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Machine learning facilitated business intelligence (Part 1): Neural networks 

learning algorithms and applications 

Abstract 

Purpose- The purposes of this study include: (i) to conduct a comprehensive review of the noteworthy 

contributions made in the area of Feedforward Neural Network (FNN) to improve its generalization performance 

and convergence rate (learning speed); (ii) to identify new research directions that will help researchers to design 

new, simple and efficient algorithms, and the users to implement optimal designed FNN for solving complex 

problems; (iii) to explore the wide applications of the reviewed FNN algorithms in solving real-world 

management, engineering and health sciences problems, and demonstrate the advantages of these algorithms in 

enhancing decision making for practical operations.  

Design/methodology/approach- FNN has gained much popularity during the last three decades. Therefore, the 

authors have focused on algorithms proposed during the last three decades. The selective database was searched 

with popular keywords: “generalization performance”, “learning rate”, “overfitting” and “fixed and cascade 

architecture”. The combination of the keywords was also used to get more relevant results. The duplicated articles 

in the databases, non-English, and matched keywords but out of scope, were discarded. 

Findings- The authors studied in a total of 80 articles and classified them into six categories according to the 

nature of algorithms proposed in these articles which aim at improving the generalization performance and 

convergence rate of FNN. To review and discuss all the six categories in one paper is too long in length. Therefore, 

the authors further divided the six categories into two parts (i.e., Part I and Part II). The current paper, Part I, 

investigates two categories that focus on learning algorithms (i.e., Gradient learning algorithms for Network 

Training, Gradient free learning algorithms). Besides, the remaining four categories which mainly explores 

optimization techniques are reviewed in Part II (i.e., Optimization algorithms for learning rate, Bias and Variance 

(Underfitting and Overfitting) minimization algorithms, Constructive topology Neural Networks, Metaheuristic 

search algorithms). This results in a division of 80 articles into 38 and 42 for Part I and Part II, respectively. After 

discussing FNN algorithms with their technical merits and limitations along with real-world management, 

engineering, and health sciences applications for each individual category, the authors suggested seven (three in 

Part I and other four in Part II) new future directions to contribute in strengthening the literature. 

Research limitations/implications- The FNN contribution are numerous and cannot be covered in one study. 

The authors remain focused on learning algorithms and optimization techniques, along with their application on 

real-world problems, proposed to improve the generalization performance and convergence rate of FNN with 

characteristics of computing optimal hyperparameters, connection weights, hidden units, selecting appropriate 

network architecture rather than trial and error approaches and avoiding overfitting. 

Practical implications- This study will help researchers and practitioners to deeply understand FNN existing 

algorithms merits with limitations, research gaps, application areas, and changes in a research study in the last 

three decades. Moreover, the user, after having in-depth knowledge by understanding the applications of 
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algorithms on the real world, may apply appropriate FNN algorithms to get optimal results at the shortest possible 

time with less effort for their specific application area problems. 

Originality/value- The existing literature surveys are limited in scope by performing algorithms comparative 

study, studying application areas, and focusing on a specific technique. This implies that the existing surveys are 

focused on studying some specific algorithms or their applications (e.g. pruning algorithms, constructive 

algorithms, etc.). In this work, the authors made an effort to propose a comprehensive review of different 

categories, along with their real-world applications, that may affect FNN generalization performance and 

convergence rate. This makes the classification scheme more novel and significant.  

Keywords Feedforward neural network, Machine learning, Learning algorithm, Industrial management, Data 

analytics  

 

1. Introduction 

The widespread popularity of Feedforward Neural Network (FNN) to solve problem exists in its universal 

approximation capability (Ferrari and Stengel, 2005; Hornik et al., 1989; Huang, Chen, et al., 2006). It can solve 

any complex nonlinear problems more accurately which are difficult for classical statistical techniques (Kumar et 

al., 1995; Tkáč and Verner, 2016; Tu, 1996). The FNN range of applications are numerous and some areas include 

regression estimation (Chung et al., 2017; Deng et al., 2019; Kummong and Supratid, 2016; Teo et al., 2015), 

image processing (Dong et al., 2016; Mohamed Shakeel et al., 2019), image segmentation (Chen et al., 2018), 

video processing (Babaee et al., 2018), speech recognition (Abdel-Hamid et al., 2014), text classification (Kastrati 

et al., 2019; Zaghloul et al., 2009), face classification and recognition (Yin and Liu, 2018), human action 

recognition (Ijjina and Chalavadi, 2016), risk analysis (Nasir et al., 2019) and many others. Business intelligence 

makes use of data analytics techniques to generate useful information from high dimensional data that may support 

in making better informed decisions. Machine learning is gaining popularity in all aspect from data gathering to 

discovering knowledge and its role in enhancing business decisions is gaining significant interest (Bottani et al., 

2019; Hayashi et al., 2010; Kim et al., 2019; Lam et al., 2014; Li et al., 2018; Mori et al., 2012; Wang et al., 2005; 

Wong et al., 2018). The study explores machine learning FNN and its application in facilitating business 

intelligence. The application of FNN in the diverse topics is not simple and extensive knowledge is required to 

build an optimal network to achieve intended results in the shortest possible time. In its simplest form, FNN with 

single hidden layer are powerful to solve many problems, given that having a sufficient number of hidden units 

in the layer (Nguyen and Widrow, 1990). 

The importance of FNN is increasing every day due to its property of processing big nonlinear data like human 

brains. It discovers a hidden pattern in the data by entering raw data at the input, passing layer by layer until it 

arrives at the output in the forward direction. The model is trained to correctly estimate the unseen data (also 

known as test data) known as generalization performance of FNN. The ideal FNN is considered to have better 

generalization performance and may require less learning time (also known as convergence rate) to train the 

model. Generalization performance can be defined as the ability of an algorithm to accurately predict values on 



3 
 

previously unseen samples (Yeung et al., 2007), whereas, learning time can be defined as the ability of the 

algorithm to train model quickly. Both “generalization performance” and “learning time” are key performance 

indicators for FNN and used by researchers to demonstrate the effectiveness of their proposed algorithms. The 

major drawback that influences FNN generalization performance and learning speed (time) are: 

a) trap at a local minimum when the global minimum is far away 

b) faces a problem of saddle point 

c) convergence decreases at plateau surface 

d) network performance affected by hyperparameters initialization and adjustment 

e) need trial and error approaches and expert involvements 

f) repeatedly tuning of connection weights 

g) hidden unit and layers adjustments.  

The drawbacks can be avoided and FNN can be improved to approximate any nonlinear complex problem by the 

implementation of the suitable algorithms. The several reasons which become causes of above drawbacks include: 

a) What should be the network size and depth i.e. shallow or deep? 

b) How many hidden units should be generated by each hidden layer? 

c) How many hidden layers will be sufficient for deep learning? 

d) What should be network initial connection weights and learning rate? 

e) How hyperparameters should be adjusted? 

f) What should be the size of the dataset during network training? 

g) Which learning algorithm should be implemented? 

h) Which network topology is more efficient i.e. fixed or cascade? 

i) What should be the criteria for increasing or decreasing the global and local hyperparameters? 

j) What type of activation function to be used in hidden units? 

In the literature, the answers to the above questions are not so straightforward. Researchers have proposed several 

learning algorithms and optimization techniques, that benefit to improve the FNN, with the main motivation to 

get a better generalization performance in the shortest possible network training time. In the existing literature 

surveys, several authors have reviewed FNN algorithms by performing a comparative study of different 

algorithms within the same class (for instance: constructive algorithms comparison based on data and many 

others), studying application area (for instance: business, engineering, and many others) and specific class survey 

(for instance: network ensembles survey and many others). For instance, Zhang (2000) focused on and surveyed 

the recent development of neural networks for classification problems. The review includes the link between the 

neural and conventional classifier and demonstrated that neural networks are a competitive alternative to the 

traditional classifiers. Other contribution includes examining the issues of posterior probability estimation, feature 

selection, and the trade-off between learning and generalization. Hunter et al. (2012) perform a comparative study 

among different types of learning algorithms and network topology to select a proper neural network size and 
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architecture for better generalization performance. LeCun et al. (2015) review deep learning and provide in-depth 

knowledge of backpropagation, convolutional neural network, and recurrent neural network. The success in deep 

learning is in that it requires little engineering by hand and new algorithms will accelerate its progress much more. 

Tkáč and Verner (2016) provide a systematic review of neural network applications during two decades and 

disclose that most of its application areas include financial distress and bankruptcy. Cao et al. (2018) present a 

survey on tuning free random weights neural network in the perspective of deep learning. The traditional deep 

learning iterative algorithms are far slower and have the problem of local minima. The survey suggests that the 

computing efficiency of deep learning increases by the combination of traditional deep learning and tuning free 

random weights neural network.  

In the above existing studies, the focus is only on the specific type of algorithms or their applications which limits 

their scopes. The existing studies are more focused on comparing and selecting the suitable algorithm within their 

class which is solely based on expertise and available application data. It does not clearly identify the research 

directions over the decades. Researchers have made efforts to reduce the drawbacks by critical thinking on the 

above problematic question, however, a comprehensive review is missing and an open challenge to gather the 

answers for the above questions in one platform. Therefore, this study carried out a comprehensive literature 

review and classified it into six categories based on the algorithms proposed, and investigated their applications 

in real-world management, engineering, and health sciences problems, to understand the researchers’ current 

interest and directions to overcome FNN drawbacks. However, to review and discuss all the six categories in one 

paper is too long in length. Therefore, we further divided the six categories into two parts (i.e., Part I and Part II). 

The current paper, Part I, investigates two categories that focus on learning algorithms (i.e., Gradient learning 

algorithms for Network Training, Gradient free learning algorithms). On the other hand, the remaining four 

categories which mainly explores optimization techniques are reviewed in Part II (i.e., Optimization algorithms 

for learning rate, Bias and Variance (Underfitting and Overfitting) minimization algorithms, Constructive 

topology Neural Networks, Metaheuristic search algorithms). Moreover, we carefully examined the real-world 

applications in management, engineering, and health science problems that researchers used to demonstrate the 

effectiveness of the proposed algorithms. Artificial benchmarking data and real-world application data are two 

datasets types that researchers employ for the comparative study of their proposed algorithms with other similar 

and popular algorithms. Growing interests to extract a useful pattern from big dimensional, nonlinear and noisy 

data have enforced researchers to apply and demonstrate the effectiveness and applicability of their algorithms by 

solving real-world problems. Our review contributes to the existing literature not only by summarizing the recent 

developments in FNN algorithms and classifying them into six categories according to the nature of algorithms, 

but also by exploring the applications of the proposed algorithms in solving real-world management, engineering, 

and health sciences problems and demonstrating the great potential for their practical utilization. Moreover, we 

propose several interesting and crucial future research directions regarding FNN which are believed to be useful 

for the development of the area. For the sake of simplicity, the paper entitled “Machine learning facilitated 

business intelligence: Neural networks optimization techniques and applications” is referred to as Part II. 
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The paper is organized as follow: Section 2 is about survey methodology. Section 3 briefly overviews the FNN 

architecture. In Section 4, two categories that focus on learning algorithms are reviewed with a detail description 

of each algorithm in terms of its merits, limitations, and real-world management, engineering, and health sciences 

applications. Section 5 is about future directions to improve FNN generalization performance and learning speed. 

Section 6 concludes the paper. 

2. Survey methodology 

2.1 Source of Literature 

The objective of the study is to identify and classify the learning algorithms and optimization techniques that have 

contributed to improving the generalization performance and learning speed of FNN. Therefore, a comprehensive 

review has been conducted to get in-depth knowledge of the existing work and to understand researchers’ 

contributions and work directions. Furthermore, the authors discuss the future research directions to contribute in 

strengthening the literature. To accomplish these objectives, the literature surveyed in the study was explored 

from seven different sources: IEEE Xplore -IEEE, ScienceDirect- Elsevier, Emerald Insight, arXiv- Cornell 

University, SpringerLink- Springer, Taylor & Francis and Google Scholar. The survey is based on articles in 

journals, conference proceedings, archives, technical reports, books, and academic lectures. The focus was to 

 
Figure 1. Articles Distribution 

Journal Articles

63 Nos.; 78.75%

Conference Proceedings

10Nos.; 12.50%

arXiv online 

Archives

3 Nos.; 3.75%

Books

2 No.; 2.50%

Technical Report

1No.; 1.25%

Academic Lecture

1No.; 1.25%

 
Figure 2. Articles Published over time 
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select articles published in the last three decades mainly in the period 1986-2018. However, the articles that 

contribute significant knowledge to the existing literature and out of time frame (For instance, the year 1985 and 

before) are also included to support and deepen the review. 

The research contributions and its applications in FNN are numerous and cannot be covered in one study. Four 

keywords that are related to FNN were used to search articles in above-mentioned databases: “generalization 

performance”, “learning rate”, “overfitting”, and “fixed and cascade architecture”. Moreover, the combination of 

Source 
Papers 

(Nos.) 

Citation 

(Nos.) 

1) Journal Article 63 88144 

Artificial Intelligence 42 48707 

IEEE Transactions on Neural Networks and Learning Systems 19 18778 

Journal of Machine Learning Research 2 11513 

Neurocomputing 6 8123 
Neural Networks 6 5650 

IEEE Transactions on Pattern Analysis and Machine Intelligence 3 4411 

Artificial Intelligence Review 1 140 
Neural Computing and Applications 3 62 

Information Sciences 2 30 

Multidisciplinary 2 25654 

Nature 2 25654 

Applied Mathematics 6 6219 

Mathematics of Computation 1 3093 

Technometrics 1 1752 

SIAM Review 1 636 
Applied Mathematics and Computation 2 543 

Mathematical Programming 1 195 

Arts and Humanities (Miscellaneous) 1 3491 

Neural Computation 1 3491 

Computer Science Applications 7 3226 

IEEE Transactions on Cybernetics 2 2762 
IEEE Transactions on Industrial Informatics 1 180 

IEEE Transactions on Industrial Electronics 1 134 

Journal of Chemical Information and Computer Sciences 1 88 
IEEE Access 1 32 

Industrial Management & Data Systems 1 30 

Engineering (Miscellaneous) 1 434 

Advances in Engineering Software 1 434 

Computer Networks and Communication 2 315 

IEEE Intelligent System 1 261 
Neural Processing Letters 1 54 

Statistics and Probability 1 76 

American Statistician 1 76 

Electrical and Electronics Engineering 1 22 

IEEE Transactions on Circuits and Systems I: Regular Papers 1 22 

2) Conference Proceedings 10 41712 

IEEE 4 32574 

International Symposium on Micro Machine and Human Science 1 13257 

IEEE International Conference on Evolutionary Computation 1 11520 
IEEE International Conference on Neural Networks  1 4793 

International Joint Conference on Neural Networks 1 3004 

MIT Press 4 7492 

Advances in neural information processing systems 4 7492 

IMLS 1 1054 

International Conference on Machine Learning 1 1054 

Morgan Kaufmann  1 592 

Proceedings of the 1988 connectionist models summer school 1 592 

3) arXiv Archive 3 21519 

Cornell University Library 3 21519 

4) Book 2 14323 

The MIT Press 1 14009 

Morgan & Claypool Publishers 1 314 

5) Report 1 1238 

School of Computer Science, Carnegie Mellon University 1 1238 

6) Webpage 1 118 

Coursera 1 118 

Grand Total 80 167054 

Table I. Articles Source Description 
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keywords was also used to get relevant articles. The duplicated articles in the databases, non-English, and matched 

keywords but out of scope were discarded. The screening process was limited to articles belonging to Q1 category 

ranked journals, issued by either “Scientific Journal Rankings - SJR” or “Journal Citation Reports - JCR” in the 

year 2018. However, to strengthen the review, a small number of highly cited conference papers and articles 

belonging to Q2, Q3, and Q4 journals with more than 500Nos. citations, and articles from other sources (such as 

online achieves, books, technical reports, and websites) with more than 100Nos. citations were also considered. 

All the searched articles abstract, and the conclusion was completely reviewed along with full text to screen high-

quality relevant literature. This results in a total of 80 articles, in which 38 are included in the current paper 

describing mainly learning algorithms and the remaining 42 are included in Part II. Figure 1 shows the distribution 

of the articles along with its number and percentage in each category. In 80 articles, 63 (78.75%) are journal 

papers, 10 (12.50%) conference papers, 3 (3.75%) online arXiv archives, 2 (2.50%) books, 1 (1.25%) technical 

report, and 1 (1.25%) online academic lecture. Table I explains the journals, conferences, archive, books, technical 

report, and academic lecture used in the literature along with a description of the type, publisher, the number of 

papers extracted, and citations. The content of the table illustrates the importance of screened article not only in 

journals but also in the conference and other sources. The main idea was to include a highly cited articles published 

in the reputed journals. However, a small number of articles from conferences and other sources with a high 

citation and unique ideas are also considered as a part of a survey to enrich the contents.  

The 80 articles published over time is shown in Figure 2. It illustrates that in the year 1989 and before, the FNN 

was not the main research area because of the unavailability of efficient computational resources. In 1989-1994, 

it gains importance because of the explanation of the theory of backpropagation (BP) (Hecht-Nielsen, 1989). This 

created a significant interest in topic and researchers identified new research gap to improve the existing BP by 

proposing new learning algorithms, for instance: cascade correlation learning (Fahlman and Lebiere, 1990), 

probabilistic neural network (Specht, 1990) and general regression neural network (Specht, 1990). Although FNN 

history starts before the ’50s but it gains importance in the ’90s. In the modern era, the development of more 

efficient computational resources and the availability of big data made it a more promising research area which 

can be evident that the growth rate has increased from 2001 to onwards. 

2.2 The philosophy of the review work 

The review work was conducted in five steps: 

Step-1) Relevant literature explaining the learning algorithms and optimization techniques proposed to improve 

the generalization performance and learning speed of FNN was identified based on popular keywords 

used in FNN. 

Step-2) Classified the algorithms into six categories. The algorithms are assigned to a category based on its 

problem identification, mathematical model, technical reasoning and proposed solution. 
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Step-3) The six categories are further classified into two main parts for the purpose of presentation. Part I review 

the two categories mainly exploring learning algorithms, whereas, the remaining four categories 

developing optimization algorithms (techniques) are reviewed in Part II. 

Step-4) The algorithms are explained with their merits and technical limitations to suggest future research 

directions in FNN. 

Step-5) The applications of the proposed algorithms in real-world are identified to show the success of FNN in 

management, engineering, and health sciences problem solving.  

2.3 Classification schemes 

The classification scheme in existing literature surveyed in FNN is mainly focused on the comparative study of 

different algorithms within the same class (for instance: constructive algorithms comparison based on data, etc), 

studying application area (for instance: business, engineering, etc) and specific class survey (for instance: network 
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ensembles survey, etc). This study classification is unique as its focus is on learning algorithms and optimization 

techniques recommended in the last three decades to improve the generalization performance and learning speed 

of FNN. The algorithms are classified into six categories and further divided into two main parts. The current 

paper, Part I, includes the two categories mainly discussing the learning algorithms proposed to improve the 

generalization performance and learning speed of FNN. The two categories discussed in the current paper are: 

1. Gradient learning algorithms for Network Training 

2. Gradient free learning algorithms 

The first category explains gradient learning algorithms that need first order or second order gradient information, 

whereas, the second category explains gradient free learning algorithms which analytically determine connection 

weights rather than first or second order gradient tuning. Figure 3(a) illustrates that authors identified in a total of 

27 unique algorithms proposed in 38 articles. Figure 3(b) illustrates the number of algorithms identified in each 

category over time. Other than proposed algorithms, a small number of papers that support or criticize identified 

No. Category Algorithms Published References 

1 Gradient learning 

algorithms for 

Network Training 

Gradient descent, stochastic gradient descent, mini-

batch gradient descent, Newton method, Quasi-

Newton method, conjugate gradient method, 

Quickprop, Levenberg-Marquardt Algorithm, 

Neuron by Neuron 

(Hecht-Nielsen, 1989), (Bianchini and Scarselli, 

2014), (LeCun et al., 2015), (Wilamowski and Yu, 

2010), (Rumelhart et al., 1986), (Wilson and 

Martinez, 2003), (Wang et al., 2017), (Hinton et 

al., 2012), (Ypma, 1995), (Zeiler, 2012), (Shanno, 

1970), (Lewis and Overton, 2013), (Setiono and 

Hui, 1995), (Fahlman, 1988), (Hagan and Menhaj, 

1994), (Wilamowski et al., 2008), (Hunter et al., 

2012) 

2 Gradient free 

learning algorithms 

Probabilistic Neural Network, General Regression 

Neural Network, Extreme learning machine (ELM), 

Online Sequential ELM, Incremental ELM (I-

ELM), Convex I-ELM, Enhanced I-ELM, Error 

Minimized ELM (EM-ELM), Bidirectional ELM, 

Orthogonal I-ELM (OI-ELM), Driving Amount OI-

ELM, Self-adaptive ELM, Incremental Particle 

Swarm Optimization EM-ELM, Weighted ELM, 

Multilayer ELM, Hierarchical ELM, No 

propagation, Iterative Feedforward Neural 

Networks with Random Weights 

(Huang et al., 2015), (Ferrari and Stengel, 2005), 

(Specht, 1990), (Specht, 1991), (Huang, Zhu, et 

al., 2006), (Huang et al., 2012), (Liang et al., 

2006), (Huang, Chen, et al., 2006), (Huang and 

Chen, 2007), (Huang and Chen, 2008), (Feng et 

al., 2009), (Yang et al., 2012), (Ying, 2016), (Zou 

et al., 2018), (Wang et al., 2016), (Han et al., 

2017), (Zong et al., 2013), (Kasun et al., 2013), 

(Tang et al., 2016),  (Widrow et al., 2013), (Cao et 

al., 2016) 

Table II. Classification of FNN Published Algorithms 
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algorithms were also included to widen review. The unique algorithms, supportive and criticized papers result in 

a total of 38 articles. Figure 3(c) illustrates the total number of papers reviewed in each category. Table II provides 

a detailed summary of the algorithms identified in each category along with references to the total number of 

papers reviewed. The distribution in the figure and classification table explains the researchers’ interest and trend 

in a specific category. The interest and trend seem to be shifting towards gradient free learning algorithms 

compared to gradient learning algorithms. 

3. Feedforward Neural Network: An overview 

FNN is a parallel information processing structure consisting of a processing element known as neurons (hidden 

units), interconnected together with unidirectional distributed channels known as connections. Each processing 

neuron receives an incoming connection from all input features, sum and activate it using nonlinear activation 

function, and branch it to as many connections as desired. The processing neuron output which can be of any 

mathematical type depends upon input features with its weighted sum and activation function (Hecht-Nielsen, 

1989). The FNN concept originated by motiving from the human brain neuron functioning system. The human 

brain has approximately 100 billion neurons that communicate through thousands of electro-chemical connections 

and send signals to other neurons if the sum of connections exceeds a certain threshold. In this perspective, a 

simple FNN consists of a minimum of three layers interconnected by unidirectional channels known as connection 

weights: an input layer, hidden layer, and the output layer. FNN information process in one direction starting from 

the input layer, through the hidden units in the hidden layer and finally the output layer without any loop or cycle. 

Figure 4 illustrates a simple FNN with three layers. The number of hidden layers in FNN determines its 

architecture. FNN with one hidden layer is known as a shallow type, whereas more than one hidden layers are 

known as deep type (Bianchini and Scarselli, 2014; LeCun et al., 2015). The input layer consisting of input 

features 𝑥 with an added bias 𝑏𝑢 are connected to the hidden layers 𝑢 through input connection weights 𝑤𝑖𝑐𝑤. 

The hidden layer sums the product (𝑤𝑖𝑐𝑤𝑥) and squash it through a nonlinear activation function 𝑓ℎ𝑢(𝑧). The 

hidden layer with an added bias 𝑏𝑜 and the output layer are connected by the output connection weight 𝑤𝑜𝑐𝑤. The 

output layer sums the product (𝑤𝑜𝑐𝑤𝑓ℎ𝑢(𝑧)) and squash it through a nonlinear activation function 𝑓𝑜𝑢(𝑧) to 

estimate vector 𝑝. The 𝑝 at the output layer is compared with target vector 𝑎 and loss function 𝐸 is determined. 

These all steps proceed in a forward phase and known as the forward propagation. This can be expressed 

mathematically as: 

 𝑝 =  𝑓𝑜𝑢(𝑤𝑜𝑐𝑤𝑓ℎ𝑢(𝑤𝑖𝑐𝑤𝑥 + 𝑏𝑢) + 𝑏𝑜) (1) 

 

Such that: 

 
𝑓(𝑧) =

1

1 + 𝑒−𝑧
 

(2) 
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Equation (2) is a commonly used type of nonlinear activation function known as the sigmoid activation function. 

Other various types of activation function are differentiable such as hyperbolic tangent, rectified linear unit, leaky 

rectified linear unit, SoftMax and many others, and nondifferentiable such as a threshold and many others. The 

suitable choice of activation function in the hidden unit changes with the application problem under consideration. 

The FNN attempt to minimize the loss function 𝐸 of the network by accomplishing 𝑝 approximately equal to 𝑎: 

 𝐸 =
1

𝑚
∑(𝑝ℎ − 𝑎ℎ)2

𝑚

ℎ=1

 (3) 

At each instance ℎ the error 𝑒ℎ can be expressed as: 

 𝑒ℎ = 𝑝ℎ − 𝑎ℎ (4) 

If 𝐸 is larger than predefined expected error ε, the connection weights are backpropagated by taking derivative of 

𝐸 with respect to each weight in the direction of descending gradient. This update the connection weights in 

gradient descent direction so that 𝑝  starts to become closer to 𝑎 . The backward steps to calculate gradient 

information and updating weight to minimize error function is known as backpropagation (BP). The forward 

propagation and backpropagation complete one iteration 𝑖 and are known as FNN training. After each iteration, 

the error function 𝐸𝑖 is recalculated and compared with 𝐸𝑖−1. If 𝑖 reaches to its predefined maximum limit or  𝐸𝑖 

converges/start increasing the training is stopped, else continued. The training of FNN is influenced by several 

reasons as highlighted in the introduction section and may be overcome by various experimental trails with 

appropriate learning algorithms and optimization techniques for fast and efficient convergence. 

4. Learning Algorithms 

In this section, the authors made an effort to uncover the answers to the questions highlighted in an introduction 

section. The proposed algorithms in the selected literature are reviewed to understand the inspiration, research 

gaps, merits, limitations, and application areas. In current practice, any single algorithm in FNN is not sufficient 

for all types of applications. There is always a trade-off between network generalization performance and learning 
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Figure 4. Feedforward Neural Networks with three layers (Input, hidden and Output) 
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speed. Some algorithms have the advantage of more efficient than others but maybe constrained by memory 

requirement, complex architecture, and/or more learning time. Since FNN development, many improvements 

have been made and many of them are mentioned in the below categories: 

4.1 Gradient learning algorithms for Network Training 

The first category in this paper is the learning algorithms proposed based on the BP gradient information concept, 

which is considered the reason for creating significant interest in the FNN topic. The BP gradient learning 

algorithms can be further subcategorized into two types: first order and second order. The first-order gradient 

trains the FNN by calculating the gradient information and update weight to reach a minimum of a loss function. 

The first order derivative of the error with respect to weight is calculated at the output layer at each iteration and 

distributed back to the whole network. However, the first order BP is considered slow because of the computation 

of first-order gradient information at each iteration. This increase the learning time and possibility of the algorithm 

to stuck at a local minimum. Researchers made efforts to improve the learning speed by incorporating second-

order gradient information to reach the loss function faster. Wilamowski and Yu (2010) explained that first order 

learning methods might need an excessive number of hidden units and iterations for convergence which can reduce 

their generalization performance for unseen data. Whereas second-order learning algorithms are powerful to learn 

but its complexity increases with increasing network size. A lot of computational memory is needed to store 

Jacobian 𝐉 and Hessian Matrix 𝐇 along with their inverse which can make it difficult for large training datasets. 

4.1.1 First order gradient algorithms 

The popular and well known first-order learning algorithms among the class of BP family is Gradient descent 

(GD). It backpropagates the error with respect to connection weights 𝑤 through layers to minimize a loss function 

𝐸 until it converges to minimal error (Rumelhart et al., 1986) : 

 ∇𝐸 =
𝜕𝐸

𝜕𝑤𝑖
=

𝜕𝐸

𝜕𝑜𝑢𝑡𝑖

𝜕𝑜𝑢𝑡𝑖

𝜕𝑛𝑒𝑡𝑖

𝜕𝑛𝑒𝑡𝑖

𝜕𝑤𝑖
 (5) 

where ∇𝐸 is a partial derivative of the error with respect to weight 𝑤, 𝑜𝑢𝑡𝑖 is the activation output and 𝑛𝑒𝑡𝑖 is the 

weighted sum of inputs of the hidden unit. The updated weight 𝑤𝑖+1 needed for the next iteration can be expressed 

as: 

 𝑤𝑖+1 = 𝑤𝑖−∝ ∇𝐸 (6) 

where ∝ is a learning rate hyperparameter. For the sake of simplicity in this study, the connection weights 𝑤 in 

the equations refer to all types of connection weights in the network, unless otherwise specified. The GD 

convergence is considered to be slow because the loss function is computed based on the whole training dataset. 

Increase in data size makes it slower and more time consuming for large application dataset (Wilson and Martinez, 

2003). Therefore, an improved form of GD known as Stochastic GD (SGD) was proposed to compute the gradient 

on each training data instance. If the loss function is convex it converges faster than GD to a global minimum, 

otherwise, a local minimum is guaranteed (Wang et al., 2017). The issue with SGD is that its convergence is not 



13 
 

smooth compared to GD and overshoots during training on some iterations which may be controlled to some 

extent by adjustment of learning rate. The drawbacks of both GD and SGD can be overcome by Mini Batch GD 

that takes equal size mini-batches 𝑁 of training data instead of whole training data or single training instance. 

Mini batch SD is more favorable due to its hybrid characteristics: stable and better convergence rate (Hinton et 

al., 2012). 

For GD: 

 𝑤𝑖+1 = 𝑤𝑖−∝ ∇𝐸, (𝑥, 𝑎) (7) 

For SGD: 

 𝑤𝑖+1 = 𝑤𝑖−∝ ∇𝐸, (𝑥ℎ , 𝑎ℎ) (8) 

For Mini batch GD: 

 𝑤𝑖+1 = 𝑤𝑖−∝ ∇𝐸, (𝑥ℎ:ℎ+𝑁, 𝑎ℎ:ℎ+𝑁) (9) 

The drawbacks of first-order GD and its variants algorithms (SGD and Mini batch GD) are that the number of 

iterations comparatively increases which make them far slower and stuck at a local minimum. 

4.1.2 Second order gradient algorithms 

The convergence problem of the first-order gradient was improved by applying the second order form. Newton 

method (NM), second order derivative, was proposed to increase the convergence by modifying GD to second 

order Hessian inverse matrix 𝐇−𝟏 along with first order ∇𝐸 to take larger steps towards the minimum of an 

objective function (Ypma, 1995): 

 𝑤𝑖+1 = 𝑤𝑖−∝ 𝐇−𝟏∇𝐸 (10) 

NM make use of second order 𝐇 and its inverse 𝐇−𝟏 to minimize loss function which makes it computationally 

expensive and unfeasible for real large model applications (Zeiler, 2012). The small networks with fewer 

parameters may be trained with NM to take advantage of better convergence speed compared to GD. Quasi 

Newton method (quasi NM) was proposed to address the drawback of NM and simplified by approximating the 

inverse of the Hessian matrix 𝐇 from the first order derivative. It updates the approximated 𝐇 and its inverse 𝐇−𝟏 

after each iteration which make it computationally less expensive compared to NM (Shanno, 1970). Several 

techniques such as Davidin-Fletcher-Powell (DFP), Broyden–Fletcher–Goldfarb–Shanno (BFGS), Limited-

memory BFGS (L-BFGS), Broyden's, Symmetric Rank 1 (SR1) and many other have been purposed in the 

literature to approximate 𝐇 and its 𝐇−𝟏 indirectly from the first order derivative of the loss function. Among all, 

BFGS has gain much popularity in the applications (Lewis and Overton, 2013). It computes 𝐇 and 𝐇−𝟏 expressed 

as: 

 𝐇𝐢+𝟏 =  𝐇𝐢 +
𝑜𝑖𝑜𝑖

𝑇

𝑜𝑖
𝑇𝜎𝑖

−
𝐇𝐢𝜎𝑖𝜎𝑖

𝑇𝐇𝐢
𝑻

𝜎𝑖
𝑇𝐇𝐢𝜎𝑖

 (11) 

Similarly, it's inverse 𝐇−𝟏can be calculated from Sherman-Morrison formula: 
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 𝐇𝐢+𝟏
−𝟏 = (𝐼 −

𝜎𝑖𝑜𝑖
𝑇

𝑜𝑖
𝑇𝜎𝑖

) 𝐇𝐢
−𝟏 (𝐼 −

𝑜𝑖𝜎𝑖
𝑇

𝑜𝑖
𝑇𝜎𝑖

) +
𝜎𝑖𝜎𝑖

𝑇

𝑜𝑖
𝑇𝜎𝑖

 (12) 

 

Such that: 

 𝑜𝑖 = ∇𝐸𝑖+1 − ∇𝐸𝑖 (13) 

 𝜎𝑖 = 𝑤𝑖+1 − 𝑤𝑖 (14) 

 𝑤𝑖+1 = 𝑤𝑖+∝ 𝑑𝑖 (15) 

 𝑑𝑖 = −𝐇𝐢
−𝟏∇𝐸𝑖 (16) 

The algorithm is initialized by the initial value of 𝑤0 and 𝐇0. Mostly, 𝐇0 is initially given the value of the identity 

matrix 𝐇0 = 𝐼. The algorithm first computes the position 𝑑0, as shown in Equation (16), from the initial inverse 

𝐇𝟎
−𝟏 and ∇𝐸0, then determines new weights, as shown in Equation (15), based on optimal step size ∝.  The change 

in weights 𝜎𝑖, as shown in Equation (14), and change in first order derivative 𝑜𝑖, as shown in Equation (13), are 

used to approximate 𝐇 and its inverse 𝐇−𝟏, as shown in Equation (11) and (12), respectively. This algorithm 

continues until 𝑤𝑖 converges. The quasi NM is more efficient than the NM but still, it requires computational 

memory which limits its applicability to medium-sized problems. To overcome the memory problem and 

contribute to improving the convergence rate (Setiono and Hui, 1995), a conjugate gradient method (CG) was 

recommended. For conjugate, the gradient of the two vectors needs to be orthogonal to reach a minimum of the 

cost function. If not orthogonal, it means the second vector need to travel along the previous vector to reach more 

nearer to a minimum point. Mostly, in GD, it takes slightly larger steps and deviates from the minimal point. The 

objective of conjugate gradient descent is to take a step along the gradient so that the next gradient vector should 

be orthogonal and nearer to zero error. The first orthogonal vector 𝑑0 can be computed from the initial guess such 

that: 

 𝑑0 = ∇𝐸0 (17) 

The next orthogonal vector 𝑑𝑖+1 can be expressed as: 

 𝑑𝑖+1 = ∇𝐸𝑖+1 + 𝛽𝑑𝑖 (18) 

Where 𝛽 is used to calculate new orthogonal vector direction and is known as a conjugate hyperparameter. The 

weights are updated as per below rule: 

 𝑤𝑖+1 = 𝑤𝑖+∝ 𝑑𝑖 (19) 

The conjugate gradient descent iteratively finds the best orthogonal gradient vector based on the previous vector 

with an inner product equal to zero and then update the weight parameters. The CG advantage over GD in that it 

converges faster but compared to other methods such as quasi NM and Levenberg Marquardt (LM), its 

convergence rate is less. In terms of memory, due to its second order, need more memory as compared to GD and 

less memory compared to quasi NM and LM (Hagan and Menhaj, 1994). To overcome the problem of both GD 

slow convergence and second-order gradient algorithms memory, Quickprop (QP) was proposed.  QP is second 

order iterative learning algorithm based on Newton’s method to find a minimum of the loss function. The purpose 
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of QP development was to speed up the convergence process by taking much larger steps to reach a minimum of 

loss function rather than GD infinitesimal small steps in weight space (Fahlman, 1988). The algorithm proceeds 

like GD, but for each weight, it keeps a copy of ∇𝐸𝑖−1and ∆𝑤𝑖−1: 

 ∆𝑤𝑖 =
∇𝐸𝑖

∇𝐸𝑖−1 − ∇𝐸𝑖
∆𝑤𝑖−1 (20) 

It explains that error vs. weight can be approximated by an upward parabola and change in the slope of error curve 

by each weight is not affected by all other weights, that are changing at the same time. For each weight, it computes 

gradient change and weight changes to determine the parabola: and rapidly jump to a minimum of this parabola. 

Although, QP convergence is faster than GD however it has some drawbacks. First, the previous gradient and 

weight information need to be stored after every iteration, secondly, it can behave haphazardly during convergence 

due to much larger steps which need to bring algorithm back to a minimum, and thirdly its zero-difference value 

in the denominator can overflow algorithm and may make it numerical unstable which needs to be solved by 

adding small constant value. 

To make learning faster, Levenberg-Marquardt Algorithm (LM) was proposed by combining both Gauss-Newton 

(GN) and GD to compute the best gradient direction. It is a method to solve nonlinear least-squares problems to 

minimize the sum of squared error (Hagan and Menhaj, 1994). Instead of computing directly Hessian matrix 𝐇, 

it works with gradient vector and Jacobin matrix 𝐉. The gradient vector ∇𝐸 of the loss function can be computed 

as:  

 ∇𝐸 = 2𝐉𝑇𝑒 (21) 

The 𝐇 can be approximated from the equation below: 

 ∇2𝐸 = 𝐇 =  2𝐉𝑇𝐉 (22) 

The weight parameter improvement process in LM is iterative such as: 

 ∆𝑤𝑖 = [𝐉𝑇𝐉 + 𝜇𝐼]−1𝐉𝑇𝑒 (23) 

where 𝐼  is an identity matrix and 𝜇 is damping hyperparameter factor. The 𝜇 is adjusted in each iteration to 

balance between GN and GD methods. If the objective function achievement is fast, 𝜇 is divided by some factor 

to bring algorithm closer to GN and if objective function achievement is slow in each iteration, 𝜇 is multiplied by 

some factor to move towards GD. In many applications, LM is very fast and converge to the local minimum 

rapidly, which may not be the global minimum. The LM has the disadvantage that it cannot be used with other 

loss function such as cross entropy and cannot be applied to constructive types of neural networks (Hunter et al., 

2012). The Jacobian matrix becomes large and needs a lot of memory with an increase in network size with limit 

its application on a large dataset. Therefore the learning speed of LM is less evident compared to GD when 

network size increase (Wilamowski and Yu, 2010). The LM limits its application to a fixed topology neural 

network. Therefore, Neuron by Neuron (NBN) was proposed to compute the gradient vector and Jacobian matrix 

for arbitrarily constructive neural networks. Wilamowski et al. (2008) highlighted that several improvements have 

been proposed in second order learning algorithms, but much better results can be achieved from Newton and LM 
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methods. The NBN was proposed to simplify the Jacobian calculation like gradient and make it workable for 

constructive algorithms. Jacobian is expressed in a square matrix of first order partial derivative: 

 𝐉 =
𝜕𝑒

𝜕𝑤
 (24) 

NBN calculates Jacobian in gradient vector form instead of the matrix by performing: 1) Forward computation, 

2) Backward computation and finally 3) Calculating Jacobian elements. In the forward computation, the inputs 

are processed to get neuron output, which is further processed to get the target output. During forward 

computation, the value of the slope of the neuron activation function is stored for the backward stage. In a 

backward step, the element of Jacobian is computed by multiplying the neuron delta with its slope and input 

weights. Finally, instead of using the Jacobian matrix to store values, they are summed into a gradient vector: 

 ∇𝐸 =
𝜕𝑒

𝜕𝑤
𝑒 (25) 

This enabled NBN to use with the constructive algorithm but with the additional cost of more memory requirement 

compared to LM. Hunter et al. (2012) argue that NBN is not perfect, but it can compete with other similar 

algorithms. Their experimental work shows that NBN achieved much better results than GD and almost similar 

results to LM.  

4.1.3 Application of Gradient Learning Algorithms 

The gradient learning algorithms have gained much attention from the authors compared to the traditional 

statistical techniques. Gradient learning algorithms help to make a more informed decision from the available 

information. Table III highlights some of the applications of gradient learning algorithms that researchers used to 

demonstrate the effectiveness of algorithms during the comparative study. Before the year 2000, the range of real-

world applications appears to be on less side. The gradient learning algorithms are among the early attempts that 

researchers investigated to build FNN. In the early attempt phase, the possible reason for the unavailability of 

public real-world application data sources and less research interest might enforce researchers to rely highly on 

using artificial benchmarking data.  

The successful application of gradient learning algorithms is dependent on user expertise to decide and adjust 

hyperparameters correctly. The major concern of researchers and users in gradient learning algorithms is to find 

a method to converge network faster. It is believed that SGD helps to achieve generalization performance many 

times faster than batch learning. Wilson and Martinez (2003) work demonstrated that SGD was able to achieve 

required accuracy an average 20 times faster compared to batch learning during classifying real-world problems 

such as credit card requests, patient diabetes, flower species, beverages types, country religions, crime, voters, 

and various health diseases. Similar, while dealing with problems having more than 1000 instances such as 

satellite images, shuttle controls and displaying seven-segment digits, the SGD achieved required accuracy an 

average 70 times faster than batch learning. Increasing the data size further reduces the speed of batch learning 

and may take more than 300 times as long compared to SGD for problems having instance greater than 10,000. 
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The issue with first-order gradient learning is slow learning ability and their usage in a fixed topology neural 

network can make the task more time-consuming. Deciding too many hidden units in network may decrease the 

learning speed and cause network to become slow and unstable. Using second-order gradient learning algorithms 

overcome the limitation of first-order but are constrained with memory requirement. Setiono and Hui (1995) 

demonstrate that by using second-order learning algorithm such as quasi NM along with constructive neural 

network limits the growth of hidden units and are helpful in achieving requirement accuracy in less time. Their 

work on breast cancer problem was able to increase prediction accuracy rate to 2.92%-3.15%. 

Similar to GD popularity, the another most widely used learning algorithm in many application areas and 

embedded in many simulation packages for training network is LM. The learning of LM is considered to be an 

average 16 – 136 times faster than another second order CG (Hagan and Menhaj, 1994), but limits their 

applicability to least square loss function and fixed topology neural networks. Hunter et al. (2012) explain that 

second order NBN can be applied to constructive neural network as an alternative which performance is identical 

to LM. 

4.2 Gradient free algorithms 
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The gradient learning algorithms randomly assign connection weights to the network and iteratively tune them to 

get an optimal weight for a network with better error minimization capability. The disadvantages associated with 

gradient learning algorithms are that it requires user expertise to build an optimal FNN. The better choice of 

hyperparameters such as learning rate, momentum, regularization, and initial weight may increase convergence 

but need a lot of trial and error approaches to get the best possible parameters. This may cause gradient learning 

algorithms to trap the FNN at a local minimum which may be far away from the global minimum and may affect 

the generalization performance. In terms of convergence rate, it can be increased by assigning a large learning 

rate, however, the algorithm will become unstable, whereas for a low learning rate it may converge slowly and 

may take even hours, days or months to solve large dataset with complex patterns. Another major issue associated 

with gradient learning algorithms is that it cannot take nondifferentiable activation function such as threshold in 

the hidden units due to its zero derivative. For this case, an alternative strategy is to use differentiable activation 

functions by multiplying a variable with some constant value in the exponential of the activation function. This 

causes an increase in learning time because of additional computations. 

Application Description 

Hepatitis Predicting whether the patient will survive or die suffering from hepatitis (Wilson and Martinez, 2003) 

Animals Classifying animals into seven classes based on their physical characteristics (Wilson and Martinez, 

2003) 

Flowers species Classifying the flowers into different species from available information on the width and length of 

petals and sepals (Wilson and Martinez, 2003) 

Beverages Identifying the type of beverages in term of its physical and chemical characteristics (Wilson and 

Martinez, 2003) 

Country religion Predicting the religion of the countries from the information such as population size and their flag 

colours (Wilson and Martinez, 2003) 

Object detection Predicting whether object is rock or mine from the signal information obtained from various sensors 

(Wilson and Martinez, 2003) 

Crime Identifying of glass type used in crime scene based on chemical oxide content such as sodium, 

potassium, calcium, iron and many others (Wilson and Martinez, 2003) 

Voters Classifying voters based on their education, crime, immigration, tax payers and many others (Wilson 

and Martinez, 2003) 

Heart diseases Diagnosing and categorizing the presence of heart diseases in a patient by studying the previous history 

of drug addiction, health issues, blood tests, and many others (Wilson and Martinez, 2003) 

Liver disorder Diagnosing alcohol-related liver disorder based on the reports of various blood tests (Wilson and 

Martinez, 2003) 

Earth atmosphere Determining the strength of ions and free electrons on the layer of earth atmosphere (Wilson and 

Martinez, 2003) 

Outdoor objects 

segmentation 

Segmenting the outdoor images into many different classes such as window, path, sky and many others 

(Wilson and Martinez, 2003) 

Vowel recognition Recognizing vowel of different or same languages in the speech mode (Wilson and Martinez, 2003) 

Breast cancer Diagnosing breast cancer as a malignant or benign based on the feature extracted from the cell nucleus 

(Setiono and Hui, 1995; Wilson and Martinez, 2003) 

Credit card Deciding to approve or reject credit card request based on the available information such as credit score, 

income level, gender age, sex, and many others (Wilson and Martinez, 2003) 

Diabetes Diagnosing whether the patient has diabetes based on certain diagnostic measurements (Wilson and 

Martinez, 2003) 

Silhouette vehicle images 

classification 

Classifying image into different types of vehicle based on the feature extracted from the silhouette 

(Wilson and Martinez, 2003) 

Seven segment display Predicting number one to nine in seven segmental display (Wilson and Martinez, 2003) 

Mushroom Differentiating poisonous and non-poisonous mushroom based on the mushroom different physical 

characteristics (Wilson and Martinez, 2003) 

Shuttle Deciding the type of control suitable for the shuttle during an auto landing rather than manual control 

(Wilson and Martinez, 2003) 

English letters Identifying black and white image as one of the English letters among twenty-six capital letters (Wilson 

and Martinez, 2003) 
Table III. Applications of Gradient learning algorithms  
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Researchers made an extensive effort to improve the gradient learning algorithms. Huang et al. (2015) comment 

that improvement in gradient learning lead to faster learning speed and better generalization performance, but still 

most of them cannot guarantee a global solution.  Researchers proposed that the issues associated with gradient 

learning algorithms can be fixed in a state-of-the-art way by learning FNN without gradient learning algorithms 

known as gradient free learning in the forward steps. The gradient free algorithms eliminate the need for chain 

delta rule to calculate the derivative of the loss function with respect to each weight and updating them for the 

next iteration. Gradient free learning algorithms proposed to analytically calculate connection weights for FNN. 

Some of the advantages of gradient free algorithms are that: 1) They are simple, fast, and do not need complex 

hyperparameter adjustments, 2) no need of backpropagating error, and 3) can work directly with both 

differentiable and non-differentiable activation function (Ferrari and Stengel, 2005). The gradient free algorithms 

are useful in that they reduce training time significantly, however, it has a drawback in that it increases network 

complexity. The number of hidden unit’s generation increase many times which may cause overfitting. Following 

are the popular algorithms which eliminate the use of gradient information. 

4.2.1 Probability and General Regression 

Probabilistic Neural Network (PNN) was proposed for classification problems (Specht, 1990), whereas, General 

Regression Neural Network for regression problems (Specht, 1991). Both algorithms were proposed to address 

the slowness of the backpropagation feedforward neural network (BPFNN) by doing one pass learning. They are 

similar in structure and do not need iterative tuning and work in a highly parallel structure. PNN finds the decision 

boundaries between pattern, whereas, GRNN estimate continuous dependent variable. The network architecture 

consists of four layers: input, pattern, summation, and output. The input contains the input features, pattern layer 

calculates the activation function from a Euclidian distance, summation layer takes summation of training output 

data and activation function in nominator part and summation of activation functions in denominator part, and 

output layer divides the nominator part by the denominator part of summation layer. The output layer can be 

expressed as: 

 𝑝ℎ =
∑ 𝑎ℎ 𝑒

−(
𝑑ℎ

2

2𝜎2)

∑ 𝑒
−(

𝑑ℎ
2

2𝜎2)

 (26) 

where 𝑑ℎ
2 is Euclidean distance and 𝑒

−(
𝑑ℎ

2

2𝜎2)
 is the activation function. The best value of kernel 𝜎 is estimated by 

holdout or validation method. PNN and GRNN are considered faster than the BPFNN and learn in one pass which 

means in the forward direction. The major drawback is that it requires more memory space compared to BPFNN 

and separate algorithms are built for classification and regression problems. 

4.2.2 Extreme Learning Machine 

Huang, Zhu, et al. (2006) mentioned that the learning speed of traditional FNN is far slower which limits its 

applicability in many application areas. Two possible reasons are: 1) Slow learning ability of gradient-based BP 
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algorithms, and 2) Iteratively tuning of all parameters in the network by gradient learning algorithms. They 

proposed a simple algorithm known as Extreme learning machine (ELM) for single layer FNN (SLFN). It 

randomly chooses hidden units 𝑈, and analytically determine only output connection weights 𝑤𝑜𝑐𝑤. The 𝑈 are 

considered in a linear relationship to the output unit 𝑎 and 𝑤𝑜𝑐𝑤 are calculated from the expression: 

 𝑈𝑤𝑜𝑐𝑤 = 𝑎ℎ (27) 

 𝑤𝑜𝑐𝑤 = 𝑈ϯ𝑎ℎ (28) 

where 𝑈ϯ= (𝑈𝑇𝑈)−1𝑈𝑇 is Moore-Penrose generalized inverse of 𝑈. This algorithm has gained much popularity 

due to its learning simplicity. It steps forward, and no BP gradient information is needed to compute weights. 

Their experimental results based on artificial and real-world regression and classification problems demonstrated 

that ELM can achieve better generalization performance in most cases and learn many times faster than traditional 

learning algorithms of FNN. In addition, more stable results and better generalization can be achieved by adding 

positive value (1/𝜆) in the diagonal of (𝑈𝑈𝑇) or (𝑈𝑇𝑈) such that (Huang et al., 2012): 

when ℎ < 𝑟: 

 𝑤𝑜𝑐𝑤 = 𝑈𝑇(
1

𝜆
+ 𝑈𝑈𝑇)−1𝑎ℎ (29) 

when ℎ > 𝑟: 

 𝑤𝑜𝑐𝑤 = (
1

𝜆
+ 𝑈𝑇𝑈)−1𝑈𝑇𝑎ℎ (30) 

where 𝑟 is the number of hidden units. ELM limits its applicability to batch learning, whereas, one by one or 

chunk by chunk data (mini-batches) of fixed or varying size can be learned through Online Sequential ELM (OS-

ELM) algorithm (Liang et al., 2006). OS-ELM working methodology idea is similar to ELM. The hidden units’ 

parameters are randomly generated, and output weights are analytically calculated. Unlike other GD sequential 

algorithms with many hyperparameters, OS-ELM only specifies the number of hidden units. The OS-ELM has 

several advantages that it can learn chunk data of fixed or varying size, it does not depend on past data and only 

new arrived chunk data is learned, the chunk that has been learned is discarded from chunk size and is suitable 

even if there is no prior information that how large training example will be a chunk. 

Like BP, the limitation of ELM is that the optimal number of hidden units are selected based on trial and error 

approach. The ELM is learned with some initial guess of hidden units and then experimental trials are performed 

with different hidden units to select the best optimal network having a hidden unit’s capable of maximum error 

reduction. Although the learning speed of ELM is much faster than traditional BP, however the initial setup to 

find optimal hidden units may increase the total trial and error time (Han et al., 2017). Incremental ELM (I-ELM), 

an extension of ELM, was proposed to solve the problem of hidden units allocation (Huang, Chen, et al., 2006). 

The key difference is that I-ELM is a constructive topology type, whereas ELM is a fixed topology type FNN.  I-

ELM initialize with one hidden unit and add one by one hidden unit until error converges or maximum hidden 

units are achieved. The output weight for the new hidden unit can be computed from the expression: 
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 𝑤𝑟
𝑜𝑐𝑤 =

𝐸𝑈𝑟
𝑇

𝑈𝑟𝑈𝑟
𝑇 (31) 

Initially, the error 𝐸 is set to 𝑎ℎ such that 𝐸=𝑎ℎ, and after adding a new hidden unit, the error is recalculated as: 

 𝐸 = 𝐸 − 𝑤𝑟
𝑜𝑐𝑤𝑈𝑟 (32) 

Adding hidden unit one by one results in redundant hidden units in I-ELM which will make network size large 

and complex. Some of the hidden unit’s contribution to error reduction might be very low and can be omitted. 

Efforts were made to compact I-ELM network size without losing generalization accuracy. Convex I-ELM (CI-

ELM) was proposed to recalculate the 𝑤𝑜𝑐𝑤 based on Barron’s convex optimization technique to improve the 

convergence rate of I-ELM (Huang and Chen, 2007). In CI-ELM, 𝑤𝑟
𝑜𝑐𝑤 for the randomly generated hidden unit 

is calculated as: 

 𝑤𝑟
𝑜𝑐𝑤 =

𝐸. [𝐸 − (𝐹 − 𝑈𝑟]𝑇

[𝐸 − (𝐹 − 𝑈𝑟]. [𝐸 − (𝐹 − 𝑈𝑟]𝑇
 (33) 

Where 𝐹 = 𝑎 is the target vector. It recalculates the 𝑤𝑜𝑐𝑤 of all existing hidden units if 𝑟 > 1, and error as 

expressed below: 

 

 𝑤𝑖
𝑜𝑐𝑤 = (1 − 𝑤𝑟

𝑜𝑐𝑤)𝑤𝑖
𝑜𝑐𝑤 (34) 

 𝐸 = (1 − 𝑤𝑟
𝑜𝑐𝑤)𝐸 − 𝑤𝑟

𝑜𝑐𝑤(𝐹 − 𝑈𝑟) (35) 

The experimental results with the constraint of 200 hidden units demonstrated that CI-ELM achieved better 

generalization performance and approximately similar learning time compared to I-ELM. CI-ELM can converge 

faster with more compact architecture while maintaining I-ELM simplicity and efficiency. Similarly, Enhanced 

I-ELM (EI-ELM) was proposed to compact I-ELM by adding some set of candidate units and selecting a candidate 

unit as a hidden unit having a maximum capability of error reduction (Huang and Chen, 2008). The hidden unit 

addition in I-ELM might take it nearer or away from the loss function. The hidden units away from loss function 

may not contribute to error reduction and can be omitted. The EI-ELM add some number of candidate units and 

one nearer to the loss function is selected as a new hidden unit and added to the network. In such a case, a number 

of hidden units in EI-ELM will be less and the network size will be more compact compared to I-ELM with the 

same amount of training time.  

Feng et al. (2009) address two main issues of ELM: 1) How to choose optimal hidden units in ELM, and 2) 

whether ELM computation complexity can be further reduced given large training examples requiring many 

hidden units. The issues were addressed by proposing Error Minimized ELM (EM-ELM) to automatically 

determine the number of hidden units rather than the trial and error approach. It works by adding hidden units one 

by one or group by group (with varying group size) and update output weights in a fast-recursive way. The 

advantage of EM-ELM is that it reduces the computational complexity by only updating the output weights 

incrementally each time rather than ELM which needs to recalculate the entire output weights when architecture 

is changed. The experimental work demonstrated that EM-ELM achieved similar generalization performance but 
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faster than ELM. The hidden units generated by EM-ELM were similar to ELM which implies that EM-ELM can 

directly calculate hidden units rather than the trial and error approach. Yang et al. (2012) added that the learning 

speed of ELM and I-ELM are faster, however, there are two major unsolved problems: 1) For ELM, the selection 

of an optimal number of hidden units is still unknown and trial and error approach are adopted, and 2) I-ELM has 

solved the problem of ELM by adding hidden units one by one. However, the learning speed of I-ELM increases 

many times compared to ELM. They proposed an incremental learning algorithm known as Bidirectional ELM 

(B-ELM) to compact the I-ELM architecture without affecting learning effectiveness. In B-ELM, some of the 

hidden units are not randomly generated, and it tries to find the best hidden unit parameters (𝑤𝑖𝑐𝑤, 𝑏𝑢) to reduce 

𝐸 as quickly as possible. In B-ELM, when hidden unit 𝑟𝜖 {2𝑛 + 1, 𝑛𝜖𝒁}, the hidden units parameters are randomly 

generated similar to I-ELM, whereas, when hidden unit 𝑟𝜖 {2𝑛, 𝑛𝜖𝒁}, the hidden units parameters are calculated 

instead of randomly generated to converge faster. The experimental results on several benchmarking and real-

world examples demonstrate that B-ELM is ten to a hundred times faster than existing I-ELM, EI-ELM and EM-

ELM with more compact architecture. This may make it more favorable in a real application by reacting to new 

observation faster after training and deployment. 

Ying (2016) highlighted that I-ELM merits are obvious but have four drawbacks which need to be improved: 1) 

Generate redundant units, 2) number of hidden units are sometimes larger than training examples, 3) the solution 

is not least squares indicating that it is not optimal, and 4) rarely used to solve multiclass classification problems. 

The proposed CI-ELM and EI-ELM may learn faster and build more compact architecture; however, the 

drawbacks are not settled. They proposed Orthogonal I-ELM (OI-ELM) by incorporating a Gram-Schmidt 

orthogonalization method in I-ELM to obtain the least squares solution. It randomly generates one hidden unit 

similar to I-ELM and calculates its output 𝑈𝑟. The Gram-Schmidt orthogonalization method is applied to hidden 

unit output to determine the orthogonal vector 𝑉𝑟 and if its norm is greater than the predefined value, it is added, 

else eliminated. For 𝑤𝑟
𝑜𝑐𝑤 calculation, the basic idea is similar to I-ELM with the replacement of 𝑉𝑟 with 𝑈𝑟 vector 

in Equation (31). Their experimental work demonstrates that OI-ELM achieved more a compact network and 

faster convergence compared to ELM, I-ELM, CI-ELM, and EI-ELM. Inspired from the idea of (Ying, 2016), 

Zou et al. (2018) proposed a new algorithm called OI-ELM based on driving amount (DAOI-ELM) to obtain better 

generalization performance with more compact architecture. DAOI-ELM determine 𝑉𝑟 similar to OI-ELM with 

modification in 𝑤𝑟
𝑜𝑐𝑤. It adds 𝐸𝑟−1 to 𝑉𝑟 while calculating 𝑤𝑟

𝑜𝑐𝑤. There comparison of DAOI-ELM with I-ELM, 

OI-ELM and B-ELM on several benchmarking and real-world dataset demonstrated the effectiveness of DAOI-

ELM.  

Similarly, for ELM, Wang et al. (2016) explained that ELM is sensitive to the selection of an optimal number of 

hidden units in the layer and improper hidden units can lead to suboptimal accuracy. They proposed Self-adaptive 

ELM (SaELM) to find the best possible number of hidden units for the network. SaELM initializes by defining 

the minimum and maximum possible hidden units with its interval, width factor 𝑄 and scale factor 𝐿. The 

advantage of a self-adaptive mechanism is that it helps SaELM to search for the best possible hidden units with 

minimum error capability and the same was demonstrated in their experimental work. Han et al. (2017) argue that 
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much efforts have been dedicated to convergence accuracy of I-ELM, whereas, its numerical stability (condition) 

is generally ignored. The numerical stability is directly related to the input weight and hidden biases. The issue 

was addressed by combining particle swarm optimization (PSO) and EM-ELM called IPSO-EM-ELM. The 

algorithm proposed to add one by one hidden unit to the existing network. PSO is recommended to optimize the 

input weight and hidden bias in the new hidden unit. The optimal hidden unit is selected based on not only the 

minimum error of training data but also considering the condition value of the hidden unit output matrix. The 

output weight needs to be incrementally updated similar to EM-ELM. The experimental work on regression 

problems demonstrates the effectiveness of IPSO-EM-ELM in term of generalization performance and compact 

architecture compared to I-ELM, EI-ELM, EM-ELM and dynamic ELM (D-ELM), however, IPSO-EM-ELM 

requires more training time because of use of PSO to select optimal hidden units.  

Zong et al. (2013) highlighted that ELM provides a better performance, however, none of the work in ELM 

mentioned the problem of unbalanced data distribution. Typically, imbalance class distributions are balanced by 

adopting either sampling techniques (oversampling or undersampling) or algorithmic approaches. They proposed 

an algorithm named as Weighted ELM (W-ELM) to handle both binary and multi-class imbalance data problems. 

Unlike, ELM which considers all training examples equal, W-ELM add a penalty term to errors corresponding to 

different inputs. Similar to Equations (29) and (30), it derived two versions of 𝑤𝑜𝑐𝑤: 

when ℎ < 𝑟: 

 𝑤𝑜𝑐𝑤 = 𝑈𝑇(
1

𝜆
+ 𝑊𝑈𝑈𝑇)−1𝑊𝑎ℎ (36) 

when ℎ > 𝑟: 

 𝑤𝑜𝑐𝑤 = (
1

𝜆
+ 𝑈𝑇𝑊𝑈)−1𝑈𝑇𝑊𝑎ℎ (37) 

where 𝑊 is a diagonal weight matrix defined for every training example. It determines what degree of re-balance 

user is concerned and how much boundary can further be pushed towards the majority class. When training 

example comes from minority class, it is assigned a relatively higher value of 𝑊 than others. Experimental work 

demonstrates that W-ELM not only obtains better generalization performance compared to ELM on the 

imbalanced dataset by allocating importance to minority class compared to majority class but also maintained 

good performance on the well-balanced dataset. 

ELM and its variant are mainly focused on classification and regression problems and still encounter difficulties 

in natural scenes (e.g., signals and visual) and practical applications (voice recognition and image classification) 

due to its shallow architecture which is unable to learn features even with a large number of hidden units. In many 

cases, a multilayer solution is required for feature learning before classification is performed (Tang et al., 2016). 

Kasun et al. (2013) proposed Multilayer ELM (ML-ELM) for classification based on extreme learning machine 

autoencoder (ELM-AE). ELM was modified to ELM-AE by keeping the output same as input for autoencoder 

and estimate weight for the hidden layer. The number of successive hidden layers were calculated in the same 



24 
 

manner as ELM methodology to create layer weights for ML-ELM. Finally, the output layer weight for ML-ELM 

is calculated using regularized least squares. Tang et al. (2016) highlighted that the encoded output from ELM-

AE is directly fed into the last layer for decision making before least squares, without random feature mapping 

which violates the ELM universal approximation-based theories. Tang et al. (2016) proposed a new Hierarchical 

ELM (H-ELM) consisting of two parts: unsupervised feature encoding based on new 𝑙1 regularized ELM 

autoencoder to extract multilayer sparse features of input data, and supervised feature classification based on ELM 

is applied for decision making. H-ELM is based on universal approximation capability theories of ELM and results 

demonstrates its superior performance over ELM and other FNN autoencoders. 

4.2.3 Semi Gradient and Iterative Algorithms 

The No-propagation (No-Prop) simplifies the learning mechanism of multi-layer BPFNN by randomly generating 

𝑤𝑖𝑐𝑤 and hidden connection weights 𝑤ℎ𝑐𝑤 and only iteratively train 𝑤𝑜𝑐𝑤 by BP learning algorithm (Widrow et 

al., 2013).  The algorithm cannot be considered as a complete gradient free learning because it uses gradient 

information in its last layer. However, due to its random generation of 𝑤𝑖𝑐𝑤 and 𝑤ℎ𝑐𝑤, and only tuning last layer 

𝑤𝑜𝑐𝑤 , it is named as No-Prop. The No-Prop guarantee to minimize the loss function when the number of training 

patterns is less than or equal to 𝑤𝑜𝑐𝑤 connecting the last hidden layer to the output units. This criterion is referred 

to as the least mean square error capacity (LMS capacity). The No-Prop algorithm explains that when the training 

pattern is under or at LMS capacity, the output unit will deliver the desired output pattern perfectly and the 

generalization performance will be like BP with much faster results. However, if the training pattern is 

overcapacity, the BP works better than No-Prop. In such case, increasing the number of hidden units of the last 

layer will increase the number of output weights and again the training pattern will become under or at capacity 

and performance of No-Prop will increase. 
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Cao et al. (2016) argue that the random generation of hidden units’ parameters, and analytically calculation of 

output weights become infeasible and generalization performance drops when the dataset is extremely large. 

Iterative Feedforward Neural Networks with Random Weights (IFNNRWs) was proposed to overcome the issues 

Application Description 

Boston house price Estimating the price of houses based on the availability of clean quality air (Feng et al., 2009; Han et 

al., 2017; Huang et al., 2012; Huang, Chen, et al., 2006; Huang and Chen, 2007, 2008; Ying, 2016) 

California house price Predicting the house prices based on geographical location and infrastructure of the house (Han et al., 

2017; Huang, Chen, et al., 2006; Huang, Zhu, et al., 2006; Huang and Chen, 2007, 2008; Liang et al., 

2006; Ying, 2016) 

Species Determining the age of species from their known physical measurements (Feng et al., 2009; Han et al., 

2017; Huang et al., 2012; Huang, Chen, et al., 2006; Huang, Zhu, et al., 2006; Huang and Chen, 2007, 

2008; Liang et al., 2006; Ying, 2016; Zong et al., 2013) 

Aircrafts ailerons Controlling the ailerons of a fighter aircrafts (Han et al., 2017; Huang, Chen, et al., 2006; Huang, Zhu, 

et al., 2006; Huang and Chen, 2007, 2008) 

Aircrafts elevators Controlling the elevators of a fighter aircrafts (Han et al., 2017; Huang, Chen, et al., 2006; Huang, Zhu, 

et al., 2006; Huang and Chen, 2007, 2008) 

Computers system 

activity 

Measuring the portion of time that central processing units is running in user mode, system mode, 

waiting mode and idle mode from the collection of computers systems activity (Huang, Zhu, et al., 

2006; Huang and Chen, 2008) 

House prices in specific 

region 

Determining the median prices of houses based on prices in the region and demographic information. 

(Han et al., 2017; Huang, Chen, et al., 2006; Huang, Zhu, et al., 2006; Huang and Chen, 2007, 2008; 

Ying, 2016) 

Adult income Determining the income of adult based on demographic information (Zong et al., 2013) 

Automobile price Determining the prices of automobile based on various auto specifications, the degree to which auto is 

risky than price, and an average loss per auto per year (Feng et al., 2009; Huang et al., 2012; Huang, 

Chen, et al., 2006; Huang, Zhu, et al., 2006; Huang and Chen, 2007, 2008; Ying, 2016) 

Cars fuel consumption Determining the fuel consumption of cars in terms of engine specification and car characteristics (Liang 

et al., 2006; Yang et al., 2012) 

Drug compound Designing modern drug by predicting whether the compound is active or inactive to the binding target 

(Huang, Zhu, et al., 2006; Ying, 2016) 

Computer machine Estimating the relative performance of a computer central processing unit considering the memory and 

channels requirements (Feng et al., 2009; Han et al., 2017; Huang, Chen, et al., 2006; Huang, Zhu, et 

al., 2006; Huang and Chen, 2007, 2008; Yang et al., 2012; Ying, 2016) 

Servomechanism rise time Estimating servomechanism rise time in term of two choices of mechanical linkage and two gain setting 

(Huang, Zhu, et al., 2006; Huang and Chen, 2008; Ying, 2016) 

Breast cancer Diagnosing breast cancer as a malignant or benign based on the feature extracted from the cell nucleus 

(Huang, Zhu, et al., 2006; Ying, 2016; Zong et al., 2013) 

Telemarketing Measuring the accomplishment of telemarketing calls for marketing bank long term deposits (Huang, 

Zhu, et al., 2006; Huang and Chen, 2008; Yang et al., 2012) 

Stock price Discovering the stock price trend of the company based on information generated by similar competitive 

companies (Huang, Zhu, et al., 2006; Ying, 2016) 

Diabetes Diagnosing whether the patient has diabetes based on certain diagnostic measurements (Cao et al., 2016; 

Huang, Zhu, et al., 2006; Huang and Chen, 2008; Tang et al., 2016; Zong et al., 2013) 

Soil classification Classifying image according to a different type of soil such as grey soil, vegetation soil, red soil and 

many others based on a database consisting of the multi-spectral images (Feng et al., 2009; Huang et 

al., 2012; Huang, Zhu, et al., 2006; Liang et al., 2006; Tang et al., 2016; Ying, 2016; Zong et al., 2013) 

Outdoor objects 

segmentation 

Segmenting the outdoor images into many different classes such as window, path, sky and many others 

(Feng et al., 2009; Huang et al., 2012; Huang, Zhu, et al., 2006; Liang et al., 2006; Ying, 2016) 

Shuttle Deciding the type of control suitable for the shuttle during an auto landing rather than manual control 

(Huang et al., 2012; Huang, Zhu, et al., 2006; Zong et al., 2013)  

Clustering Clustering the dataset into different classes based on available target vector (Huang, Zhu, et al., 2006; 

Zong et al., 2013) 

Credit card Deciding to approve or reject credit card request based on the available information such as credit score, 

income level, gender age, sex, and many others (Tang et al., 2016) 

Liver disorder Diagnosing alcohol-related liver disorder based on the reports of various blood tests (Tang et al., 2016) 

Cancer Classification of the leukaemia cancer as acute lymphoblast leukaemia or acute myeloid leukaemia 

(Tang et al., 2016; Zong et al., 2013) 

Gene expression level Analysing the gene correlation expression level in different tissues of the tumor colon and normal colon 

(Tang et al., 2016; Zong et al., 2013) 

Object discrimination Discriminating stars from galaxy using broadband photometric information (Huang et al., 2012) 

Mushroom Differentiating poisonous and non-poisonous mushroom based on mushroom different physical 

characteristics (Tang et al., 2016) 

Flowers species Classifying the flowers into different species from available information on the width and length of 

petals and sepals (Huang et al., 2012; Tang et al., 2016; Wang et al., 2016; Zong et al., 2013) 
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generated from random generation. The iterative algorithm IFNNRWs is developed which iteratively tune output 

connection weight based on 𝑙2  model. It randomly generates input weight and hidden units but calculates 

iteratively 𝑤𝑜𝑐𝑤 as expressed below: 

Crime Identifying glass type used in crime scene based on chemical oxide content such as sodium, potassium, 

calcium, iron and many others (Cao et al., 2016; Huang et al., 2012; Tang et al., 2016; Ying, 2016; Zong 

et al., 2013) 

DNA splicing Recognizing exon/intron and intron/exon boundaries in the DNA splicing (Huang et al., 2012; Liang et 

al., 2006; Tang et al., 2016; Zong et al., 2013) 

Industrial strike volume Estimating the industrial strike volume for the next fiscal year considering key factors such as 

unemployment, inflation and labor unions (Huang et al., 2012) 

Weather forecasting Forecasting weather in terms of cloud appearance (Huang et al., 2012) 

Dihydrofolate reductase 

inhibition 

Predicting the inhibition of dihydrofolate reductase by pyrimidines (Huang et al., 2012; Huang and 

Chen, 2008) 

Human body fats Determining the percentage of human body fats from key physical factors such as weight, age, chest 

size and other body parts circumference (Huang et al., 2012) 

Heart diseases Diagnosing and categorizing the presence of heart diseases in a patient by studying the previous history 

of drug addiction, health issues, blood tests, and many others (Huang et al., 2012) 

Mental disorder Testing mental behaviour of the patient from inflated balloons (Huang et al., 2012) 

Earthquake strength Forecasting the strength of earthquake given its latitude, longitude and focal point (Huang et al., 2012) 

Presidential election Estimating the proportion of voter in the presidential election based on key factors such as education, 

age, and income (Huang et al., 2012) 

Robot end effector Determining the distance of robot end effector from a target based on the robot positions and angles 

(Huang and Chen, 2008) 

Concrete strength Determining slump, flow and compressive strength of the concrete from influencing ingredients such 

as cement, water, ash, and many others (Yang et al., 2012; Zou et al., 2018) 

Beverages quality Determining quality of same class of the beverages based on relevant ingredients (Tang et al., 2016; 

Wang et al., 2016; Yang et al., 2012; Zou et al., 2018) 

Industrial fault diagnosis Diagnosing fault of the industrial systems such as Tennessee-Eastman Process (Zou et al., 2018) 

Heating, ventilation and 

air-conditioning 

Determining the heating load and cooling load of the residential building by considering the design 

layout of the walls, rooms, and surface (Zou et al., 2018) 

Forest burned area Predicting the burned area of the forest considering various environmental and weather conditions (Zou 

et al., 2018) 

Stock exchange market Studying relationship of the 100-index stock exchange market with other international stock market 

indices (Zou et al., 2018) 

Protein localization Predicting protein localization by studying the cell membranes characteristics (Zong et al., 2013) 

Patient disease Diagnosing whether the patient is suffering from hypothyroidism or hyperthyroidism (Zong et al., 2013) 

Page block segmentation Segmenting the type of page block as text, horizontal line, graphics, vertical line or picture (Zong et al., 

2013)  

Breast cancer Studying the effect of breast cancer by predicting that the patient will survive less or more than five 

years (Zong et al., 2013) 

Handwritten images 

classification 

Classifying images of the handwritten digits (Kasun et al., 2013; Tang et al., 2016) 

Object identification Detecting whether the object is a car or not from its side view (Tang et al., 2016) 

Hand gestures Extracting useful information from the hand gesture (Tang et al., 2016) 

Appearance changes Modelling and tracking of appearance changes such as pose variation, shape deformation, illumination 

change, camera motion, and many others (Tang et al., 2016) 

Energy particles Classifying energy particles either as gamma or hadron (Cao et al., 2016) 

Human faces gestures Recognizing human faces gestures such as head pose, facial expression, eyes state, and many others 

(Cao et al., 2016) 

Beverages Identifying the type of beverages in term of its physical and chemical characteristics (Huang et al., 2012) 

Vowel recognition Recognizing vowel of different or same languages in the speech mode (Huang et al., 2012; Tang et al., 

2016; Zong et al., 2013) 

Silhouette vehicle images 

classification 

Classifying image into different types of vehicle based on the feature extracted from the silhouette 

(Huang et al., 2012; Ying, 2016; Zong et al., 2013) 

English letters Identifying black and white image as one of the English letters among twenty-six capital letters (Feng 

et al., 2009; Huang et al., 2012; Tang et al., 2016; Ying, 2016) 

Handwritten text 

recognition 

Recognizing isolated, touching, overlapping and cursive handwritten text from digital images of the 

city, states, Zip codes, and alphanumeric characters (Huang et al., 2012; Tang et al., 2016; Zong et al., 

2013) 

Basketball winning Predicting basketball winning team based on players, team formation and actions information (Huang 

et al., 2012) 
Table IV. Applications of Gradient free learning algorithms  
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 𝑤𝑖+1
𝑜𝑐𝑤 =

1

1 +  𝜆
((𝐼 − 𝑈𝑇𝑈)𝑤𝑖

𝑜𝑐𝑤 + 𝑈𝑇𝑈) (38) 

The advantages of this algorithm are that 𝑙2  regularization improve its generalization performance. Unlike 

algorithms which are based on Moore-Penrose generalized Inverse of hidden unit’s which consumes a lot of 

memory with a number of examples increases, IFNNRWs is more stable and unaffected by increasing the number 

of hidden units.  

4.2.4 Application of Gradient free learning Algorithms 

Many authors have successfully demonstrated the effectiveness of the gradient free learning algorithms in a wide 

range of applications. The category consists of a variety of applications in the management, engineering, and 

health sciences domain. The notable applications include area, but is not limited to, such as supply chain and 

logistics, financial analysis, marketing and sales, management information systems, decision support systems, 

product and process improvements, manufacturing cost reduction, business improvements, and health services. 

Table IV illustrates the range of applications of gradient free learning algorithms. In literature, gradient free 

learning algorithms are mostly compared with gradient learning algorithms by considering the application areas 

mentioned in Table IV. The gradient free learning algorithms are relatively new compared to the gradient learning 

algorithms and continuously gaining the attention of researchers. 

The gradient learning algorithms disadvantages in that it faces a problem of local minimum which can reduce the 

generalization performance, and iterative tuning of connection weights may cause the learning to be more time-

consuming. Gradient free learning algorithms are considered to have faster convergence with more stable results 

on many application problems. For instance, the application of gradient free learning algorithm (ELM) on various 

problems such as predicting stock price, house price, automobile price, species age, cancer, diabetes drug 

compound, aircraft ailerons and elevators, and adult income found that generalization performance improves by 

an average 0.12 times with learning speed an average 20 times faster than gradient learning algorithms. Moreover, 

on large complex problems such as predicting soil types, segmenting objects, and shuttle control, the ELM 

improved accuracy an average of 6% and achieved prediction thousand times faster than the gradient learning 

algorithms. 

Later, several variants were proposed to improve ELM and most of them are discussed in Section 4.2.2. The 

application of variants such as B-ELM on the problem of measuring telemarking calls, computer performance, 

car fuel, concrete strength, and beverages quality showed an improvement in learning speed of an average 34, 4 

145 times faster than I-ELM, EM-ELM, and EI-ELM. Similarly, the application of another ELM variant named 

as DAOI-ELM in studying the stock market, forest burning, concrete strength, beverage quality achieved more 

stable and smooth results compared to the B-ELM and the fluctuating results of I-ELM and OI-ELM. More work 

on fault diagnosis of Tennessee-Eastman Process (TEP) demonstrates that DAOI-ELM improved the accuracy to 

1.38%-4.54% for classes-2, 1.12%-6.39% for classes-4 and 4.36%-5.47% for classes-8 fault compared to BP, I-

ELM, CI-ELM, and OI-ELM. The detail study gives clear direction that DAOI-ELM obtained better 
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generalization performance with compact architecture; however, the learning speed of DAOI-ELM is not clearly 

illustrated in the study. The ELM and many of its variants advantageous in that they randomly generate hidden 

units and analytically calculate output connection weights which make them simple and easy to train network. 

However, randomly generating hidden units may cause the network size to increase large enough which increases 

the chances of overfitting. 

The application of semi gradient and iterative tuning algorithms such as IFNNRWs demonstrated its effectiveness 

on classification problems of identifying crime object, energy particles, human face gestures, and diabetes, but 

cannot approximate regression problems well. Another limitation is an increase in training time of IFNNRWs due 

to repetitively tuning of output connection weights. 

5. Discussion of future research directions 

The literature survey was conducted to get an in-depth insight of FNN and researcher contributions in improving 

its generalization performance and learning speed. The existing learning algorithms have a major contribution and 

further improvements in future research can create a significant contribution. In Section 4, it can be understood 

that existing improvement is not straightforward. The researchers are in continuous efforts to propose algorithms 

that are computationally efficient and has better generalization performance. By analyzing the existing research, 

this section provides a future research direction in that it will be beneficial to improve the FNN convergence. 

5.1 Activation function 

In studies, few attempts have been made to study the effect of using various types of activation functions on FNN. 

Karlik and Olgac (2011) study the comparison of popular activation functions including uni-polar sigmoid, bi-

polar sigmoid, tangent hyperbolic, radial bias function and conic section function along with gradient-based 

algorithms for fixed topology FNN. The limitation of this experimental work was using 10 hidden units and 40 

hidden units with 100 iterations and 500 iterations respectively. Moreover, the data structure, normalization 

techniques, learning algorithms, and hyperparameters were not clearly stated in experimental work. The 

experimental results demonstrate that tangent hyperbolic activation function performance is better than the others. 

However, it is observed in various studies that sigmoid activation function application is more compared to tangent 

hyperbolic. The importance of hidden units and their activation functions cannot disagree. They are used in every 

type of FNN and the study of various activation functions performance on fixed and constructive topology along 

with gradient algorithm and gradient free algorithm still need a researcher’s attention. 

5.2 Efficient and compact Algorithm with fewer hyperparameters 

The gradient learning algorithms are favorable because of its compact size, whereas, gradient-free learning 

algorithms are favorable because of its delta free learning and fast convergence. The gradient free algorithms 

network size becomes much larger which increases its complexity and the chance of overfitting increases. The 

best FNN may be considered one having characteristics of compact architecture with a small number of hidden 

units and connection weight. It may analytically calculate hidden units and connection weights, need fewer 
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hyperparameters and reaches global minimum with lesser training time. There is always a trade-off between 

network generalization performance and learning speed. Some algorithms have the advantage of more efficient 

than the others but maybe constrained by memory requirement, complex architecture, and/or more learning time. 

Therefore, more efforts are needed to construct efficient and fast algorithms with fewer hyperparameter, 

computational simple and compact size.  

5.3 Connection weight initialization 

The purpose of FNN is to find the best optimal connection weights that can generate optimal results. The question 

arises: What should be the best possible initial weights for the network? Traditional FNN is dependent on initial 

weight value because it calculates the derivative of the total error with respect to weight to get a minimum of an 

objective function (Hecht-Nielsen, 1989). Assigning suboptimal weights will cause the network to take more 

iterations and subsequently decreases its performance. The issue is resolved to some extent by a new approach 

that analytically calculates connection weight on the output side by randomly generating hidden units. However, 

the literature can be further strengthened by calculating all connection weights (including input connection and 

output connection) analytically to generate hidden units explaining maximum variance in the dataset. This may 

also help to further improve the generalization and learning speed by compacting the size of the network.  

6. Conclusions 

We conduct a review on Feedforward Neural Network (FNN) learning algorithms and optimization technique 

designed to achieve better generalization performance and fast learning speed. Traditional FNN is slow and it 

may take hours, days or even a week to generate results. The results are highly influenced by global (learning rate, 

initial weight, and a number of hidden units in the hidden layer) and local (proposed in the specific algorithm) 

hyperparameters. The repeatedly tuning of connection weight with hyperparameters creates a complex coadoption 

in the network which decreases generalization performance and trapped at a local minimum if a global minimum 

is far away. The convergence may be increased by the large learning rate, but it will make it unstable, whereas, 

small learning rate will slow convergence. The optimal FNN with maximum error reduction capability is always 

not evident. A lot of experimental trials are required to be performed with different combinations of 

hyperparameters to select the network with minimum error. The selected FNN may not perform well even on 

unseen data and generalization performance may decrease.  

To study above FNN drawbacks and researchers’ contributions, a comprehensive review was carried out by using 

four keywords: “generalization performance”, “learning rate”, “overfitting” and “fixed and cascade architecture”. 

The combination of keywords was also searched to get more relevant results. After rejecting unrelated articles, a 

total of 80 was left in the scope of our work. To address the contribution in a more novel and significant way, the 

articles were classified into six categories (i.e., Gradient learning algorithms for Network Training, Gradient free 

learning algorithms, Optimization algorithms for learning rate, Bias and Variance (Underfitting and Overfitting) 

minimization algorithms, Constructive topology Neural Networks, and Metaheuristic search algorithms). 

Reviewing all six categories merits, limitation, and real-world applications in one paper is too lengthy. Hence, the 
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six categories were further divided into two main parts. Part I, the current paper reviewed 38 articles for the first 

two categories on learning algorithms (they are: Gradient learning algorithms for Network Training and Gradient 

free learning algorithms), whereas, the remaining articles on optimization techniques are reviewed in Part II. The 

major conclusions of the two categories reviewed in Part I are: 

1. The convergence rate of FNN becomes slow by applying first-order gradient information comparative to a 

second order gradient. First order gradient requires much iteration which slows its learning and stuck at a 

local minimum, whereas, second-order gradient computes Hessian and its inverse matrix which may need 

higher computational memory for large features problems. The best approach is to approximate the Hessian 

matrix and its inverse from first order gradient information which may guarantee to converge at a local 

minimum, if not a global minimum. Another issue with the gradient-based algorithm is that it may not work 

with all types of loss function and network topology. For instance, the Levenberg-Marquardt Algorithm (LM) 

gradient algorithm is considered faster than gradient descent (GD) with limitation in that it can only be 

applied with least square loss function and fixed topology FNN. The application of stochastic GD (SGD) on 

real-world problem reveals that it is 20 times faster than the batch learning. When working with high 

dimensional data having instance more than 1,000 and 10,000, the speed of SGD is considered to be 70 times 

and 300 times better than batch learning. The application of quasi Newton Method (quasi NM) with a 

constructive neural network is able to improve the prediction accuracy rate of network to 2.92%-3.15%. The 

most widely known LM is considered to be 16-136 times faster than conjugate gradient (CG), however, LM 

applicability is limited to fixed FNN.  

2. Gradient learning algorithms can be avoided, and connection weights can be calculated more analytically by 

gradient free learning algorithms. The learning speed and generalization performance (in most cases) of 

gradient free learning algorithms are considered better than gradient learning algorithms. However, the 

network complexity in gradient free algorithms increases because of an increase in a number of hidden units 

compared to gradient learning algorithms compact network size which increases chances of overfitting. The 

category includes a wide range of application in the area, but is not limited to, such as supply chain and 

logistics, financial analysis, marketing and sales, management information systems, decision support 

systems, product and process improvements, manufacturing cost reduction, business improvements, and 

health services. The learning speed of gradient free learning algorithms is a hundred times better than gradient 

learning algorithms with better generalization performance. On large complex high dimensional data, 

gradient free learning algorithms were able to improve prediction accuracy an average 6% with learning 

speed thousand times faster than gradient learning algorithms. This category is gaining significant interest 

and trend shows that researchers are in continuous efforts to further improve the generalization performance 

and learning speed of existing gradient free learning algorithms.  

The researcher’s contribution to improving FNN generalization performance and learning speed in the above 

categories are noteworthy. The successful application of FNN learning algorithms on real-world management, 

engineering, and health sciences problems demonstrate the advantages of algorithms in enhancing decision 
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making for practical operations. Lastly, based on our review and research trend in FNN, we proposed future 

research directions which can bring a significant contribution in performance and learning improvement, 

including studying the role of various activation functions, recommend efficient and compact algorithm with 

fewer hyperparameters, and optimal connection weight determination. 
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