)

Regulatory 

compliance on 

environment, health, 

and safety (C32)

Environment impact 

(C33)

Operational expertise 

(C41)

Human resource 

management (C42)

Financial healthiness 

(C43)

G
o
al

C
ri

te
ri

a
S

u
b
-C

ri
te

ri
a

Market demand 

stability (C34)

 

Figure 2 Hierarchical structure for the firm-level CCRM 
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Table I Criteria and measurement metrics of cold chain risks 

Risk criteria Descriptions Metrics Unit 
Temperature 

control equipment 

in storage 

Malfunction or breakdown 

of the temperature control 

equipment in cold storage 

facilities 

Frequency of 

temperature excursion 

in storage (v1) 

Frequency 

Temperature 

control equipment 

in transportation 

Malfunction or breakdown 

of the temperature control 

equipment in refrigerated 

trucks 

Frequency of 

temperature excursion 

in transportation (v2) 

Frequency 

Monitoring and 

detection 

equipment 

Improper calibration and 

connectivity error of 

monitoring and detection 

devices 

Errors in monitoring 

and detection devices 

(v3) 

Frequency 

Traceability system Incomplete and incorrect 

product traceability records 

Errors of product 

traceability (v4) 

Frequency 

Process packaging Inappropriate use of cold 

chain packaging during SC 

activities 

Errors in mishandling 

process packaging (v5) 

Frequency 

Refrigerated 

transportation 

Handling errors to cause 

shipment delay and damages 

Number of damaged 

cargos (v6) 

Frequency 

Cold warehousing 

and storage 

Handling errors to increase 

complexity in order 

fulfilment and quality 

deterioration 

Storage capability (v7) Cubic metre 

(CBM) 

Supply stability Fluctuations on the supply 

of raw materials to SCs 

Variation in supply (v8) Coefficient of 

variation (CV) 

Process stability Fluctuations on the 

production process to SCs 

Variation in production 

process (v9) 

Coefficient of 

variation (CV) 

Regulatory 

compliance on 

quality 

Breach of quality 

requirements and promised 

service levels 

Violation of regulatory 

compliance on quality 

(v10) 

Frequency 

Regulatory 

compliance on 

environment, 

health, and safety 

Breach of binding 

regulations on environment, 

health, and safety 

Violation of regulatory 

compliance on 

environment, health, 

and safety (v11) 

Frequency 

Environment 

impact 

Criticism of the 

sustainability and corporate 

social responsibility of SCs 

Wastage in SC 

activities (v12) 

Carbon dioxide 

equivalent 

(CO2eq) 

Market demand 

stability 

Fluctuation on the market 

demand to SCs 

Variation in market 

demand (v13) 

Coefficient of 

variation (CV) 

Operational 

expertise 

Lack of professional 

workforce to supervise and 

monitor SC operations 

Proportion of 

professional talents 

(v14) 

% 

Human resource 

management 

Instable workforce and work 

environment in SCs 

Turnover rate of 

manpower(v15) 

% 

Financial 

healthiness 

Fragile financial situations 

to sustain SCs 

Amount of free cash 

flow (v16) 

AUD 
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4. Design of a Federated Learning-enabled Multi-Criteria Risk Evaluation System 

(FMRES) 

To effectively evaluate cold chain risks in the supply chain network, this study integrates 

federated learning into the best worst method, which is a well-known and effective multi-

criteria decision-making approach, so as to establish an intelligent risk evaluation 

mechanism in the industry. As shown in Figure 3, the proposed system consists of three 

major tiers, namely (i) data collection based on the hierarchical structure, (ii) acquisition 

of expert knowledge in pairwise comparisons, and (iii) multi-criteria decision-making 

process by the best worst method.  

Supply Chain (SC) Firms

f(w)*

f1(w)

f(w)*

fk(w)

Tier 1: Data Collection based on Hierarchical Structure

CCRM

C1 C2 C3 C4

C11

C12

C13

C14

C21

C22

C23

C24

C25

C31

C32

C33

C41

C42

C43

C34

Hierarchical Structure Establishment of the measurement metrics 

associated to the hierarchical structure

Assignment of ratings in the 

pairwise comparisons by experts

Formulation of pairwise comparison matrices

• Group 1: C1, C2, C3, and C4

• Group 2: C11, C12, C13, C14

• Group 3: C21, C22, C23, C24, C25

• Group 4: C31, C32, C33, C34

• Group 5: C41, C42, C43

Datasets

Tier 2: Acquisition of Expert Knowledge in Pairwise Comparisons

Firm 1

ANN

Firm k

ANN

 

Input-output fitting:

• Training data

• Validation data

• Hidden neurons

• Training algorithms

Centralised Cloud For 

Federated Learning

A random subset/all of 

firms to be selected for 

model aggregation

Use of the aggregation 

method (federated 

averaging, FedAvg) to 

obtain the resultant 

weights and function loss

Generation of an 

improved global machine 

learning model  f(w)
*

Tier 3: Multi-Criteria Decision-Making Process by the Best Worst Method

Formulation of a conversation 

table between fuzzy sets and 

linguistic expressions 

Selection of the best and the 

worst criteria 

Pairwise comparisons on the 

best-to-others and others-to-

worst

Optimisation process of the 

BWM to minimise value ξ

Evaluation of consistency 

indices and ratios

Involvement of experts to re-

evaluate the pairwise 

comparisons

Prioritisation of risk criteria 

in cold chain management

Consistency 

ratio      

No

Yes

Pre-defined

 

Figure 3 Systematic framework of the FMRES 
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4.1 Tier 1: Data Collection based on the Hierarchical Structure 

According to the previous section, the hierarchical structure for managing cold chain risks 

has been established, while the corresponding 16 evaluation matrices are suggested as the 

references to conduct pairwise comparisons in the MCDM method. Regarding pairwise 

comparisons, there are five groups in accordance with the hierarchical structure as shown 

in Figure 2, namely the comparisons (i) between C1, C2, C3, and C4, (ii) between C11, 

C12, C13, and C14, (iii) between C21, C22, C23, C24, and C25, (iv) between C31, C32, 

C33, and C34, and (v) C41, C42, and C43. Mathematically, the matrix of the pairwise 

comparison P for n criteria can be formulated as in equation (1), where the weights in the 

matrix’s diagonal is equal to 1, and the weights in the upper triangular matrix except the 

diagonal are the reciprocal of the weights in the lower triangular matrix. Subsequently, a 

group of decision makers at the specific SC firm, who are managers and experts in cold 

chain management, are invited to assign the rating in the lower triangular matrix of pairwise 

comparisons based on the given hierarchical structure and evaluation matrices. Thus, 

dataset 𝑫 is separated into training dataset 𝑫𝑻 and validation dataset 𝑫𝑽 in the formulation 

of five independent ANN models (baseline) based on five groups of pairwise comparisons, 

where number of pairwise comparisons of each group is 𝑛(𝑛 − 1) 2⁄ , and n denotes the 

number of criteria to be considered. Consequently, based on the proposed hierarchical 

structure in this study, there are sixteen evaluation metrics as input to estimate twenty-five 

ratings between [0, 10] of the pairwise comparisons.  

𝑷 = (𝑝𝑖𝑗)𝑛×𝑛 = [
∅ ⋯ 𝜑𝑛1

−1

⋮ ⋱ ⋮
𝜑𝑛1 ⋯ ∅

] (1) 

 

4.2 Tier 2: Acquisition of Expert Knowledge in Pairwise Comparisons 

After structuring the input (i.e. sixteen evaluation metrics) and output (i.e. twenty-five 

pairwise comparisons) based on the hierarchical structure, the SC firm can formulate a 

local ANN model to assist the process of pairwise comparisons, where the number of 

hidden neurons Nh is determined by using equation (2), and m denotes the number of input 

neurons (Sheela and Deepa, 2013). With the selection of an appropriate training algorithm, 

the local ANN models for all SC firms can be initiated.  

𝑁ℎ =
4𝑚2 + 3

𝑚2 − 8
 (2) 

In order to obtain a global ANN model in the cold chain network, particularly to benefit 

SMEs which do not have sufficient training and validation datasets, federated learning with 

deploying federated averaging (FedAvg) as the aggregation method is applied (Hao et al., 

2019; Li et al., 2020). By deploying the FL mechanism, multiple cold chain stakeholders 

can collaboratively formulate the global ANN model through effectively aggregating local 

model updates to assist the pairwise comparisons in the BWM through a privacy-

preserving protocol. Compared with typical ANN models trained by local data, the FL 

mechanism is more effective in obtaining an industry-wide ANN models such that the 
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perception on cold chain risk management from different stakeholders can be synthesized. 

Therefore, the FL-enabled ANN is formulated in this study as follows.   

Step 1: For i-th SC firm, an initial model parameter 𝑓(𝜔𝑡), namely weights between nodes 

and node biases, in the ANN is received from the federated learning cloud, as the baseline 

setting at time t.  

Step 2: By using the initial model parameter 𝑓(𝜔𝑡), the gradient ∇𝑓𝑖𝑡 of the local ANN 

model is computed by using the training 𝑫𝑻𝒊  and validation 𝑫𝑽𝒊 datasets of the i-th SC 

firm. Subsequently, a local update on the ANN model is conducted as 𝑓𝑖(𝜔𝑡) ← 𝑓(𝜔𝑡) −
𝜂 ∙ ∇𝑓𝑖𝑡, where η is the learning rate. 

Step 3: Step 2 is repeated according to the number of epochs E defined in this federated 

learning model, and therefore finalised model parameter 𝑓𝑖(�̃�𝑡) is sent to the federated 

learning cloud for further aggregation.  

Step 4: The federated learning cloud collects all model parameters from k SC firms, namely 

𝑓1(�̃�𝑡),… , 𝑓𝑘(�̃�𝑡) , in the cold chain network, and the weight average of the model 

parameters is computed as 𝑓∗(𝜔𝑡) ←
1

∑ 𝑛𝑖
𝑘
𝑖=1

∑ [𝑛𝑖𝑡 ∙ 𝑓𝑖(�̃�𝑡)]
𝑘
𝑖=1 , where nit represents the 

number of data rows considered in building the local models at time t.  

Step 5: An improved global ANN model with the parameter 𝑓∗(𝜔𝑡) is built accordingly, 

which is then disseminated to all SC firms in the network for conducting pairwise 

comparisons between defined criteria. The above steps 2 to 5 are repeated for obtaining 

another improved model with the parameter 𝑓∗(𝜔𝑡+1) at the next time stamp t+1.  

Consequently, at time t, the global ANN model is therefore obtained with high privacy-

preserving functionality in the cold chain network such that the SC firms can effectively 

estimate twenty-five ratings of the pairwise comparisons. Knowledge from experts and 

managers in the field of cold chain management can be acquired in the above federated 

learning approach so as to facilitate the MCDM process according to the hierarchical 

structure.  

 

4.3 Tier 3: Multi-Criteria Decision-Making Process by the Best Worst Method  

Among a number of MCDM methods, AHP and its variants have been widely applied to 

identify and assess supply chain risks (Butdee and Phuangsalee, 2019; Vishnu et al., 2019). 

However, some drawbacks in using AHP-based solutions, such as high complexity in 

pairwise comparisons and difficulty in maintaining consistency, have been revealed. 

Rezaei (2015) proposed a novel MCDM method, called best worst method (BWM), which 

outperforms the AHP-based solutions in term of practicality and reliability. Therefore, the 

BWM is selected in this study to evaluate cold chain risks, while the pairwise comparisons 

are extracted from the results of the global ANN model.  

Step 1: The i-th SC firm requires to select the best and worst criteria for group j of pairwise 

comparisons, and thus vectors of best-to-others 𝑉𝑖𝑗
𝑏 = (𝑣𝑖𝑗1

𝑏 , … , 𝑣𝑖𝑗𝑛
𝑏 )and others-to-worst 

𝑉𝑖𝑗
𝑤 = (𝑣𝑖𝑗1

𝑤 , … , 𝑣𝑖𝑗𝑛
𝑤 ) are formulated. 
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Step 2: The ratings R = (r1, …, r25) obtained from the global ANN model are inputted to 

the vectors of best-to-others and others-to-worst. For example, C2 and C4 are selected as 

the best and worst criteria, respectively, in group 1. As shown in Figure 4, the upper 

triangular matrix of the matrix P is filled by the reciprocal of the corresponding rating 

between two criteria.  Subsequently, the vectors of best-to-others and others-to-worst (from 

row to column) are built, where 𝑣𝑖12
𝑏  and 𝑣𝑖14

𝑤  are null, and 𝑣𝑖14
𝑏  is exactly equal to 𝑣𝑖12

𝑤 .  
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Figure 4. Example of extraction of ratings to the pairwise comparisons for the BWM 

Step 3: The optimisation problem, as in equations (3) to (7), is formulated to minimise the 

absolute gap ξ between wb/wk and triangular fuzzy number of the best criterion 𝑉𝑖𝑗
𝑏, and 

between wk/ww and triangular fuzzy number of the worst criterion 𝑉𝑖𝑗
𝑤. The values wb, ww, 

wk represent the weights of best, worst, and other k criteria, respectively. Except for the 

examination of the absolute gap, the sum of weights for all criteria is restricted to be 1, and 

non-negativity constraint is considered for the weights and absolute gap.  

Min.  𝜉  (3) 

Subject to: 

|
𝑤𝑖𝑗𝑏

𝑤𝑖𝑗𝑘
− 𝑣𝑖𝑗𝑘

𝑏 | ≤ 𝜉 (4) 

|
𝑤𝑖𝑗𝑘

𝑤𝑖𝑗𝑤
− 𝑣𝑖𝑗𝑘

𝑤 | ≤ 𝜉 
(5) 

∑ 𝑤𝑘
𝑛

𝑘=1
= 1  

(6) 

𝑤𝑘, 𝜉 ≥ 0 (7) 
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Step 4: By solving the above optimisation problem, the optimal weight 𝑤𝑖𝑗𝑘
∗  (∀𝑘 =

1, … , 𝑛) with the optimal absolute gap ξ*.  

Step 5: The consistency ratio (CR) of the MCDM process is computed, where the optimal 

absolute gap is divided by the consistency index (CI), as in equation (8). The value 𝑣𝑖𝑗 is 

the largest rating assigned in the pairwise comparisons, and thus the largest positive root of 

CI is obtained to measure the CR. If the consistency is greater than 0.1, experts/managers 

in the SC firms can fine tune the pairwise comparison, and steps 3 and 4 are repeated until 

the consistency ratio is less than 0.1.  

𝐶𝑅 =  
𝜉∗

𝐶𝐼
, where 𝐶𝐼2 − (1 + 2𝑣𝑖𝑗)𝐶𝐼 + (𝑣𝑖𝑗

2 − 𝑣𝑖𝑗) = 0 (8) 

Step 6: According to the resultant weights of risk criteria determined by the BWM, the 

most vulnerable criteria between C1, C2, C3, and C4 can be discovered. Similarly, the most 

vulnerable sub-criteria out of the sixteen criteria can be evaluating through multiplying the 

weights of the corresponding risk category and the weight, namely �̃�𝑖𝑞𝑘
∗ ← 𝑤𝑖1(𝑞−1)

∗ ×

𝑤𝑖𝑞𝑘
∗, ∀𝑞 ∈ {2,… ,5}, in this study.  

 

5. Case Analysis of a Cold Chain Network in Australia 

In this section, a case analysis of deploying the proposed FMRES in the cold chain network 

in Australia is conducted. It consists of (i) industrial background and motivation, and (ii) 

implementation roadmap of the FMRES.  

 

5.1 Industrial Background and Motivations 

In this study, a case study on e-grocery supply chains in Australia was conducted, where 

the e-fulfilment on temperature-time-sensitive products to end customers is provided. 

Regarding the e-grocery supply chain management, it is classified as a branch of the cold 

chain that manages material flow, information flow, and capital flow between suppliers, 

refrigerated distribution centres, e-commerce platforms, and online-to-offline (O2O) stores. 

End customers can place their orders in the e-commerce platforms for grocery commodities 

and fresh produce, while the orders are fulfilled by either home delivery or pick-up at O2O 

stores. An effective cold chain system from raw suppliers until the last mile delivery is thus 

established to assure product quality through the entire supply chain journey. In order to 

ensure high service level and product quality in the cold chain, e-grocery firms are eager 

to have a comprehensive and effective risk identification and assessment approach for 

mitigating the effects of supply chain vulnerability. After discussing with the industrial 

practitioners, it is found that most e-grocery firms in the industry know that there are a 

number of risk identification and assessment methodologies, including the MCDM method. 

However, such methods require specialised talent and experts to quantify the potential risk 

factors, which are not favourable to the SMEs in the e-grocery business. They are eager to 

seek an automated and intelligent solution to evaluate cold chain risks for their business, 

and therefore the proposed system is deemed to be an effective way to strengthen the 

capability on the cold chain risks management. Under the mechanism of federated learning, 
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sensitive and confidential data are not required to be disclosed to competitors or a third-

party company. Only the model parameters are shared in the federated learning cloud, 

which enhance the data security and privacy in the establishment of enterprise-wide 

intelligence for the risk quantification.  

In view of the above motivation, five Australian e-grocery firms as a federation were 

successfully invited to illustrate the implementation of the proposed system in the period 

between January 2020 and June 2020. A global ANN model is therefore established to 

acquire the knowledge of pairwise comparisons from the experts. The expert reliance on 

the MCDM method can be reduced, and therefore the whole risk assessment process can 

become more objective and systematic. Therefore, the five e-grocery firms can consistently 

evaluate cold chain risks in a daily manner to spot any vulnerable elements in their cold 

chain management through the intelligent system. 

 

5.2 Implementation Roadmap of the FMRES 

Following with the proposed system shown in Figure 3, the entire implementation is 

divided into two separate stages, namely (i) establishment of federated learning, and (ii) 

risk quantification by the BWM. In addition, the proposed system is built in the Python 

environment to achieve the data acquisition, federated learning, and computations on the 

BWM as a whole.  

5.2.1 Stage 1: Establishment of Federated Learning 

Firstly, according to the defined hierarchical structure and evaluation metrics, five e-

grocery firms provided the datasets on the 16 metrics of the hierarchical structure (input) 

and 25 ratings of pairwise comparisons (output). The datasets were extracted from the 

historical records when conducting pairwise comparisons to assess the cold chain risks in 

their supply chain activities. In this case analysis, each e-grocery firm provided 50 rows of 

data, which are only stored in their local storage with any sharing protocols. Since the five 

e-grocery firms are doing similar business in the e-fulfilment of grocery products, but 

customer pools are different in their e-commerce platforms as each store has its own 

competitive edge and advantages. Consequently, the horizontal federated learning 

proposed in the FMRES is appropriate to synthesize the model parameters to generate an 

improved global ANN model, as shown in Figure 5. With the initial model parameters 

disseminated by the federated learning cloud, the local ANN models are then trained and 

validated by the e-grocery firms, where the number of hidden neurons used in the model is 

4.14, determined by equation (2), and thus five hidden neurons are set. Moreover, the 

Levenberg-Marquardt training algorithm is adopted to evaluate the performance of mean 

square errors in the validation datasets, which has been widely applied to construct an 

efficient ANN solution (Du and Stephanus, 2018). In the e-grocery firms, a weekly review 

by experts and managers on the cold chain risks according to the hierarchical structure is 

performed, where additional datasets about the pairwise comparisons can be collected. 

Under the monthly aggregation in the supply chain network, there are four epochs for the 

e-grocery firms to evaluate the updates on their models with the learning rate at 0.5, which 

are separately managed to await the centralized aggregation in the federated learning cloud. 

After performing local updates in the four epochs, the updates of the model parameters, 
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namely (i) weights between nodes and (ii) bias values at nodes, are uploaded to the cloud 

for aggregation. In the federated learning cloud, the FedAvg method is applied to aggregate 

the model parameters by calculating the weighted average, in which the weights used in 

the calculation of the weighted average are referred to the row of datasets considered in the 

local updates. Consequently, the global ANN model is updated and disseminated back to 

the e-grocery firms for the daily cold chain risk evaluation practice. The firms can solely 

rely on the global model to conduct the pairwise comparisons and risk assessment in a daily 

timeframe, based on the latest evaluation metrics. The role of experts and managers in the 

risk assessment is therefore refined so as to concentrate on regular review and amendments 

on the datasets, instead of frequently conducting manual pairwise comparisons in daily 

operations. With the aid of the proposed system, the frequency of the risk evaluation in the 

cold chain management can be increased, resulting in better supply chain resilience and 

risk awareness.  
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Figure 5. Graphical illustration of the horizontal federated learning in the e-grocery supply chain network 
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5.2.2 Stage 2: Risk Quantification by the BWM 

When the global ANN model is disseminated by the federated learning cloud, the pairwise 

comparisons based on the current risk performance metrics can be conducted such that the 

ratings are assigned for the analysis of the BWM, as shown in Figure 6. The global ANN 

model defines 80 weights between the input and hidden neurons, 125 weights between 

hidden and output neurons, 5 bias values at hidden neurons, and 25 bias values at output 

neurons. Subsequently, the five metrics of pairwise comparisons from group 1 to group 5 

are established, in which the ratings refer to the level of risks and vulnerability on the 

designated areas. Each e-grocery firm is required to define the best criterion (i.e., the most 

vulnerable factor), and the worst criterion (i.e., the least vulnerable factor). For instance, 

firm A selects C3 and C4 as the best and worst criteria, respectively, in group 1; C12 and 

C11 as the best and worst criteria, respectively, in group 2; C24 and C23 as the best and 

worst criteria, respectively, in group 3; C34 and C33 as the best and worst criteria, 

respectively, in group 4; C43 and C42 as the best and worst criteria, respectively, in group 

5. By applying the BWM, the pairwise comparisons can be analysed to generate the 

weights on the criteria and sub-criteria defined in the proposed hierarchical structure of 

cold chain risks. The proposed approach not only considers the preferences of the e-grocery 

firms in prioritising the risk criteria, but also the facts and knowledge obtained in the cold 

chain network.  

Firm A

ANN

C1 C2 C3 C4

C1 - 0.45 0.16 3.20

C2 2.20 - 0.25 4.80

C3 6.20 4.00 - 7.10

C4 0.31 0.21 0.14 -

C11 C12 C13 C14

C11 - 0.51 0.45 1.37

C12 1.95 - 0.17 6.30

C13 2.21 5.76 - 1.03

C14 0.73 0.16 0.97 -

C21 C22 C23 C24 C25

C21 - 0.30 3.03 0.14 0.22

C22 3.33 - 5.26 0.17 1.49

C23 0.33 0.19 - 0.13 0.33

C24 6.99 5.91 7.55 - 4.28

C25 4.64 0.67 2.99 0.23 -

C31 C32 C33 C34

C31 - 0.27 2.56 0.11

C32 3.64 - 4.18 0.17

C33 0.39 0.24 - 0.10

C34 8.70 5.80 9.70 -

C41 C42 C43

C41 - 1.75 0.47

C42 0.57 - 1.05

C43 2.15 0.95 -
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Figure 6. Graphical illustration of the automatic BWM deployment 



18 

 

Consequently, the weights of the criteria and sub-criteria are combined together to obtain 

the resultant weights on each sub-criterion, which refers to the level of severity of cold 

chain risk criteria. The results of the composited weights for sixteen risk criteria are 

summarised in Table II. For firm A, it is found that the criteria C34 (market demand 

stability), C24 (supply stability), and C32 (regulatory compliance on environment, health, 

and safety) are measured as top three risk factors in its cold chain management system. 

During the period of the first half year in 2020, the emergence of the novel coronavirus 

(COVID-19) caused serious disruptions on supply chain activities, including the e-grocery 

businesses. On the one hand, the proposed model correctly reflects the fluctuations in 

demand and supply, where the grocery supply is always under tension and shortage. 

Besides, more and more end consumers tend to purchase daily necessities and grocery 

items via e-commerce platforms, instead of shopping in person, and thus the demand was 

highly varied in the examined period of time. On the other hand, the serious epidemic 

situation influences consumers’ awareness on food safety, personal health, and 

environmental impact, and therefore additional regulations and advice are introduced to 

the cold chain businesses. Generally speaking, the proposed system is effective in 

identifying and assessing cold chain risks in the supply chain network, while appropriate 

risk mitigation strategies and contingency plans can be established to eliminate the impact 

from the risks.   

Table II Summary of composited weights of cold chain risk criteria 

Criteria Sub-criteria Weights of Criteria Weights of Sub-criteria Composited Weights 

C1 

C11 

0.1039 

0.1920 0.0199 

C12 0.3743 0.0389 

C13 0.3743 0.0389 

C14 0.0594 0.0062 

C2 

C21 

0.1611 

0.0852 0.0137 

C22 0.1008 0.0162 

C23 0.0789 0.0127 

C24 0.5958 0.0960 

C25 0.1392 0.0224 

C3 

C31 

0.6443 

0.0827 0.0533 

C32 0.1240 0.0799 

C33 0.0741 0.0478 

C34 0.7192 0.4634 

C4 

C41 

0.0907 

0.1887 0.0171 

C42 0.4057 0.0368 

C43 0.4057 0.0368 

 

6. Results and Discussion 

After illustrating the proposed system in the above case analysis, the top three risk factors 

for the cold chain management are identified and assessed successfully. The hybridization 

of federated learning and BWM is theoretically and practically achievable. To discuss the 
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results obtained from the proposed system, the performance validation and managerial 

implications are covered in this section.  

 

6.1 Validation of the Proposed System in Solving MCDM Problems 

In this study, the inclusion of federated learning aims at providing an intelligent and 

automatic BWM to solve the MCDM problem of cold chain risk assessment. In order to 

validate the proposed system, except the measurement of consistency ratios stated in 

Section 4.3, the minimum variation (MV), and total deviation (TD) are considered to 

compare the performance between the (i) proposed system, (ii) ANN-based BWM, and (iii) 

traditional BWM. For the proposed system and ANN-based BWM, the machine learning 

model plays the role of respondent to conduct pairwise comparisons according to the 

hierarchical structure. For the traditional BWM, the experts and managers (sample size = 

30) were invited to conduct the pairwise comparisons based on their knowledge and 

experience. Regarding the MV, the occurrence of the violation between the pairwise 

comparisons and finalized ranking of risk criteria is calculated as in equation (9). The value 

MVu for the expert u who conducts the pairwise comparisons can be therefore computed, 

while the value of MVu refers to the level of inconsistency between pairwise comparisons 

and finalized weights of risk criteria. Consequently, small values of MVu are preferred in 

the MCDM process.  

𝑀𝑉𝑢 =∑ ∑
𝑉𝑢𝑖𝑗

2𝑛 − 3

𝑛

𝑗=1

𝑛

𝑖=1
, where 𝑉𝑢𝑖𝑗 =

{
 
 

 
 1
0.5
0.5
0

   

if 𝜑𝑖𝑗 < 1 and �̃�𝑖
∗> �̃�𝑗

∗

if 𝜑𝑖𝑗 = 1 and �̃�𝑖
∗≠ �̃�𝑗

∗

if 𝜑𝑖𝑗 ≠ 1 and �̃�𝑖
∗= �̃�𝑗

∗

Otherwise

  (9) 

Regarding the TD, the square of the absolute distance between the proportion between  

�̃�𝑖
∗
and �̃�𝑗

∗
, and the corresponding rating 𝜑𝑖𝑗 is measured, as in equation (10). Generally 

speaking, a small value of TD is preferred in the MCDM process such that the final 

prioritization and ranking results relatively match the pairwise comparisons. By applying 

the above three validation approaches, the proposed system is therefore validated in terms 

of CR, MV and TD, as shown in Table III. For the proposed system and ANN-based BWM, 

pairwise comparisons in five defined groups are performed, and thus five samples of the 

pairwise comparisons are collected for the validation. On the other hand, 30 respondents 

produce 150 samples of pairwise comparisons in total. It is found that the proposed system 

performs well in terms of MV and TD, while its CR is close to the result of using the 

traditional BWM. In addition, the values of CR are less than 0.1, which implies that the 

BWM is effective in generating consistent results in assessing risk criteria. To sum up, it 

shows that the proposed system has good capability in assigning consistent and accurate 

ratings on the pairwise comparisons.  

𝑇𝐷 =∑ ∑ |𝜑𝑖𝑗 −
�̃�𝑖

∗

�̃�𝑗
∗|

2𝑛

𝑗=1

𝑛

𝑖=1
  (10) 
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Table III Validation results between the proposed system, ANN-based BWM, and traditional BWM 

  N CR   MV   TD   

    Average S.D. Average S.D. Average S.D. 

The proposed system 5 0.0553 0.0181 0.0167 0.0304 3.3481 2.0519 

ANN-based BWM 5 0.0916 0.0449 0.0261 0.0498 5.0329 4.6450 

Traditional BWM 150 0.0549 0.0203 0.0193 0.0333 3.5267 2.7051 

 

6.2 Managerial Implications 

With the aid of the proposed system, the deployment of risk identification and the 

assessment process for SC firms becomes effective and convenient. Since traditional 

MCDM approaches requires extensive involvement of experts and managers, uncontrolled 

subjectivity and uncertainty cannot be prevented. Further, managing a large group of 

experts and managers to frequently conduct pairwise comparisons is difficult to justify 

from the firms’ perspective. It is always a challenging task for the SC firms to plan and 

deploy the execution of the MCDM process to estimate the risk levels. Particularly for cold 

chain management, an effective risk management approach is essential to the survival and 

competitiveness of SC firms. Therefore, the proposed system offers a novel solution which 

combines federated learning and one of the MCDM approaches, namely BWM, to 

automate the process of pairwise comparisons, which traditionally is regarded as a tedious 

and challenging task. Business intelligence on the pairwise comparisons of risk 

quantification is acquired, which enables better adaptability and practicality in real-life 

situations.  More frequent risk identification and assessment can be conducted to timely 

control and monitor any disruptions in the cold chain network. For reaching the post-

pandemic era, supply chain resilience and risk awareness have drawn considerable 

attention, which aligns to this study. In near future, when the new normal emerges, an 

intelligent risk quantification mechanism will become a core component to avoid and 

prevent significant disruptions to supply chain operations.  

 

Since the proposed method opens up a new research synergy in combining FL and MCDM 

methods, another theoretical implication is derived from this study in extending the existing 

MCDM-based applications. In the field of supply chain management, MCDM techniques 

have been widely applied instead of cold chain risk management, for example performance 

evaluation, assessment of competitive advantages, and supplier selection (Uygun and 

Dede, 2016; Pang et al., 2017; Wu et al., 2017). The autonomy of the above MCDM-based 

applications can be further strengthened through the adoption of the proposed method in 

this study. The reliability, accuracy and measurement consistency of the results can be 

improved, resulting in positive impact on decision-making process.   

 

7. Concluding Remarks  

In this study, a federated learning-enabled multi-criteria risk evaluation system (FMRES) 

is proposed, which enables the federated learning scheme in the BWM, so that an 

intelligent and automatic risk quantification process is established. Prior to the system 

design, a hierarchical structure to model firm-level cold chain risks is synthesized with a 

set of corresponding evaluation metrics. In order to acquire knowledge in pairwise 

comparisons, the federated learning scheme is implemented in the formulation of the global 



21 

 

ANN model, which is used to automatically assign the ratings for pairwise comparisons as 

being an intelligent agent. Furthermore, the proposed system was successfully 

implemented in a case study in Australia to identify and assess cold chain risks in the 

defined hierarchical structure, where the top three risk criteria, namely market demand 

stability, supply stability, and regulatory compliance on environment, health, and safety, 

are determined. Overall speaking, the contribution of this study can be summarised into 

two aspects: First, a firm-level risk hierarchical structure in the cold chain management is 

proposed with considering four essential dimensions, namely technologies and equipment, 

operations, external environment, and personnel and organisation. The research literature 

related to the cold chain risk management is thus enriched through this study. Secondly, a 

novel hybridisation of federated learning and BWM is formulated to embed the intelligence 

and automatic mechanism in the process of BWM, resulting in better adaptability and 

practicality of the risk identification and assessment in cold chains. To explore further 

possibilities in digitalising the MCDM approaches, future research may focus on 

decentralised federated learning with the use of blockchain technology in the formulation 

of intelligent MCDM mechanisms. Compared with managing the model parameters in the 

centralised federated learning cloud, the privacy-preserving feature of the proposed method 

is further strengthened.   
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