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Abstract
Purpose – Many important constructs of business and social sciences are conceptualized as composites of
common factors, i.e. as second-order constructs composed of reflectively measured first-order constructs.
Current approaches to model this type of second-order construct provide inconsistent estimates and lack a
model test that helps assess the existence and/or usefulness of a second-order construct. The purpose of this
paper is to present a novel three-stage approach to model, estimate, and test second-order constructs
composed of reflectively measured first-order constructs.
Design/methodology/approach – The authors compare the efficacy of the proposed three-stage
approach with that of the dominant extant approaches, i.e. the repeated indicator approach, the two-stage
approach, and the hybrid approach by means of simulated data whose underlying population model is
known. Moreover, the authors apply the three-stage approach to a real research setting in business research.
Findings – The study based on simulated data illustrates that the three-stage approach is Fisher-consistent,
whereas the dominant extant approaches are not. The study based on real data shows that the three-stage
approach is meaningfully applicable in typical research settings of business research. Its results can differ
substantially from those of the extant approaches.
Research limitations/implications – Analysts aiming at modeling composites of common factors should
apply the proposed procedure in order to test the existence and/or usefulness of a second-order construct and
to obtain consistent estimates.
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Originality/value – The three-stage approach is the only consistent approach for modeling, estimating,
and testing composite second-order constructs made up of reflectively measured first-order constructs.
Keywords PLS, Consistency, Second-order construct, Composite of common factors, Goodness-of-fit,
Variance-based structural equation modelling
Paper type Technical paper

Introduction
Structural equation modeling (SEM) is an analytical technique that is increasingly used in
many scientific disciplines. Two different approaches exist: covariance-based SEM, for
example, implemented in LISREL ( Jöreskog and Sörbom, 1989) or AMOS (Arbuckle, 2003), and
variance-based SEM (Reinartz et al., 2009), implemented in software such as SmartPLS (Ringle
et al., 2005), PLSGraph (Chin and Frye, 2003), or ADANCO (Henseler and Dijkstra, 2015).
SEM allows researchers to represent complex relationships between theoretical – often latent –
constructs in a so-called structural or theoretical model, while also making it possible, at least in
principle, to estimate the fit of that structural model with empirical data through a
measurement model. Various types of constructs have been distinguished. For the present
discussion it is crucial to understand the differences between these types.

Early SEM researchers often implicitly assumed that all constructs must be measured
through common factors, i.e., using a reflective measurement model. The common factor
model assumes that each indicator is a measurement-error-prone consequence of an
underlying latent variable. While variance in common factors is modelled to cause variance in
the items, it was recognized early on that for some constructs it made more sense conceptually
to view causality flowing from the measures to the construct (Bagozzi, 1981, 1984;
Blalock, 1964; Fornell and Bookstein, 1982). These constructs were measured by using the
latent variable’s antecedents as indicators. In this case, the indicators are called causal
indicators. These causal indicators are obtained from several different, unique sources, and
using them led to formative rather than reflective measurement (Bagozzi, 1994). Only recently,
the awareness has grown among researchers that there are actually two subtypes of formative
measurement: causal-formative and composite-formative (or simply composite) measurement
(Bollen and Diamantopoulos, 2015; Henseler, 2017). Whereas a reflectively measured construct
is assumed to cause its indicators (satisfaction causes the customer to smile), and a causal-
formatively measured construct is assumed to be caused by its indicators (depression may be
caused by a recent job loss), a composite construct is assumed to be composed by its
indicators. Examples for composite constructs would be brand image, which is composed
by brand associations (Keller, 1993); IT infrastructure capability, which is composed by
technological IT infrastructure, managerial IT infrastructure, and technical IT infrastructure
capabilities (Ajamieh et al., 2016); or relationship value, which is made up of the difference of
benefits and costs (Ulaga and Eggert, 2006). Indicators of a composite construct essentially
make up the construct. Indicators of a causal-formative construct cause the construct.

The adequate and valid construction and estimation of the measurement model and of
the paths in the structural model are conditions for the studies using them to deliver
accurate, meaningful, and useful results. Results from incorrectly specified models may lead
to flawed theoretical conclusions, and equally flawed practical implications. Law and Wong
(1999), for example, provide an empirical example showing that the misspecification
of the direction of causality between a construct and its indicators can lead to incorrect
conclusions about the structural relationships between theoretical constructs[1].

Partial least squares (PLS) path modeling is a widespread estimator of SEM. The PLS
algorithm, independent of the epistemic relationships between constructs and their observed
indicators, estimates all constructs as composite constructs (Henseler, 2017), aggregating the
observed variables (Chin and Newsted, 1999), rather than estimating them as reflective
common factors, or as causal-formative constructs. It can be understood as a prescription for
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dimension reduction (Dijkstra and Henseler, 2011). If constructs are meant to be reflective, PLS
will generate inconsistent estimates, which may lead to flawed theoretical conclusions
(Henseler et al., 2014). As a remedy, Dijkstra and Henseler (2015a, b) introduced consistent PLS
(PLSc). PLSc corrects inter-construct correlations for attenuation so that the estimates of path
coefficients and loadings become consistent.

While PLSc enables researchers to obtain consistent estimates for composite and
common factor models, the situation is less clear for so-called hierarchical constructs.
Hierarchical constructs are constructs that are not measured by means of manifest
indicators, but by means of other constructs. According to Polites et al. (2012), it is important
to carefully conceptualize the relationship not only between the first-order constructs and
their indicators, but also between lower-order constructs and the higher-order construct.
Extant approaches to estimate hierarchical constructs using PLS, such as the repeated
indicators approach (Wold, 1982), or the two-stage approach (Ringle et al., 2012),
were proposed before the advent of PLSc, and have two major drawbacks: First, they yield
inconsistent estimates. Second, they do not include model fit tests and, hence, cannot
provide empirical evidence for or against the existence of a hierarchical construct.

In this short paper, we discuss how a prevalent type of hierarchical construct – a
second-order composite construct, with first-order reflective constructs as dimensions –
should be specified and estimated using variance-based SEM to obtain consistent path
coefficients and indicator weight estimates. We therefore introduce a three-stage approach,
which makes use of the PLSc implementation in ADANCO (Henseler and Dijkstra, 2015).

The structure of the paper is as follows. The second section reviews the extant literature on
how to model second-order constructs using PLS, and identifies their major shortcomings.
The third section presents the three-stage approach as a novel approach for estimating and
testing second-order constructs specified as composites of common factors. The fourth section
demonstrates the superiority of the three-stage approach bymeans of a simulation study, and it
illustrates the relevance of choosing an adequate approach by means of an application to an
empirical example. The last section discusses the consequences of our findings for past and future
research that modeled or will model second-order constructs as composites of common factors.

Literature review
The use of more abstract levels of constructs, i.e. constructs consisting of several
dimensions and levels, is increasingly common for a range of theoretical and empirical
reasons (see Jarvis et al., 2003; Wetzels et al., 2009 for an overview), most importantly,
because such models reduce model complexity and increase parsimony, as fewer paths need
to be estimated (see e.g. Becker et al., 2012).

Often, multidimensional constructs include combinations of composite and reflective
measurement ( Jarvis et al., 2003). This means that both for the first-order constructs and the
second-order construct the type of measurement model can and should be determined separately.

A particularly important configuration of second-order constructs is a composite of
common factors. In a composite of common factors configuration, the first-order constructs
employ a reflective measurement model, whereas the second-order construct is a composite
formed by the first-order constructs. This is the most frequently used approach in
research in the social sciences (Ringle et al., 2012), implying a need to deeper examine this
type of hierarchical component model. Many of the seminal constructs in business research
are typically modeled in this way, such as quality (e.g. service quality as measured by
Parasuraman et al., 1988), value (e.g. relationship value as measured by Ulaga and
Eggert, 2006), perceived risk (Srinivasan and Ratchford, 1991), or organizational orientation
(e.g. market orientation and learning orientation as measured by Baker and Sinkula, 1999).
In most instances, these second-order constructs can be regarded as artifacts made up of
elements, each of which is captured without measurement error by means of reflective
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measurement. While this type of second-order construct has received particular attention in
past research, the extent approaches to estimate such models have been shown to provide
inconsistent estimates (Becker et al., 2012).

To estimate models consisting of higher-order constructs, three approaches have
been proposed in the context of PLS path modeling (Wilson and Henseler, 2007):
the repeated indicators approach, the two-stage approach, and the hybrid approach.
They are depicted in Figure 1.

In the repeated indicators approach, the manifest indicators of the first-order constructs are
reused for the second-order construct. This procedure to model second order constructs with
PLS is based on the hierarchical components approach suggested by Wold (1982). In essence,
in this approach a second-order construct is directly measured by using all of the first-order
common factors’ manifest variables. For example, when a second-order construct is made up
of three first-order constructs with four manifest variables each, all these 12 variables would
be reused as indicators for the second-order construct. This is the most frequently used
method for estimating higher-order constructs in PLS (Wilson and Henseler, 2007).

The disadvantage of this approach is that the repeated indicators can evoke artificially
correlated residuals (Becker et al., 2012). A serious pitfall of the repeated indicator approach
is sometimes neglected (Ringle et al., 2012): if the second order variable is used as an
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endogenous construct, almost all of its variance is explained by its indicators. Consequently,
there is no variance left to be explained by other potential predictors. Analysts may come to
the wrong conclusion that a predictor is irrelevant although, in fact, it is not. As a solution,
Ringle et al. (2012) introduced an alternative version of the repeated indicators approach,
in which the second-order construct is not directly affected by other constructs in the
model, but only indirectly through the first-order constructs. The effect of a construct on a
second-order composite is thus viewed as being fully mediated by the first-order constructs
(see Nitzl et al., 2016 for the analysis of mediating effects using PLS).

As the name suggests, the two-stage approach consists of two steps. The aim of the first
stage is to obtain latent variable scores for the first-order constructs. In this first stage of the
analysis, the second-order construct is not yet included. It is only in the second stage that
the model containing the second-order construct is estimated. In the second stage, the scores
of the first-order constructs serve as manifest variables of the second-order construct.
In essence, the measurement of the first-order constructs is reduced to single items.
This reduction is not only useful for statistical reasons (e.g. to avoid multicollinearity among
the indicators), but also for practical reasons (e.g. to prevent “double-counting”, see Arnett
et al., 2003). Most importantly, the two-stage approach allows to place the second-order
construct in an endogenous position within the structural model (Ringle et al., 2012).

The hybrid approach, proposed by Wilson and Henseler (2007), splits the manifest
variables of the first-order constructs, such that half of them are used to measure the
first-order constructs and the other half are used to measure the second-order construct.
It aims at eliminating the issue of artificially correlated residuals. The approach remains
vague about how to proceed in case of an odd number of indicators and does not say
anything about which specific indicators should be assigned to the first- and second-order
constructs. This approach is seldom used in actual practice.

Empirical assessments of the relative efficacy of the various approaches are scarce.
Based on a Monte Carlo simulation, Becker et al. (2012) conclude that both the repeated
indicator approach using the “Mode B” outer weighting scheme (see Henseler, 2010, for an
explanation of model weighting options in PLS) and the two-stage approach can be used. If
researchers are interested in the paths to and from the second-order construct, the two-stage
approach is more useful. Although Becker et al. (2012) do not emphasize it, it also becomes
clear from their simulation that none of the explored approaches actually provides
consistent estimates. Another major shortcoming of the extant approaches is their lack of
formal model fit tests. Without testing the fit of the model that includes the hierarchical
construct, researchers do not obtain any empirical support for or against the hierarchical
construct. At the time the three approaches were introduced, no goodness-of-fit tests were
available for PLS (Henseler and Sarstedt, 2013). Despite the recent introduction of goodness-
of-fit tests for PLS (Dijkstra and Henseler, 2015a; Henseler et al., 2014; Henseler et al., 2016),
none of the extant approaches has incorporated them so far. In order to overcome the
identified shortcomings, we introduce a new PLS-based three-stage approach to consistently
estimate and test hierarchical constructs specified as composites of common factors.

A PLS-based three-stage approach to consistently estimate and test
hierarchical constructs specified as composites of common factors
We propose a new PLS-based approach to consistently estimate and test hierarchical
constructs that are composed of reflective first-order constructs. We call it a “three-stage
approach,” because it requires three rounds of estimation. The three-stage approach is meant to
excel over the extant approach in two pivotal ways. First, the approach provides the means to
calculate consistent estimates. Loadings, weights, and path coefficients can be estimated
consistently. Second, the three-stage approach includes two assessments of the goodness of
model fit. It thereby facilitates answering the research question about the existence or
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usefulness of a second-order construct – a question of confirmatory research. Figure 2 depicts
the three-stage approach and its steps.

In the following paragraphs we describe the steps required for the consistent estimation of a
hierarchical model. For illustration purposes, we employ a model consisting of an exogenous
construct (X), an endogenous, hierarchical construct (H) specified as a composite of three
reflective first-order constructs (H1-H3), as well as a further endogenous construct (Y) partially
explained by H (see Figure 3). Solid arrows represent linear causal relationships, dotted arrows
signify a composing relationship, while bowed, double-headed arrows characterize correlations.

Step 1: Estimate the model without second-order composite

Step 2: Assess model fit

Step 3: Extract construct scores

Step 4: Record reliability indices and produce consistent correlation matrix 

Step 5: Estimate the model without first-order constructs

Step 6: Assess model fit

Step 7: Determine the reliability of the second-order composite

Step 8: Re-estimate the model with reliability-adjusted single indicators

Step 9: Obtain consistent path coefficients and confidence intervals

Step 10: Calculate consistent weights 

Stage 1

Stage 2

Stage 3

Figure 2.
The steps of the
three-stage approach
to consistently
estimate and test
hierarchical
constructs specified as
composites of
common factors
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Stage 1
In Stage 1, we estimate our model with the second-order construct not included. The purpose of
the first stage is to obtain the scores and the consistent correlations of the first order constructs.

Step 1: estimating the model without second-order composite
In a first step, a PLS path model containing all first-order constructs – but without the
second-order composite(s) – must be specified and estimated. The specification of the
structural model is up to the researcher as long as every construct is sufficiently embedded
in a nomological net. Typical choices are a full graph, in which all possible connections are
included, and graphs respecting adjacency, which try to reflect a priori-specified structural
models. Figure 4 depicts a viable model specification for the example model. Since the model
contains common factors (with reflective indicators), it is imperative that consistent PLS be
used to estimate this model, in order to obtain consistent inter-construct correlations
(Dijkstra and Henseler, 2015b). To estimate the reflective first-order constructs correctly,
the “Mode A consistent” weighting scheme should be used in ADANCO.

Step 2: assessing model fit
To allow the researcher to decide whether it makes sense to continue building and
estimating the hierarchical model, the model constructed in Step 1 needs to be assessed.
Building a composite of common factors only makes sense if the validity and reliability of
the first-order construct can be ensured. Various assessment procedures of model fit need to
be considered, i.e. both bootstrap-based exact fit measures, such as the 95 percent quantile of
the geodesic discrepancy between the empirical and the model-implied correlation matrix,
as well as approximate fit measures, such as the SRMR. The majority of the available fit
measures for variance-based SEM analyze the discrepancy between the empirical and the
model-implied correlation matrix. For an interpretation and guidelines about how to report
PLS results, the researcher should refer to Henseler et al. (2016).

Figure 4.
Stage 1, model

without second-order
construct
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Step 3: extracting composite scores
Once the model fit has been found to be acceptable in Step 2, the scores of the first-order
constructs need to be extracted. These scores are to be appended to the data file as
additional variables. These variables will be used in Stage 2. Usually, the standardized
scores are sufficient for the next steps. Only if the scores are of a particular interest, such as
in national customer satisfaction indices (Fornell, 1992) or importance-performance matrix
analyses (Ringle and Sarstedt, 2016), do unstandardized construct scores have merits.

Step 4: recording reliability indices and producing the consistent inter-construct correlation
matrix
To manually determine the reliability of the second-order construct in Step 7, we need to
note the reliability scores (Dijkstra-Henseler’s ρA) of the first-order constructs at this stage.
To determine the consistent weights in Step 10, we must note down the consistent correlation
matrix R of the first-order constructs. By completing Steps 1-4, the first stage will be concluded.

Stage 2
In the second stage, the second-order construct is included in the model. The purpose of the
second stage is to obtain consistent estimates for the structural model. Several steps need to
be taken to obtain consistent estimates.

Step 5: estimating the model without first-order constructs
In line with McDonald and Ho (2002), a structural equation model can be viewed as a
composite of a measurement model and a structural model, and it has merits to analyze them
separately. While the four steps of the first stage have focused on the measurement model,
the subsequent steps are devoted to the structural model. Hence in Step 5, only the
structural model is estimated and tested. We use the composite scores that were
approximated in Step 1 and extracted and appended to the data set in Step 3 as indicators
for the second-order construct. Now, the measurement model of the second-order construct
is “composite.” “Mode B” should be the first choice if a researcher would like to extract as
much information as possible out of the data. In case of high levels of multicollinearity,
it may be recommendable to use “Mode A” instead. Weights predefined by the researcher or
obtained through external routines, such as the analytic hierarchy process or similar
approaches (Dijkstra, 2013), are also possible[2]. Figure 5 depicts the model specification
for Step 5. An important result obtained in Step 5 is the weight vectorw, which contains the
weights of the second-order composite.

Step 6: assessing model fit
Again, we need to assess the fit of the new model: this time to determine if it makes sense to
estimate a model containing hierarchical constructs. Various assessment procedures of
model fit should be considered again, both bootstrap-based exact fit measures, as well as
approximate fit measures, such as SRMR (see Step 2).

Step 7: determining the reliability of the second-order composite
The scores of the second-order composite are a linear combination of the scores of the
first-order constructs. Since the latter contain measurement error, their linear combination
will contain error, too (Rigdon, 2012). Unfortunately, extant reliability coefficients, such
as Dijkstra-Henseler’s ρA, Jöreskog’s ρC, or Cronbach’s α, are not applicable to composite
constructs, because these coefficients rely on inter-item correlations or loadings to quantify
the amount of random measurement error in the scores. In case of composites, neither the
inter-item correlations nor the loadings are informative about the amount of measurement error.
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Instead, we can exploit the fact that we do have reliability estimates for each indicator of the
composite (obtained in Step 1) as well as weight estimates (obtained in Step 5).
Since the scores of the first-order constructs are typically standardized, we can apply a
simplified version of Mosier’s (1943) equation for determining the reliability of a weighted
composite (ρS):

rS ¼ w0Snw;

where w is a column vector containing the indicator weights of the second-order composite
(obtained in Step 5), and S* is the consistent correlation matrix of the second-order
composite’s indicators (obtained in Step 1), with the respective reliabilities (ρA) on the
diagonal. Figure 6 illustrates how to determine the reliability of the second-order composite
using Microsoft Excel. Since the formula in cell A7 is an array formula, researchers should
not forget to press CTRL+SHIFT+ENTER after editing the formula.

Stage 3
The third stage strongly resembles the second stage, but differs in purpose. The purpose
of the third stage is to obtain consistent estimates for the structural model including the
relationships between the first-order common factors and the second-order composite. In the

Figure 5.
Stages 2 and 3, model

with second-order
construct
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third stage, again the second-order construct is included in the model, but this time
its correlations are corrected for attenuation. Several steps need to be taken to obtain
consistent estimates.

Step 8: re-estimating the model with reliability-adjusted single indicators
Now that we have obtained a value for ρS, we can reestimate the model, including the
second-order construct, but correcting the composite for disattenuation. Again, we use the
scores obtained in Step 1 for the first-order constructs as indicators. In this step, it is
important to use the same weighting scheme as in Step 5, because otherwise the weights
might differ from those used in Step 7 to determine the reliability of the composite.
The reliability of the composite construct is manually set to ρS as obtained in Step 7 in order
to correct the composite’s correlations for attenuation[3].

Step 9: obtaining consistent path coefficients and confidence intervals
The path coefficients obtained from this model are consistent. The respective confidence
intervals can be obtained by bootstrapping (see e.g. Streukens and Leroi-Werelds, 2016).
This step also provides estimates for indirect and total effects.

Step 10: calculating consistent weights
If the relationships between the second-order construct and its first-order constructs are of
interest, analysts may examine the weights with which the first-order construct make up the
second-order construct. Consistent weights can be calculated using the following set of
equations, a three-step approach:

(1) For each indicator of the second-order construct, determine consistent covariances
between the second-order composite and its first-order common factors as
qi ¼ lir�0:5

Ai
, where λi is the correlation between the second-order construct

scores and the ith first-order construct’s scores as obtained in Step 5, and rAi
is the

reliability of the ith first-order construct as obtained in Step 4.

(2) Use these consistent covariances between the second-order composite and its
first-order common factors and the first-order common factors’ consistent
correlations to determine the vector of the unstandardized weights by means of
an ordinary least squares regression: v¼R−1q.

(3) Standardize the weights by dividing the unstandardized weights by the standard
deviation that the linear combination of first-order constructs would yield:
w ¼ 1=

ffiffiffiffiffiffiffiffiffi
v0Rv

p� �
v.

Figure 7 illustrates how to perform these three sub steps for the example model using
Microsoft Excel.
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Study 1: simulated data
In order to demonstrate the efficacy of the new three-stage approach for modeling and
estimating second-order composites of common factors, we expose the three-stage approach
to simulated data, and compare it to the repeated-indicator approach, the two-stage
approach, and the hybrid approach. Simulated data offers the advantage that the true
population model is known.

We define a population model as depicted in Figure 8. All coefficients are standardized.
We generate 100 observations of normal-distributed random data, on which we impose the
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structure of the population model. Thus, the empirical correlation matrix of the indicators
equals the population correlation matrix.

To this generated data set we apply the new three-stage approach as well as the
repeated-indicator approach (both in its original form and the alternative form suggested by
Ringle et al., 2012), the two-stage approach, and the hybrid approach. For both model
assessments of the three-stage approach, the model fit turns out to be excellent. We obtain
an SRMR for the saturated model of 0.000 in the first stage as well as in the second stage
(both below a bootstrap-based 95 percent quantile)[4].

The focal question of this simulation study is whether the path coefficients quantifying
the strength of the linear relationships from X to H and from H to Y are estimated correctly.
In Table I, we present the path coefficients obtained via the different approaches
together with corresponding 95 percentile bootstrap confidence intervals based on 999
bootstrap samples. The results differ substantially. The path coefficient estimates obtained
from the three-stage approach are equal to the population values. This provides evidence for
the three-stage approach’s Fisher-consistency. In contrast, in case of all other approaches,
the path coefficients are substantially underestimated. In the case of the repeated
indicator approach, the path coefficients from H to Y are similar to the path coefficients in
the two-stage approach, but the path from the exogenous variable, X, to the second-order
construct, H, is essentially zero. This peculiarity has been documented and discussed by
Ringle et al. (2012). The first-order constructs will explain all the variance of the
second-order construct (R2≅1), so that the effect of the exogenous variable is not able to
explain any variance in the endogenous second-order construct. Table II reports the
explained variance per construct and approach.

A similar picture can be found for the weight relationships between the first-order
common factors and the second-order composite (see Table III). Again, the three-stage
approach is capable of retrieving the true values. In contrast, none of the other
approaches provides the correct estimates. Interestingly, the weight estimates obtained
from the two-stage approach are relatively close to the true values, whereas the values of the
repeated indicators approach and particularly the hybrid approach are quite far off.

R²
Origin of values H Y

True value 0.240 0.360
Three-stage approach 0.240 0.360
Repeated indicators approach, original 1.000 0.250
Repeated indicators approach, alternative 1.000 0.250
Two-stage approach 0.112 0.252
Hybrid approach 0.582 0.221

Table II.
Structural model
results: variance
explained

X→H H→Y
Origin of values Estimate 95% CI Estimate 95% CI

True value 0.400 – 0.600 –
Three-stage approach 0.400 (0.193; 0.597) 0.600 (0.429; 0.774)
Repeated indicators approach, original 0.000 (−0.000; 0.007) 0.500 (0.354; 0.643)
Repeated indicators approach, alternative 0.333 (0.180; 0.497) 0.500 (0.353; 0.643)
Two-stage approach 0.335 (0.167; 0.503) 0.502 (0.361; 0.646)
Hybrid approach 0.084 (−0.035; 0.208) 0.470 (0.322; 0.620)

Table I.
Structural model
results: path
coefficients and
percentile
bootstrap confidence
intervals (CI)
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Study 2: field study
In this section, we apply the different approaches to empirical data. Thereby, we illustrate
that also in empirical research settings, the results are substantially affected by the choice of
approach. We obtained empirical data from the authors of a recently published field study
(Bouzaabia et al., 2013). In this paper, we only replicate the analysis, rather than focusing on
theory building. For the theory and operationalization of the constructs we refer to the
original article. The model in this example links three constructs: a dependent variable, store
satisfaction (Oliver, 1980), a mediating variable, store image (cf. Bloemer and De Ruyter,
1998; Semeijn et al., 2004), and an independent variable, in-store logistics performance
(cf. Garrouch et al., 2011; Mentzer et al., 1999). In the following paragraphs we concisely
explain the three constructs and provide a rationale for the model.

Satisfaction
Individuals develop patronage behavior towards a particular store, based on their
satisfaction with the store. Satisfaction, in this context, is a one-dimensional, encompassing,
positive attitude towards the store.

Store image
In the domain of retail marketing, the “Store Image” concept represents the comprehensive,
multifaceted collection of associations individuals have with a specific store (cf. Bloemer and
De Ruyter, 1998). It is dynamically updated with every visit to a store, and stored in the
customer’s long-term memory. It is known to influence individuals’ behavioral intentions to
revisit the store, or store loyalty. Store image is multidimensional, composed of salient
aspects – not necessarily correlated – of the customer experience with the store. It has been
conceptualized as a three-dimensional second-order construct, composed of customer
perceptions of “store personnel,” “store physical layout,” and “store merchandise.”

In-store logistics performance
The concept of in-store logistics performance is directly relevant for operational managers
in supermarkets and other retail outlets. The concept captures (a customer’s perception of)
operational performance in the store: are products in stock and easy to find, are chariots
available, are opening hours convenient, etc. (cf. McKinnon et al., 2007).

Rationale
In their study, Bouzaabia et al. (2013) proposed that a substantial part of variance in
satisfaction with a store is influenced by customer perceived in-store logistics performance.
In-store logistics has a persistent effect on consumers and its effect on satisfaction is fully
mediated by store image.

Weights
Origin of values w1 w2 w3

True value 0.300 0.500 0.600
Three-stage approach 0.300 0.500 0.600
Repeated indicators approach, original 0.275 0.597 0.550
Repeated indicators approach, alternative 0.274 0.600 0.548
Two-stage approach 0.302 0.532 0.604
Hybrid approach 0.205 0.449 0.409

Table III.
Relationships

between first-order
common factors and

second-order
composite
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Method
In all, 200 responses were collected through a questionnaire by intercepting customers at the
main exit of a store. The items are provided in the article by Bouzaabia et al. (2013).
To analyze our data, we used the three-stage approach, the alternative repeated indicators
approach, the two-stage approach, and the hybrid approach.

We first report results of the three-stage approach, and then compare the results of our
analysis with outcomes produced by the other approaches. Dijkstra-Henseler’s ρA was
used to assess the construct reliability of satisfaction. The reliability of the second-order
construct was calculated manually. The convergent validity of the reflective latent
variable was assessed as average variance extracted (AVE) and should exceed 0.5
(Fornell and Larcker, 1981). To assess discriminant validity we relied on the
heterotrait-monotrait ratio of correlations (HTMT; Henseler et al., 2015) between all
reflective constructs.

Results
The geodesic discrepancy between the empirical correlation matrix and the
implied correlation matrix of the saturated model (i.e. a model in which all constructs are
allowed to covary) is 0.403 and lies below its corresponding HI99 value. Consequently,
the implied correlation matrix does not differ significantly (1 percent level) from the
empirical correlation matrix. Also, the SRMR of 0.065 provides evidence for an acceptable
model fit (Hu and Bentler, 1999). We can thus conclude that the measurement model
provides an adequate explanation of the covariation in the data. Dijkstra-Henseler’s ρA for
satisfaction is a healthy 0.865, and the reliability of the second-order composite is 0.842. The
AVE of satisfaction is 0.608 and thus exceeds the threshold for acceptable convergent
validity. The highest HTMT value in the whole model is 0.682, which means that there is
sufficient discriminant validity throughout the model. The goodness-of-fit of the structural
model including the second-order composite is good as well: The geodesic discrepancy of
0.107 lies even below its corresponding HI95 value of 0.126, and the SRMR is 0.059.
This shows that the second-order composite does not create significant misfit.

The results of the field study are shown in Table IV. In-store logistics performance has a
relatively large-sized effect on store image, and store image strongly influences satisfaction.
The three-stage approach provides path coefficients that are clearly greater than those
of the other approaches. The path coefficients obtained from the hybrid approach
differ the most from the others. Moreover, the three-stage approach yields the highest R²

Approach

Parameter
Three-stage
approach

Repeated indicators
approach (Alt.)

Two-stage
approach

Hybrid
approach

Path coefficients
In-store logistics performance→ Store image 0.656 0.598 0.602 0.249
Store image → Satisfaction 0.696 0.593 0.639 0.533

R²
Store image 0.430 1.000 0.362 0.646
Satisfaction 0.484 0.352 0.408 0.284

Weights
Physical layout → Store image 0.292 0.309 0.274 0.180
Merchandise → Store image 0.509 0.579 0.557 0.439
Personnel → Store image 0.480 0.390 0.441 0.224

Table IV.
Estimates for the
field study
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values if one takes into account the peculiarity of the repeated indicator approach and
the hybrid approach that the first-order common factors explain (part of) the variance
of the second-order composite.

There are also some remarkable differences between the weight estimates. Whereas
for instance the alternative repeated indicators approach and the hybrid approach
suggest that merchandise has a much stronger role than personnel, the three-stage
approach provides almost similar values for both first-order constructs’ weights.
Apparently, the choice of method can thus have consequences for the conclusions one
would draw from estimates.

Discussion and conclusion
Research in the social sciences has increasingly made use of PLS path modeling techniques.
A range of recent reports and critical studies on PLS path modeling has emphasized
the importance of correct model specification and consistent estimates for theory
building. Inappropriate modeling practices and inconsistent estimates may lead to wrong
interpretations and conclusions.

In this paper, we provided a new three-stage approach to estimate and assess structural
equation models containing hierarchical constructs. We focused on the most relevant
hierarchical model with latent variables, the composite of common factors, which is a
second-order construct composed of reflectively measured first-order constructs. In contrast
to all extant approaches, the three-stage approach provides consistent estimates. Moreover,
for the first time the goodness-of-fit of the model containing the hierarchical construct can be
assessed. In this way, researchers receive an indication of the adequacy of the hierarchical
construct. Our paper and the guidelines therein fully replace the findings and guidelines of
Becker et al. (2012) and preceding papers on the topic of hierarchical constructs modeled as
composite of common factors.

Research containing hierarchical constructs modeled as composites of common factors
may be negatively affected by two shortcomings of the outdated approaches.
First, the extant approaches did not provide any empirical evidence speaking against a
hierarchical construct. Consequently, there might be second-order constructs in the
scientific literature that are not tenable. Second, the extant approaches most likely
underestimated the correlations between the second-order construct and other constructs
in the nomological net. As a consequence, the Type-II error of some studies might be
larger than anticipated by the researchers, and causal relationships may have been
left unrevealed.

To our knowledge, the proposed three-stage approach is the only SEM approach so far
that yields consistent estimates for the type of second-order construct covered in this
paper. In the light of this, we recommend abandoning the use of inconsistent and thus
outdated approaches, i.e., the repeated indicators approach, the hybrid approach,
and the two-stage approach. While they might have merits for other types of second-order
constructs, they should not be used anymore to estimate composites of common
factors. Future research should examine how other types of hierarchical constructs,
particularly composites of composites and common factors of composites, should be
estimated and assessed.

A disadvantage of any multi-stage approach is that the second-order construct that is
estimated in a later stage is not included in the estimation of the first-order constructs.
Estimating all coefficients simultaneously may have advantages in terms of inference
statistics. Therefore, future research should examine the confidence intervals obtained by
our new procedure. Moreover, future research could strive for a simultaneous estimation of
the coefficients instead of using a three-stage approach.
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Notes

1. It can equally well be that the measurement model specification hardly affects the relationships
between constructs (see e.g. Braojos-Gomez et al., 2015).

2. Dijkstra has suggested repeatedly that researchers need not let statistical fit-criteria be the sole
determinants of the contents of a concept, but that considerations of substance could, or even
should play a role. For some very diverse suggestions how to do make that operational,
see Dijkstra (2016)

3. ADANCO permits to manually define the reliability of constructs with a composite measurement
model. An arrow in Figure 5 marks the pertaining field.

4. In the second stage, the SRMR of the estimated model is 0.007. This small amount of misfit is
attributable to the just partial mediation evoked by the imperfect measurement of the mediator H
(for an explanation of this mechanism, see Henseler, 2012).
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