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Abstract

Purpose – In this article we aim to understand how the network formed by fitness tracking devices and
associated apps as a subset of the broader health-related Internet of things is capable of spreading information.
Design/methodology/approach – The authors used a combination of a content analysis, network analysis,
community detection and simulation. A sample of 922 health-related apps (including manufacturers’ apps and
developers) were collected through snowball sampling after an initial content analysis from aGoogle search for
fitness tracking devices.
Findings – The network of fitness apps is disassortative with high-degree nodes connecting to low-degree
nodes, follow a power-law degree distribution and present with low community structure. Information spreads
faster through the network than an artificial small-world network and fastest when nodes with high degree
centrality are the seeds.
Practical implications – This capability to spread information holds implications for both intended and
unintended data sharing.
Originality/value – The analysis confirms and supports evidence of widespread mobility of data between
fitness and health apps that were initially reported in earlier work and in addition provides evidence for the
dynamic diffusion capability of the network based on its structure. The structure of the network enables the
duality of the purpose of data sharing.

Keywords Information sharing, Data sharing, Network analysis, Ethics, E-Health, Human computer

interaction

Paper type Research paper

1. Introduction
Healthcare is undergoing a digital transformation, enabled by digital technologies and the
advances in data analytics, artificial intelligence, health-related Internet of things (h-IoT),
mobile health and virtualisation (Gleiss et al., 2021). Specifically, the h-IoT includes a diverse
set of technologies proposed to improve disease management, remote monitoring of patients,
fitness and wellbeing monitoring, health-related research, medication dispensation and
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testing of treatments (Mittelstadt, 2017). These digital health technologies include a mobile
sensor that captures physiological and activity-related signals, which are then processed and
presented through an accompanying app (Kerr et al., 2019).

Integration of devices and apps allows communication of user data across multiple
platforms, mostly through an Application Programming Interface (API) or a software
developer kit (Grundy et al., 2017; Henriksen et al., 2018). The integration of apps allows for
data linkage to create a unified view of the user, incorporating data from a variety of spheres
of life (Aitken et al., 2016). Yet, ethical problems often arise and persist when data is shared
across devices, apps and platforms and ultimately linked. h-IoT devices may generate
personal health and activity data of extraordinary granularity and unparalleled scope,
creating windows into the everyday, but private lives of individuals that are accessible by
third parties for analysis purposes (Mittelstadt, 2017). Of particular concern are the protection
of individual privacy, information manipulation, information leaks, loss of information and
misuse (Grundy et al., 2017; Mittelstadt, 2017; Kazlouski et al., 2020). It is therefore prudent to
evaluate the data sharing phenomena, for both research and commercial applications.

Fitness and nutrition apps are the most advanced in sharing data through APIs. Indeed,
the integration of fitness apps has formed a network across which information may spread
(Grundy et al., 2017). Furthermore, fitness apps that function on a network of digital
technologies have modified the exercise experience by extending it as a social experience
through sharing of performance-related data with friends and strangers. The social
dimension of fitness apps has dual implications for health and wellbeing, of which the
negative impacts are regarded less than the positive effects (Whelan and Clohessy, 2021). In
this article, we focus on one such potential negative implication, namely the concerns related
to the privacy of users when data are shared across platforms.

Earlier work has been done to identify vulnerabilities and entities in the h-IoT ecosystem
that facilitate data sharing, as well as the quantification of data volumes and data types that
are shared within this ecosystem (Fereidooni et al., 2017; Grundy et al., 2017, 2019a; Kazlouski
et al., 2020; Tangari et al., 2021). Although both Grundy et al. (2017) and Grundy et al. (2019a)
were able to identify important entities and sharing pathways in subsystems of the h-IoT
ecosystem using network analysis techniques, neither assessed the dynamic spreading
capability of the networks. Therefore, with this article, we aim to offer a systems thinking
perspective on the ongoing data sharing phenomenon, by analysing the hypothetical
information spreading capability of a fitness apps network in terms of its structure and the
centrality (positioning of influence) of its nodes (the apps). The systems thinking perspective
conveys that the behaviour of a system (in this case, the information spread) is produced by
the structure of the system and the interactions between the elements that make up the
system (Maani and Cavana, 2007).

We contribute to the study of the data sharing phenomenon amongst fitness apps aimed at
the consumer by quantifying the earlier descriptions of the potential spread of information
using networkmethods.We chose networkmethods because it offers a succinct way to study
the connection patterns (the behaviour) that result from the structure of a networked system,
inwhich the elements are the nodes and the edges formed between the nodes (Newman, 2010).
More specifically, at the network level, we assess the community structure of the fitness app
network, as well as its assortativity (degree-correlation), since both these elements have been
shown to influence information spread dynamics of other types of networks (Nekovee et al.,
2007; Weng et al., 2013; Murakami et al., 2017). At the node level, we assess spreading
dynamics in terms of the starting node’s degree (number of unique connections with other
nodes) which also impacts the rate of spread (Moreno et al., 2004). Furthermore, we assume
the data shared amongst fitness apps are of the simple class of contagions (Weng et al., 2013).
Through the analysis, we highlight important aspects related to health ethics that may
influence how individuals perceive their fitness and pose new questions.
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Figure 1 indicates the focus of our study at the meso level of the h-IoT ecosystem.
Individuals partake on the micro level by uploading and sharing their data on their chosen
fitness app. Each app takes a position in the fitness app network at the meso level. The
network of fitness apps is potentially capable of sharing data beyond what the individual
originally intended when they upload their data.

The layout of the rest of the article is as follows: x 2 reviews the relevant literature, x 3
unpacks the method, x 4 contains the results from the network analysis and simulation,
followed by the discussion in x 5. Supplementary material is available for definitions on
network measures (x S.1).

2. Literature review
2.1 The duality of data sharing
Technology in itself is neither good nor bad, but the purpose for which is applied may be
beneficial or harmful to individuals or society (Pitt, 2019). Similarly, the data sharing
phenomenon has positive advantages (understanding the subtle differences in individual
behaviours, lifestyles and health, assisting healthcare providers to monitor and treat disease
(Shah et al., 2021), enhancing transparency between healthcare providers and patients to better
chronic disease management (Dinh-Le et al., 2019)) but may also cause harm (prejudicial
treatment for insurance and employment, identity theft and blackmail (Slepchuk et al., 2022),
compromising optimal treatment through drug promotion whenmedicines-related app data are
commercialised (Grundy et al., 2019b), evenundermining the freemarket (Pagliari, 2019).) Health-
related data have travelled across boundaries between research, commercial and marketing
contexts. Such cross-border sharing of data may potentially violate the expectations regarding
the appropriate use of the data and erode public trust (Shah et al., 2021).

To illustrate these points, Fereidooni et al. (2017) successfully manipulated data on fitness
tracking apps by injecting fabricated values in proof-of-concept attacks on wearable device

Figure 1.
Proposed levels of the
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platforms, exemplifying the vulnerability of these apps. Kazlouski et al. (2020) showed that
fitness mobile apps contacted unexpected third parties (location services, advertisers and
analytic providers), continuing to state that individuals are likely donating private
information to device manufacturers in exchange to use the app. Grundy et al. (2017)
validated privacy and security concerns related to prominent health apps by tracing the
potential flow of consumers’ data through network analysis, in which they identified a core of
15 app families throughwhich datamay travel. Tangari et al. (2021) confirmed the presence of
third parties that are traditionally outside of the health domain in the data traffic of health and
fitness apps. Such third parties included targeted adverts, tracking, analytics, social
networks, banking and games. In their sample, 88% of apps have the potential to collect and
share user data. Grundy et al. (2019a) performed a network analysis on the third and fourth
parties involved in medicines-related apps to understand how user data may be aggregated
across the network. They provide proof that data sharing heightens the risk to privacy when
data is aggregated by fourth parties. The research on the data sharing phenomenon has
shown that data are possibly not shared for the benefit of the individual alone.

2.2 Network structure and propagation
Network analysis is a useful approach to finding patterns in the connections made between
entities in real-life networks. Graph theory and statistical measures are combined to
characterise the structure of a network. From this topological characterisation, the behaviour
or evolving nature of a network may be better understood (Jalloul et al., 2018). Network
analysis has found applications in social networks, transportation systems, biology,
economics, communication networks, Internet networks and bibliometrics to name a few
(Jalloul et al., 2018; Scott, 2017; Pool et al., 2020; Fortunato and Hric, 2016). The structure of a
network influences the dynamics of the contagion that diffuses across the network
(Kuperman and Abramson, 2001; Zanette, 2002; Nekovee et al., 2007; Weng et al., 2013;
Murakami et al., 2017). Contagions can be classified as simple (infectious disease, information,
rumours) or complex (behaviour, memes) (Weng et al., 2013). Simple contagions only require a
single contact to become “infected” (Centola, 2010), whereas common interest amongst
communitymembers (homophily) and social reinforcement are prerequisites for the spread of
complex contagions (Weng et al., 2013). The discussion here on network structure and
diffusion dynamics is limited to simple contagions.

Special structures are formed in networks when nodes become organised into cohesive
subgroups, referred to as communities, clusters, or modules. Such subgroups display higher
connectivity (or edge density) within the subgroup than with nodes outside the community.
Communities may develop some level of autonomy within the network and often have
functional roles in networks (Fortunato and Hric, 2016). In social and organisational settings,
communities can facilitate resource mobilisation, specifically attention, prestige, or
information (Stoltenberg et al., 2019).

Community structure influences the flow of information (including rumours) through a
network in terms of propagation speed and total reach (Nekovee et al., 2007;Weng et al., 2013).
A high clustering coefficient can inhibit rumour propagation (Jia et al., 2020). Informationmay
get trapped in communities because of the high internal cohesion, thereby limiting the global
spread (Weng et al., 2013). In small-world networks with local communities and a low number
of long-range connections, it is possible that a rumour never leaves the neighbourhood of
origin. On the other hand, as the randomness of the network is increased through more long-
range connections, the rumour spreads through the network to reach a proportion of the
population (Zanette, 2002). Strong community structure in hyperlinked networks creates
densely connected areas that bind the surfer of the web to a particular area and by
implication, the information this surfer attains is limited to that area (Stoltenberg et al., 2019).
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The initial rate of information spread was found to be faster in scale-free networks than in
random networks with the rate of propagation augmented by assortative mixing in scale-free
networks (Nekovee et al., 2007). However, poor information spread was observed for both
scale-free and random networks with high assortativity, in which the nodes with similar
degrees have formed clusters with few connections between high- and low-degree
communities. In addition, the average path length between nodes increased as
assortativity reached the maximum value, attributed to the loss of shortcut edges due to
the clustering effect (Murakami et al., 2017).

3. Method
The initial network was formed with the original sample (x 3.1) and whole-network and node
centrality measures were calculated. This network was then pruned to maintain nodes with
more than one connection, henceforth referred to as the pruned network, to find meaningful
communities (x 3.2) and to test information spread capability (x 3.3). At this stage, to maintain
parsimony but still find meaningful network structure, neither the direction of data sharing
nor the actual fitness or health-related metrics that are shared or synced between apps were
considered, only whether there is an existing connection between the apps. The network is
therefore a simple, unweighted, undirected network.

Network analysis may be donewith computational tools. The igraph library provides data
types, functions and routines to implement graph algorithms for network analysis on a
computer (CRAN, 2022). The igraph package in R was utilised as the computational tool in
this research.

3.1 Sampling process
The snowball sampling approach was followed, whereby an initial selection of devices was
made based on the content analysis from two Google searches (conducted in the Republic of
South Africa), for (1) best fitness tracking devices 2021 and (2) best heart rate monitors 2021.
The top-4 or top-5websites that the Google search returnedwere visited and downloaded into
.pdf format. This number is based on diminishing click-through by users after the first four
results (Jimenez et al., 2019). The content of the websites was searched to identify potentially
influential fitness devices or apps.

The identified deviceswere investigated on their respectivewebsites, Google Play, orApple’s
App store to find their partner or integration apps. An edge in the network is formed between
nodes when there is a specific reference to another app(s) along keyword indicators of partners,
“integrated with . . .”, or a clear message regarding connecting to other apps through some
synchronisation process. The second round of sampling consisted of finding the partner or
integration apps of those apps that integrate with the initial sample following the same search
process on their websites or the app stores. For example, round 1 (the content analysis) included
Garmin, which has integrations with Strava, Google Fit and others (based on the information
available on their website). Round two would follow to find Strava’s, Google Fit’s and other’s
integrations or connections through their respective websites. The edge list was then compiled
after two rounds of sampling connections as mentioned between the apps on their websites or
respective app stores. See Figure 2 for a visual aid to the sampling process. Technical data
integration was not considered. This snowball approach reflects the reputational approach
suggested in Scott (2017), where the initial devices identified through the content analysis are
knowledgeable informants from which further information and connections are extracted.

For the network to represent independent entities as nodes, the devices or apps that belong
to the same manufacturer or developer were grouped, for example, Garmin watches, Garmin
heart rate monitors and the GarminConnect app were grouped to Garmin. Apple Health,
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iPhone, Apple Watch, HealthKit and so forth, were grouped to Apple. MapMyRide,
MapMyRun and MapMyWalk were grouped in the MapMyFitness family.

3.2 Network communities
Communities in the network were assessed through node similarity (correlation, hierarchical
clustering and k-medoids clustering) and community detection algorithms (walktrap, the
Louvain method, label propagation, the Newman-Girvan method based on edge betweenness
and the leading eigenvector algorithms). The Pearson correlation coefficient (ρ) is calculated
for each node pair in the adjacency matrix A, into a similarity matrix, M. (ρ ∼ 1 implies the
nodes have similar connections, ρ ≈ 0 implies no correlation and ρ ≈ �1 implies dissimilar
connections). The clustering algorithms take as input the distancematrix,D, which is equal to
1 -M. The dendrogram for the hierarchical clustering was divided at a height5 0.9 to deliver
12 clusters. The k-medoids algorithm in the pam function was applied with seven clusters
(selected based on the elbow-test for the number of centroids at the lowest average silhouette
index). The silhouette index is used to assess the quality of the k-medoid clustering result.
(S ≈ 1) indicates highly separated clustering, S ≈ � 1 indicates that overlapping of clusters
occurred because some data points are closer to other clusters than their own (Aggerwal,
2015).) The modularity score is used to assess the quality of communities in the network
(Fortunato, 2010) for each community detection algorithm and was collected with the
modularity function. Q ≈ 1 indicates strong community structure, Q ≈ 0 indicates random
structure (Newman and Girvan, 2004).

3.3 Information spread simulation
Herewe simulate information spread as a simple contagion (Weng et al., 2013), implementing the
model in Alberto et al. (2020) in which they simulate gossip diffusion (considered a simple
contagion) across a network of friends. We augmented their code to represent the information
spread across the pruned network of fitness apps. Their algorithm sets one individual (selected
at random) as the starting node byassigning their gossip indicator to true, all other nodes’ gossip
indicator is set to false. The algorithmgoes throughall the individuals in a random sequence and
selects a random neighbour of the focal individual. If the selected neighbour is in possession of
the gossip, the focal individual’s gossip indicator updates to true to indicate that they now also
possess the gossip. The algorithm iterates a set number of times, for each iteration re-assigning
the gossip indicator of selected individuals based on the status of their neighbour. The gossip
cannot be “unheard”, that is a true status cannot change back to false.

Figure 2.
The snowball sampling
approach and edge
formation between
apps as nodes
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In our augmentation, the information starts at a specific node andwe repeat the simulation
a number of times per selected node. This starting node represents the initial input of
information or data synchronisation from the device when a user uploads their tracking data
to a designated app. Time steps are discrete and information is spread to one randomly
selected neighbour per time step. Three versions of the simulation on the pruned network
were executed:

(1) The simulation was repeated 10 times for each node and endured for 140 time steps
per simulation. In this simulation, each node is granted the opportunity to be the
starting node.

(2) The manufacturer nodes (that is, the devices identified during the content analysis)
were selected as starting nodes. The simulation was repeated 100 times for each of
these nodes and endured 30 time steps.

(3) The top-10 connected nodes (based on degree centrality) were selected as starting
nodes. The simulation ran 100 times for 30 time steps.

We generated a random network and a small-world network with the erdos.renyi.game and
sample_smallworld functions in igraph, using as input the number of nodes, the edge density
and the median degree from the pruned network. The re-wiring probability for the small-
world network was set to 0.01 to generate a highly clustered network. The strengths of
community characteristics (clustering coefficient, modularity score for the walktrap
community detection) for the artificial networks are 0.61, 0.8 for the small-world network
and 0.032, 0.26 for the random network. The spread of information was simulated across
these two artificial networks as well, again using the same code fromAlberto et al. (2020) with
some adjustments. For all the network simulations we extracted the time step at which the
proportion of nodes with the information has reached 100%.

4. Results
4.1 The content analysis
The supplementary material (x S.1) lists the devices that featured consistently in the content
analysis. Nearly all fitness trackers provide the number of steps (except Whoop), distances,
calories, sleep tracking and optical heart rate (HR). Other metrics are assimilating into fitness
trackers, namely: SpO2 (7/13), electrocardiogram (ECG)-based HR and heart rate variability
(HRV) (4/13), a-fibrillation indicators (3/13), fitness, stress or sleep scoring (10/13), breathing
rate (4/13) and skin temperature (2/13). HRV requires high-quality interbeat data, preferably
from ECG sensors and therefore remains elusive to fitness trackers. HR data from HR
monitors are generated through either forearm photoplethysmography (PPG) sensors or
ECG-based chest straps. HRV is available from nearly all ECG chest straps. Running
dynamics, such as cadence and ground contact time may be recorded by some chest straps in
addition to HR (Garmin, Miopod and Wahoo). VO2-max data are used in fitness scoring,
relating an individual’s cardiovascular fitness to their age. Stress scores mostly incorporate
HRV data to gauge the individual’s stressed status, albeit algorithms differ in how this score
is generated. The content analysis thus shows that highly personal and valuablemedical data
are being generated by fitness devices and apps.

4.2 Network structure and network-level measures
The final sample consisted of manufacturers (devices and sports apparel), fitness mobile
apps, web-based applications, home automation apps, voice assistants, data platforms (or
consolidators), retailer apps and software. The initial network (922 nodes, 1939 edges)
presents amixed picture in whichwe observed star-like structures as well as a core-periphery
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structure, which features a more densely connected core with a less dense periphery. This
represents a scale-free network where the degree distribution seems to be following the
power-law distribution (although not perfectly monotonically decreasing). The majority of
nodes have less than five connections and a few have> 50 connections. Strava has the most
connections (287), making it the most central node in the network based on degree.

The pruned network is produced by filtering the initial network for nodes with degree>1,
thereby maintaining 291 nodes connected through 1,308 edges. The core-periphery structure
is maintained with some indication of star-like structure (Figure 3), as well as the power-law
distribution (Figure 4). Strava remains the most connected node with 107 connections,
indicating that it is an influential node in the network through which a large number of apps
connect into the network.

Table 1 provides network-level measures for the initial network and the pruned network.
The average path length decreased for the pruned network, whereas the density, clustering
coefficient, mean degree and median degree increased for the pruned network. The
assortativity is more negative for the pruned network than the initial network. (The average
path length represents the number of data synchronisation steps a user must perform to shift
their data across the network, that is to sync data from app 1, to app 2, to get it to app 3.) The
density of 0.005 and the average path length of 3.2 for the initial network is consistentwith the
social network analysis of health and fitness apps by Grundy et al. (2017), who reported a
density of 0.005 and 3.28 connections between two apps. The low density indicates very few
of the theoretical potential connections in the network have indeed been realised, also
reflected in the low clustering coefficient (that is, there is a low percentage of triadic closure).
There are 631 nodes (68%) with only one degree, consistent with the median. It has been five
years since the publication of Grundy et al. (2017), the low density that persists may be
indicative that the network is not adding new connections amongst nodes despite potential
changes in network size, or that the network is in constant flux during which new nodes are
added but others leave the network. Smaller clusters away from the central nodes are
therefore not forming.

Figure 3.
Network for health and
fitness apps with
degree> 1, coloured by
their membership to
communities based on
the Louvain method.
The membership is
indicated by an integer
number and does not
carry any meaning
itself
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The pruned network has a density of 0.031 and a path length of 2.56. There are 82 nodes
(28%) with a degree of two and three nodes with a degree of one (due to structural changes in
the network when edges were removed together with the one-degree nodes). We expected the
increase in the density and clustering coefficient since the removal of nodes with one degree
would result in a networkwith denser connections and a higher proportion of triadic closures.
However, the density remains far below the theoretical maximum limit of 0.5 (Scott, 2017).
The network remains disassortative, in which high-degree nodes connect with low-degree
nodes. This is similar to the Internet-like networks in Vega-Oliveros et al. (2020). The
disassortative topology indicates the presence of hubs through which most other low-degree
nodes connect. The network is therefore heterogeneous in its topology, indicating that the
connections did not form at random and that the entities of the subsystem of the h-IoT
interact to form these connections.

4.3 Centrality measures
The pruned network is considered for the remaining analysis. Table S1 (supplementary
material) presents the node-level centrality measures for the top-10 connected nodes.
Manufacturers of fitness tracking devices make up seven of the top-10 nodes. This is
indicative of how manufacturers may have expanded their product-service offering beyond

Measure Initial network Pruned network

Density 0.0046 0.031
Clustering coefficient 0.0443 0.105
Assortativity �0.325 �0.398
Ave path length 3.2 2.56
Ave degree 4 9
St.dev degree 14.1 14.56
Median degree 1 4

Figure 4.
Degree distribution for
health and fitness apps.
Binwidth 5 2 for the
histogram. The insert
projects the frequency

for each degree

Table 1.
Network-level

measures
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their devices and data on fitness tracking. Strava is the most connected node, as well as the
main broker node with a betweenness of 9,431, followed by Apple, Garmin, Fitbit and
Withings. That the most connected node is also the main broker in the network not only
highlights its influential role in the network but beckons the question of why this pure app
node is more central than the manufacturing nodes that were identified during the content
analysis. Strava is a social network platform dedicated to athletes on which they can track
and analyse running and cycling performance, share their experiences with other athletes
(friends) and form communities through clubs and challenges. In addition, Strava offers
brands the opportunity to directly engage with athletes through sponsored challenges
(Strava, 2021). In this way, Strava offers a resource to brands that is hard to come by, namely
the attention of users (Stoltenberg et al., 2019) (specifically, athletes who are more likely to
engage with sporting brands).

4.4 Communities from similarity indices and clusters
Figure S1 (supplementary material) shows the right-tailed distribution of similarity as
represented by the Pearson correlation coefficient, with most nodes’ ρ≈ 0. Modularity scores
from the community detection algorithms are on the lower bound for community structure
that was formulated by Newman and Girvan (2004) (0.3≤Q≤ 0.7). The highest modularity is
scored by the Louvain-method (six communities, 0.35), followed by the fast greedy algorithm
(five communities, 0.33), walktrap (nine communities, 0.33), leading eigenvector (four
communities, 0.31), Newman-Girvan (130 communities, 0.15) and label propagation (one
community containing all the nodes, 0.0). The sizes of the respective communities for each
algorithm are not evenly spread. All the algorithms except for label propagation formed one
giant connected component consisting of most nodes (between 89 and 129) with smaller-sized
clusters making up the rest of the communities. Cluster quality for the k-medoid algorithm is
poor, with an average silhouette index of 0.11. There are 60 apps with a negative silhouette
index, indicating the likelihood is reasonable that they belong to another cluster.

Products with the same core competency (for example the multisport watches: Garmin,
Suunto, Polar, Coros) did not cluster together with hierarchical clustering, that is, they follow
dissimilar connection patternswhen comparedwith each other. The k-medoids clustering put
together Garmin, Polar and Coros but Suunto was assigned to another cluster. All the
community detection algorithms put these products together in the same cluster. That these
comparable products formdistinctive connections is good for the network and users since it is
indicative of their preserved independence in the network; it also makes sense, when viewed
from a competition point of view. To stand out in the market, comparable products form
different connections to add to their product offering and so distinguish themselves from
their competitors. The tendency of the network not to form strong disparate communities
reflects the idea that the network does not rely on the autonomy of communities to function as
a whole. Instead, we propose that devices and apps are forming connections with other apps
to enhance service offerings for their users and cohesive communities within this network
may hinder such diversifications.

4.5 Information spread
The time steps to reach 100% information spread for the three networks present with right-
tailed distributions (see Figure 5). Median time steps to fully diffuse the information for each
network are 25, 15, 9, 8 and 10 for the small-world network, the fitness app network, the
fitness app network with the manufacturers as starting nodes, the fitness app network with
the top-10 nodes (degree centrality) as starting nodes and the random network respectively.
Figure 6 shows an inverse relationship between the starting nodes’ degrees and the median
time steps to reach full dissemination. From this simulation, we can envisage the rate atwhich
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health-related information may travel to nodes beyond what the user of the starting app
originally had intended when they upload their data or provide other relevant personal
information for the app to function. This rate of information diffusion is fastest for starting
nodes with the highest degree, followed by the manufacturing nodes and differs from the
artificial networks’ rate of diffusion. The structure of the fitness app network, therefore,
influences its diffusion capability, since there are no cohesive communities to retard the flow
(such as those present in the small-world network).

Figure 5.
Distribution of time

steps for information
spread

Figure 6.
Information spread

across node degrees.
The negative

correlation (ρ) between
degree and median

time steps supports the
idea that a higher

degree starting node
tends to disseminate
information faster
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5. Discussion
5.1 Communities and information spread
The weak modularity scores (closer to 0 than 1), the low silhouette index (close to 0), the
correlation distribution around 0 and the low clustering coefficient are indicative that the
network has not formed disparate communities. Instead, we observed a disassortative
network with high-degree nodes connecting to low-degree nodes. The implication of such a
community-poor network is seen in the pace of the simulated information spread across the
network. The well-structured communities in the artificial small-world model with the low
number of long-range connections slowed down the spread of information, whereas the lack
of smaller, highly-connected subcomponents in the network coupled with the existence of a
giant connected component likely accelerate the spread of information, further augmented by
the hubs in the disassortative fitness app network. The pace of information spread is a
function of the starting node’s degree. We observed an inverse relationship between node
degree and the time steps to complete the information spread. This is in agreement with
Moreno et al. (2004) who showed that information (specifically, a rumour) propagates faster
through the network when the initial node has a high degree of connectivity.

This has also been shown in other areas of study, e.g. Everett Rogers’ diffusion of
innovations and the effective dissemination of health-related messages through the social
networks of highly-connected opinion leaders (Holliday et al., 2016). In the case of the fitness
app network, this dissemination of information may have dual effects. On one hand,
individuals can intentionally move their data across the network in a few steps to the app of
their choice after uploading to their device manufacturer’s app. On the other hand, unwanted
data sharing is possible even if the starting node has a low degree.

5.2 Concerns
The network extended beyond health and fitness applications to reach automated home
appliances, such as the Philips Hue light bulbs, voice assistants (Siri, Amazon Alexa, Google
Assistant) and retail reward systems (Walgreens, Dick’s Sporting Goods). Medical apps
(Dexcom, for continuous blood glucose monitoring, Qardio for blood pressure monitoring)
connect to the health and fitness network through Apple, Fitabase, healow, FitnessSyncer,
MyFitnessPal, Google Fit and others. Such connections are indicative of the emerging
ubiquity of health and fitness concepts, driven by smart devices.

It seems that competing consolidation platforms are connected through communal affiliation
with suppliers of activity data, similar to competitors of physical goods being connected when
they source from the same supplier. Data consolidation platforms have addressed the need for
health data consolidation, through integration andmaking it available on one platform. Perhaps
a fitting analogue is that of the supermarket for data where businesses or consumers can “shop”
for the data they require to address some need, be it operational or private health monitoring.
Other products or service offeringsmay be built off this platform. Examples of extended service
offerings are reward systems, health or fitness scores and engagement with users through
chatbotswhichmay allow for health information dissemination or collection of self-reported user
data. However, the quality of the data is limited, because it is subject to beingmade available by
individual devices or electronic sources and the veracity of the data. It may not be suited for
monitoring purposes, since monitoring requires data to be collected in a consistent manner,
which cannot be guaranteed in the case of consumer wearables due to varying algorithms and
sensor qualities (Gay and Leijdekkers, 2015).

Voluntary, anticipated, but also involuntary and unanticipated, data sharing across health
and fitness apps were highlighted in the network analysis of Grundy et al. (2017) in which they
traced the potential flow of individuals’ data through highly connected app families. The same
applies to the analysis performed here. A risk to the network is a product of the network itself,
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namely its capability to share information. This sharing of private, health-related information
allows comprehensive views to be built of the consumer, something that was not possible in
previous decades. The network in this article has “made contact” so to speak with entities
traditionally outside the health and fitness domains (for example, automated home appliances,
retail reward systems and so forth). Through data consolidator platforms (examples in this
network areElcies, HumanAPI and dacadoo) insurers andmarketers can access personal health
data in one place. In this way, the concerns of individuals who are reluctant to share their fitness
tracking data with researchers due to fear that commercial third parties such as health and life
insurersmay gain access to it, have indeedmaterialised (Aitken et al., 2016; Clarke et al., 2021). It
is important to maintain transparency with clients and users as to how the data are used for
what purposes, who owns the data and who has access to it.

There might be top-down consequences from the information sharing across the network.
When individuals realise how their data might travel across the network without them
knowing it, even in anonymised form. The original intention of fitness apps is for personal
monitoring at the individual level and not to share the data with other actors (for instance
researchers, insurers, or even healthcare providers) (Clarke et al., 2021). However, in light of
the diffusion capacity of the fitness app network and the value that third parties may gain
from a unified view of the consumer (Grundy et al., 2017), we propose that the data sharing
phenomenon moves away from the original purpose of wearables and their accompanying
apps. Using data for purposes other than the original intention creates suspicion on the behalf
of users and government alike – affecting the uptake of these devices and potential impacts
that may be achieved (Clarke et al., 2021). This creates any hitherto unanswered questions:
Will data-sharing change users’ interaction with their devices? For instance, will individuals
“hide” selected data or not use the device as intended to protect their fitness profile when
viewed by insurers, reward programmes, or health service providers? Howmight information
sharing impact the long-term adoption of wearable devices or other h-IoT-related devices?
Long-term adoption of wearables is associatedwith sharing on social media (Friel et al., 2021),
but also with the decision not to engage with competitive step counting (Li et al., 2020). This
indicates that while some may indeed be motivated by public (or social) sharing of their data
for the purpose of acknowledgement or competition, others may become demotivated when
the data create a competitive milieu amongst users.

5.3 Implications
We have shown how fast data may travel through a subset of the network of fitness and
health apps, given bidirectional flow. Such dissemination may benefit the user and society at
large but may also cause harm, as discussed earlier in x 2. In light of the work done by
Kuperman and Abramson (2001) who demonstrated that long-term oscillatory behaviour of
epidemics is influenced by the community structure of the network, we now draw a parallel
between data sharing and the challenges in maintaining and controlling the ongoing COVID-
19 pandemic. We witnessed the spread of COVID-19 in waves across our world’s complex
network structure, consisting of people and organisations. Yet, the interactions across this
same network structure keep our economies operational. The public health challenge is
therefore to maintain operational activities to spread economic benefits and at the same time
limit the spread of the disease. Similarly, our work perhaps highlights that the core challenge
for ethical data sharing is a multi-objective problem, since the structure of the network
enables the duality of the purpose of data sharing: How do we maximise the benefits of fast
data dissemination across the h-IoT, whilst minimising the risks associated with unwanted
data sharing when both benefit and risk are achieved on the same network structure?

Future directions to address this question may involve a shift in how we approach the
protection of privacy. Kasperbauer (2020) suggests three fundamental strategies (obfuscation
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of health data, penalties for misuse and improved transparency around with whom and for
what purpose data are shared) when we consider the notion that once data are shared, we
have given up control over our data and that the principle “privacy by design” undermines
beneficial initiatives based on data sharing.

5.4 Limitations
This study is limited by the data that came available through the sampling process. Google
applies country-specific strategies in their search algorithms, therefore the results of the content
analysis may be limited to the relevant websites produced by the search conducted in the
Republic of South Africa. We only had access to the information supplied by the websites,
therefore the number of connections is limited to those that the website chose to reveal. Some
apps and websites could not be reached during the network sampling process. Also, the
information required to establish the direction of the edge is not provided uniformly on apps’
websites nor the associated app store. The snowball approach has a higher likelihood to form a
denser network than a random sampling approach, although the random sampling might
produce an underestimation of the connection density (Scott, 2017). The network presented in
this article represents a cross-sectional analysis of the network and we assumed that this cross-
sectional analysis is representative of the full networkof health and fitness apps.Weapproached
the network as anundirected, unweightednetwork, but considering the directions of connections
between nodes and the weights of edges may yield different insights.

Future directions for the network may include the application of information propagation
theorems instead of a simulated experiment where information is shared between the nodes
without a probability or rate measure. The intention to share information with selected apps is
not incorporated into the simulation we applied here. Furthermore, looking for overlapping
communities (Zubcsek et al., 2014) and alternative ways to find the most influential nodes as
starting nodes (Jia et al., 2020; Vega-Oliveros et al., 2020; Guo et al., 2020) may also yield different
information propagation patterns. Network resilience is another factor that can be explored to
increase our knowledge of the network’s structure and its influence on information spread.

6. Conclusion
This study extended the knowledge of the data-sharing phenomenon between fitness apps as
a subset of the h-IoT by providing proof that the community structure, its disassortativity
and the degree centrality of the starting node influence the information spread dynamics.
Drawing upon the systems thinking perspective, we showed that the structure of the system
(that is, the existing connections between apps) influences its behaviour (data sharing).
However, data sharing itself is not the problem per se, but rather the uncontrolled and
misappropriation thereof. The beneficiaries of our study are those researchers, policymakers,
developers and lawmakers concerned with managing data sharing within the broader h-IoT,
but also the individuals whowish to protect their privacy.We recommend a systems thinking
perspective be taken to address the duality of data sharing. Other system thinking tools are
available to better understand how the propagation of information may affect individuals
and society. These tools include causal loop diagrams, agent-based and system dynamics
simulations and machine learning, amongst others.
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Supplementary material

S.1 Definitions and network measures
A node in a network represents the entity that forms connections with other entities in the network, also
referred to as actors or vertices. A node is represented as a point on a graph. Edges, ties, or connections
refer to an existing relationship between any two nodes (Aggerwal, 2015). The discussion here applies to
undirected networks. Although variations exist in how centrality metrics and network measures are
calculated, this article follows the same mathematical expressions referred to by the igraph package.

Types of networks
Networks are often classified based on the distribution of the nodes’ degrees. Degree is the total number
of connections (or ties, or edges) that a node has with other nodes in the network (Freeman, 1978). In a
random network, two nodes connect when a randomly generated number is larger than a given
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probability. All nodes, therefore, have an equal chance of being connected. The degree distribution is
normal. In the small-world network model, a regular lattice network is transformed by re-wiring a
number of connections to a randomly selected long-range node. In this way, the average path length (x
S.1) between nodes is reduced significantly. Both random and small-world networks, therefore, have a
homogeneous topology. The degree distribution of real-world networks often follow the power-law
distribution (heavy right-tailed), in which a small number of nodes have a very large degree and the
majority of nodes have a small degree. These types of networks are referred to as scale-free and have a
heterogeneous topology (Sohn, 2017).

Network measures
Let n be the number of nodes in a network and e be the number of edges. Density Ds in a network is the
proportion of actual edges (e) to the total number of edges possible, in Equation (1) (Scott, 2017):

Ds ¼ e

nðn� 1Þ=2 (1)

The total number of potential connections any node can make is given as n(n� 1), that is a connection to
every other node except themselves. The total possible or potential edges equals n(n� 1)/2 since an edge
betweenAandB is the same as between B andA. Density of networks is, therefore, a function of network
size (number of nodes) and is limited by it, since time constrains the number of connections that can be
meaningfully sustained by any node. When rewards start to decline and it becomes too costly to make
new relations, agents (nodes) may decide to stop making new connections. The density of a network
declines as its size increases, with an estimated mathematical maximum limit of 0.5 (Scott, 2017).

A path is the sequence of edges (connections) between two nodes in the network without repetition;
that is, how to get from node A across to node B through the connections that have been formed between
nodes. The path length represents the distance between two nodes, or howmany steps must be taken to
reach node B from node A, by counting the number of edges between two nodes, without repetition of
edges or nodes (Iacobucci et al., 1994). The clustering coefficient (also referred to as transitivity)
measures the probability that adjacent nodes are connected (Csardi, 2019). A triad of nodes i, j, k is
transitive (they achieved triadic closure) if the connections between all three have been realised, that is
there is an edge between i, j, between j, k and between i, k (Wasserman and Faust, 1994). In real-world
networks, triadic closure represents the tendency to form clusters. For instance, two individuals who
have a friend in common are likely to become connected, since there is a higher likelihood that they have
similar backgrounds and therefore there may be opportunities or reasons to interact. The clustering
coefficient is related to this concept of triadic closure (Aggerwal, 2015). The clustering coefficient
measures the ratio between the closed triads and all the triads in the network (Csardi, 2019).

Betweenness is the number of times a node v appears on the shortest paths between any other nodes
s, t in the network, shown in Equation (2) (Freeman, 1978).

CBðvÞ ¼
X

s≠v≠t∈V

σstðvÞ
σst

(2)

where σst is the total number of shortest paths between nodes s, t that may or may not involve v.
Betweenness measures the extent to which a node plays an intermediary role by acting as a broker,
gatekeeper, or bridge between other nodes in the network. Broker nodes or gatekeepers therefore also
exert some extent of control over the nodes they connect (Scott, 2017).

S.2 Results
The following device manufacturers and apps featured consistently across the websites and were
included in round 1 of the sampling process for the network analysis, namely fitness trackers: Amazfit,
Apple, Asus, Coros, Fitbit, Garmin, Oura, Polar, Samsung, Suunto, Whoop, Withings, Xiaomi and HR
monitors: Garmin, Miopod, Myzone, Polar, Scosche, Wahoo, Suunto, 4iiii. Table S1 contains the
centrality measures for the top-10 connected nodes.

ITP
35,8

328



Figure S1 contains the distribution of similarity (based on Pearson correlation) between apps.
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Name Degree Betweenness

Strava 107 9,431
Apple 102 6,596
Garmin 88 4,288
Fitbit 87 3,879
Withings 73 4,300
Wahoo 66 3,953
Polar 64 1,922
Google Fit 63 2,545
TrainingPeaks 50 2,083
Suunto 47 1,080

Table S1.
Centralitymeasures for
top-10 connected nodes

Figure S1.
Distribution of

similarity
between nodes

Integrated
fitness apps
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