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Purpose: As the supply chain is a highly integrated infrastructure in modern business, the risks in 14 

supply chain are also becoming highly contagious among the target company. This motivates researchers 15 

to continuously add new features to the datasets for the credit risk prediction (CRP). However, adding 16 

new features can easily lead to the missing of the data. 17 

Design: Based on the gaps summarized from the literature in CRP, this study first introduces the 18 

approaches to the building of datasets and the framing of the algorithmic models. Then, this study tests 19 

the interpolation effects of the algorithmic model in three artificial datasets with different missing rates 20 

and compares its predictability before and after the interpolation in a real dataset with the missing data 21 

in irregular time-series. 22 

Findings: The algorithmic model of the time-decayed long short-term memory (TD-LSTM) 23 

proposed in this study can monitor the missing data in irregular time-series by capturing more and better 24 

time-series information, and interpolating the missing data efficiently. Moreover, the algorithmic model 25 

of Deep Neutral Network can be used in the CRP for the datasets with the missing data in irregular time-26 

series after the interpolation by the TD-LSTM. 27 

Value: This study fully validates the TD-LSTM interpolation effects and demonstrates that the 28 

predictability of the dataset after interpolation is improved. Accurate and timely CRP can undoubtedly 29 

assist a target company in avoiding losses. Identifying credit risks and taking preventive measures ahead 30 

of time, especially in the case of public emergencies, can help the company minimize losses. 31 

Keywords 32 

deep learning; credit risk prediction; interpolation; missing data in irregular time-series; supply 33 

chain; 34 

Declaration  35 

This work was supported by the 2022 Scientific Research Startup Fund of Chongqing Jiaotong 36 

University [Grant No. F1210045]. The authors declare no competing interests. 37 

  38 

mailto:mt15nn@mail.wbs.ac.uk


2 

 

1. Introduction 1 

Credit risk prediction (CRP) refers to the process for predicting whether a company will default in 2 

the future through the historical data of a company (Bu et al., 2018; Kousenidis et al., 2019; Ma et al., 3 

2019). Accurate and timely CRP can help companies avoid losses. Early indicators for CRP are obtained 4 

mainly from financial reports of the target companies (Tian et al., 2020; Trustorff et al., 2011; Wu et al., 5 

2015), but after the global subprime mortgage crisis in 2008, it has been questioned whether the methods 6 

that rely solely on financial data from one company for CRP (Trustorff et al., 2011) are timely (Savitri 7 

et al., 2019) and reliable (Ashraf et al., 2020; Holder-Webb et al., 2010). The researchers turn to the 8 

information mined from the data indirectly related to the company (Bakoben et al., 2020; Zhang et al., 9 

2022). The data concerning supply chain indirectly play an important role as those direct ones in CRP, 10 

for the integrity of the supply chain and the corporate credit risk can easily spread along the supply 11 

chain, leading to a chain of credit disasters (Agca et al., 2022; Osadchiy et al., 2016). 12 

In essence, most of the data used in CRP are in time-series with historical information (Chang et 13 

al., 2018; Tian et al., 2020), and these data can be collected from different sources. However, some of 14 

the CRP indicators are collected in a fixed sampling frequency, while the others are not (Kreindler et al., 15 

2016; Mikalsen et al., 2018), and as a result, it is almost impossible to fit all the indicators for each other 16 

when the data of different sources are not collected in a fixed sampling frequency for the same company. 17 

Worse still, the missing data will cause a break in the continuity of the data in time-series, which will 18 

seriously affect subsequent data analysis and processing of CRP (Tian et al., 2018). Interpolation (Sun 19 

et al., 2021; Wubetie, 2017) is the most common way of dealing with the missing data, and recently to 20 

interpolate the missing data, the algorithmic models of machine learning such as Deep Neural Networks 21 

(DNN), Generative Adversarial Networks (GAN), and Long Short-Term Memory (LSTM) have been 22 

employed in time-series (Ma et al., 2020; Yoon et al., 2019), but for irregular time-series, few of the 23 

algorithms take the missing data into consideration (Pratama et al., 2016; Wang et al., 2020). As a result, 24 

adding the irregular time-series as an independent time-function during interpolation requires more 25 

consideration. 26 

To raise the interpolation effects, this study will first summarize the relevant literature of CRP and 27 

the interpolation for the missing data in time-series, and then illustrate the approaches to the building of 28 

datasets and the framing of the algorithmic model that can interpolate the missing data in irregular time-29 

series with high predictability. Finally, this study will test the interpolation effects of the algorithmic 30 

model in artificial datasets with different missing rates and compare its predictability before and after 31 

the interpolation in a real dataset with the missing data in irregular time-series. 32 

2. Literature Review 33 

This section will review the literature closely related to this study from two aspects: the previous 34 

studies in CRP and the methods for interpolating the missing data in time-series. 35 
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2.1 Credit Risk Prediction 1 

Credit risks speak for the ability of the solvency and possible default of a company, but it has 2 

always been difficult to predict the credit risks (Chi et al., 2017; Scannella et al., 2021) with proper 3 

timeliness (Savitri et al., 2019) and reliability (Ashraf et al., 2020; Holder-Webb & Sharma, 2010). In 4 

this case, many scholars make great efforts in developing powerful algorithms for better CRP. In general, 5 

working out CRP mainly involves two types (Chi & Li, 2017) of algorithms: linear discriminant analysis 6 

based on statistics (Mahmoudi et al., 2015) and the algorithms of machine learning based on computer 7 

programs (Ma & Lv, 2019; Yu et al., 2022). Unlike statistical methods that require researchers to 8 

manually estimate the parameters for the CRP, the algorithms of machine learning allow computers to 9 

parse the data and grasp useful knowledge from the data by the computers themselves (Bhatore et al., 10 

2020; Pandey et al., 2017). Of the machine learning algorithmic models, the most commonly used 11 

include support vector machines (SVM), neural networks (NN), and random forests (RF) (Arora et al., 12 

2020; Teles et al., 2020; Trustorff et al., 2011), and in addition, various variants of deep learning like 13 

deep belief networks (DBN) and DNN in CRP, have gained widespread popularity among researchers 14 

for their remarkable ability to learn and make informed decisions on its own (LeCun et al., 2015). For 15 

example, Yu et al. (2018) use the ensemble strategy of the DBN for credit risk classification, finding 16 

that the performance of the ensemble DBN model for the classification has been effectively improved. 17 

Xie et al. (2021) propose a DNN model for CRP to help the banks in China to improve the efficiency of 18 

farmers' credit business, claiming that the predictability of the DNN model is better than that of other 19 

competing algorithms.  20 

In addition to the use of algorithmic models of machine learning, the use of additional predicting 21 

indicators is more seen in CRP (Trustorff et al., 2011). Frequent reports of financial frauds in businesses 22 

(Haqq et al., 2019; Reurink, 2018) urge researchers to question the reliability of the core financial data 23 

directly obtained from the target company, such as cash liquidity (Wu & Brynjolfsson, 2015), loan yield 24 

(Stein, 2005), cost of debt (Mansi et al., 2012). Thus, the data indirectly related to the target company, 25 

the data along supply chain in particular, are also traced, mined and employed in CRP (Ashraf et al., 26 

2020; Holder-Webb & Sharma, 2010) to enhance the timeliness and reliability of CRP. Recently, a large 27 

body of studies has shown that the data along the supply chain can help protect the upstream and 28 

downstream companies in case there would be risk spillovers along the supply chain, thereby adversely 29 

affecting the target company (Wu et al., 2022). For instance, Osadchiy et al. (2016) assert that credit 30 

risk can propagate in supply chain networks and exacerbate supplier production losses; supply chain 31 

data are applied to monitoring sudden inventory, sales fluctuations, and thus optimizing the structure of 32 

the supply chain (Ni et al., 2022). and also by monitoring data of the supply chain, Lee et al. (2021) 33 

succeed in timely predicting the credit risk, all of which indicate that the data of the supply chain can 34 

serve as a complementary source for CRP. 35 
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2.2 Interpolation for the missing data in time-series 1 

In CRP, most of the data used are in time-series and often with some data missing (Chang et al., 2 

2018; Tian et al., 2020). These data share rich historical information that is crucial to CRP. Moreover, 3 

in the process of data collection and collation, researchers continue to add new indicators, such as those 4 

related the supply chain to mine more useful information for high predictability in CRP (Bakoben et al., 5 

2020; Zhang et al., 2022). Usually, these data have to be obtained from different sources. The indicators 6 

of the data thus collected may lack certain attributes or specific content, and this shortage may generate 7 

a serious information loss--some important information missing. In this case, it is unlikely to effectively 8 

learn and build traditional algorithmic models of machine learning, and the output results the models 9 

yield are not reliable (Kreindler & Lumsden, 2016; Mikalsen et al., 2018; Tian et al., 2018). Accordingly, 10 

it is urgently needed for successful CRP along supply chain to reasonably prepare the missing data, that 11 

is, the interpolation for the missing data in time-series 12 

In the past twenty years, a line of research has explored how to deal with the missing data in CRP 13 

(Chang et al., 2020; Fouladgar et al., 2020; Guo et al., 2009). Some choose to simply delete the entire 14 

row or column containing the missing data out of a dataset. This may lead to the direct loss of valuable 15 

information (Ngueilbaye et al., 2021; Stanimirova et al., 2007), and to prevent the loss, some scholars 16 

resort to interpolating the missing data. In interpolation, maximum likelihood estimation (Mählmann, 17 

2006), Laplace approximation (Collin‐Dufresne et al., 2004), and probabilistic matrix factorization 18 

(Fekade et al., 2017) have been traditionally applied. For example, Qu et al. (2009) use the probabilistic 19 

principal component analysis to predict and interpolate the missing data of the traffic flow datasets; 20 

Fekade et al. (2017) adopt the probabilistic matrix factorization to interpolate the missing data based on 21 

the sensor datasets. 22 

More recently, algorithmic models of machine learning, such as ensemble algorithms or support 23 

vector regression algorithms (Appelhans et al., 2015; Li et al., 2011; Wang et al., 2019) are making their 24 

way into interpolating the missing data in CRP from the perspective of big data. For example, an 25 

ensemble algorithm developed by Chang et al. (2020) in their experiment to interpolate the missing data 26 

proves its high robustness in both interpolation and prediction. The algorithms of deep learning are also 27 

introduced into interpolation. Kaur et al. (2019) propose an algorithmic model for interpolation by using 28 

GAN, and good results are achieved; Yoon et al. (2019) use the algorithmic model of RNN to interpolate 29 

within and across data streams, discovering that compared to statistical interpolation methods, RNN 30 

offers significant improvement in interpolating the missing data. Ding et al. (2020) conduct a multi-31 

dimensional filling experiment on environmental data based on the LSTM model, and they claim that 32 

their model makes up for the defect that the interpolation along a single dimension would increase the 33 

cumulative errors as the sequence increases, and thus maintains the accuracy in CRP. 34 

As for the missing data in time-series for CRP, scholars have provided different time-functions 35 
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based on their own research to detect the locations and the time intervals of the missing data. Zhang et 1 

al. (2019) propose the time-function of the variable-length sliding window; Baytas et al. (2017) work 2 

out the time-function of the temporal awareness based on the LSTM; and Tan et al. (2020) come up with 3 

the time-function of the dual-attention temporal awareness, to name a few. Despite the variation, the 4 

time-functions interpolate the missing data merely in regular time-series, except for the one yielded by 5 

Baytas et al. (2017), who are the pioneers in interpolating the missing data in irregular time-series. 6 

Admittedly, with the help of the time-functions, the above-mentioned algorithms have presented 7 

effective information, such as the locations and the time intervals of the missing data in the process of 8 

interpolation, but these algorithms still have two gaps in interpolating the missing data for CRP. One is 9 

that all the time-functions have been put in front of the algorithmic models in which case the real state 10 

before and after the interpolation of the missing data cannot be effectively checked by the algorithmic 11 

models. The other is the insufficiency of flexibility during the global application of the time-functions 12 

in the algorithmic models. 13 

Therefore, to fill the gaps, this study intends to first present a time-function that can check the real 14 

state of the missing data in irregular time-series both before and after interpolation, and then to propose 15 

an algorithmic model that can apply the time-function globally with high flexibility. 16 

 17 

3. Material and methods 18 

This section will first introduce the data sources and their preprocessing, and then the approaches 19 

to the framing of the algorithmic model for interpolating the missing data in irregular time-series. 20 

3.1 Sources and their preprocessing 21 

In this study, 441 companies were selected on the S&P 500 companies list because they had credit 22 

rating announcements from any of the three major rating agencies (Moody's, S & P, and Fitch) from 23 

January 1, 2009 to December 31, 2019. Their CRP data were of four categories: (1) Corporate Financial 24 

Data, collected from the S&P Accounting Database (https://www.spglobal.com/ratings/en/). The 25 

indicators involved the weekly, quarterly and annual financial data released, mainly including weekly 26 

working capital ratio, interest compensation ratio, retained earnings ratio, return on assets, tax leverage 27 

ratio, cash inverse ratio, debt to capital ratio, and the others. (2) Network Activity Data, involving search 28 

trends, website visits, and other data of network activities. These data were believed to have strong 29 

timeliness and could be used as a supplementary source to corporate financial data of weak timeliness 30 

(Moat et al., 2016). (3) Supply Chain Data. This group of data was obtained from the Bloomberg 31 

Database (https://www.bloombergchina.com/solution/data-content/), which contained more than 20,000 32 

pieces of quantitative data in supply chain. (4) Credit Risk Data. This study adopted the bond price to 33 

represent the corporate credit risk since the fluctuation of bond price was a main reflection of credit risk 34 

(Gilchrist et al., 2018; Zamore et al., 2018), and the Standard & Poor's Accounting Database 35 

https://www.spglobal.com/ratings/en/
https://www.bloombergchina.com/solution/data-content/
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(https://www.spglobal.com/ratings/en/) was the major source of the bond prices. 1 

Since the data were collected from different sources and dated from January 1, 2009 to December 2 

31, 2019. The mismatch of indicators in time-series would surely lead to data missing, although the loss 3 

varies in degree. The indicators’ mismatch in the dataset of this study was sorted out and graded into 4 

four types (1) No Missing: such indicators as Google trend, rating rank, and upgrade in time window of 5 

the target company, the rate of missing data is as low as 0.0%; (2) Low Missing: most of the indicators 6 

typical of low missing belong to the core financial data of the target company, such as return on assets, 7 

capital turnover, and debt-equity ratio; (3) Moderate Missing: the indicators in this middle-level group 8 

are mostly related to suppliers along the supply chain; (4) High Missing: the core financial indicators 9 

concerning customers, such as customers’ working capital ratio, customers’ debt to equity ratio, and 10 

customers’ capital turnover ratio, share a high rate of absence (as high as 50% on average).  11 

To further illustrate the missing indicators in the dataset of this study, Python 3.0 was employed to 12 

visualize the dataset in terms of each single indicator, and some typical cases are presented in Figure 1.  13 

As shown in the figure, there is a specific name list of the indicators along the vertical axis and the 14 

actual number of the missing data illustrated by those black horizontal bars. And out of the cases of 15 

missing indicators and their actual rates of data missing, we see indicators with similar missing rate 16 

predominantly come from the same sources. For instance, the indicators of high missing rate, whose 17 

items are located in the upper part of Figure 1, are mainly related to the customers of the target company; 18 

those of low missing rate, which are listed in the lower part of Figure 1, belong to the core financial 19 

indicators.  20 

The indicators of similar missing rate mainly belong to the same sources, and considering this 21 

homogeneity, the indicators with a missing rate greater than 60% are recommended to be deleted. 22 

Therefore, the database of this study obtained 125 indicators with 167,160 pieces from the 441 target 23 

companies, and 25 indicators are of corporate financial data, 36 network activity data, 58 supply chain 24 

data and 6 credit risk data. The missing rate of all the indicators is averaged around 31%. 25 

https://www.spglobal.com/ratings/en/
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 1 

Figure 1.  Cases of typical missing indicators 2 
 3 

To show the distribution pattern of the missing data in a schematic diagram, we took the same 4 

indicator (working capital ratio) of two companies (AA: American airline; ABT: Abbott) over 3-5 years 5 

as examples in Figure 2. The upper and lower parts of Figure 2 show the distribution pattern of working 6 

capital ratio for AA and ABT (both including the working capital ratio for the target companies and their 7 

suppliers & customers along the supply chain), respectively. The two horizontal axes indicate the time-8 

series (the interval of data acquisition is marked as ℎ𝑡), while the figure vertically lists the indicators of 9 

the target company, its supplier and customer along the supply chain.  10 

From the distribution pattern of the missing data in Figure 2, it is suggested that the occurrence of 11 

the missing data along the time-series for both companies in the past three to five years is irregular. For 12 

AA and ABT, the intervals between the two points of the data acquisition (ℎ𝑡) within the past three to 13 

five years are quite different for the target companies, their suppliers and customers along the supply 14 

chain. Taking AA as an example, although the data were fully acquired at the same time on May 29, 15 

2013 for the target company, its supplier and customer along the supply chain, the missing data 16 

(indicated as the hollow boxes in Figure 2) occurred frequently on other days of data acquisition. 17 

Therefore, the intervals 𝑑𝑡 between two solid boxes for the same indicators are quite different for AA 18 

(40 months), its supplier (38 months) and customer (33 months) along the supply chain. 19 

 20 
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 1 

Figure 2 The schematic diagram of missing data in time-series 2 
 3 

Therefore, the data collection interval of the datasets in this study is different within the same 4 

sample company and across different sample companies, and the distribution pattern of the missing data 5 

is also different. The varied distribution of locations and the time intervals of the missing data 6 

determined that the original dataset collected in this study was characterized by the missing data in 7 

irregular time-series. 8 

3.2 Building of the algorithmic models 9 

As indicated in Section 2, various algorithmic models of machine learning such as DNN, GAN, 10 

and LSTM have been used in interpolating the missing data for CRP. For the missing data in time-series 11 

in particular, several time-functions such as the variable-length sliding window (Zhang et al. 2019), the 12 

time-function of the temporal awareness (Baytas et al. 2017), the dual-attention temporal awareness 13 

(Tan et al. 2020), have been employed in CRP. It is noteworthy that most of these time-functions are 14 

built on the basic model of LSTM in interpolating the missing data in time-series. Therefore, we will 15 

build an algorithmic model on LSTM too, but to interpolate the missing data in irregular time-series. 16 

And Baytas et al. (2017) provide a good reason for doing so, claiming that the LSTM has the potential 17 

for flexibility by adding gates and stacking the models for checking the state of the missing data during 18 

the interpolation process. 19 

LSTM was initially used in the field of big data based on deep learning by Hochreiter et al. (1997) 20 

at the end of the last century, and since then it has experienced many improvements, of which the vanilla 21 

LSTM proposed by Graves et al. (2005) is most widely employed as a model in deep-learning 22 

algorithms tradition (Ma et al., 2020; Yoon et al., 2019). Therefore, this study intended to select the 23 
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vanilla LSTM as the basic model for interpolating the missing data in irregular time-series, as shown in 1 

Figure 3. 2 

 3 

Figure 3 Illustration of traditional LSTM 4 
 5 

As shown in Figure 3, the traditional LSTM as the basic model in this study generally contains 6 

three inputs and two outputs. The three inputs present the cell state 𝐶𝑡−1 and hidden state ℎ𝑡−1 at time 7 

t-1, and input 𝑋𝑡  at time t; the two outputs show the cell state 𝐶𝑡   and hidden state ℎ𝑡  at time t. 8 

Through three different gates (input gate, forgetting gate, and output gate), the memory module is able 9 

to control the hidden state of the memory and the time that occurred previously. However, as a basic 10 

model, although the traditional LSTM has advantages in detecting the state of the missing data in regular 11 

time-series (Ma et al., 2020), it is difficult to deal with the missing data in irregular time-series obtained 12 

in this study. Thus, this study intends to improve the traditional LSTM by: (1) adding time-functions 13 

representing the locations and the time intervals of the missing data; (2) adding a set of gating units to 14 

check the state of the missing data in irregular time-series before and after the interpolation. The 15 

improved LSTM based on the interpolation of the missing data in irregular time-series is shown in 16 

Figure 4. 17 

 18 

 19 

Figure 4 The improved LSTM for interpolation 20 
 21 

More specifically, to increase the ability to process the missing data in irregular time-series, this 22 
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study needs to first build a time-function indicating the locations and intervals of the missing data. The 1 

process for building the function is as follows: 2 

Suppose that a set of data contains n variables and the time interval is T, i.e., 𝑋 =3 

{𝑋1,𝑋2 ,𝑋3 ,… , 𝑋𝑇} ∈ ℛT×N, where 𝑋t (𝑡 = 1, 2, 3, … , 𝑇) is the observed value of all variables at time t, 4 

i.e., 𝑋t = {𝑥𝑡
1, 𝑥𝑡

2 ,𝑥𝑡
3 ,… , 𝑥𝑡

𝑁}T ∈ ℛN；𝑥t
n  is the observed value of the n-th variable at time t. The 5 

timestamp is denoted as 𝑠𝑡, and the missing data in 𝑋 is marked as dummy variable 𝑚 (Bankó et al., 6 

2012), namely 7 

 𝑚𝑡
𝑛 = {

     0, 𝑖𝑓 𝑥𝑡
𝑛 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

Define a multi-dimensional variable 𝑑𝑡 = {𝑑𝑡
1 ,𝑑𝑡

2 ,… , 𝑑𝑡
𝑁} as the time interval of the missing data 8 

in the dataset 𝑋, i.e., 9 

 

𝑑𝑡
𝑛 = {

𝑠𝑡 − 𝑠𝑡−1 + 𝑑𝑡−1
𝑛 ,    𝑡 > 1, 𝑚𝑡−1

𝑛  = 0

𝑠𝑡 − 𝑠𝑡−1 ,                 𝑡 > 1, 𝑚𝑡−1
𝑛 = 1

0,           𝑡 = 1
 

(2) 

After the above-mentioned processing for the missing data in irregular time-series, {X, M, Δ} can 10 

be obtained, of which: 11 

 M=[𝑚𝑡
𝑛]𝑛×𝑇, 𝑡 = 1,2, … , 𝑇; 𝑛 = 1,2,… , 𝑁 (3) 

 𝛥=[𝑑𝑡
𝑛]𝑛×𝑇, 𝑡 = 1,2, … , 𝑇; 𝑛 = 1,2,… , 𝑁 (4) 

 12 
Taking the whole process of the interpolation of the missing data in irregular time-series into 13 

consideration, we are able to find that the traditional LSTM, when the missing data is in irregular time-14 

series, cannot cope with the situation where the output decreases with the increase of time intervals. 15 

Therefore, to the traditional LSTM, this study introduced ℎ𝑡
𝑛 that had an attenuation mechanism by 16 

capturing the relationship among input variables, hidden variables, and the corresponding time intervals 17 

for the missing data, and assigning the attenuation coefficient with the flexibility specific to a given 18 

variable. 19 

It can also be found in the middle unit of Figure 4 that two more gates (the time-decayed gate and 20 

time-refreshing gate) were added to the improved LSTM. Therefore, the new LSTM constructed in this 21 

study consists of five gates: time-decayed gate, forgetting gate, input gate, refreshing gate, and output 22 

gate. As mentioned above, the role of the time-decayed gate is to introduce an attenuation function with 23 

time by capturing the relationship among input variables, hidden variables, and the corresponding time 24 

intervals for the missing data, and the values of the attenuation function will fluctuate with the specific 25 

variables.  26 

As indicated in Figure 4 for the time-decayed gate, Sigmoid [sigmoid(𝑊1 ∗ 𝑑𝑡 + 𝑊2 ∗ 𝑑𝑡
2)] is used 27 

to represent the state of attenuation with time. The attenuation will change with the combination of 28 

𝑊1   and 𝑊2   in different weights, and with the squared time variable 𝑑𝑡 . In this way, the sigmoid 29 
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function will take more forms and increase the flexibility of time-decayed variables. The calculation 1 

formula of time-decayed gate is as follows, 2 

 𝐷𝑡
′ = 𝑊𝑑𝑡𝑑𝑡 ⊙ 𝜎(𝑊𝑡ℎℎ𝑡−1 + 𝑊𝑡𝑡𝐷𝑡−1 + 𝑏𝑡) (5) 

Where ⊙  represents the pairwise matrix multiplication; σ  is the sigmoid function; σ(x) =3 

1

1+e−x; W and b variants represent the weight matrix and offset, respectively. It can also be seen from 4 

Figure 4 that time-decayed gate can be affected by the time interval 𝑑𝑡   between the points of two non-5 

missing data. The role of the refreshing gate is to reset the data after the data has been updated, and is 6 

mainly controlled by the time-decayed gate. Its calculation formula is as follows, 7 

 𝐷𝑡 = 𝐷𝑡
′ ⊙ 𝜎(𝑊𝑟𝑢𝑥𝑡

1 + 𝑊𝑟𝑖𝑥𝑡
2 + 𝑊𝑟𝑑𝐷𝑡

′ + 𝑏𝑟) (6) 

On the basis of the whole process of the interpolation of the missing data in irregular time-series, 8 

it can be assumed that the functions representing the locations and time intervals of the missing data can 9 

be well established, and the gates added to the model can better detect and handle the state of the missing 10 

data in irregular time-series before and after interpolation. However, in order to ensure the generalization 11 

of the interpolation in a more stable way, we also add the SENet module (Hu et al., 2018) where stacked 12 

autoencoders (SAE) are recommended to enhance the interpolation accuracy. The structure of the 13 

stacked model is shown in Figure 5. 14 

 15 

 16 

Figure 5 The stacked LSTM for interpolation 17 
 18 

As can be seen from the intermediate layer of the two stacked units in Figure 5, the SENet module 19 

is added to all the gates of the two stacked units. Its role is to automatically capture the weights in 20 

importance of each target channel through learning without altering the structure of the original 21 
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algorithms, and to filter the features that are not valuable to the current tasks and boast the valuable 1 

features according to the weights in importance of each target channel. In addition, the SAE is used to 2 

mine the features more deeply. As claimed by Hu et al. (2018), the SAE, as a classical deep learning 3 

network structure, can be stacked to form a multi-layer network. Each layer within the network will take 4 

the features extracted from the previous layer of the network as an input to further extract more abstract 5 

and deeper features for the present layer of the network. Thus, the accuracy of the algorithms is enhanced 6 

by mapping the input signs to the hidden layer expressions through the feature extraction of the data. 7 

To sum up, the stacked LSTM for interpolation proposed in this study has the following 8 

characteristics: (1) To improve the checking of the states of missing data in irregular time-series before 9 

and after interpolation. That is, two gates, the time-decayed gate and the refreshing gate, are added to 10 

the traditional LSTM. (2) A time-decayed function is introduced to capture the relationship between 11 

input variables, hidden variables, and missing data time intervals. This increases the flexibility of time 12 

decayed expressions by allowing them to take more forms in the LSTM. (3) The SENet and SAE 13 

modules are added to the LSTM to improve the generalization and accuracy of the algorithms. As a 14 

result, the time-decayed LSTM, abbreviated TD-LSTM, is the name given to the stacked LSTM for 15 

interpolation presented in this study. 16 

4. Results and discussion 17 

This section will show the interpolating effects of the TD-LSTM in artificial datasets with different 18 

data missing rates and compare the predictability of DNN with those of the other algorithmic models in 19 

a real dataset with the missing data in irregular time-series before and after interpolation by the TD-20 

LSTM. 21 

4.1 Interpolating effects in artificial datasets 22 

To examine the interpolating effects of the TD-LSTM proposed in this study, three artificial 23 

datasets, out of the database obtained in Section 3, were established for testing and their missing rates 24 

were deliberately set at 31%, 40% and 50%, respectively. The lowest missing rate settled at 31% because 25 

the missing rate of the database as discussed in Section 3 was averaged at 31%. The highest missing rate 26 

was 50% for the reason that the variables whose missing rates were over 60% had been deleted because 27 

of their high homogeneity, as is seen in Section 3. For comparison, the RNN, LSTM, and Time-aware 28 

LSTM were chosen as the counter-partners of the TD-LSTM. We chose these three models for two 29 

reasons. The first is that these three algorithmic models are functionally similar to the TD-LSTM in 30 

interpolating missing data; the second is that RNN is one of the most frequently used algorithmic models 31 

in interpolating missing data, LSTM is the basic model for the TD-LSTM proposed in this study, and T-32 

LSTM is the first algorithmic model used to interpolate missing data in regular time-series (Baytas et 33 

al. 2017). 34 

Previous to the process of testing the interpolating effects of the TD-LSTM, the three missing 35 
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datasets were first normalized. The normalization is expressed as: 1 

 𝑥𝑛
′ =

𝑥𝑛 − 𝑥𝑛
𝑚𝑖𝑛

𝑥𝑛
𝑚𝑎𝑥 − 𝑥𝑛

𝑚𝑖𝑛
 (7) 

Where, 𝑥𝑛
𝑚𝑖𝑛, 𝑥𝑛

𝑚𝑎𝑥 are the minimum and maximum values of the n-th variable, respectively. For 2 

evaluating the interpolating effects of the algorithmic models, the mean square error (MSE) was used 3 

as the index to calculate the error rates between the values interpolated by the models and the original 4 

values. The calculation is as follows: 5 

 𝑀𝑆𝐸 =
∑ ∑ (𝑦𝑗

𝑖 − 𝑦𝑗
𝑖∙

)2𝑃𝑛

𝑗=0
𝑁
𝑖=1

𝑛𝑢𝑚_𝑚𝑖𝑠𝑠𝑖𝑛𝑔
× 100% (8) 

Where, 𝑛𝑢𝑚_𝑚𝑖𝑠𝑠𝑖𝑛𝑔 is the total number of missing values of each variable in the dataset; n is 6 

the number of variables; 𝑃𝑛 is the number of missing values of the n-th variable; 𝑦𝑗
𝑖 is the original 7 

values corresponding to the j-th missing value of the i-th variable; and 𝑦𝑗
𝑖∙
 is the estimated value of the 8 

j-th missing value of the i-th variable. 9 

During the testing, we took the keras package of Python to build the algorithmic models. All the 10 

four algorithmic models (the RNN, LSTM, T-LSTM, and TD-LSTM) were laid with two layers of 11 

networks; each layer had 32 channels. The compression ratio of SENet in TD-LSTM was 1/4 as set by 12 

the pioneer of SENet, Hu et al. (2018). The initial learning rate was set at 0.02, decaying to 90% after 13 

50 epochs; 3000 epochs were learned in total. The optimization algorithm was done by RMSprop. 14 

Although the hyper-parameters had not been carefully tuned since these were not the focus of this study, 15 

we tried with some regular settings manually, and yielded reasonable robustness of the results. 16 

After the testing was done, the results were downloaded and presented in Figure 6. As shown there, 17 

all the four algorithmic models can effectively interpolate the missing data in irregular time-series. In 18 

regard to the three datasets with different missing rates, the interpolating effects generally tend to get 19 

weaker as the missing rates increase for all the four models, which is specifically seen in the MSE 20 

dropping down from 0.51, 0.51, 0.48 to 0.42 in turn for LSTM, T-LSTM, RNN, and TD-LSTM at the 21 

missing rate of 31%, from 0.53, 0.55, 0.50 to 0.49 at 40%, and 0.66, 0.63, 0.57 to 0.53 at 50%. As for 22 

an individual algorithmic model, the TD-LSTM can interpolate most effectively (0.42 at the missing 23 

rate of 30%, 0.49 at 40%, and 0.53 at 50%) as compared with the other three models (0.51, 0.51, and 24 

0.48 for LSTM, the T-LSTM, the RNN at the missing rate at 31%, 0.53, 0.55, and 0.50 at 40%, and 0.66, 25 

0.63, and 0.57 at 50%) in all the three datasets of different missing rates. 26 
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 1 

Figure 6 Interpolating effects of four algorithmic models 2 
 3 

In summary, the TD-LSTM proposed in this study, like the other algorithmic models such as the 4 

RNN, LSTM, and T-LSTM, works in interpolating the missing data at different missing rates in irregular 5 

time-series. Moreover, the interpolation effects of the TD-LSTM are the best of the four algorithmic 6 

models. In other words, the TD-LSTM is able to monitor the missing data in irregular time-series by 7 

capturing more and better time-series information, and thus interpolates the missing data more 8 

efficiently. 9 

4.2 Predictability in real datasets 10 

Many studies in CRP claim that various algorithms of machine learning, such as DNN, SVM, NN, 11 

and RF, can do well in the real datasets with missing data. The truth is that, with the number of the 12 

indicators being expanded, not all the algorithms can meet the requirements well under different 13 

conditions for CRP. Among the algorithms mentioned above, DNN outperforms the others because it 14 

can learn and make informed decisions on its own (LeCun et al., 2015) and has demonstrated state-of-15 

the-art accuracy in the prediction of many intelligent tasks (Dargan et al., 2020; Tian et al., 2020). Thus, 16 

this study used DNN to predict the CRP of a real dataset with the missing data in irregular time-series 17 

before and after TD-LSTM interpolation. We used stochastic gradient descent as the optimizer and 18 

Dropout to prevent overfitting in the DNN algorithmic processing. The specific parameters set for the 19 

algorithm of the DNN are shown in Table 1. 20 

Table 1 Parameters set for the DNN 21 

Parameters DNN 

Hidden units (32, 32, 32,) 

Activation (ReLU, ReLU, sigmoid) 

Dropout rate (0.5, 0.5, 0,) 

Optimizer RMSprop 

Learning rate 1e-4 

 22 
Based on the parameters set for DNN in Table 1, we verified the predictability of the TD-LSTM in 23 
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the real database that had been obtained in Section 3. The area under the curve (AUC) was used as the 1 

index for measuring the predictability of the algorithmic models. As we know, an algorithm having a 2 

larger AUC shares better predictability. For the database prepared in Section 3, we split it both before 3 

and after interpolation into the training and testing sets in a ratio of 70% to 30%, and input the data into 4 

Python for algorithmic processing. The AUC presented by DNN is as high as 84.15% for the dataset 5 

after interpolation. In order to compare the predictability of DNN with the other algorithmic models 6 

frequently used in CRP, we adopted SVM, RF, and NN with one hidden layer. The parameters of SVM 7 

and RF were set as default settings in scikit-learn package of Python, while the NN employed an 8 

artificial neural network of one hidden layer with 32 hidden channels. Although the parameters of SVM, 9 

NN, and RF were not tuned specifically, it was found that the results were quite stable within the settings 10 

of regular hyper-parameters. Table 2 shows the results of four different algorithmic models for 11 

predicting in datasets with missing data in irregular time-series both before and after interpolation. 12 

 13 
Table 2 The predictability of four algorithmic models before and after interpolation 14 

Algorithms 
Area under curve (AUC) 

Before Interpolation After Interpolation 

DNN 80.13% 84.15% 

SVM 73.51% 79.40% 

RF 76.50% 78.84% 

NN 69.47% 76.53% 

 15 
As shown in Table 2, in regard of the differences of the predictability for the four algorithmic 16 

models before and after interpolation, the AUCs of four algorithmic models are all higher after 17 

interpolation than those before interpolation (84.15%-80.13%, 79.40%-73.51%, 78.84%-76.50%, and 18 

76.53%-69.47% for DNN, SVM, RF, and NN, respectively). As for the differences of the predictability 19 

amongst the four individual algorithmic models, the ranks of the AUC share a similar pattern with slight 20 

alteration both before and after interpolation, that is, DNN is the best, and NN is the last (80.13%-69.47% 21 

before interpolation, and 84.15%-76.53% after interpolation). The alteration lies in the rank shift 22 

between SVM and RF, that is, before interpolation, RF (76.50%) takes the second place, and SVM the 23 

third (73.51%); but after interpolation, SVM (79.40%) overtakes RF (78.84%). 24 

To sum up, DNN, like the other algorithmic models such as SVM, NN, and RF can be employed 25 

in CRP for the missing data both before and after the interpolation by the TD-LSTM proposed in this 26 

study, on top of which DNN outperforms the other three models in interpolation.  27 

5. Conclusion 28 

In order to raise the timeliness and reliability of CRP, researchers have tried to mine information 29 

from any source that may involve the target company, such as the data offered by the upstream and 30 

downstream suppliers and customers along its supply chain. The variety of data sources may help with 31 
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CRP in the range of its indicators. However, since the data collected from different sources do not follow 1 

a fixed sampling time frequency, the extension of the indicators may, to quite a degree, cause a mismatch 2 

of the data, and end up with a more severe situation of data missing in irregular time-series, and in turn 3 

impair the CRP effect. To maintain the extension of indicators while overcoming their weaknesses, this 4 

study first introduced the methods for building the dataset and an algorithmic model, the TD-LSTM, to 5 

interpolate the missing data in irregular time-series. This study then tested the interpolation effects of 6 

the TD-LSTM in artificial datasets with varying missing rates and compared the TD-LSTM to other 7 

models for predictability before and after interpolation in a real dataset.  8 

The significance of this study in methodology is summarized in three steps: (1) we added two gates 9 

(the time-decayed gate and the refreshing gate) to the traditional LSTM for better detecting and handling 10 

the state of missing data in irregular time-series before and after interpolation. (2) We added a time-11 

delayed function to the traditional LSTM, which could be used globally in the TD-LSTM with great 12 

flexibility. (3) We incorporate SENet and SAE into the traditional LSTM to improve the generalization 13 

ability of the algorithm.  14 

Apart from the innovated methodology, the empirical analysis of three artificial datasets with 15 

different missing rates and a real dataset with the missing data in irregular time-series yielded the 16 

following conclusions: (1) The TD-LSTM proposed in this study can monitor the missing data in 17 

irregular time-series by capturing more and better time-series information, and interpolating the missing 18 

data efficiently; (2) The DNN can be used in CRP for the dataset with the missing data in irregular time-19 

series after the interpolation by the TD-LSTM. Furthermore, this study provides a good starting point 20 

for further research into new algorithmic models for interpolating missing data with specific features. 21 

Admittedly, this study still has some limitations. Firstly, although this study has proved the fusion 22 

of different sources along the supply chain is a feasible scheme to improve CRP, the other sources can 23 

be introduced into working out better CRP, such as customers’ behavior and users’ portrait. Secondly, 24 

the public emergency can also pull down the credit rating of a company within a short period, for 25 

example, the COVID-19 has made the CRP much more difficult (Luo, 2021). In future research, still 26 

more sources and powerful algorithmic models should be encouraged to generate an even stronger and 27 

more time-friendly CRP. 28 

  29 
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