
Fuzzy-logic-based support tools for
initial screening of manufacturing

reshoring decisions
Per Hilletofth

Department of Industrial Engineering and Management, University of G€avle,
G€avle, Sweden and

Department of Industrial Engineering and Management, J€onk€oping University,
J€onk€oping, Sweden

Movin Sequeira
Industrial Product, Production Development and Design, J€onk€oping University,

J€onk€oping, Sweden, and

Wendy Tate
Department of Supply Chain Management, College of Business Administration,

University of Tennessee, Knoxville, Tennessee, USA

Abstract

Purpose – This paper investigates the suitability of fuzzy-logic-based support tools for initial screening of
manufacturing reshoring decisions.
Design/methodology/approach –Two fuzzy-logic-based support tools are developed together with experts
from a Swedish manufacturing firm. The first uses a complete rule base and the second a reduced rule base.
Sixteen inference settings are used in both of the support tools.
Findings – The findings show that fuzzy-logic-based support tools are suitable for initial screening of
manufacturing reshoring decisions. The developed support tools are capable of suggesting whether a
reshoring decision should be further evaluated or not, based on six primary competitiveness criteria. In
contrast to existing literature this research shows that it does not matter whether a complete or reduced rule
base is used when it comes to accuracy. The developed support tools perform similarly with no statistically
significant differences. However, since the interpretability is much higher when a reduced rule base is used and
it require fewer resources to develop, the second tool is more preferable for initial screening purposes.
Research limitations/implications – The developed support tools are implemented at a primary-criteria
level and to make them more applicable, they should also include the sub-criteria level. The support tools
should also be expanded to not only consider competitiveness criteria, but also other criteria related to
availability of resources and strategic orientation of the firm. This requires further research with regard to
multi-stage architecture and automatic generation of fuzzy rules in the manufacturing reshoring domain.
Practical implications –The support tools help managers to invest their scarce time on the most promising
reshoring projects and to make timely and resilient decisions by taking a holistic perspective on
competitiveness. Practitioners are advised to choose the type of support tool based on the available data.
Originality/value –There is a general lack of decision support tools in the manufacturing reshoring domain.
This paper addresses the gap by developing fuzzy-logic-based support tools for initial screening of
manufacturing reshoring decisions.
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1. Introduction
Over the last three decades an extensive movement of manufacturing activities from high-cost
to low-cost contexts has taken place (Brennan et al., 2015; Ketokivi et al., 2017). This offshoring
has been sustained by the idea that there is a compelling advantage in having manufacturing
located in low-cost environments. The key motive has been to reduce manufacturing cost, or
more precisely labor cost (Vanchan et al., 2018; Gylling et al., 2015). A reduction in production
cost was often achieved, but in many cases, it also became clear that the decision had been
based on incomplete information (Eriksson et al., 2018). Typically, a total cost-of-ownership
view was missing, resulting in many critical criteria not being included in the decision. The
decision-making frameworks that were used and the calculations generated were thus
rudimentary (Bailey and De Propris, 2014; Stentoft et al., 2015). Another reason that offshoring
decisions over time have become less attractive is that the market has evolved, favoring other
types of supply chain designs (Hilletofth et al., 2019a). These offshoring failures and market
changes have led to an intensified debate about the opposing movement of material and
services (reshoring), back to the home country (Arlbjørn andMikkelsen, 2014; Gray et al., 2013),
or to an adjacent country (Panova and Hilletofth, 2017).

Manufacturing reshoring decisions are complex in structure and handling as the number
of decision criteria could grow rapidly and make it difficult to find an optimal solution that is
resilient over time (Gray et al., 2017; Hartman et al., 2017; Wiesmann et al., 2017). The more
prominent groups of criteria to consider in a reshoring decision include quality-related
criteria (Johansson and Olhager, 2018), cost-related criteria (Di Mauro et al., 2018), market-
related criteria (Tate et al., 2014) and strategy-related criteria (Baraldi et al., 2018). The
complexity is related to the vast number of criteria thatmust be considered in the decision, the
trade-offs and paradoxes between criteria that must be balanced (Gray et al., 2017; Tate et al.,
2014), and the lack of sufficient data on the criteria or uncertainties in available data (Foerstl
et al., 2016). A lack of institutional experience further adds to the complexity in reshoring
decision-making (Bals et al., 2016; Gray et al., 2017).

The complexity inherent in manufacturing reshoring decisions necessitate decision-
support tools that can aid firms in making more appropriate reshoring decisions that are
resilient over time (Hilletofth et al., 2019a). There is a lack of decision-support tools for
evaluation of manufacturing reshoring decisions (Barbieri et al., 2018; Stentoft et al., 2016).
Some manually handled decision-making frameworks have been proposed in the literature
for complex manufacturing reshoring decisions in a formal and structured manner (e.g.
Gylling et al., 2015; Bals et al., 2016; Joubioux and Vanpoucke, 2016). However, these
frameworks are mainly theoretical and conceptual and lack both digital and automated
decision support capabilities. Therefore, there is a need for more advanced decision-support
tools in the manufacturing reshoring domain (Hilletofth et al., 2019b).

Decision-support tools can be created inmanyways. The basic requirement is that the tool
must be efficient and effective, aswell as deliver pertinent, accurate, reliable and interpretable
information in order for the decision-maker to make a qualified decision (Hilletofth et al.,
2016). Three usual types of decision-support tools include: data-driven tools that analyze
large amounts of data to evaluate decisions, model-driven tools that use analytical models to
evaluate decisions and knowledge-driven tools that use domain knowledge to evaluate
decisions (Power, 2008). The increased interest in artificial intelligence techniques, especially
machine learning, is promoting data-driven tools (Sadati et al., 2018). However, in the
manufacturing reshoring domain there is usually a lack of sufficient data (Foerstl et al., 2016)
and also huge uncertainties in the available data. Most of the available knowledge is typically
found in domain experts. Thus, knowledge-driven tools are preferable in this context.

One example of a knowledge-driven support tool is the expert systems (Power, 2008;
Nunes and Jannach, 2017). An expert system is an information system that uses knowledge
from domain experts to support decision-makers in the decision-making process. This allows
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managers with less expertise to use this knowledge and thus make better decisions (Power,
2008; Leo Kumar, 2019). The role of expert systems is to support human decision-makers
rather than replacing them (Power, 2008). When building a rule-based expert system, the
knowledge of the domain experts is modelled into a series of rules (heuristics) similar to how
human experts would reason and is used in an inference system for problem-solving. Hence,
logic is used to make a deductive decision. The expert system is considered as an artificial
intelligence technique since a computer is used to support the decision-making process (Liao,
2005; Leo Kumar, 2019).

Variousmodeling techniquesmay be used to develop rule-based expert systems. Recently,
fuzzy logic has been used to build a rule-based expert system for evaluation ofmanufacturing
reshoring decisions with promising results (Hilletofth et al., 2019b). For several reasons,
fuzzy-logic-based tools look appropriate for this decision-making context. First, they provide
a means for handling the uncertainty linked to the lack of sufficient data or uncertainties in
the available data (Ross, 2017). Second, they provide a means for handling the complexity
linked to a vast number of occasionally conflicting criteria that must be considered and
balanced in the decision (Shaout and Trivedi, 2013). Third, they provide a means for
capturing domain knowledge and expertise on the crucial decision criteria (Morente-Molinera
et al., 2017) that can be used to support reasoning with otherwise vague and imprecise
information. The limited existing research on fuzzy-logic-based decision-support tools in the
manufacturing reshoring domain has so far focused on the development of fuzzy logic
concepts suitable for this domain (Hilletofth et al., 2019b). There is a gap in research that
focuses on developing decision support tools for specific decision-making situations. For
instance, a decision support tool for initial evaluation in the beginning of the decision-making
process, a stepwise decision support tool that is used throughout the decision-making process
or a decision support tool for complete evaluation in the end of the decision-making process.

The aim of this research is to investigate the suitability of fuzzy-logic-based support tools
for initial screening of manufacturing reshoring decisions. To achieve this, two such support
tools were developed. A fuzzy-logic-based support tool must be accurate, reliable and
interpretable, and with a tradeoff between accuracy and interpretability (Cord�on, 2011;
Shukla and Tripathi, 2012). The aim could either be to develop a tool distinguished by high
accuracy that relies on a large rule base, or high interpretability that relies on a small rule base
(Cord�on, 2011; Cpałka, 2017; Zhou and Gan, 2008). The interpretability of the tool can be
enhanced by reducing the rule base (Mencar and Fanelli, 2008; Casillas et al., 2013). However,
a small rule base could create issues with consistency, completeness and redundancy (Duţu
et al., 2018; Gacto et al., 2011; Gegov et al., 2017). Hence, it is amajor challenge to develop fuzzy-
logic-based support tools that are accurate, reliable and interpretable. The first developed
support tool uses a complete rule base while the second uses a reduced rule base. In both
support tools, sixteen fuzzy inference settings are used. The input for the two support tools is
thirty decision (or input) scenarios that consist of six decision criteria each. The decision
scenarios provide the data needed to assess the suitability of the developed fuzzy-logic-based
support tools for initial screening of manufacturing reshoring decisions.

The remainder of the paper is structured as follows. A review of manufacturing reshoring
and fuzzy logic is provided in Section 2. The developed fuzzy-logic-based support tools for
reshoring are described in Section 3. Thereafter, the results are presented and discussed in
Sections 4 and 5 respectively. Finally, the research is concluded in Section 6.

2. Literature review
In order to provide a contextual understanding, a review of the existing manufacturing
reshoring and fuzzy logic literature is provided further. The reviews are focused on the issues
most relevant for this research work.
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2.1 Reshoring
The definition of manufacturing reshoring is starting to reach consensus in the literature
(Barbieri et al., 2018). It is fundamentally a location decision (Gray et al., 2013) involving
manufacturing activities, as opposed to other types of value chain activities (Barbieri et al.,
2018). Some researchers also distinguish between “backshoring” and “nearshoring” (Fratocchi
et al., 2014), where the former is about movements back to the home country, and the latter is
about movements to a near-to-home country (Ellram et al., 2013). Four types of manufacturing
reshoring can be distinguished based on two dimensions. The first dimension is the location
decision and the second dimension is the control or governance (make or buy) decision (Gray
et al., 2013). It is argued that both these decisions are interconnected (Bals et al., 2016). The
different types of manufacturing reshoring include reshoring of inhouse activity, reshoring for
outsourcing, reshoring for insourcing and reshoring of outsourced activity. The scope of a
reshoring project may differ significantly, ranging from a factory, a production process, a
production phase, a product or a component (Baraldi et al., 2018; Gray et al., 2013). The extent of
manufacturing reshoring also differs from partial reshoring to complete reshoring, where the
former implies a partial closure of the offshore venture (Fratocchi et al., 2014).

Themanufacturing reshoring decision-making processmay be visualized in variousways
and the existing literature include some examples (Bals et al., 2016; Boffelli et al., 2018). In
essence, the decision-making process consists of fivemain steps (Figure 1). In the first step the
reshoring project is defined, which consists of determining the reshoring scope (e.g. factory,
process, phase, product or component), reshoring extent (partial or complete), and reshoring
context (e.g. industry, firm, market and product characteristics). In the second step,
performance of the current supply chain setup is evaluated. This step consists of information
gathering related to current supply chain performance within the context of the reshoring
project (Boffelli et al., 2018). In the third step, possible reshoring scenarios are identified. The
reshoring scenarios correspond to the choices that the firm can take with regard to location
and control (Gray et al., 2013). In the fourth step, the identified reshoring scenarios are
evaluated. In the final step a reshoring scenario is selected, which could even include the
choice of staying at the current location. In all steps the firms strategies and boundaries must
be considered. The decision-making process is started by so called trigger (or drivers). The
triggers, drivers or motives for manufacturing reshoring is one of the most common research
topics in this domain (Wiesmann et al., 2017; Barbieri et al., 2018).

Manufacturing reshoring decisions are complex since the number of decision criteria
could grow rapidly and make it difficult to find a suitable solution that is resilient over time
(Gray et al., 2017; Hartman et al., 2017). The decision factors are all those that influence the
reshoring decision and include drivers, enablers and barriers (Wiesmann et al., 2017). Many
decision factors have been presented in the literature and are often grouped according to
theory-driven frameworks such as Dunning’s eclectic paradigm (Dunning, 1980), including
cost-seeking, market-seeking, resource-seeking and strategic-asset seeking (Ancarani et al.,
2015; Ellram et al., 2013).

Some recent frameworks of factors that influence the reshoring decision have been
proposed in the literature. In one such framework, the factors are divided according to the
main goal (cost efficiency or perceived value) and the level of analysis (internal or external)

Trigger 1. Define
reshoring
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2. Evaluate
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performance

3. Identify
reshoring
scenario

4. Evaluate
reshoring
scenario

5. Select
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0. Consider firm strategies and boundaries

Source(s): Based on Bals et al., 2016; Boffelli et al., 2018

Figure 1.
The manufacturing
reshoring decision-
making process
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(Fratocchi et al., 2016). In another framework, the factors are divided into global competitive
dynamics, host country, home country, supply chain and firm-specific issues (Wiesmann
et al., 2017). Some frameworks group the factors based on competitive priorities, arguing that
firms reshore to increase their competitiveness (Benstead et al., 2017; Srai et al., 2016).
Recently, attention also has been devoted to grouping the factors as either “managerial
mistakes”, “strategic shift” and “environmental conditions” so as to separate the factors
arising from management mistakes from those arising from the firm’s internationalization
strategy (Di Mauro et al., 2018) or changes in the environmental conditions (Martinez-Mora
and Merino, 2014).

Manufacturing reshoring decisions are not only complex due to the huge number of
criteria that must be included in the decision, but also with regard to various trade-offs and
paradoxes between the criteria that must be balanced (Gray et al., 2017; Tate et al., 2014). The
decision-maker must be aware of, and consider a large number of trade-offs and try
accordingly to make the best possible decision (Gray et al., 2017; Tate et al., 2014). The trade-
off analyses are often cost-based, and the decision-maker attempts to achieve the lowest
landed cost or the lowest cost of ownership between various locations (Gylling et al., 2015;
Hartman et al., 2017).

It has been argued these types of analyses are not sufficient, and research calls for
decision tools that can incorporate better heuristics of the criteria that are not easily
quantifiable, or cannot be implemented in landed cost or total cost-of-ownership models
(Gray et al., 2017; Barbieri et al., 2018). Other reasons for the complexity include a lack of
sufficient data on the factors or uncertainties in the available data (Foerstl et al., 2016), as
well as a lack of institutional experience (Bals et al., 2016; Gray et al., 2017). The final
decision should be delayed in the decision-making process until all relevant criteria have
been identified, and appropriate information on the criteria is available (Hartman
et al., 2017).

The point has also beenmade that firms have relied on too limited number of criteria in the
decision-making, and that they have discovered critical criteria rather late in the decision-
making process. It has also been argued that the timing is critical as managers do not want to
lose opportunities by evaluating the decision too long (Boffelli et al., 2018). This presents
opportunities for initial screening tools helping to both speed up the process and make sure
that the relevant criteria are considered.

In order to handle complex manufacturing reshoring decisions in a systematic manner,
various decision-making frameworks have been proposed in the literature. One of these
frameworks makes use of existing costs models to make a cost-based decision (Gylling et al.,
2015). The decision is based on the comparison of a firm’s own production cost calculated
using a time-driven activity-based costing model, with the sourcing cost calculated using a
total landed cost model. Another framework takes off from the fact that the reshoring
decision often depends on the benefits and challenges of previous offshoring (Joubioux and
Vanpoucke, 2016). First, push factors (discouraging offshoring), pull factors (encouraging
reshoring), new risk assessment and benefits of previous offshoring are evaluated. After that,
the firm decides either to further offshore the production, maintain the production at the
current location or reshore the production to the home country, based on current benefits and
challenges of the offshoring venture. These frameworks, however, are predominantly
theoretical exercises that lack both digital and automated decision-support capabilities.
Thus, there is a need for more advanced decision-support tools for evaluation of
manufacturing reshoring decisions (Hilletofth et al., 2019b; Wiesmann et al., 2017).

Even if existing research demands more advanced decision-support tools in the
manufacturing reshoring domain, the types of support tools needed are not specified. The
complexity in the decision-making process demands different kinds of support tools for
different purposes (i.e. decision-making situations). Taking departure from the decision-
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making process itself, five types of decision-support tools can be distinguished (Figure 2).
In the first step of the decision-making process, feasibility evaluation tools could help firms to
continue on the most promising projects and reject less favorable ones. In the second step,
performance evaluation tools could help firms to evaluate the performance of the current
supply chain setup. In the third step, scenario generation tools could help firms identify
feasible reshoring scenarios. In the fourth step, scenario evaluation tools could help firms
evaluate the identified scenarios. For instance, a decision-support tool for initial evaluation, a
stepwise decision-support tool for continuous evaluation or a decision-support tool for final
evaluation. The decision-support tool for initial evaluation or screening could also be used as
a feasibility tool in the first phase. In the fifth and final step of the decision-making process,
scenario visualization tools could help firms visualize the evaluated scenarios for the decision-
makers.

2.2 Fuzzy logic
Fuzzy logic has varying and multiple degrees of truth values, as opposed to conventional
Boolean logic, which has only completely true and completely false values (Zadeh, 1965). This
allows fuzzy logic to express human-like statements in order to understand, represent and
handle vagueness and imprecision, using human-like reasoning (Ross, 2017). When objects
are expressed in fuzzy logic, they can be seen as a continuous grade ofmembership, with each
object having a membership grade from zero to one. Fuzzy logic systems use this logic and
the main application of such systems is decision-making. The system typically consists of
four functional parts (Lee, 1990; Yazdanbakhsh and Dick, 2018). The first part, the fuzzifier,
transforms the crisp input data into fuzzy data by performing scale mapping that transfers
the crisp inputs to their corresponding grade of membership. The second part, the knowledge
base, consists of all knowledge from the application domain. It includes a database with
membership functions and a database with fuzzy inference (or if-then) rules (i.e. rule base).
The third part, the inference engine, implements inference mechanisms, mostly derived from
Boolean logic, which fires the rules from the knowledge base and combines them to obtain
fuzzy output, which has the capability to perform human-like decisions. The fourth and final
part, the defuzzifier, transforms the resulting fuzzy output data into crisp output data by
performing scale mapping that transforms the fuzzy output into a precise number. The
defuzzifier uses one among numerous defuzzification methods that exist for different
applications. The method should be chosen according to computational simplicity (Esogbue
and Song, 2003; Talon and Curt, 2017).

The development of fuzzy logic systems requires the selection of appropriate inference
functions (Syn et al., 2011). These functions pertain to the basic inference steps: ANDmethod;
OR method; implication; aggregation and defuzzification. The AND as well as OR methods
take place within the antecedents of the fuzzy if-then rule. The AND method results either in
minimum (min) or product (prod) value of the antecedents within the rule. On the other hand,
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the OR method results in the maximum (max) value of the two variables within the rule. The
results of the antecedents affect the degree to which the consequent is fuzzified. This degree
can be determined by the implication step. Within the implication step, there exits the
minimum (min) function such that the consequent is shortened, and a product (prod) function
such that the consequent is scaled. The implicationmethod is applied after specifying the rule
weights. The aggregation step determines how the consequents of different rules are
combined. In this step, the consequents are combined into one single output fuzzy set. It is
necessary that the chosen operation is changeable as it should not matter in which way the
rules are combined. Therefore maximum (max) and sum are appropriate. Finally, within the
defuzzification step, centroid results in the center of the output fuzzy set, while the middle-of-
maximum (Mom) results in the average of the maximum of the output fuzzy set (MATLAB,
2018). The combination of above functions leads to multiple inference settings (Syn
et al., 2011).

One of the main issues in fuzzy logic modeling is the tradeoff between interpretability and
accuracy (Cord�on, 2011; Shukla andTripathi, 2012). Accuracy is defined as themodel’s ability
to exactly represent the real system, while interpretability is defined as the model’s ability to
behave in an understandable way (Casillas et al., 2013). This tradeoff can be handled in two
ways. One way is to make already interpretable parts more flexible, so that the accuracy is
improved without losing interpretability. Another way is to put restrictions on already
accurate parts, so that interpretability is increased (Casillas et al., 2013). The accuracy can be
improved by tuning the type and shape of membership functions (Cord�on and Herrera, 2000;
Sambariya and Prasad, 2017), changing the settings in the fuzzy logic system (Syn et al.,
2011), learning the number of linguistic labels (Casillas et al., 2013), using rule weights (Chen
et al., 2016), or using linguistic variable weights (Hilletofth et al., 2019b). The interpretability
can be improved by reducing the number of fuzzy rules or linguistic labels (i.e. readability), or
by using linguistic labels that have consistent semantics for human users (i.e.
comprehensibility) (Cord�on, 2011). The abovementioned ways can also be combined to
improve accuracy and interpretability.

In order to improve both interpretability and accuracy, various concepts have been
studied to optimize the fuzzy rule base (Cord�on andHerrera, 2000; Gacto et al., 2011; Tan et al.,
2019). A complete set of fuzzy rules can increase accuracy, but decrease the rule
interpretability (Cord�on, 2011), whereas reducing the number of rules and linguistic
variables can increase interpretability (Zhou and Gan, 2008). The selection of rules can also
use a variety of hybrid approaches (Alcal�a et al., 2006). Novel concepts that have been
explored to improve this trade-off in the manufacturing reshoring domain include relative
linguistic labels, high-level rules and linguistic variable weights (Hilletofth et al., 2019b).
Relative linguistic labels (e.g. positive, neutral and negative) are interpretedmore consistently
among human decision-makers than absolute linguistic labels. They also eliminate the need
to create specific linguistic labels for each variable and ensure the consistency of the fuzzy
rule. High-level rules are reduced rules consisting of only few variables and which are more
instinctive to the domain expert. It is proposed that high-level rules have high interpretability
as they are the most meaningful rules in the system (Hilletofth et al., 2019b). Linguistic
variable weights are values assigned to the linguistic variable so that the consequent can be
assigned automatically. Using interpolation, the linguistic variable weights can be used to
create a complete set of rules to achieve high accuracy (Hilletofth et al., 2019b).

3. Fuzzy-logic-based support tools for initial screening of manufacturing
reshoring decisions
Two fuzzy-logic-based support tools for initial screening of manufacturing reshoring
decisions are developed together with experts from a Swedish manufacturing firm.
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The manufacturing firm develops, manufactures and sells different kinds of transportation
equipment. The Swedish plant is in charge of the final assembly. In recent years, the firm has
started to reshore component manufacturing back to Sweden due to cost, lead-time and
flexibility issues and moved toward a customization strategy which favors a rapid and
flexible supply chain design. The support tools were created using the fuzzy logic toolbox
found in MATLAB® R2018a (MATLAB, 2018), and was based on knowledge gained from
the involved reshoring experts. The primary reason for developing a knowledge-driven (or
expert) decision-support tool is that most of the available knowledge in this decision-making
context is typically found in domain experts. This was also confirmed by the involved
reshoring experts from themanufacturing company (e.g. limited amount of data on reshoring
projects are stored in databases). In total eight experts, representing the senior management
team of companywere included as participants. This group is in charge of the final decision to
reshore or not inside the company. The tool development process consisted of five steps and is
adapted from a previously used procedure (Hilletofth et al., 2019b). The first support tool uses
a complete rule base while the second uses a reduced rule base.

3.1 Define linguistics variables
The first step in developing the fuzzy-logic-based support tools is to define the linguistic
variables. The goal of the proposed initial screening tools is to recommend further evaluation of
a reshoring decision or not. The idea is to identify the most promising opportunities and put
efforts into those andnotwaste time on less promising opportunities.According to the involved
manufacturing reshoring experts, only one output linguistic variable with two values is needed
in such an initial screening context. When it comes to the input variables, the involved
reshoring experts argued that a screening tool could take departure from various sets of
decision criteria including competitiveness, availability of resources and strategic orientation of
the firm. The sets of criteria could also be addressed on a main-criteria or sub-criteria level.

For the purpose of investigating the suitability of fuzzy-logic-based support tools for
initial screening of manufacturing reshoring decisions, the reshoring experts proposed that
competitiveness criteria on a main-criteria level constitutes a suitable starting point. The
main argument was that the competitiveness criteria provide a holistic view on how to create
competitiveness, which is the primary objective of all manufacturing reshoring decisions.
The relevance of the competitiveness criteria is also supported in the manufacturing
reshoring literature (Benstead et al., 2017; Srai et al., 2016). Competitiveness criteria were
chosen as input linguistic variables in both of the support tools. The developed support tools
in total include six primary competitiveness criteria including cost, quality, time, flexibility,
innovation and sustainability (Figure 3). There were also several sub-criteria; however, the
developed support tools only considers the primary criteria level.

SustainabilityCost Quality Time Flexibility Innovation

Delivery time
Time to market

Product flexibility
Product line flexibility

Volume flexibility
Production mix flexibility

Labor flexibility
Delivery flexibility
Supplier flexibility

Product sustainability
Service sustainability
Process sustainability

Supply chain sustainability

Product quality
Service quality
Process quality

Delivery dependability
Supplier dependability

Brand quality

Cost efficiency
Resource efficiency
Process efficiency

Product innovation
Service innovation
Process innovation

Technology innovation
Supply chain innovation

Market innovation

Group A Group B Group C

Figure 3.
The six reshoring
criteria with their
corresponding sub-
criteria
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The different criteria were grouped according to their relative importance in a
manufacturing reshoring decision by the involved reshoring experts. This was done
during a joint workshop where all the involved experts participated. The workshop took
departure from the criteria framework presented in Figure 3. According to the involved
reshoring experts, the relative importance may differ in various decision-making situations.
For example, different firms could assign different importance to the criteria. Hence, the
grouping according to the importance should be specified for the particular firm and
for the particular decision-making situation. The reshoring experts were involved in
assigning the relative importance of the reshoring criteria which ended up in three groups
(Figure 3). The decision-making situation considered by the experts was the initial screening
in their own operations and the reshoring object was component manufacturing. Cost and
quality were assigned the highest importance, time, flexibility, and innovation medium
importance and sustainability the lowest importance. The grouping is supported by recent
empirical research on critical operations capabilities in a high cost environment (Sansone
et al., 2017, 2020) as well as with existing reshoring research which often considers cost and
quality as the primary drivers for reshoring to high-cost environments (Engstr€om et al.,
2018a, b; Heikkil€a et al., 2018; Johansson and Olhager, 2018).

3.2 Define linguistics labels and membership functions
The second step in developing the fuzzy-logic-based support tools was to define the linguistic
labels and the corresponding membership functions. For both the developed support tools,
relative linguistic labels were used (Hilletofth et al., 2019b). Three relative labels (i.e. positive-
neutral-negative) were used in both of the support tools. Relative labels have three primary
advantages. First, the same relative labels can be used for all the linguistic variables in a
specific application, without a need to create unique and specific labels for each variable.
Second, the inherent meaning of a relative label is the same to any user and third, they
eliminate the need for absolute or concrete values, thus keeping the number of labels down.
This increases the interpretability of the fuzzy rules and reduces the design complexity.

The corresponding membership functions were defined for each linguistic label. The
choice of membership function affects the performance of the support tool and the
smoothness of its input-output surface (Sambariya and Prasad, 2017). A linguistic variable
could be represented by a countless number of membership functions depending on their
type and shape. In both of the support tools, the six input criteria are represented by three
Gaussian-type membership functions, while the output linguistic variable is represented by
two Gaussian-type membership functions (Figure 4). The choice of Gaussian-type
membership functions is supported by the small number of linguistic labels (Sambariya
and Prasad, 2017) and the advantage of being smooth (Syn et al., 2011).

The shape of the membership functions is the same for all six linguistic variables in each
of the two support tools. The reshoring experts’ knowledge was used to specify the type and
shape of the membership function that suited the application. This kind of approach in
developing fuzzy-logic-based tools has been demonstrated before (e.g. Govindan et al., 2020).
The Gaussian membership function depends on two parameters, the standard deviation (σ)
and center of the peak (c) (Cpałka, 2017; Ross, 2017). It is necessary to set appropriate values of
the membership function parameters, and this was done using a trial-and-error method in
collaboration with the reshoring experts. The values entered in the fuzzy logic toolbox are
shown in Table 1.

3.3 Define fuzzy rules
The third step in developing the fuzzy-logic-based support tools was to define the fuzzy rules.
In the first support tool, a complete fuzzy rule base was created. A three-step process
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suggested previously by Hilletofth et al. (2019b) was used (Figure 5). A weight was assigned
to each linguistic variable, based on its relative importance. Theweightswere assigned by the
reshoring experts, after which, the complete fuzzy rule base was designed. The number of
fuzzy rules in the complete rule base is 36 5 729 with six linguistic variables and three
linguistic labels for each variable. Finally, the consequent part of each fuzzy rule was
calculated by summing the linguistic variable weights in the rule. The advantage of this semi-
automatic approach is that the consequent for all the fuzzy rules in a complete set can rapidly
be assigned without human interference (Hilletofth et al., 2019b). Hence, linguistic variable
weights help to reduce the complexity when designing the fuzzy rules.

In the second support tool a reduced fuzzy rule base was created. The three-step process
suggested by Hilletofth et al. (2019b) was also used in this situation (Figure 6). To begin with,
a weight was assigned to each linguistic variable that represents the relative importance of
the variable. The weights were assigned by the reshoring experts in the sameway as the first
support tool. High-level rules were then designed by the reshoring experts based on the
variable weights. In total, 42 high-level rules were created. Finally, the 42 high-level rules
were translated into fuzzy rules. In total, 156 fuzzy rules were translated from 42 high-level
rules. The advantage of the high-level rules approach is that the reshoring experts only need
to focus on the high-level rules that are relevant to the problem and that are more intuitive to
them (Hilletofth et al., 2019b). High-level rules help to increase the interpretability of the fuzzy
rules and to reduce the complexity of designing them.

3.4 Configure the fuzzy logic system
The fourth step in developing the fuzzy-logic-based support tools was to configure the tools.
The toolbox used provided multiple setting for each parameter, although, only the most
relevant settings for each parameter were considered, based on the literature (e.g. Castro and
Delgado, 1996; Sadjadi et al., 2018; Syn et al., 2011). In total, 16 inference settings were used in
both of the support tools (Table 2). It is important that note that the ORmethod did not impact
the support tools, since there were no OR operations used in the designed fuzzy rules. The
reason for this is that the involved experts did not consider the choices in this way. One
competitiveness criteria could not be replaced by another, instead all of themmust be related
to one another.

The developed support tools generate an output in the form of a decision recommendation.
The recommendation should be as close as possible to those of the reshoring experts. The
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input for each of the two support tools were 30 decision scenarios that consisted of six
decision criteria (Table 3). The range of the input values of the six criteria was fixed from a
scale of�5 toþ5.þ5 denotes that the criterion would be affected very positively if reshoring
occurred, while �5 denotes that the criterion would be affected very negatively if reshoring
occurred. The range of the output value was also fixed from a scale of�5.00 toþ5.00, where a
value between�5.00 and 0.00 suggest “do not evaluate” while a value 0.01 toþ5.00 suggest
“evaluate further”. A higher or lower value provides a stronger suggestion as to whether to
further evaluate the reshoring opportunity or not.

Out of the 30 decision scenarios, fifteen were designed by the involved reshoring experts
while the other fifteenwere designed by fuzzy logic experts in order to further test the support
tools. The scenarios created by the fuzzy logic experts are more problematic in nature (e.g.
completely neutral, weakly positive or weakly negative). For each decision scenario, the
reshoring experts provided an opinion of how they would evaluate the respective scenario
(average) and is shown in the column Experts’ opinion (yj) in the scenario table.

3.5 Evaluate tool accuracy
In the fifth and final step, the accuracy of the developed tools was evaluated in alignmentwith
the opinion of the experts. This step depends largely on the experts’ evaluation of the
reshoring scenario, and their decision on how they perceive a particular scenario. The
motivation for this is the lack of data on manufacturing reshoring evaluations, which makes
the experts’ opinion the best available benchmark. The accuracy between the tool and
reshoring experts’ opinion were calculated using three error metrics: decision accuracy (DA),
the mean absolute error (MAE) and the root mean squared error (RMSE). These metrics are
shown in Equations. (1), (2) and (3) respectively. The DA indicates the percentage of “correct”
decisions made by the tool in alignment with the reshoring experts’ opinion. The MAE and
RMSEmeasures the error in values between the tool’s output (byj) and the experts’ opinion (yj)

DA ¼ Number of correct decisions

Total number of decisions
3 100 (1)

MAE ¼ 1

30

X30
j¼1

��byj � yj
�� (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

30

X30

j¼1

�byj � yj
�2r

(3)

The tools are evaluated using the metrics from two perspective: (1) individual settings and (2)
overall tool. The individual settings perspective means determining the best performing tool
by comparing best and worst performing settings. The overall tool perspective means

Type Linguistic label Standard deviation (σ) Center of peak (c)

Input Negative 2.5 �5
Neutral 0.5 0
Positive 2.5 5

Output Do-not-evaluate 2.5 �5
Evaluate 2.5 5

Table 1.
Gaussian function

parameters for
linguistic labels
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Figure 5.
Fuzzy rules design in
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determining the best performing tool by comparing the average across all settings. The
reason for evaluating the tools in this way is to make the comparison of them as robust as
possible and both of the evaluations are relevant for different reasons. A decision-maker will
never use all of the settings but instead try to find the best setting for the decision-making
context which supports the first perspective. On the other hand, it is of significant value if the
tools could be used in many decision-making contexts supporting the second perspective.

4. Results from the fuzzy-logic-based support tools
The evaluation of the developed support tools is presented below. The tools are first
evaluated individually and thereafter compared with each other. The results from the first
support tool are shown in Table 4 and from the second support tool in Table 5. In both cases,
each decision scenario is evaluated by comparing the tool output with the experts’ opinion
and this is done for all the sixteen settings. For each setting DA, MAE and RMSE are
calculated. Conflict between the tool output and the experts’ opinion is indicated with
gray color.

4.1 Tool output
As can be noted in Table 4, a conflict between tool output and experts’ opinion only occurred
in 9 out of 480 decision outputs in the first support tool. This indicates that there is strong
alignment between tool outputs and experts’ opinions when it comes to DA (98%). Conflicts
were only observed in 3 out of 30 scenarios (10%), including scenarios 17, 20 and 25. Scenario
17 was the most problematic scenario since it generated conflicts in five settings (i.e. 3, 7, 8, 15
and 16). In this scenario, quality and sustainability criteria are strongly negative, while other
criteria are weakly positive. The second most problematic scenario (Scenario 20) generated
conflicts in three settings (i.e. 3, 7 and 8). In this scenario quality and sustainability criteria are
strongly positive, while other criteria are weakly negative (i.e. linguistically opposite to
Scenario 17). The third most problematic scenario (Scenario 25) generated conflict in only one
setting (i.e. 4). In this scenario, quality and innovation are neutral, cost and sustainability are
positive, while time and flexibility were negative.

The scenarios with conflicts correspond to a set of values {�3, 3} by the reshoring
experts. However, this range of values is not exclusively limited to conflicting scenarios as

Setting
AND
method OR method Implication method

Aggregation
method Defuzzification method

1 Min Max Min Max Centroid
2 Min Max Min Max Mom
3 Min Max Min Sum Centroid
4 Min Max Min Sum Mom
5 Min Max Prod Max Centroid
6 Min Max Prod Max Mom
7 Min Max Prod Sum Centroid
8 Min Max Prod Sum Mom
9 Prod Max Min Max Centroid
10 Prod Max Min Max Mom
11 Prod Max Min Sum Centroid
12 Prod Max Min Sum Mom
13 Prod Max Prod Max Centroid
14 Prod Max Prod Max Mom
15 Prod Max Prod Sum Centroid
16 Prod Max Prod Sum Mom

Table 2.
The fuzzy inference
settings used in both
support tools
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some of the non-conflicting scenarios have also evaluated to be in set {�3, 3} by the reshoring
experts. It is possible that the conflicts arise from the weights of the criteria based on which
the 729 fuzzy rules were generated. On the settings level, 10 out of 16 settings returned a DA
of 100%, three settings returned a DA of 97% and three settings returned a DA of 93%. The
best performing setting is Setting 2 (min; max; min; max; mom; DA 5 100%; MAE 5 0.65;
RMSE 5 0.93), followed by Setting 13 (prod; max; prod; max; centroid; DA 5 100%;
MAE5 0.98; RMSE5 1.19). The worst performing setting is Setting 3 (min; max; min; sum;
centroid; DA 5 93%; MAE 5 2.45; RMSE 5 2.59), followed by Setting 11 (prod; max; min;
max; centroid; DA 5 100%; MAE 5 2.32; RMSE 5 2.44).

As noted in Table 5, a conflict between tool output and experts’ opinion occurred in 25 out
of 480 decision outputs in the second support tool. This shows that there is strong alignment
between tool outputs with experts’ opinions when it comes to DA (95%). Conflicts were only
observed in 4 out of 30 scenarios (13%), including scenarios 11, 17, 20 and 25. The last three
scenarios also generated conflicts in the first support tool. In Scenario 11, all the criteria are
neutral. The tool returns a value of 0.01 which suggests a weak decision to evaluate, thereby
conflicting the experts’ opinion in one setting (i.e. 3). In Scenario 17, conflict was encountered
in twelve settings (i.e. 3, 4, 7–16), while in Scenario 20, conflict was encountered in eleven
settings (i.e. 3, 7–16). Scenario 25 only returned conflict in one setting (i.e. 4). Similar to the first
support tool, all these scenarios correspond to a value {�3, 3} by the reshoring experts.

Scenario
Reshoring criteria Experts’ opinion

(yj)
Experts’
decisionCost Quality Time Flexibility Innovation Sustainability

1 �5 �1 �3 �2 �3 3 �5 Do not evaluate
2 2 5 �1 3 4 1 4 Evaluate
3 �3 �4 �3 0 4 �1 �4 Do not evaluate
4 3 �4 0 �3 �5 �3 �4 Do not evaluate
5 �4 �2 5 �1 0 5 �4 Do not evaluate
6 4 2 �4 2 2 �5 4 Evaluate
7 �4 2 1 0 2 5 3 Evaluate
8 2 �1 3 0 1 5 3 Evaluate
9 3 5 5 2 5 �3 5 Evaluate
10 �3 �5 3 �2 5 �2 �4 Do not evaluate
11 0 0 0 0 0 0 �3 Do not evaluate
12 3 �4 2 �2 �2 2 �3 Do not evaluate
13 �5 0 3 5 5 4 3 Evaluate
14 �5 4 2 �1 �4 3 �3 Do not evaluate
15 �2 �5 �5 �2 �5 5 �5 Do not evaluate
16 �3 5 5 3 5 �3 4 Evaluate
17 1 �5 1 1 1 �5 3 Evaluate
18 �5 1 �5 �5 �5 1 �3 Do not evaluate
19 5 �1 5 5 5 �1 3 Evaluate
20 �1 5 �1 �1 �1 5 �3 Do not evaluate
21 �2 �5 �5 �2 �5 5 �5 Do not evaluate
22 5 �4 1 3 3 5 4 Evaluate
23 2 2 3 1 5 3 5 Evaluate
24 �5 �5 5 �4 �5 3 �4 Do not evaluate
25 4 0 �5 �2 0 3 3 Evaluate
26 �4 0 �5 4 �3 1 �3 Do not evaluate
27 1 1 5 1 �2 �3 4 Evaluate
28 �4 4 �4 4 2 �2 3 Evaluate
29 1 �3 5 �4 �4 3 �3 Do not evaluate
30 0 �4 2 �2 4 0 �3 Do not evaluate

Table 3.
The decision scenarios

used in both of the
support tools
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On the settings level, 4 out of the 16 settings returned a DA of 100%, eleven settings
returned a DA of 93% and one settings returned a DA of 90%. The best performing setting is
Setting 2 (DA5 100%; MAE5 0.62; RMSE5 0.89), followed by Setting 10 (prod; max; min;
max; mom; DA5 93%; MAE5 1.09; RMSE5 1.65). The worst performing setting depends
on whether MAE or RMSE is considered. Based on MAE, the worst performing setting is
Setting 3 (DA 5 90%; MAE 5 2.07; RMSE 5 2.26), followed by Setting 11 (DA 5 93%;
MAE5 1.82; RMSE5 2.00). Based on RMSE, the worst performing Settings are 8, 14 and 16
(DA 5 93%; MAE 5 1.73; RMSE 5 2.52).

4.2 Tool comparison
In order to compare the developed support tools based on the overall performance, average
DA, MAE and RMSE is calculated for each tool (Table 6). For example, the average DA is
98% for the first support tool and 95% for the second support tool. This suggests that the first
support tool has a higher decision accuracy across the various settings. However, the average
MAE suggests that the second support tool performs best while the average RMSE suggests
the opposite. To further evaluate the performance of the developed tools, a two-sample t-test
was conducted for MAE and RMSE. No statistically significant differences were found
between the two support tools [1]. The developed support tools are also compared under the
effect of different inference functions (Table 6). For instance, when min operator is used for
the AND function, the second support tool (DA5 96%;MAE5 1.45; RMSE5 1.76) performs
slightly better than the first support tool (DA5 97%; MAE5 1.55; RMSE5 1.85). Based on
the comparison above, it can be concluded that the developed support tools perform similarly.

In order to compare the developed support tools across different settings, the DA, MAE
and RMSE values of all the settings are compared (Figure 7). From the comparison it is
evident that Setting 2 has the highest DA of 100% and the lowest MAE and RMSE values,
and hence is the preferred setting in both of the developed support tools. This suggests that
Setting 2 is able to best approximate the reasoning of the involved reshoring experts. The
comparison also shows that for Settings 7–16, there is a higher difference between MAE and
RMSE values than for Settings 1–6, indicating a higher variance in the error. Based on the
findings that the developed support tools perform similarly and that Setting 2 performs best
in both the support tools and also better than the other settings, it can be concluded that it
does not matter whether a complete or reduced rule base is used, it is important that the right
setting is selected.

The developed support tools perform similarly with regard to accuracy even though the
second support tool used fewer fuzzy rules. The second support tool used in total 156 fuzzy
rules while the first support tool used 729 fuzzy rules. The smaller number of fuzzy rules used
in the second tool provides increased interpretability. A small set of high-level rules were
proposed by the involved reshoring experts and these were later translated into 156 fuzzy
rules, making the overall structure easier to grasp for decision-makers. This also reduced the
amount of time needed from the reshoring experts and the researchers when designing the
fuzzy rules. Hence, for the purpose of initial screening of manufacturing reshoring decisions,
the second support tool is more preferable since it uses less resources and is more
interpretable, and still perform similarly.

5. Discussion
There is a clear need for more advanced decision-support tools in the manufacturing
reshoring domain (Barbieri et al., 2018; Hilletofth et al., 2019b; Stentoft et al., 2016). The
complexity inherent in this kind of decision-making situation requires advanced decision-
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1 -2.27 -3.00 -1.21 -2.00 -2.95 -5.00 -2.45 -5.00 -1.49 -2.00 -1.22 -2.00 -3.04 -5.00 -3.04 -5.00 

2 2.27 3.00 1.41 2.00 2.95 5.00 2.69 5.00 1.19 1.65 0.83 1.65 3.04 5.00 3.04 5.00 

3 -2.27 -3.00 -1.37 -2.00 -2.95 -5.00 -2.42 -5.00 -1.89 -2.50 -1.45 -2.50 -3.04 -5.00 -3.03 -5.00 

4 -2.85 -4.00 -1.96 -3.00 -3.01 -5.00 -2.84 -5.00 -2.44 -3.20 -2.08 -3.00 -3.04 -5.00 -3.03 -5.00 

5 -2.12 -3.00 -1.32 -1.50 -2.71 -5.00 -2.13 -5.00 -1.84 -2.50 -1.38 -1.55 -2.86 -5.00 -2.81 -5.00 

6 2.50 3.50 1.31 2.00 2.86 5.00 1.91 5.00 1.73 2.35 1.52 1.50 2.86 5.00 2.80 5.00 

7 1.70 3.00 0.68 1.00 2.11 5.00 1.03 5.00 1.53 2.05 1.06 1.35 2.86 5.00 2.63 5.00 

8 0.89 3.00 0.95 1.00 1.11 5.00 1.66 5.00 1.04 1.65 0.64 0.65 2.11 5.00 2.37 5.00 

9 2.63 3.50 2.08 3.50 3.04 5.00 2.85 5.00 2.26 2.95 2.12 2.95 3.04 5.00 3.04 5.00 

10 -2.60 -3.50 -1.73 -2.50 -2.99 -5.00 -2.62 -5.00 -1.89 -2.50 -1.71 -2.50 -3.04 -5.00 -3.03 -5.00 

11 -2.17 -5.00 -0.14 0.00 -2.40 -5.00 -0.22 -5.00 -2.17 -5.00 -0.40 0.00 -2.40 -5.00 -0.82 -5.00 

12 -2.50 -3.50 -1.06 -2.00 -2.86 -5.00 -1.98 -5.00 -1.33 -1.80 -1.08 -1.30 -2.86 -5.00 -2.60 -5.00 

13 1.94 4.00 1.61 3.00 2.17 5.00 2.07 5.00 2.18 3.90 1.91 2.80 2.40 5.00 2.35 5.00 

14 -0.89 -3.00 -0.44 -1.00 -1.11 -5.00 -0.91 -5.00 -0.79 -2.25 -0.39 -0.40 -1.11 -5.00 -0.67 -5.00 

15 -2.63 -3.50 -2.00 -3.50 -3.04 -5.00 -2.81 -5.00 -2.22 -2.90 -2.05 -2.90 -3.04 -5.00 -3.04 -5.00 

16 2.87 4.00 2.47 4.00 3.04 5.00 2.95 5.00 2.49 3.30 2.39 3.30 3.04 5.00 3.04 5.00 

17 0.89 3.00 -1.24 0.00 1.11 5.00 -2.30 -5.00 0.42 1.05 0.05 0.25 1.11 5.00 -1.20 -5.00 

18 -2.30 -3.00 -1.75 -3.00 -3.04 -5.00 -2.90 -5.00 -1.66 -2.20 -1.30 -2.20 -3.04 -5.00 -3.04 -5.00 

19 2.30 3.00 1.75 3.00 3.04 5.00 2.89 5.00 1.66 2.20 1.30 2.20 3.04 5.00 3.03 5.00 

20 -0.89 -3.00 0.83 0.00 -1.11 -5.00 1.58 5.00 -0.59 -1.05 -0.17 -0.50 -1.96 -5.00 -0.15 -5.00 

21 -2.63 -3.50 -2.00 -3.50 -3.04 -5.00 -2.81 -5.00 -2.22 -2.90 -2.05 -2.90 -3.04 -5.00 -3.04 -5.00 

22 2.27 3.00 1.52 2.00 2.95 5.00 2.42 5.00 1.93 2.50 1.68 2.30 3.03 5.00 2.99 5.00 

23 2.12 3.00 0.93 1.50 2.71 5.00 1.73 5.00 1.32 1.80 1.03 1.80 3.04 5.00 3.03 5.00 

24 -2.87 -4.00 -2.62 -4.00 -3.04 -5.00 -2.96 -5.00 -2.82 -3.90 -2.77 -3.90 -3.04 -5.00 -3.04 -5.00 

25 1.53 3.50 0.54 0.00 1.80 5.00 0.86 5.00 1.97 3.15 1.21 1.30 2.40 5.00 1.87 5.00 

26 -2.27 -3.00 -1.60 -2.00 -2.95 -5.00 -2.72 -5.00 -2.05 -2.70 -1.60 -2.70 -3.04 -5.00 -3.02 -5.00 

27 0.89 3.00 0.31 1.00 1.11 5.00 0.56 5.00 0.68 1.10 0.32 0.60 2.11 5.00 1.76 5.00 

28 2.50 3.50 1.47 2.00 2.86 5.00 2.08 5.00 1.99 2.70 1.80 1.60 2.86 5.00 2.78 5.00 

29 -2.27 -3.00 -1.45 -2.00 -2.95 -5.00 -2.37 -5.00 -1.89 -2.50 -1.64 -2.10 -3.01 -5.00 -2.98 -5.00 

30 -1.53 -3.50 -0.94 -2.00 -1.80 -5.00 -1.66 -5.00 -1.80 -2.80 -1.26 -1.15 -2.40 -5.00 -2.31 -5.00 

DA 100% 100% 93% 97% 100% 100% 93% 93% 100% 100% 100% 100% 100% 100% 97% 97% 

MAE 1.59 0.65 2.45 1.67 1.18 1.33 1.81 1.73 1.95 1.37 2.32 1.81 0.98 1.33 1.23 1.53 

RMSE 1.74 0.93 2.59 1.96 1.40 1.53 2.16 2.52 2.11 1.61 2.44 2.01 1.19 1.53 1.56 2.08 

Note(s): Grey color indica�ng a conflict between tool and expert, and italic best performing se�ng  

̂

Table 4.
Evaluation of output
results from the first

support tool
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1 -2.27 -3.00 -1.81 -2.00 -2.95 -5.00 -2.84 -5.00 -2.30 -3.00 -1.87 -3.00 -3.04 -5.00 -3.04 -5.00

2 2.60 3.50 2.06 2.50 2.99 5.00 2.81 5.00 2.63 3.50 2.52 3.50 3.04 5.00 3.04 5.00

3 -2.85 -4.00 -2.22 -3.00 -3.01 -5.00 -2.66 -5.00 -2.82 -3.90 -2.78 -3.90 -3.04 -5.00 -3.03 -5.00

4 -2.85 -4.00 -2.36 -3.00 -3.01 -5.00 -2.96 -5.00 -2.63 -3.50 -2.27 -3.10 -3.03 -5.00 -3.03 -5.00

5 -2.50 -3.50 -1.38 -2.00 -2.86 -5.00 -1.78 -5.00 -2.56 -3.45 -2.42 -2.50 -3.00 -5.00 -2.88 -5.00

6 2.50 3.50 1.64 2.00 2.86 5.00 2.07 5.00 2.57 3.45 2.51 2.60 3.01 5.00 2.97 5.00

7 1.70 3.00 1.43 1.00 2.11 5.00 2.27 5.00 1.09 2.05 0.95 0.55 1.71 5.00 2.24 5.00

8 0.89 3.00 1.17 1.00 1.11 5.00 1.93 5.00 1.33 1.95 0.96 0.95 2.49 5.00 2.55 5.00

9 2.87 4.00 2.69 4.00 3.04 5.00 3.00 5.00 2.87 4.00 2.79 4.00 3.04 5.00 3.04 5.00

10 -2.85 -4.00 -2.52 -3.00 -3.01 -5.00 -2.86 -5.00 -2.87 -4.00 -2.86 -4.00 -3.04 -5.00 -3.03 -5.00

11 -2.17 -5.00 0.01 0.00 -2.40 -5.00 -0.01 -5.00 -2.17 -5.00 -0.43 0.00 -2.40 -5.00 -0.78 -5.00

12 -2.50 -3.50 -1.53 -2.00 -2.86 -5.00 -2.20 -5.00 -2.00 -2.65 -1.74 -2.15 -3.01 -5.00 -2.89 -5.00

13 1.94 4.00 1.80 3.00 2.17 5.00 2.35 5.00 1.94 4.00 1.78 3.00 2.17 5.00 2.32 5.00

14 -0.89 -3.00 -0.49 -1.00 -1.11 -5.00 -0.75 -5.00 -1.75 -2.90 -1.21 -1.05 -2.24 -5.00 -1.79 -5.00

15 -2.63 -3.50 -2.27 -3.50 -3.04 -5.00 -2.98 -5.00 -2.63 -3.50 -2.41 -3.50 -3.04 -5.00 -3.04 -5.00

16 2.87 4.00 2.84 4.00 3.04 5.00 3.03 5.00 2.87 4.00 2.74 4.00 3.04 5.00 3.04 5.00

17 0.89 3.00 -0.77 0.00 1.11 5.00 -1.38 -5.00 -1.40 -2.00 -0.88 -1.00 -2.54 -5.00 -2.49 -5.00

18 -2.30 -3.00 -2.11 -3.00 -3.04 -5.00 -3.01 -5.00 -2.30 -3.00 -2.13 -3.00 -3.04 -5.00 -3.04 -5.00 

19 2.30 3.00 1.98 3.00 3.04 5.00 3.00 5.00 2.30 3.00 2.02 3.00 3.04 5.00 3.04 5.00 

20 -0.89 -3.00 0.44 0.00 -1.11 -5.00 0.83 5.00 0.92 2.00 0.16 0.45 1.43 5.00 0.55 5.00 

21 -2.63 -3.50 -2.27 -3.50 -3.04 -5.00 -2.98 -5.00 -2.63 -3.50 -2.41 -3.50 -3.04 -5.00 -3.04 -5.00 

22 2.27 3.00 1.76 2.00 2.95 5.00 2.65 5.00 1.93 2.50 1.67 2.30 3.03 5.00 2.98 5.00 

23 2.50 3.50 1.69 2.00 2.86 5.00 2.47 5.00 2.22 2.90 2.04 2.80 3.04 5.00 3.03 5.00 

24 -3.04 -5.00 -2.98 -5.00 -3.04 -5.00 -3.02 -5.00 -3.04 -5.00 -3.03 -5.00 -3.04 -5.00 -3.04 -5.00 

25 1.53 3.50 0.34 0.00 1.80 5.00 0.47 5.00 1.79 3.15 1.23 1.30 2.17 5.00 1.78 5.00 

26 -2.99 -4.50 -2.62 -4.00 -3.02 -5.00 -2.99 -5.00 -3.01 -4.50 -2.70 -4.00 -3.04 -5.00 -3.03 -5.00 

27 0.89 3.00 0.32 1.00 1.11 5.00 0.51 5.00 1.62 2.20 1.15 1.35 2.82 5.00 2.50 5.00 

28 2.50 3.50 2.13 2.00 2.86 5.00 2.64 5.00 2.38 3.30 2.20 1.90 2.86 5.00 2.76 5.00 

29 -2.27 -3.00 -1.84 -2.00 -2.95 -5.00 -2.79 -5.00 -2.04 -2.70 -1.80 -2.15 -3.01 -5.00 -2.99 -5.00 

30 -1.53 -3.50 -0.77 -2.00 -1.80 -5.00 -1.13 -5.00 -2.38 -3.45 -1.95 -1.90 -2.76 -5.00 -2.62 -5.00 

DA 100% 100% 90% 93% 100% 100% 93% 93% 93% 93% 93% 93% 93% 93% 93% 93% 

MAE 1.49 0.62 2.07 1.58 1.16 1.33 1.60 1.73 1.59 1.09 1.82 1.38 1.17 1.73 1.22 1.73 

RMSE 1.66 0.89 2.26 1.86 1.38 1.53 1.95 2.52 1.85 1.65 2.00 1.72 1.67 2.52 1.66 2.52 

Note(s): GRey color indicates a conflict between tool and expert, and italic best performing se�ng  

̂

Table 5.
Evaluation of output
results from the second
support tool
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support (Tate et al., 2014; Gray et al., 2017) and the existing research is very limited (Barbieri
et al., 2018). The complexity arises from the large number of criteria that could be considered
in the decision and the trade-offs between the criteria that must be balanced (Tate et al., 2014).
Involving too many criteria could also increase the complexity and lead to prediction errors if
there are uncertainties in the supporting data (Gray et al., 2017). In addition, the timing of
manufacturing reshoring decisions is critical (Boffelli et al., 2018). For instance, firms do not
want to have the decision-making process delayed until all the relevant criteria have been
identified and the appropriate data on the criteria collected (Hartman et al., 2017) nor waste
resources on evaluating wrong things for too long.

Even if the existing research argues for the need of more advanced decision-support tools
in this domain (Hilletofth et al., 2019a), it does not provide an overview on the various kind of
decision-support tools that are needed in order to support the decision-making process in an
effective and efficient manner. Thus, this research has proposed an overarching classification
of the various kinds of decision-support tools that are needed to support the entire decision-
making process. The classification includes five kinds of decision-support tools each one
linked to a particular phase in the decision-making process, including tools for feasibility
evaluation, performance evaluation, scenario generation, scenario evaluation and scenario
visualization. But above all, this research has developed two support tools for initial
screening of manufacturing reshoring decisions that can be used for feasibility and/or initial
scenario evaluation.

The developed support tools are capable of suggesting whether a reshoring decision
should be further evaluated or not, based on six primary competitiveness criteria. The overall
idea of the developed support tools is to identify the most promising projects and put efforts
into those and not waste time on less promising projects. An initial screening tool could take
departure from various sets of decision criteria including competitiveness, resource
availability, and strategic orientation (Ancarani et al., 2015; Benstead et al., 2017) and be
implemented on a primary-criteria or sub-criteria level (Hilletofth et al., 2019b). For the
development of initial screening tools, competitiveness criteria on a primary-criteria level was
considered to be the best starting point. The main argument is that this provides a holistic
view on how to create competitiveness, which is the goal of all reshoring decisions. The
relevance of the competitiveness criteria is also supported in the manufacturing reshoring
literature (Benstead et al., 2017; Srai et al., 2016). The developed support tools also provide
digital and automatic decision-support for decision makers and includes uncertainty, so that
managers do not need to delay the process due to incomplete information (Boffelli et al., 2018;
Hartman et al., 2017) or spend resources on opportunities that later turn out to be unfeasible.
This means that the developed support tools help managers to invest their scarce time on the
most promising reshoring projects and to make timely and resilient decisions by taking a
holistic perspective on competitiveness. The developed support tools are knowledge-driven
since they are based on expert knowledge. The reason for building knowledge-driven support
tools is the lack of data on manufacturing reshoring projects.

The developed support tools were evaluated based on accuracy and interpretability. The
tradeoff between accuracy and interpretability is well explored in the literature (Alcal�a et al.,
2006; Casillas et al., 2013) and the support tools were created to serve different aspects of this
tradeoff. The design of the fuzzy ruleswithin the developed support toolswas based on recent
fuzzy logic concepts (Hilletofth et al., 2019b). The first support tool aimed for high accuracy by
using a complete rule base created through a semi-automatic approach (in total 729 rules)
while the second support tool aimed for high interpretability by using a reduced rule base
created through a high-level rules approach (in total 156 rules). The associated risk in the first
support tool is reduced interpretability while the associated risk in the second support tool is
reduced accuracy (Casillas et al., 2013; Mencar and Fanelli, 2008).
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The accuracy of the developed support systems was evaluated by comparing tool output
with experts’ opinion using three different errormetrics (DA,MAE andRMSE), in accordance
with previous studies (Hilletofth et al., 2019b; Syn et al., 2011). This was done on an individual
settings level and on an overall tool level. Formost of the scenarios and settings, there were no
conflicts between tool output and experts’ opinion. The first support tool made the same
evaluation as the reshoring experts 98% of the time while the second support tool made the
same evaluation 95% of the time. This level of agreement suggests that the developed
support tools are able to approximate the reasoning of the involved reshoring experts. Similar
levels of accuracy have been reported in previous studies (Muzaffar and Ahmed, 2010) and
could be considered as high. The above means that the first support tool has higher DA than
the second support tool and thus performs better. However, the MAE suggests that the
second support tool performs better while the RMSE suggest the opposite. It is important to
note that no statistically significant differences were found between the two developed tools.
Hence, it can be concluded that it does notmatter whether one uses a complete or reduced rule
base when it comes to accuracy since the developed support tools perform similarly on an
overall level.

The interpretability of the developed support tools was evaluated by comparing the
overall tool design. Interestingly, the developed support tools perform similarly even if the
used number of fuzzy rules differ significantly. The first tool uses 729 fuzzy rules while the
second tool uses 156 fuzzy rules. The lower number of fuzzy rules used in the second support
tool increases the interpretability (Zhou and Gan, 2008). A small set of high-level rules were
proposed by the involved reshoring experts and these were translated into 156 fuzzy rules,
making the overall design easier to interpret for decision-makers. Furthermore, the high-level
rules also reduced the amount of time needed from both involved reshoring experts and the
tool developer, when designing the fuzzy rules. This means that you achieve almost the same
accuracy in a more convenient way. Hence, it can be concluded that a reduced rule base (i.e.
the second support tool) is preferable for initial screening purposes since it uses fewer
resources and is more interpretable, and still performs similarly. Whereas previous research
has linked interpretability advantages to the high-level rules approach (Hilletofth et al.,
2019b), this research also suggests that the approach has accuracy advantages. The twomain
reasons for why the usual accuracy-interpretability tradeoff is not present in this study could
be that the second support tool relied on both a systematic application of high-level rules and
a high level of expert involvement.

The choice of fuzzy inference settings in the developed support tools impact the overall tool
performance, since the inference settings determine how the fuzzy rules are be executed (Syn
et al., 2011). In total, sixteen fuzzy inference settings were used in both of the support tools by
combining the most relevant AND, implication, aggregation and defuzzification functions. The
results show that the different inference settings generated different DA, MAE and RMSE
values, although one setting performedbetter than all the other settings inboth support tools. In
addition, the same settings performed worse in both of the developed support systems with
some differences depending on whether MAE or RMSE is considered. The results from each
fuzzy inference function show that among the twoAND functions (i.e. Min or Prod), implication
functions (i.e. Min or Prod) and the defuzzification functions (i.e. Mom or Centroid), there is no
preferred function thatworks best for both support tools. However, for the aggregationmethod,
maximum is the preferred aggregation function.These functions and settings have been shown
to behave well for fuzzy logic tools in other domains as well (Syn et al., 2011). When comparing
the individual settings, it is evident than one setting performs better than the others in both
support tools. Hence, it can be concluded that it does not matter whether one uses a complete or
reduced rule base performancewise. However, regardless whether a complete or reduced tool is
used, it is important to select the right setting.
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6. Conclusion and further research
The aim of this study was to investigate the suitability of fuzzy-logic-based support tools for
initial screening ofmanufacturing reshoring decisions. To achieve this, two fuzzy-logic-based
support tools were developed together with experts from a Swedish manufacturing firm.
The first support tool used a complete rule base, while the second used a reduced rule base. In
both of the support tools, sixteen fuzzy inference settings were used. The research shows that
fuzzy-logic-based support tools are suitable for initial screening of manufacturing reshoring
decisions. The developed support tools are capable of suggesting whether a reshoring
decision should be further evaluated or not, based on six primary competitiveness criteria. In
contrast to existing literature, this research shows that it does not matter whether a complete
or reduced rule base is used when it comes to performance. The developed support tools
perform similarly with no statistically significant differences. However, since the
interpretability is much higher when a reduced rule base is used and it requires fewer
resources to develop, the second tool is more preferable for initial screening purposes.
Regardless of whether a complete or reduced tool is used, it is important to select the right
setting.

This research has implications for both research and practice. This research has
addressed the issue of decision-support in the manufacturing reshoring domain, which is an
issue where the existing research is very limited. This research proposed an overarching
classification of the different types of decision-support tools that are needed to support the
reshoring decision-making process. This research also has proposed support tools for initial
screening of manufacturing reshoring decisions that can be used for feasibility and/or initial
scenario evaluation. The overarching classification of decision support tools opens up plenty
of avenues for development of tools to support the decision-making process in the future.

The developed support tools help managers to invest their scarce time on the most
promising manufacturing reshoring projects and to make timely and resilient decisions by
taking a holistic perspective on competitiveness. This research provides practitioners with
advice on how to select overall tool design and how to configure the tool for best performance
and interpretability. Practitioners are advised to develop initial screening tools that use a
reduced rule base since they use fewer resources and are more interpretable, and still perform
similarly to tools that uses a complete rule base. However, the choice is also linked to the
availability of data. Easy access to complete and correct data encourages support tools that
are based on a complete rule base. Another advice for practitioners is that it ismore important
to select the right setting than overall tool design.

As in all research, there are some limitations that should be addressed in future research.
First, the developed support tools are implemented at a primary-criteria level and in order to
make them more applicable, they should also include the sub-criteria level. This requires
further knowledge on the reshoring sub-criteria and their interdependencies. The support
tools should also be expanded to not only consider competitiveness criteria, but also other
criteria related to availability of resources and strategic orientation of the firm. This calls for
further research on how a multilevel architecture could be implemented and how fuzzy rules
could be generated automatically in the manufacturing reshoring domain. Second, the
membership functions were not optimized for individual settings in the developed tools. To
further evaluate and compare different settings, different membership functions may be
needed for each setting. Hence, further research is needed to investigate whether individual
inference settings perform better with particular membership functions in themanufacturing
reshoring domain. Third, the tools were developed for a specific empirical setting. The
industrial context was manufacturing of transportation equipment in Sweden and it
concerned partial reshoring for insourcing on a component level. The tools should be
evaluated in other empirical settings to further validate the findings.
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Note

1. Results of two-sample t-test: No significant difference inMAE for the first support tool (Mean5 1.56,
Standard deviation 5 0.4647) and the second support tool (Mean 5 1.45, standard
deviation 5 0.3539), conditions t(30) 5 0.688, p 5 0.497. No significant difference in RMSE for the
first support tool (Mean 5 1.83, Standard deviation 5 0.478) and the second support tool
(Mean 5 1.85, SD 5 0.443), conditions t(30) 5 �0.103, p 5 0.919.
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