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Examining the key determinants towards online pro-brand and anti-brand 

community citizenship behaviours: a two-stage approach 

Abstract 

Purpose – A research model is proposed to identify the key determinants and examine their 

impact towards online pro-brand and anti-brand community citizenship behaviours (CCBs). 

Design/methodology/approach – A survey based on the research model is used to collect 

empirical data from 260 and 200 members of online pro-brand communities (OBCs) and 

online anti-brand communities (OABCs) respectively. A two-stage approach employing 

fuzzy-set qualitative comparative analysis (fsQCA) and artificial neural network (ANN) is 

firstly applied to uncover new observations. 

Findings – Moral identity and positive brand emotion are the two most influential factors 

driving both online pro-brand and anti-brand CCBs. A higher level of internalisation might be 

required to exhibit online anti-brand CCB as opposed to online pro-brand CCB. This 

contradicts the current understanding that anti-brand behaviours are less morally restricted 

given the virtuality and anonymity of online communities. OABC members may need to 

better justify themselves internally to overcome positive brand emotion when exercising anti-

brand action. Also, brand identification, brand dis-identification and brand emotion would be 

used to identify two types of OABC members. 

Research limitations/implications – The effect of motives other than pro-social remains 

unclear on online pro-brand and anti-brand CCBs. 

Originality/value – This is the first paper to develop two new dimensions which provide a 

more complete definition of CCB. Also, some new observations are uncovered by comparing 

the effect of different key determinants on online pro-brand CCB against that of online anti-

brand CCB. Our research model can be used to define and improve member (or brand) 

engagement which would enhance the management of OBCs and OABCs. 

Keywords: online community participation, social support, social identity theory, community 

citizenship behaviour, fuzzy-set qualitative comparative analysis, artificial neural network. 

Article Type: Research paper 

1. Introduction 

Online communities are widely known as web-based online services supporting and 

facilitating information exchanges among community members (Malinen, 2015). One major 

feature of online communities is the member engagement which can be seen as dependency 

on members for generating or sharing online content, hence also known as member 

participation. If the core focus of an online community is the brand itself, this community is 

then known as online pro-brand community (OBC) where the online content is developed 

around brand-related consumption experiences (Wirtz et al., 2013). By proper management of 

OBCs, firms can effectively respond to consumer feedback which would help drive business 
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improvement. For example, consumers can actively contribute to value co-creation by 

offering new ideas or suggestions which would help uncover new business opportunities 

(Liao et al., 2017). Opposing to OBC, online anti-brand community (OABC) aims to generate 

or share anti-brand-related information to promote brand rejection behaviours such as 

negative brand relationship and oppositional attitudinal loyalty (Dessart et al., 2016). In this 

connection, it is vital to examine what factors affect the level of member engagement and 

how such engagement can be realised in both communities. This can be termed as the study 

of online community participation which has been seen as key to successful OBCs and 

OABCs. 

This paper is structured as follows. Section 2 shows the past work done and specifies the 

research gaps. Section 3 describes the research model derived from the current literature. 

Section 4 details the mechanism of the proposed two-stage approach with analysis results 

reported in Section 5. Key findings are discussed in Section 6. Section 7 concludes the whole 

paper. 

2. Literature Review 

Online community participation can be studied from two main perspectives: personal and 

social. From the personal perspective, most of the current studies have adopted various 

theories or models to justify the individual behaviour towards online community participation. 

For example, technology acceptance model (TAM) has been used to examine how one’s 

attitude might determine one’s adoption towards a new technology (i.e. participation in OBCs) 

(Casalo et al., 2011; Agag and El-Masry, 2016). (Elliot et al., 2013) have examined the 

impact of OBC quality on member’s intention to transact via member’s satisfaction and trust 

towards OBC. Analysis suggested that quality was a key to affect both satisfaction and trust 

which did have indirect effect on intention to transact via brand attitude and stickiness. Some 

new insights were generated regarding the growing influence of new measure (such as 

stickiness) as compared to traditional measure (such as trust). Other theories such as theory of 

reasoned action (TRA) and trust theory have been applied to explain the correlation between 

intention and action in the context of community participation(Hsu and Lu, 2007; Kozinets et 

al., 2010). 

From the social perspective, one’s attitudes, intentions and actions towards online community 

participation have been explained in consideration of various social theories or models. For 

example, social exchange theory has been used to examine how members exchange 

information via OBCs and what factors drive that participation (Benoit et al., 2016). In their 

paper, factors specific to three parties (member, co-member and provider) were examined. 

Analysis results suggested that co-member’s cooperation was deemed negatively correlated 

with community participation which contracted the theory. Member’s role clarity and 

enjoyment together with provider’s responsiveness were deemed significant to drive 

community participation. Another commonly used theory, social identity theory, specifies 

how one’s action would be influenced by one own perceived status (membership) within a 

community. Based on this theory, (Chiu et al., 2015) have reported that social identity (driven 

by perceived external prestige and perceived community distinctiveness) has positive effect 
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on community participation. In addition to social identity, social influence theory depicts how 

one’s attitudes actions would be changed by social influence which can be realised by 

compliance, internalisation and identification. Analysis results suggested that internalisation 

was found significant while both compliance and identification were deemed as insignificant, 

which again contracted the theory (Cheung et al., 2011). Moreover, social capital theory has 

been applied to address how social structures and relationships among members would 

impact the voluntary community participation (Son et al., 2016). Conventionally, social 

capital has three dimensions, i.e. structural, relationship and cognitive. (Yang and Li, 2016) 

have explored the inter-connection among these dimensions in driving the community 

participation which was measured by the popularity of consumer-generated content (i.e. the 

total number of comments). Analysis results suggested that strong correlations were found 

between these dimensions and structural dimension had no direct but indirect impact via the 

other two dimensions for driving the popularity. This reinforced the fact that community 

participation is mainly driven by member’s attitude and action rather than the provider. Other 

theories such as social presence theory, social loafing, and social network theory have been 

also used to examine the impact of different social factors on community participation (Shiue 

et al., 2010; Cheung et al., 2011; Lee et al., 2011).  

Based on the theories or models adopted, researchers have developed different factors (or 

determinants) that drive the community participation (Muniz and O'Guinn, 2001; 

McAlexander et al., 2002; Jeppesen and Frederiksen, 2006; Schau et al., 2009) and addressed 

different outcomes (or consequences) of community participation (Casaló et al., 2008; Jang et 

al., 2008). For example, determinants can be divided into different attributes such as social 

(e.g. trust, internalisation, communication, etc) and psychological (e.g. affiliation, 

identification, satisfaction, etc) while consequences can be observed in different context such 

as brand (e.g. brand loyalty, brand commitment, brand image, etc), consumer (e.g. consumer 

trust, consumer satisfaction, consumer equity, etc), and community (e.g. shared 

consciousness, obligation to society, moral responsibility, etc). Apart from determinants and 

consequences, some studies have also investigated the impact of moderators (e.g. community 

type, membership length, community size, etc) and mediators (e.g. mutual agreement, 

perceived social value, perceived goal instrumentality) on the causal relationship between 

determinants and consequences. Readers can refer to the study of (Kamboj and Rahman, 

2017) for a more comprehensive review on community participation. 

While most of the current studies have investigated determinants and consequences of 

community participation, there is very limited attention being paid to the formation of 

community participation, i.e. what defines community participation (Wang et al., 2015; 

Kamboj and Rahman, 2017). Also, there is a need of examining more brand related 

determinants towards community participation (Munnukka et al., 2015; Shim et al., 2015; 

Kamboj and Rahman, 2017). Hence, there is a very small number of studies that empirically 

verify models considering the direct connection between determinants and formations of 

OBC participation (Algesheimer et al., 2005; Bagozzi and Dholakia, 2006a; Bagozzi and 

Dholakia, 2006b; Woisetschläger et al., 2008; Madupu and Cooley, 2010), not mention about 

the same investigation for OABC participation, which is a relatively new area. 
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To address the above three research gaps, i.e. (i) explicit definition of community 

participation, (ii) examination of brand-related determinants and (iii) development of 

empirical model linking determinants and formations of OBC as well as OABC participation, 

a research model is developed to define determinants and formations of community 

participation and formulate their relationships using empirical data collected from well-

structured questionnaire. A two-stage approach is then applied to examine the empirical data 

with an aim to uncover new observations about both online pro-brand and anti-brand 

community participation. 

3. Research model development 

OBC members may have different intentions and expectations to determine the degree of 

community participation. The same could be observed for OABC members (Kucuk, 2016). 

Although various determinants and formations of community participation have been 

examined for both OBCs and OABCs, there is a lack of empirical model to validate this 

concept. In this connection, a research model is developed to empirically understand the 

relationship between determinants and formations of both online pro-brand and anti-brand 

community participation. Analysis is done to confirm such relationship and make 

comparisons across online pro-brand and anti-brand community participation. 

The research model is built upon an integration of various fundamental theories. This 

includes brand emotion, social identity theory (moral identity, brand identification and brand 

dis-identification), and organisational citizenship behaviour. These theories are usually used 

to explain a person’s roles and responsibilities in an organisation. However, in an online 

community setting, most of the pro-brand/anti-brand community members are exercising 

voluntary and discretionary effort as they are not working for the brands and brand owners. 

Out of an organisational context, it is interesting to know why an individual inclines to 

support or oppose an online community. By developing a model based on these theories, we 

attempt to explain how one’s attitude and emotion would determine his/her voluntary 

behaviour towards an online community. 

Based on an extensive literature review of community participation studies, four categories of 

variables namely (i) moral identity (MI), (ii) brand identification (BI), (iii) brand dis-

identification (BD), and (iv) brand emotion (BE), are considered towards online pro-brand 

and anti-brand community participation. The concept of organisational citizenship behaviour 

is used to define the formations of community participation, i.e. community citizenship 

behaviour (CCB). The research model defining the relationship between the four variables 

and CCB is shown in Figure 1. 

“Figure 1” 

It is vital to point out that this research serves a dual purpose to understand one’s attitude, 

emotion and behaviour in an online community setting. First, we attempt to confirm the 

reliability of the model that defines the relationship between the four variables and CCB in 

the context of online community participation. Second, we aim to examine the differentiation 
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between a supporter and an opposing member and more importantly, what determines such 

discrepancy. 

3.1. Moral identity 

Identity refers to the level of perception to which brand community members share the same 

defining attributes with the community (Ahearne et al., 2005). The identity and attachment of 

members to the community are positively correlated with the level of their participation and 

interaction within the community (Bhattacharya and Sen, 2003; Algesheimer et al., 2005). 

Moral identity (MI) is defined as a “mental representation that a consumer may hold about 

his or her moral character” (Reed et al., 2007). The contemporary consumer research about 

altruistic consumer behaviour has found evidence for the links between moral identity and 

voluntary behaviour such as donation and pro-social motives for social topic in the context of 

online community participation (Shao et al., 2008).  

A person’s moral identity can be examined in two dimensions, private and public moral self-

schema. The private dimension is defined by internalisation (IN), which focuses on an 

individual’s “degree to which the moral traits are central to the self-concept” (Aquino and 

Reed Ii, 2002). This dimension is often implicit but influential. Another dimension, the public, 

is also known as symbolisation (SB), which explains the level of moral self-schema projected 

outwardly through his or her explicit actions (Shao et al., 2008). In other words, as a good 

citizen, he/she must have possessed “a strong sense of duty or obligation to the community as 

a whole, and to its individual members” (Muniz and O'Guinn, 2001). It is believed that 

members with high moral identity in terms of IN and SB to the OBC are more likely to have 

higher level of voluntary CCB. Hence, it is hypothesised that: 

H1-1a: Internalisation (IN) is positively associated with online pro-brand CCB. 

H1-2a: Symbolisation (SB) is positively associated with online pro-brand CCB.  

Likewise, members of an OABC are also assuming a moral and voluntary role to sustain the 

community and make the voice of the like-minded people be heard.  

H1-1b: Internalisation (IN) is positively associated with online anti-brand CCB. 

H1-2b: Symbolisation (SB) is positively associated with online anti-brand CCB. 

3.2. Brand identification 

An OBC is usually set up for supporters of the brand to cultivate the feeling of “we-ness” and 

“consciousness of kind” with the like-minded people (Szmigin and Reppel, 2004). Through 

the brand community, members can share useful information about the brand in order to 

enhance the sense of belonging. As a result, a close bond can be usually formed among 

community members (McWilliam, 2000). 

In this regard, brand identification (BI) can be defined as the level of perception to which 

brand community members attach themselves to the brand’s success. This perception can be 
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also related with one’s satisfaction to the brand and the reputation of brand (Kuenzel and 

Vaux Halliday, 2008). BI has deemed to have a positive effect on both customers’ in-role 

behaviours, such as willingness to pay and loyalty (Ahearne et al., 2005; Homburg et al., 

2009) as well as extra-role behaviours, such as helping the in-group members and sharing 

knowledge (Wiertz and de Ruyter, 2007). Hence, it can be hypothesised that: 

H2a: Brand identification (BI) is positively related to online pro-brand CCB. 

On the contrary, as a result of consumerism and collective action, many OABCs are 

developed mainly to discourage adoption of a brand by revealing the unpleasant practice of 

the brand and brand owner (Krishnamurthy and Kucuk, 2009). People with strong BI are less 

likely to join an OABC targeting the same brand. Therefore, it is believed that: 

H2b: Brand identification (BI) is negatively associated with online anti-brand CCB. 

3.3. Brand dis-identification 

Brand dis-identification (BD) is defined as “a self-perception based on (i) a cognitive 

separation between a person’s identity and his/her perception of the identity of an 

organisation and (ii) a negative relational categorisation of the self and the organisation” 

(Bhattacharya and Elsbach, 2002). Therefore, people with strong BD will try to detach 

themselves from the brand in order to demonstrate his/her independence from it. As such, 

people with high BD would not contribute to the brand’s success and even may behave in a 

way to cause detriments to the brand. So, it is believed that: 

H3a: Brand dis-identification (BD) is negatively associated with online pro-brand CCB. 

Past research in the management field has illustrated the fact that people with high 

organisational dis-identification would make criticism and contest against the organisation 

both publicly and individually (Elsbach and Bhattacharya, 2001; Kreiner and Ashforth, 2004). 

With the same logic, members with high BD would contribute positively to the co-creation of 

negative feedback and word-of-mouth against the brand in the OABC, which can be 

understood as: 

H3b: Brand dis-identification (BD) is positively associated with online anti-brand CCB. 

3.4. Brand emotion 

Brand emotion (BE) can be defined as a complex state of feeling to a brand and its related 

activities resulting from psychological and physical changes that affect thought and 

behaviour (James, 1884). The psychologist, (Ekman, 1999) has identified two consistent 

dimensions of emotion across different cultures, namely positive brand emotions (BE+) (e.g. 

happiness, amusement, contentment and satisfaction) and negative brand emotions (BE-) (e.g. 

anger, disgust, sadness and shame).  In addition, it has been proved that, given the strong link 

between emotions and behaviours (Thomson et al., 2005), there is a positive correlation 

between one’s emotional attachment to a brand and one’s community participation (Yong et 

al., 2011). Using the same logic, it is not difficult to observe a negative relationship between 
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one’s emotional detachment to a brand and one’s community participation. So, it can be 

hypothesised that: 

H4-1a: Positive brand emotion (BE+) is positively associated with online pro-brand CCB. 

H4-2a: Negative brand emotion (BE-) is negatively associated with online pro-brand CCB. 

In general, some supporters of a brand may join the OABC just because they want to show 

agreement with their peers from the social perspective or simply look for fun. Another more 

“decent” reason is that they are eager to express their dissatisfaction to the like-minded 

people but still hope that their voices would be heard by the brand owner resulting in 

improvement (Romani et al., 2013). In other words, these supporters use the OABC as a 

channel to make constructive feedback and they still have positive expectation on the brand 

(Woisetschläger et al., 2008). So, most of them would act as “lurker” in the OABC as they 

are not really committed to that community. So, it is logical to assume that: 

H4-1b: Positive brand emotion (BE+) is negatively associated with online anti-brand CCB. 

Due to disapproval of and disagreement with the brand’s business practices, activities and 

policies, people may develop negative emotions towards the brand and hence participate in 

OABC as a result of consumer activism and complaining behaviour (Bailey, 2004; 

Hollenbeck and Zinkhan, 2010; Zarantonello et al., 2016). Members with BE- would be more 

committed to contribute their time and effort voluntarily in the OABC such as providing 

feedback and sharing knowledge with an aim to mobilise and convince more people to join 

the anti-brand movement. Hence, it is well-understood that: 

H4-2b: Negative brand emotion (BE-) is positively associated with online anti-brand CCB. 

3.5. Community citizenship behaviour 

Community citizenship behaviour (CCB) can be considered as a direct extra-role behaviour 

of community members. Based on the study of (Yi et al., 2011), CCB is defined as the 

voluntary and discretionary behaviour that directly promotes the effective functioning of an 

online community. Hence, community participation can be best described by CCB with root 

in organisational citizenship behaviour. According to (Groth, 2005), CCB can be realised by 

three dimensions which define the willingness of members in (i) making recommendations, 

(ii) helping others, and (iii) providing feedback, respectively. Since CCB is an extra-role 

conduct in the online context, we argue that it is essential to examine two new dimensions 

which define the willingness of members in (iv) sharing knowledge and (v) making 

moderation. Considering all the five dimensions will enhance the comprehensiveness and 

validity of the measurement of CCB in the context of online community. 

4. Research  methodology 

We first conduct online survey targeting web users from online pro-brand and anti-brand 

communities based on the research model. A conventional approach, multivariate analysis, is 

used to verify the research model. To overcome its inherent drawbacks, a two-stage approach 
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is proposed and applied to evaluate the same research model: (i) fuzzy-set qualitative 

comparative analysis (fsQCA) is applied to uncover the interplay among the six determinants 

toward CCB, and (ii) artificial neural network (ANN) analysis is used to determine the 

relative importance of each determinant (given the interplay) toward online pro-brand and 

anti-brand CCBs. Comparisons are made to explain the differentiations in cause-and-effect 

relationship between key determinants and online pro-brand/anti-brand CCB with an aim to 

generate new observations. 

4.1. Survey design 

An online survey is developed based on the research model. There are six constructs 

(determinants) corresponding to IN, SB, BI, BD, BE+ and BE-, that would lead to CCB. The 

7-point Likert scale is used in the survey. For each construct, an appropriate measurement 

scale is adopted (see Table 1). Details of survey design can be referred to Appendix A1. 

“Table 1” 

4.2. Data collection 

Using the online survey, data was collected from web users who were members of OBCs and 

OABCs. Companies (brands) were selected from the combined list of 147 global companies 

ranked in Business Week’s 100 Best Global Brands and Millward Brown’s BrandZ Top 100 

Most Valuable Global Brands. A well-known search engine, Google, was used to identify 

online pro-brand and anti-brand communities for the selected brands (Kucuk, 2008). Due to 

huge research results, online pro-brand/anti-brand communities were selected if member 

number was over 100 and the last discussion was recorded within the past 12 months. 

Members of six well-known OBCs and OABCs were invited to join the pilot test. All 

respondents hold a master degree or above. They were asked to complete the online survey 

and make critical comments over the survey design so as to test the face validity of the survey 

instrument. Total 52 completed surveys were collected. Exploratory factor analysis was done 

followed by a reliability test. Analysis results revealed that all constructs were reliable and 

the minimum acceptable cut-off value of 0.7 in Cronbach’s Alpha was achieved. 

The validated online survey was then posted to a total of 1,099 online community websites of 

those selected brands, in which 409 of them are OBCs and 690 are OABCs within a 5-month 

window. Incentives were used to enhance the response quality and response rate. US$20 

Amazon vouchers were randomly given out to 20 respondents who completed the survey. IP 

address and completion time were checked to confirm the genuineness of all respondents. 

After removing all the invalid responses, a total of 460 datasets was found valid, in which 

260 and 200 were collected from OBC and OABC respectively. 

4.3. Multivariate analysis 

For benchmarking purpose, multivariate analysis is first conducted using structural equation 

modeling (SEM). Since we aim to predict the determinants of CCB variances, partial least 

squares structural equation modeling (PLS-SEM) is deemed more relevant (Hair Jr et al., 
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2016). In PLS-SEM, researchers have to assess both measurement models (the outer models) 

and structural models (the inner models). The outer model refers to the relationship between 

the latent constructs and their indicators (Henseler et al., 2009) while the inner model 

includes the relationships among the latent variables (Jarvis et al., 2003). 

The outer models are assessed by the first order individual reliability, internal reliability, 

convergent validity and discriminant validity. Reliability reflects the degree to which a given 

measure generates consistent outcomes under identical conditions while validity refers to the 

extent to which a group of indicators jointly measure what they are intended (Hair Jr et al., 

2016). In this study, outer loadings are used to assess items’ individual reliability, whereas 

composite reliability (CR) and Cronbach’s Alpha (α) indicate constructs’ internal reliability. 

The Average Variance Extracted (AVE) and square roots of AVE are used to examine both 

convergent validity and discriminant validity. The path coefficients (β), the significance 

levels and the coefficient of determinations (R2) are used to assess the inner models. 

4.4. FsQCA analysis 

The first stage of the proposed approach involves the use of the fuzzy-set qualitative 

comparative analysis (fsQCA). Introduced by (Ragin, 2000), fsQCA is a set-theoretic 

approach to causality analysis that is mainly based on the premise that outcomes are most 

often caused by the interplay of a number of factors, rather than any single cause (Ordanini et 

al., 2013). The principle that each determinant has its own isolated net effect on the proposed 

outcome (an assumption often made by the classical multiple regression analysis) is being 

increasingly challenged (Ragin and Rihoux, 2009). Instead, the fsQCA approach analyses 

how various combinations of causal conditions (if any) generate a given outcome (Fiss et al., 

2013; Woodside, 2013).  

FsQCA is a case-based technique considering the contrarian cases that do not necessarily fit 

within the general trend of the data (Woodside, 2014). It is often able to identify multiple 

solutions that can successfully lead to the same outcome. It therefore helps address the issue 

of “equifinality” which often exist in management-related phenomena. The concept of 

equifinality refers to situations when different yet equally effective combinations of factors 

generate the same outcome (Fiss, 2007). FsQCA analysis may uncover patterns within the 

dataset that would have been difficult to highlight when using a traditional multiple 

regression analysis (Vis, 2012). In summary, fsQCA is a more comprehensive approach, 

unlike multiple regression analysis, can account for heterogeneity and complex causality 

issues (Schlittgen et al., 2016). Hence, fsQCA was applied to the present study in order to 

examine the various combinations of factors influencing the degree of people’s involvement 

in supporting an online community (online pro-brand CCB) and opposing an online 

community (online anti-brand CCB) as shown in Figure 2. 

“Figure 2” 

4.4.1. Calibration 
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The raw data must be first transformed into fuzzy set scores in order to apply fsQCA analysis 

(Ragin and Rihoux, 2009). This is known as “data calibration”. Fuzzy sets are different from 

the traditional variables. A set is a group of continuous values, ranging from 0 to 1, that 

illustrates the degree of membership in a given condition (Skarmeas et al., 2014), e.g. the 

degree to which a person is a member of the set “high positive brand emotion”. In this study, 

Likert scales were used to assess each variable. To calibrate these variables, three cutoff 

values are identified from the Likert scales that would correspond to the three fsQCA 

qualitative anchors determining the level of membership, which are 1 for full membership, 0 

for non-membership and 0.5 for the crossover point (Ragin and Rihoux, 2009). The choice of 

the Likert scale cutoff values should be based on theoretical knowledge (Ragin, 2008).  In 

this study, the researchers defined the scores 1 (strongly disagree), 4 (neutral) and 7 (strongly 

agree) as representing non-membership, crossover point and full membership. 

4.4.2. Necessity analysis 

The necessity analysis examines whether any of the present factors has a high probability to 

be a “necessary” condition (yet not sufficient) for the targeted outcome (Kent, 2015). A 

condition can be considered as necessary when its consistency score exceeds 0.90 (Kent, 

2015; Tóth et al., 2015). Similar to significance level in multivariate techniques (Woodside 

and Zhang, 2012),  consistency illustrates the proportion of the cases with a given condition 

exhibiting the outcome. The higher the cases with this condition NOT displaying the outcome, 

the lower the consistency score (Tóth et al., 2015). Next, a sufficiency analysis is conducted 

to tell whether a necessary condition is “sufficient” for causing the targeted outcome.  

4.4.3. Sufficiency analysis 

Three steps are involved during the sufficiency analysis (Tóth et al., 2015). First, a “truth 

table” is produced where all possible combinations of the factors are listed (Ragin, 2008).  

The number of possible combinations is 2k where k refers to the number of conditions. In this 

study, 26 = 64 possible configurations are displayed. However, not necessarily all 

combinations are empirically valid. A valid combination should include a minimum number 

of cases with greater than a 0.5 membership (known as the frequency threshold) and 

consistency threshold (Woodside and Zhang, 2012). 

The second step is to define these thresholds. When dealing with small samples, the 

frequency threshold is often set as one single case, i.e. a valid combination should include at 

least 1 case with a membership greater than 0.5. However, when large samples are involved, 

the frequency cutoff should be set higher, such as 5 or 10 (Ragin et al., 2008). As for setting 

the consistency threshold, it will depend on the nature of the targeted outcome. In this vein, a 

drop in the consistency threshold could delineate the cutoff point (Ragin, 2008). This being 

said, a consistency value of 0.75 or more generally posits an acceptable combination 

(Woodside, 2013; Skarmeas et al., 2014). 

The third step involves reducing the number of combinations causing the outcome. This is 

known as “boolean minimisation” which aims at eliminating logically redundant conditions, 

i.e. if two acceptable combinations (leading to the same outcome) only differ in one condition 

Page 10 of 26Industrial Management & Data Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Industrial M
anagem

ent & Data System
s

(Kent, 2015), such condition will be removed. For each combination, values for consistency 

and coverage are provided. Coverage reflects the proportion of cases explained by the 

combination (raw coverage) (Ragin, 2008; Kent, 2015). In regression analysis, coverage is 

akin to the effect size (Woodside and Zhang, 2012). Additionally, the overall solution 

coverage is generated. This is similar to the R-square value reported in variable-based 

techniques and illustrates the explanatory power of the proposed conditions (Woodside, 

2013). 

4.5. ANN analysis 

The second stage of the proposed approach is to tell which condition in a combination 

(obtained from fsQCA analysis) is more influential using a typical three-layer feed-forward 

backpropagation artificial neural networks (ANNs) with Levenberg-Marquardt training 

function. This analysis can overcome a major limitation of fsQCA in which it does not 

indicate the importance of each condition (determinant) but only emphasise the presence or 

absence of a condition in a combination. It is well-known that there is no universal method of 

identifying the relative importance of the presence of conditions (Wong and Chan, 2012). In 

this study, we apply a change of mean square error (COM) method which is proved reliable 

in capturing relative importance of conditions leading to the same outcome (Wong and Chan, 

2015). 

Based on the valid combinations of conditions derived from fsQCA analysis, an ANN is 

developed to model each combination depicting the relationship between various conditions 

and online pro-brand/anti-brand CCB. Each of these ANNs is then trained and evaluated via a 

10-fold cross validation and 90% of the data are used for training whereas the remaining 10% 

are for validation. A trial-and-error approach is used to determine the number of neurons in 

the hidden layer (P) of an ANN (Wang and Elhag, 2007). It is well-known that a large P 

would improve the ability of ANN to learn and memorise the dataset, but its ability to 

generalise may be reduced. But, a small P may restrict ANN from learning (Wong and Chan, 

2012). 

After training and evaluation, an ANN that can best model the relationship between various 

conditions and online pro-brand/anti-brand CCB in each combination is identified. The COM 

method is then applied to each of these ANNs in order to determine the relative importance of 

a condition in each combination as follows: (i) compute mean square error (MSE) with all 

conditions in a valid combination (MSEall) as defined by Equation (1) where Ai and Pi are the 

actual values and predicted values of i-th testing dataset respectively, and D is the total 

number of tested dataset, (ii) compute MSE after removing only condition n from the 

combination (MSEn), (iii) calculate the change in MSE before and after removing condition n 

(CHn) as shown in Equation (2), and (iv) calculate the relative importance of condition n (RIn) 

by the ratio of CHn over the total changes associated with all conditions (ΣCHi for i=1…N) as 

defined by Equation (3) where N defines the total number of conditions in the combination. 

( )
2

1

1 D

i i

i

MSE A P
D =

= −∑  (1) 
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n n allCH MSE MSE= −  (2) 

1

n
n N

i

i

CH
RI

CH
=

=

∑
 (3) 

5. Findings 

5.1. Results of multivariate analysis 

Since the second-order construct, CCB, is defined by five first-order dimensions (variables) 

in the outer model, a two-step approach is used to evaluate the reliability and validity of these 

first-order variables (Chiu et al., 2015). Table 2 reports that Cronbach’s α and CR were above 

the cut-off value of 0.7, hence indicating acceptable individual and internal 

reliabilities(Schmiedel et al., 2014). Table 2 also reports that AVE scores exceeded the 0.5 

threshold, whereas the square root of AVE of each construct was greater than the correlations 

involved in the remaining constructs. Therefore, acceptable values for both convergent and 

discriminant validities are established. Furthermore, multicollinearity issues and common 

method bias were also examined for all independent constructs through the variance inflation 

factor (VIF) and the Harman's single factor test (Podsakoff et al., 2003) respectively. In this 

regard, no major issues of collinearity emerged as all VIF values varied around 1.20 – 2.02 

for the pro-brand group and 1.63 – 2.36 for the anti-brand group (all below the critical value 

of 5). Regarding the common method bias, Harman’s test also showed no major sign of 

common method bias (single factor accounting for less than 50%) (Lings et al., 2014). 

“Table 2” 

In the inner model (Figure 3), brand and anti-brand groups are examined together. For the 

pro-brand group, it shows that SB, BI and BE+ were the strongest determinants of online pro-

brand CCB. Hence, only H1-2a, H2a and H4-1a are accepted. For the anti-brand group, IN, 

SB and BE+ were the strongest determinants of online anti-brand CCB. Therefore, only H1-

1b and H1-2b are accepted. It is noted that the determinants of CCB explained 52% of the 

variances for the pro-brand group while 54% of CCB was explained by its determinants in 

the anti-brand group. 

“Figure 3” 

5.2. Results of fsQCA analysis 

Following the process described in Section 4.4, Table 3 presents the results of necessity 

analysis for both online pro-brand CCB and online anti-brand CCB after data calibration. It 

shows that the presence of IN, SB, and BE+ are probably “necessary” to promote online pro-

brand CCB. Alternatively, only IN appears to be a “necessary” condition to promote online 

anti-brand CCB. However, these conditions may not be sufficient. The next step is to conduct 

a sufficiency analysis in order to identify the various combinations that would contribute to 

online pro-brand and anti-brand CCBs. 

Page 12 of 26Industrial Management & Data Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Industrial M
anagem

ent & Data System
s

“Table 3” 

In this study, we set the frequency threshold as 4, which captured 80% of the cases for both 

online pro-brand and anti-brand CCBs, exceeding (Ragin et al., 2008)’s criterion (Cheng et 

al., 2013; Ren et al., 2016). Consistency threshold is used to define the proportion of the 

cases, under a given combination, exhibiting online pro-brand/anti-brand CCB. A drop in the 

consistency was noted at 0.90.  Hence, a threshold of at least 0.90 was chosen such that 

combinations with a consistency score below 0.90 are not considered in the analysis and are 

called “remainders”. 

Tables 4 and 5 present the “truth tables” specifying different combinations of conditions 

leading to online pro-brand CCB and online anti-brand CCB respectively. The complex 

solution is used in this study as it makes no simplifying assumptions (Skarmeas et al., 2014). 

It is noted that, not one but multiple combinations of conditions can lead to both online pro-

brand and anti-brand CCBs. Hence, this helps confirm the “equifinality” phenomenon that 

cannot be uncovered using traditional multivariate techniques. 

“Tables 4-5” 

In Table 4, the first two solutions indicate that IN, SB, and BE+ together would lead to online 

pro-brand CCB while BI and BD are mutually exclusive, i.e. a member supporting an online 

community would only show sign of either BI or BD. Solution 3 confirms the importance of 

IN, SB and BE+ and emphasises the absence of BE- while overlooking the effect of BI and 

BD. All solutions together explained 82% of the cases for OBC. In short, all hypotheses 

specific to online brand CCB are proved reliable except H2a and H3a. 

In Table 5, similar to online pro-brand CCB, the first two solutions indicate that IN, SB and 

BE+ together would lead to online anti-brand CCB while BI and BE- are mutually exclusive. 

Solution 3 can be ignored due to low unique coverage (Tóth et al., 2015). Solution 4 confirms 

the importance of IN, SB, and BE+ and emphasises the presence of BD and BE-. All 

solutions (solution 3 excluded) explained 64% of the cases for OABC. Hence, all hypotheses 

specific to online anti-brand CCB are proved reliable except H2b, H4-1b and H4-2b. 

5.3. Results of ANN analysis 

In this study, the performance of ANNs is assessed by mean absolute percentage error 

(MAPE) and standard deviation (SD). MAPE is defined by Equation (4) where Ai and Pi are 

the actual values and predicted values of i-th testing dataset respectively, and D is the total 

number of tested dataset. Table 6 shows the performance of ANNs with varying P for each of 

the solutions (combinations) in both pro-brand and anti-brand groups. The best value of P is 

addressed if it gives an ANN the smallest MAPE. The COM method is then applied to the 

well-tuned ANN for each solution (combination). Table 7 reports the relative importance (RI) 

of each condition in each of the solutions (combinations) for both pro-brand and anti-brand 

groups. The average RI is obtained for conditions which are found in more than one 

combination. The normalised RI of each condition is then obtained for ease of comparison. 
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 “Tables 6-7” 

6. Discussions 

For benchmarking purpose, multivariate analysis is first done. Table 8 reports the results of 

multivariate analysis which suggest that only SB, BI and BE+ contribute significantly 

towards online pro-brand CCB while only IN and SB contribute towards online anti-brand 

CCB. Generally, the results reinforce what is known in the current literature. Due to the 

inherent limitation of multivariable analysis, interplay between factors is overlooked, hence, 

no new insight is generated. 

To uncover new observations, fsQCA analysis, which is the first stage of our proposed 

approach, is performed. Table 8 reports the results of fsQCA analysis method which suggest 

that IN, SB, and BE+ contribute significantly towards online pro-brand CCB. Moreover, BI 

and BD are found mutually exclusive towards online pro-brand CCB. On one hand, people 

with BI (BD is absent) tend to show higher attachment to the brand’s success when being a 

member of OBC and this greatly conforms to the current understanding. On another hand, 

people with BD (BI is absent) being a member of OBC tend to detach themselves from the 

brand and this contradicts the theory. One possible explanation is that people with BD joining 

OBC may want to fulfill his/her pro-social motive by conveying disappointment or frustration 

about the brand (Dessart et al., 2016). As a result, improvement can be possibly made, and 

thus the sustainability of the OBC as well as the brand itself can be enhanced (Fournier et al., 

2015). This explanation conforms to the understanding that people with pro-social motive 

would perform any action that is beneficial to other people (Mantovani et al., 2017). In other 

words, members of OBC with BD (BI is absent) may have stronger pro-social motive than 

members of the same community with BI (BD is absent). 

For anti-brand group, fsQCA analysis results suggest that IN, SB, and BD have positive 

effect on online anti-brand CCB which conform well to the theory. In addition, BI and BE- 

are found mutually exclusive. It means that people with BE- (BI is absent) tend to show 

negative emotion and lower attachment to the brand’s success when being a member of 

OABC and this greatly reinforces the theory. On another hand, people with BI (BE- is absent) 

tend to show higher attachment to the brand’s success without negative motion when being a 

member of OABC. This again contradicts the theory but can also be explained by the pro-

social motive. In other words, members of OABC with pro-social motive intend to post 

deviant content that may lead to positive discussions and foster further improvement, also 

known as constructive co-creation (Gatzweiler et al., 2017). This can be confirmed by the 

presence of BE+ which indicates that some of them actually feel good about the brand. Also, 

this may be partially due to consumer movement which is an effort to promote more 

consumer protection by critically evaluating the current business practice (Kozinets and 

Handelman, 2004). 
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 “Table 8” 

The second stage of our proposed approach, ANN analysis, is to measure the RI of each 

condition in each of the interplays among determinants. For pro-brand group, Table 7 clearly 

shows that SB and BE+ are the two most influential determinants with overall influence over 

70% towards online pro-brand CCB, followed by IN, BD or BI. While the effect of BE+ is 

reinforced, SB is found to be more influential than IN. This may suggest that moral action is 

a better indicator of online pro-brand CCB. The RI of BD is small (12%), so this implies that 

the overall effect of pro-social motive in the pro-brand group is weak. For anti-brand group, 

IN, SB, and BE+ are the three most influential determinants with overall influence over 80% 

towards online anti-brand CCB, followed by BD, BE- and BI. Unlike pro-brand group, the 

effect of IN is found slightly stronger than that of SB. This may suggest that moral thought is 

a better indicator of online anti-brand CCB, i.e. one may need more inner triggers 

(internalisation) to oppose the brand. This contradicts the current understanding that anti-

brand (detrimental) behaviours are less morally restricted given the virtuality and anonymity 

of the online communities. Since the majority of OABC members show positive brand 

emotion, our results suggest that members may need to better justify themselves internally 

(IN) to overcome positive brand emotion (BE+) when exercising anti-brand action. Contrary 

to pro-brand group, pro-social motive may be more obvious among some OABC members 

given the overall influence of BI and BE+ is 43%. The overall influence of BD and BE- is 

45% which also infers that some members are indeed opposing the brand. This may suggest 

that there are at least two types of members within the anti-brand group: (i) members with 

weak pro-social motive and intrinsically opposing the brand (brand adversary); and (ii) 

members with strong pro-social motive and intrinsically supporting the brand (brand 

supporter). However, there is no clear dominance of one member type over another. 

In short, important observations obtained from our two-stage approach are summarised as 

follows. For online pro-brand community (OBC), 

• Symbolisation (SB) and positive brand emotion (BE+) are the two most important 

determinants that drive online pro-brand CCB. 

• Regarding moral identity (MI), SB has slightly stronger impact than internalisation (IN), 

which means that moral action is a better indicator to online pro-brand CCB. 

• Members with brand dis-identification (BD) may have stronger pro-social motive than 

members with brand identification (BI). 

• The overall effect of pro-social motive is weak. 

For online anti-brand community (OABC), 

• Internalisation (IN), symbolisation (SB), and positive brand emotion (BE+) are the three 

most important determinants that drive online anti-brand CCB. 

• Regarding moral identity (MI), IN is found slightly stronger than SB which shows that 

moral thought is a better indicator to online anti-brand CCB. 

• Members with brand dis-identification (BD) and negative brand emotion (BE-) may show 

weak sign of pro-social motive (brand adversary). 
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• Members with brand identification (BI) and BE+ may show strong sign of pro-social 

motive (brand supporter). 

• There is no clear dominance of one member type over another. 

 

7. Managerial Implications 

Overall, this study not only reinforces our current understanding of online pro-brand CCB but 

also helps uncover some mysteries about online anti-brand CCB. One important finding is 

that members of OABC tend to have stronger internalisation (IN) than those of OBC. It 

implies that one may need more inner triggers to oppose the brand rather than supporting. 

Joining OABC may be one way of confirming one’s self-concept through interaction with the 

like-minded people (Hollenbeck and Zinkhan, 2010). Brand identification (BI), brand dis-

identification (BD) together with brand emotion (BE+/BE-) would be used to identify two 

types of OABC members: one with weak pro-social motive (brand adversary) and another 

with strong pro-social motive (brand supporter). From the managerial perspective, OABC 

administrator must make sure that any anti-brand content is genuine and justified in order to 

promote online anti-brand CCB. Otherwise, anti-brand action is merely seen as business 

activities initiated by competitors rather than act of rightfulness which conforms to the 

internalisation especially from the perspective of OABC members with weak pro-social 

motive (brand adversary). On another hand, OBC administrator would uncover opportunities 

from OABC content especially from the perspective of OABC members with strong pro-

social motive (brand supporter) so as to promote online pro-brand CCB.  Since both CCBs 

can co-exist, OBC and OABC should not be managed following zero sum strategy.  

It is well-known that member (or brand) engagement can be positively or negatively valenced 

(Hollebeek and Chen, 2014). However, it is not clear how such engagement can be defined. 

To address this, another important finding of our study suggests that positive brand emotion 

(BE+) would drive both online pro-brand and anti-brand CCBs. In other words, people who 

feel good about the brand would be part of OBC making pro-brand comments. They can also 

join OABC making anti-brand comments but hope that the brand can be improved. It means 

that anti-brand action does not always lead to negative brand engagement. Hence, the 

research model developed in this paper could be used to define and improve brand 

engagement. This enables OBC/OABC administrator to gain more control over online pro-

brand/anti-brand CCB. As a result, OBC/OABC can be better managed to support its own 

purpose. 

8. Conclusion 

In order to fill the three research gaps, we re-define CCB, consider brand related determinants, 

and develop a research model to examine the relationship between determinants and 

formations of community citizenship behaviour (CCB) in the context of online community. 

To overcome the inherent limitations of multivariate analysis, a two-stage approach is 

implemented to uncover new observations from the empirical data. The first stage of the 

proposed approach is to identify the interplay among determinants using fsQCA method 

while the second stage is to measure the relative importance of determinants in each interplay 
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using ANN method. Analysis results show that the six determinants exhibit different degrees 

of influence towards online pro-brand and anti-brand CCBs. In general, moral identity and 

positive brand emotion are the two most influential determinants driving both online pro-

brand and anti-brand CCBs. There are two main distinctions between pro-brand and anti-

brand groups. The first distinction is the impact of internalisation/symbolisation and the 

second is the effect of pro-social motive which helps identify two member types in OABC. 

However, no member type dominates. 

As one of the few studies investigating both online pro-brand and anti-brand CCBs, we 

uncover some new observations which help manage OBCs and OABCs. However, there are 

some limitations of the current search: (i) analysis results are highly data-driven, thus the 

generalisation may be limited. Future research should expand the scale and diversity of the 

dataset; (ii) the research model does not consider mediators and moderators which are mostly 

specific to online pro-brand CCB. Future work should examine their impact on both online 

pro-brand and anti-brand CCBs. Some mediators and moderators will need to be modified in 

the context of online anti-brand CCB; and (iii) the effect of pro-social motive and other 

relevant motives will be further examined for both online pro-brand and anti-brand CCBs. 

Appendix 

Table A1: Survey design 
Item Code Item 

Moral identity 

Internalisation 

IN1 It would make me feel good to be a person who has these characteristics. 

IN2 Being someone who has these characteristics is an important part of who I am.  

IN3 I would be ashamed to be a person who had these characteristics. (Reverse scale) 

IN4 Having these characteristics is NOT really important to me. (Reverse scale) 

IN5 I strongly desire to have these characteristics. 

Symbolisation 

SB1 I often wear clothes that identify me as having these characteristics.  

SB2 
The types of things I do in my spare time (e.g., hobbies) clearly identify me as having these 
characteristics. 

SB3 The kinds of books and magazines that I read identify me as having these characteristics.  

SB4 
The fact that I have these characteristics is communicated to others by my membership in certain 
organizations. 

SB5 I am actively involved in activities that communicate to others that I have these characteristics.  

Brand identification 

BI1 This brand's successes are my successes. 

BI2 If someone praises this brand, it feels like a personal compliment. 

BI3 If someone criticizes this brand, it feels like a personal insult. 

Brand dis-identification 

BD1 The brand's failures are my successes. 

BD2 When someone praises this brand, it feels like a personal insult. 

BD3 When someone criticizes this brand, it feels like a personal compliment. 

Brand emotion 

BE1 Affectionate  

BE2 Friendly 

BE3 Loved 

BE4 Peaceful 

BE5 Passionate 

BE6 Delighted 

BE7 Captivated  

BE8 Connected 

Page 17 of 26 Industrial Management & Data Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Industrial M
anagem

ent & Data System
s

BE9 Bonded 

BE10 Attached 

BE11 Sad 

BE12 Sorrowful 

BE13 Distressed 

BE14 Irritated 

BE15 Angry  

BE16 Annoyed 

BE17 Offended 

BE18 Depressed 

Community citizenship behaviour 

Making recommendation 

MR1 Recommend this online community to my family. 

MR2 Recommend this online community to my peers. 

MR3 Recommend this community to people interested in the community/brand content. 

Helping members 

HM1 Assist other members in finding information. 

HM2 Help others with their information research. 

HM3 Teach someone how to use the online community correctly. 

Providing feedback 

PF1 Provide helpful feedback to the host. 

PF2 Provide information when surveyed by the online community. 

PF3 Inform the host about the great information or support received by an individual member. 

Making moderation 

MM1 Explain to other members how to use the online community correctly. 

MM2 Report to the owner/webmaster misuse/abuse in the community. 

MM3 Draw participants to good quality interaction (e.g., discussion) 

Sharing knowledge 

SK1 I intend to post information in this online community regularly in the future. 

SK2 I will try to share my comments with members of this online community in the future. 

SK3 I will always make an effort to provide feedback to members of this online community. 
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Figure 1: The research model 

 

 
Figure 2: Procedures of fsQCA 

 

 
Figure 3: Assessment of the inner models 
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Table 1: A summary of measurement scales used 

Construct Measurement Scale 

Moral identity (MI)  

Internalisation (IN) 

Symbolisation (SB) 
Aquino and Reed (2002) 

Brand identification (BI) Mael and Ashforth (1992) 

Brand dis-identification (BD) Elsbach and Bhattacharya (2001) 

Brand emotion (BE)  

Positive brand emotion (BE+) 

Negative brand emotion (BE-) 

Thomson et al. (2005) 

Burke and Edell (1989) 

Community citizenship behaviours (CCB)  

Making recommendation (MR) 

Helping members (HM) 

Providing feedback (PF) 

Groth (2005) 
Organ et al. (2005)  

Making moderation (MM) He and Kwok (2011) 

Sharing knowledge (SK) Lin (2007) 

 

 

Table 2: Assessment of the outer models 

Construct Pro-brand Anti-brand 

α CR AVE α CR AVE 

BD 0.958 0.971 0.917 0.962 0.975 0.93 

BI 0.93 0.955 0.877 0.956 0.971 0.919 

BE+ 0.932 0.942 0.62 0.972 0.976 0.802 

BE- 0.974 0.979 0.884 0.968 0.974 0.863 

PF 0.943 0.964 0.898 0.966 0.978 0.937 

HM 0.949 0.967 0.907 0.962 0.975 0.929 

IN 0.881 0.926 0.808 0.924 0.952 0.868 

SK 0.944 0.964 0.899 0.953 0.97 0.914 

MM 0.886 0.929 0.814 0.935 0.958 0.884 

MR 0.889 0.932 0.821 0.932 0.957 0.881 

SB 0.862 0.901 0.645 0.926 0.944 0.773 

 

 

Table 3: Necessary analysis for online pro-brand and anti-brand CCBs 

Condition Group Community Citizenship Behaviour 

Consistency Coverage 

IN Pro-brand 0.946478    0.737846 

Anti-brand 0.938819                                    0.750657 

SB Pro-brand 0.913103  0.838673 

Anti-brand 0.853144              0.815859 

BI Pro-brand 0.800096 0.869841 

Anti-brand 0.694836              0.830650 

BD Pro-brand 0.365337  0.969097 

Anti-brand 0.681794                         0.796285 

BE+ Pro-brand 0.919202 0.830886 

Anti-brand 0.805535                          0.812513 

BE- Pro-brand 0.393640 0.954311 

Anti-brand 0.676704                          0.802162 

                       

 

 
 

Page 24 of 26Industrial Management & Data Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Industrial M
anagem

ent & Data System
s

Table 4: Conditions leading to online pro-brand CCB 

Solutions IN SB BI BD BE+ BE- Consistency Raw 

coverage 

Unique 

coverage 

1 ● ● ○ ● ●  0.98 0.32 0.02 

2 ● ● ● ○ ●  0.93 0.70 0.04 

3 ● ●   ● ○ 0.88 0.77 0.10 

Note: ● presence of condition; ○ absence or negation of condition 

Solution coverage: 0.82; solution consistency: 0.89 

Algorithm: Quine-McCluskey; frequency cutoff: 4.0; consistency cutoff: 0.90 

 

 

Table 5: Conditions leading to online anti-brand CCB 

Solutions IN SB BI BD BE+ BE- Consistency Raw 

coverage 

Unique 

coverage 

1 ● ● ●  ● ○ 0.95 0.52 0.06 

2 ● ● ○  ● ● 0.94 0.44 0.02 

3* ● ● ● ● ●  0.94 0.50 0.0009 

4 ● ●  ● ● ● 0.94 0.45 0.03 

Note: ● presence of condition; ○ absence or negation of condition; * excluded 

Solution coverage: 0.64; solution consistency: 0.93 

Algorithm: Quine-McCluskey; frequency cutoff: 4.0; consistency cutoff: 0.94 

 

 
Table 6: Performance of ANNs with varying P 

ANNs Perf. 
P 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ANN-1 
Ave. 9.10 8.87 8.90 9.03 8.90 9.13 9.08 9.25 9.03 9.03 9.13 9.15 9.15 8.97 9.05 

SD 0.79 0.72 0.81 0.55 0.94 0.79 0.94 0.96 0.75 1.01 0.70 0.84 0.50 0.53 0.58 

ANN-2 
Ave. 9.18 9.21 8.82 9.10 8.73 8.62 9.00 9.21 9.01 8.83 8.93 9.16 9.11 8.96 8.99 

SD 1.04 1.04 1.00 0.79 0.84 0.78 0.88 0.81 1.04 0.98 0.67 0.68 0.83 0.51 0.83 

ANN-3 
Ave. 8.62 8.61 9.00 8.73 8.64 8.82 8.97 8.73 8.69 8.98 8.76 8.67 8.86 9.04 9.03 

SD 0.98 0.94 0.73 0.82 0.77 0.80 0.77 0.49 0.69 0.49 0.67 0.57 0.86 0.95 0.39 

ANN-4 
Ave. 8.94 9.16 8.96 8.88 9.02 8.42 9.16 8.94 8.85 8.35 8.96 8.98 9.38 9.12 8.67 

SD 0.59 0.86 0.94 0.74 0.68 0.69 0.60 0.98 0.89 0.87 0.69 0.79 1.10 0.53 0.82 

ANN-5 
Ave. 9.29 9.03 8.55 9.03 9.36 9.14 9.19 9.10 8.90 9.16 9.16 9.30 8.95 8.78 9.36 

SD 0.88 0.62 0.68 0.89 0.77 1.13 1.03 0.71 0.74 0.95 0.49 0.66 0.75 0.92 0.75 

ANN-6 
Ave. 9.12 8.98 9.52 9.39 9.15 9.30 9.01 9.05 9.20 9.31 9.20 9.16 9.20 8.41 9.10 

SD 0.62 0.86 0.92 0.84 0.76 0.78 0.95 0.75 0.97 0.72 0.81 0.87 0.99 0.57 0.57 

 
 

Table 7: Relative importance of conditions 

Group Solutions ANNs IN SB BI BD BE+ BE- 

Pro-brand 

1 ANN-1 0.18 0.29 - 0.12 0.41 - 

2 ANN-2 0.17 0.20 0.11 - 0.52 - 

3 ANN-3 0.22 0.28 - - 0.50 - 

Anti-brand 

1 ANN-4 0.30 0.27 0.15 - 0.28 - 

2 ANN-5 0.38 0.25 - - 0.22 0.15 

4 ANN-6 0.19 0.16 - 0.23 0.20 0.22 
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Table 8: Results of hypothesis testing 

Group Hypothesis Path Multivariate analysis fsQCA analysis 

Pro-brand 

H1-1a IN�CCB  � 

H1-2a SB�CCB � � 

H2a BI�CCB � * 

H3a BD�CCB  * 

H4-1a BE+�CCB � � 

H4-2a BE-�CCB  � 

Anti-brand 

H1-1b IN�CCB � � 

H1-2b SB�CCB � � 

H2b BI�CCB  * 

H3b BD�CCB  � 

H4-1b BE+�CCB   

H4-2b BE-�CCB  * 

�: Accepted 

*: Mutually exclusive, i.e. one hypothesis is accepted while another must be rejected 
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