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Big data, big challenges: Risk management of financial 

market in the digital economy
Abstract

Purpose– The purpose of the research is to assess the risk of the financial market in 

the digital economy through the quantitative analysis model in the big data era. It’s a 

big challenge for the government to carry out financial market risk management in the 

big data era.

Design/methodology/approach– In this study, a generalized autoregressive 

conditional heteroskedasticity-vector autoregression (GARCH-VaR) model is 

constructed to analyze the big data financial market in the digital economy. 

Additionally, the correlation test and stationarity test are carried out to construct the 

best fit model and get the corresponding VaR value.

Findings– Owing to the conditional heteroscedasticity, the index return series shows 

the leptokurtic and fat tail phenomenon. According to the AIC (Akaike Information 

Criterion), the fitting degree of the GARCH model is measured. The AIC value 

difference of the models under the three distributions is not obvious, and the differences 

between them can be ignored.

Originality/value– Using the GARCH-VaR model can better measure and predict the 

risk of the big data finance market and provide a reliable and quantitative basis for the 

current technology-driven regulation in the digital economy.

Keywords: Big data, digital economy, risk management, financial market, GARCH 

model, GARCH-VaR model. 

Paper type Research paper

1. Introduction

The digital economy era of the domestic big data financial market started in 2017, and 

new scientific and technological terms such as artificial intelligence, blockchain, and 

big data have sprung up in front of the world. Unfortunately, in this year, economic 

chaos began to appear in the financial market, such as illegal ICO (Initial Coin Offering) 

etc. (Zyskind and Nathan, 2015; Shi et al., 2020; Bo et al., 2021; Yang et al., 2021). 
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Although the process of financial innovation caused by science and technology is 

gradually advancing, economic management and legal protection have not kept pace 

with the times, and the scientific and technological innovation is often separated from 

the current supervision mechanism (Li et al., 2020a; Liu et al., 2020; Cai et al., 2021). 

As a result, the behavior of evading supervision in disguise often occurs, leading to 

regulatory arbitrage (Zhang et al., 2020a; Chen and Liu, 2021). The above situation 

shows that China should build and optimize the financial regulatory mechanism and 

adapt to the financial innovation environment promoted by science and technology. 

Therefore, with the emergence of Artificial Intelligence (AI), blockchain, big data, and 

other high technologies in the digital economy, although the service link is simplified 

and the efficiency is improved, more complicated and rich risk situations appear one 

after another. Therefore, supervision departments should have the idea of “using 

science and technology to control science and technology” and build technology-driven 

risk control, which is a new topic for supervision departments to balance encouraging 

innovation and strengthening supervision.

Big data can expand the scope of financial market risk management (Cerchiello 

and Giudici, 2016; Sun et al., 2019; Dong et al., 2021; Zhang et al., 2020b). Big data 

has the characteristics of large quantity, fast speed, and many kinds. In the era of the 

digital economy, the relationship between big data and the financial market is becoming 

closer and closer. In the financial market, big data records the information of individual 

and enterprise customers through text, video, and other storage media. Through big data, 

users’ portraits can be outlined and clustered, which is conducive to accurate marketing 

by banks and other financial institutions. In the era of the digital economy, big data is 

the core asset of financial institutions (Pfeiffer and Review, 2019; Gong et al., 2020). 

At the same time, this will bring a series of financial risk management problems. The 

data of traditional financial risk management is often scarce, so it is unable to deal with 

the risk in time and effectively. By means of big data information technology, we can 

build a digital financial risk management and control system, which will provide 

solutions for preventing financial risks.

With the arrival of the big data wave, the supervision of the financial market has also 
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brought changes. Use big data information technology such as data mining or neural 

networks to measure the financial market’s risk. Monitor the relevant indicators of 

financial market risk, and realize the prediction and prevention of financial market risk. 

First, big data can provide technical means for financial market risk supervision. Big 

data can make financial supervision more credible and visual. Secondly, in the era of 

the digital economy, digital financial supervision is more accurate. The traditional 

financial supervision is often a unified supervision paradigm, which can not achieve 

personalized and differentiated supervision. Big data can make this beautiful vision a 

reality. The vigorous development of the financial market puts forward higher 

requirements for the ability of the Chinese government’s regulatory authorities. The 

scale of financial supervision should be grasped in place. Government regulators should 

make rational use of financial risk monitoring tools such as big data, give full play to 

the information technology advantages of big data, and improve the government 

supervision system.

Previous literature mainly focused on risk prevention and diffusion. These studies 

can provide guidance for the business community and academia in some specific 

financial situations but cannot provide an effective reference in the era of the digital 

economy (Farag and Johan, 2021; Gravina and Lanzafame, 2021; Elheddad et al., 2021). 

In the aspect of risk early warning of financial technology, this paper thinks that it can 

be explored from the following three aspects: (1) In the area of the traditional digital 

financial risk, many scholars in the past focused on the characteristics of digital finance, 

but ignored the systematic reasons of the regulatory system. (2) The measurement of 

digital financial risk ignores the situation that the mode of business operation in China 

is contrary to the traditional financial theory, which will lead to differences in the 

measurement of digital financial risk. (3) In the era of the digital economy, the stability 

of the economy and media opinion have a great impact on the risk supervision of digital 

finance.

Therefore, the main contributions of this paper are as follows: This paper deeply 

analyzes the risk measurement indicators in the field of financial technology and uses 

the GARCH-VaR model to study the early warning and control of big data financial 
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technology risk. Through the value at risk calculated by the GARCH-VaR model, we 

can find the meaning behind the big data and provide technical support for intelligent 

supervision. There is still a big gap between traditional financial supervision and 

expectations. Through big data, blockchain, and other technical methods, China’s 

regulatory system can be comprehensively upgraded. From a systematic perspective, 

this paper studies the risk prevention and early warning of digital finance and provides 

ideas for constructing and improving China’s financial technology regulatory system.

The research aims to assess the risk of the financial market in the digital economy 

through the quantitative analysis model. First, a generalized autoregressive conditional 

heteroskedasticity-vector autoregression (GARCH-VaR) model is constructed to 

analyze the big data financial market in the digital economy. Additionally, the 

correlation test and stationarity test are carried out to construct the best fit model and 

get the corresponding VaR value. Based on the above discussions, this paper intends to 

discuss the following four issues from the theoretical and empirical levels: 

i. By combing the risk types of China’s digital financial market, this paper 

summarizes its risk characteristics. 

ii. Examine the relationship between the digital financial market and government 

regulation. 

iii. Calculate the VaR calculation and test of the digital financial market index. 

iv. Optimize and improve the digital financial risk supervision standards and 

system.

The article is structured as follows: Section 2 provides the concepts such as big data 

financial market through an exhaustive literature review. Section 3 outlines the research 

methodology adopted for this article. Results and discussion have been presented in 

Section 4. Finally, implications to theory and practice of this article and key lessons 

learned have been presented along with the conclusion in Section 5.

2. Literature review

Under the background of discussing big data financial market supervision theory, many 

scholars still have blind spots in the research on risk management of big data financial 

market, which is reflected in the following aspects (Zhang et al., 2019a). Firstly, the 
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discussion on the causes of financial technology risk only stays at the source, and also, 

there is a lack of research on supervision mechanisms and management systems. 

Secondly, more attention is paid to the risk research of financial products. Thirdly, it 

focuses on static and traditional research and lacks research on innovation theory and 

mechanism reform. Finally, most of the researchers focused on the control of 

management objectives and management mechanisms and often neglected the in-depth 

exploration of existing management innovation (Hu et al., 2020a; Zhang et al., 2019b).

The big data financial market is unpredictable and more complex than network risk 

and economic crisis. In fact, it also includes operational risk, liquidity risk, and market 

risk, which is similar to the traditional financial risk (Li et al., 2020b; Hu et al., 2020b; 

Zhang and Shen, 2021; Zhou et al., 2020). Moreover, some risks are unique, such as 

private security risks, technology risks, etc., which are more difficult to predict and 

avoid. The risk characteristics of the big data financial market are as follows:

Firstly, it has strong liquidity. The big data financial market is based on electronic 

communication, network engineering, and other increasingly prosperous technology 

that can be raised (Hu et al., 2020c). It adopts various technologies to complement each 

other, thus carrying out various businesses and breaking the restrictions on space and 

time in the financial field (Jiang et al., 2018; Hu et al., 2020d). It makes financial 

communication more convenient using big data technology and improves the efficiency 

of capital allocation and the flow rate. Of course, it may also have a huge impact on the 

development of the financial sector due to the negative effects of big data in the digital 

economy.

Secondly, there is a wide range of risks. As an emerging technology in the new era, 

the big data financial market relies on mobile communication technology for 

development, with the characteristics of openness, universality, and wide range. 

Although it has greatly promoted the smooth communication of the financial industry 

in the world, the consequences will be multiplied. The risk correlation between regions 

will be stronger, and the scope of risk will be wider.

Thirdly, it has high concealment. In the related operations of big data technology for 

the financial industry, most of the financial business through the website or app 
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registration and other ways (Niu et al., 2020; Hua et al., 2021; Lv et al., 2021a). 

Although the online operation greatly reduces the labor cost and the cost of financial 

transactions, the financial risks become more unpredictable and controllable (He et al., 

2020a; Wang et al., 2021a; Jing et al., 2021; Lv et al., 2021b). Compared with the 

traditional financial industry, the big data financial industry breaks through the multiple 

constraints of time and space in the traditional financial industry, making different kinds 

of businesses penetrate and connect with each other (Zuo et al., 2015; He et al., 2020b; 

Liu et al., 2021; Ma et al., 2021). On the other hand, it brings greater challenges to the 

risk supervision of big data.

Fourthly, it has complex characteristics as the big data financial market provides 

open financial services for customers, customers’ financial transactions tend to have a 

high dependence on Internet security technology (Veselovsky et al., 2018; Bhimani and 

Willcocks, 2014; Ni et al., 2021; Sun and Lv, 2021; Wang et al., 2021b). The 

application of internet technology in the financial industry has many complex nodes, 

such as ineffective supervision and low technical level. Moreover, with the continuous 

development of big data financial technology, it gradually integrates into a variety of 

businesses, such as banking, fund, insurance, etc., and its application scope is wider and 

wider (Brynjolfsson et al., 2003; Curran, 2020; Akter and Wamba, 2016; Ouyang et al., 

2021; Wang et al., 2021c). Therefore, the complexity of the big data financial market 

is further enhanced.

3. Methodology

Because of the uncertainty in the financial market, the cost of big data financial 

technology products or services will fluctuate greatly. Most scholars used the GARCH 

(Generalized Auto Regressive Conditional Heteroskedasticity) model to analyze the 

volatility of the financial market price index series to determine the law of volatility 

and the difference inaccuracy (Zikmund, 1994). Furthermore, the AIC (Akaike 

Information Criterion) criterion is used to simulate the conditional variance, which is 

more suitable for reality. And the VaR (Value at Risk) method is mainly used to 

measure the big data financial technology risk. The paper calculates the conditional 

variance mean and quantile of the return series by the GARCH model and gets the value 
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at risk of the big data financial market.

3.1 Applicability of GARCH-VaR model 

GARCH-VaR model absorbs the advantages of both the VaR method and GARCH 

model (McAleer and Da Veiga, 2008). It has a wide range of measurements because 

the GARCH model can accurately explain the financial data with the leptokurtic and 

fat tail phenomenon. From the perspective of risk supervision, the distribution of 

leptokurtic and fat tails is due to the clustering and concentration characteristics of price 

fluctuations. The peak of random variables appears in the average range, and the events 

with higher risk are small probability events. The impact of price fluctuation is mainly 

caused by the variance of time series and may also be affected by various objective 

environments, such as policies, natural disasters, wars, etc.

3.2 Data selection

At present, there are both traditional Internet financial models and emerging big data 

financial technology models in the financial market. Therefore, this paper selects the 

wind Internet financial index (code 884136) to measure the market risk faced by 

financial technology-listed companies. The sample involves third-party payment, e-

commerce banking, and other industries, which are highly representative and reliable 

and can reflect the overall situation of the big data financial market (Li et al., 2021).

The data sample of this paper is the daily closing price of the science and technology 

index from January 2014 to December 2020. China’s big data financial market has 

entered a period of stable development after 2014. In this paper, wind Internet financial 

index is selected to study, which can reduce the interference of special data to the results 

of this study and make the results of model fitting more accurate. 

When describing the rate of return, the sample data is logarithmically processed. The 

main reason is that the similarity level of continuous compound interest and logarithmic 

rate of return in meaning is high. Logarithmic processing of sample data to represent 

the rate of return can eliminate the non-stationarity of the series and further improve 

the fitting effect of the model (Lv and Liu, 2021; Ma et al., 2021). The logarithmic first-

order difference form of the daily yield of big data financial technology index is as 

follows:
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1
1

ln( ) ln lnt
t t t

t

spr Sp Sp
sp 



  
（1）

which  represents the daily closing price of the big data financial market tSp

index and  represents the yield of the financial market index on the  trading tr 𝑡 ― 𝑡ℎ

day.

Figure 1. Rate of return  series volatility charttr

Figure 1 is the rate of return  series volatility chart. The fluctuation of the tr

exponential, logarithmic rate of return is random, and the whole fluctuation chart 

appears obvious clustering phenomenon. From the 700th observation to the 900th 

observation, the fluctuation is small. From the 250th observation to the 550th 

observation, the observation fluctuates greatly, and there are significant positive returns 

and negative returns at the same time. This phenomenon is called volatility 

autocorrelation. The size of volatility is often related to its income. The greater the 

volatility, the higher the income, and the smaller the volatility, the smaller the income.
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Figure 2. Statistical analysis chart of tr

From the data shown in Figure 2, the mean value of the return series is 0.000808, 

the standard deviation and skewness are 0.023133 and -0.6949, respectively. 

Considering the morphological characteristics of data skewness distribution, if the 

skewness coefficient is less than 0, it is proved that the data distribution of the mean 

value of the return series has a long tail on the left. Kurtosis can be used to measure the 

change of the distribution situation of the whole value. From the data shown in the 

figure, the kurtosis of the series value is 5.755980, which proves that the yield series 

has the characteristics of a thick tail and cusp. If the Jarque-Bera statistic is 443.8016 

and the p-value is 0.00000, the hypothesis that the return series rt follows normal 

distribution is rejected.

Figure 3. QQ Chart of rt

The line shown in Figure 3 represents the specific distribution of the return sequence 
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under the normal distribution. And the actual distribution rt is represented by a curve 

scatter graph. There is a big deviation between the curve scatter graph and the straight 

line near the horizontal axis from the change of the curve scatter graph and the change 

of straight line in the graph. However, the curve scatter graph in the middle is 

distributed close to the straight line, and the curve scatters graph, and the straight line 

is close to each other, far away from the horizontal axis, which proves that the yield 

sequence rt has the feature of fat tail distribution.

4. Results and discussion

4.1 Stationarity and unit root test

Whether the time series is stable or not is crucial to the accuracy of the whole analysis 

results. When two non-stationary series have the trend of phase change, the statistical 

information may be misguided. Therefore, in the time series test, we must test the 

stationarity of the series to avoid the occurrence of wrong research conclusions. The 

results of the stationary test are shown in Table 1.

Table 1. ADF stationarity test

ADF test
1% level test 

threshold

5% level test 

threshold

10% level test 

threshold

t-statistic -28.8358 -3.3248 -2.7528 -2.4571

In the process of testing whether the time series is stable or not, this paper uses the 

unit root as an indicator to test. According to the stationarity test results, there is 

stationarity in the 10% confidence interval, the tested coefficient is -3.3248, and the 

stationarity coefficients in the 5% and 1% confidence intervals are -2.7528 and -2.4571, 

respectively. Considering that the exponential series has a unit root, the original 

hypothesis is not tenable. There is no unit root in the sequence. At the same time, it also 

proves that rt sequence belongs to the stationary sequence.

4.2 ARCH effect test 

After the stationarity test and unit root test, we need to test whether the whole sequence 

has an ARCH effect and establish a random walk model as follows:

1ln ln t tSp Sp u      （2）
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This paper uses the least square estimation method to test the effect of residual 

sequence in the testing process, and the results are shown in Table 2.

Table 2. Estimation results of random walk model

Variable Coefficient Std. Error t-Statistic Prob.

LNSP(-1) 0.997782 0.001287 714.2810 0.0000

R-squared 0.998811 Mean dependent VaR 8.322135

Adjusted R-squared 0.998809 S.D.dependent VaR 0.482140

S.E. of regression 0.023078 Akaike info criterion -4.575103

Sum squared resid 0.593850 Schwarz criterion -4.577124

Log likehood 2636.571 Hannan-Quinn criterion -4.582708

F-statistic 507531.2 Durbin-Watson 1.717114

Prob(F-statistic) 0.0000

We can get formula (3) from Table 2.

1 ˆln 0.027853 0.996793ln t tSp Sp u   (3)

Figure 4. Residual of OLS regression equation 

According to Figure 4, when the F statistic is large enough, the significance of the 

calculation results is obvious enough.  shows that the fitting effect of the 2 0.9988R 

model is good. The coefficient of the explanatory variable  is estimated to ln ( 1)Sp 

be 0.9978, indicating that it is significant. After observing the residual diagram of the 
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regression equation, we find that the {SP} fluctuation “cluster” phenomenon is small 

between 700 ~ 900 and large between 400 ~ 500, which proves that the sequence may 

have conditional heteroscedasticity. 

From the residual square correlation graph and the specific data, we know that the 

partial autocorrelation coefficient and autocorrelation coefficient of the residual 

sequence are mostly above the 95% confidence level, and the Q statistic is also 

significant. Table 3 shows that the big data financial market index series has an ARCH 

effect.

Table 3. Test of ARCH effect of residual sequence

F-statistic 95.80214 Prob.F(3,111) 0.0000

Obs*R-squared 229.2415 Prob.Chi-Square(3) 0.0000

From the test results given in Table 3 and the calculation results of F statistics, we 

can know that the corresponding value of F statistics is 95.80214, and the corresponding 

p-value is zero, which proves that all residual sequences in the regression equation are 

significant. The statistical value of the ARCH effect T× R2 is 229.2415, and its 

probability p-value is 0, so the hypothesis that the residual does not conform to arch 

characteristics is not tenable. The results show that the ARCH effect exists in both the 

big data financial market index and yield index. Therefore, it is feasible to study the 

volatility of yield in China’s big data financial market by using the GARCH model.

4.3 Establishment of GARCH model

This paper used the normal distribution of random error term to describe its distribution 

characteristics more accurately. When the sequence satisfies the normal distribution, 

the following equation can be obtained.

Mean value equation: µ5 2ˆ4.25 10 0.1012t t tr u     (4)

Variance equation: 2 6 2 2
1 1ˆ ˆ ˆ2.94 10 0.0504 0.94104t t tu 

     (5)

When the coefficients of three parameters in conditional variance are all positive, 
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each parameter is highly significant. The coefficient  is 0.1012, which proves that 2ˆt

the yield increases by 0.1012% when the expected risk increases by one unit. We can 

know that the final value of the variance coefficient of the lag condition is the final 

value of  is 0.992, which meets the standard of parameter value and not greater ˆˆ( ) 

than the constraint condition. The closer the final value is to 1, the longer the influence 

persistence of conditional variance is. Moreover, it is proved that stationary fitting data 

of the GARCH (1,1) model is better. Furthermore, this paper tests conditional 

heteroscedasticity. When p = 3 (lag coefficient), the statistics of the residual series are 

shown in Table 4.

Table 4. Test results of ARCH LM

F-statistic 0.513133 Prob.F(3,111) 0.5615

Obs*R-squared 1.544665 Prob.Chi-Square(3) 0.5616

The probability value of the big data financial market index return series  is tr

0.5615, which does not conflict with the previous hypothesis. Therefore, we can 

conclude that the residual series has no conditional heteroscedasticity effect, and we 

can use GARCH (1,1) model to eliminate the ARCH effect.

AC (Autocorrelation Parameter) and PAC (Partial Autocorrelation Parameter) 

tend to 0, and the statistic Q tends to 1. The height of P (residual sequence probability) 

is not significant, which indicates that the ARCH effect has been eliminated by GARCH 

(1,1) model. The parameters of the first-order GARCH model of GED and student’s t 

distribution are calculated in the same way. 

Table 5. GARCH (1,1) estimation under three distributions

2 2 2
1 1t t t      

Distribution type   

Normal distribution
2.93×10−6

(0.00**)
0.050

(0.00**)
0.931

(0.00**)
Student’s t 1.61×10−6 0.065 0.912
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(0.1644) (0.00**) (0.00**)

GED
2.44×10−6

0.0231
0.053

(0.00**)
0.941

(0.00**)

Note: * * means significant at 99% confidence level

Table 5 is GARCH (1,1) estimation under three distributions. The conditional 

variance coefficient (CV) is calculated using the parameters of normal distribution type, 

etc., and the results are all less than 1, indicating that the variance stability is significant 

in these three distribution types. If α＞0, it means that the GARCH effect exists in the 

big data financial market. If β＞0.9, it indicates that non-real-time information can still 

affect market volatility to a great extent. It can be seen from Table 5 that these 

parameters have little difference in different distribution types, which indicates that the 

return rate of the big data financial technology index is not normally distributed. 

Table 6. GARCH (1,1) - M estimation for three distributions

Distribution type   1 2

Normal 
distribution

2.97×10−6

(0.00**)
0.0533

(0.00**)
0.9376

(0.00**)
0.2402

(0.007*)

Student’s t
2.05×10−6

(0.124)
0.072

(0.00**)
0.925

(0.00**)
0.279

(0.0001**)

GED
2.77×10−6

(0.0237*)
0.062

(0.00**)
0.932

(0.00**)
0.325

(0.00**)
Note: * means significant at 95% confidence level
** means significant at 99% confidence level

Table 6 is GARCH (1,1)-M estimation for three distributions. The standard deviation 

coefficient 𝛽2 > 0, which indicates that there is a positive risk premium. And the sample 

yield series is positively correlated with the market volatility. Currently, most 

consumers in the market are risk-averse consumers, requiring high risk and high return. 

When , GARCH (1,1) model is in a stable state and has significant valuation, 1 1  

which shows that the previous price fluctuation can greatly affect the current price 

fluctuation, and the past market risk can determine the current market risk. 

Table 7. EGARCH (1,1) estimation under three distributions

Distribution type    

Normal 
distribution

-0.156×10−6

(0.00**)
0.134

(0.00**)
-0.025

(0.0068*)
0.994

(0.00**)
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Student’s t
-0.142×10−6

(0.00**)
0.158

(0.00**)
-0.0178
(0.1777)

0.996
(0.00**)

GED
-0.155×10−6

(0.00**)
0.137

(0.00**)
-0.0234
(0.144)

0.995
(0.00**)

Note: * means significant at 95% confidence level
** means significant at 99% confidence level

Table 7 is EGARCH (1,1) estimation under three distributions. Coefficient γ 

represents the asymmetric effect. In normal distribution type, γ=-0.025. In student’s t 

distribution, γ=-0.0178. In GED distribution, γ=-0.0234. The normal distribution of 

value γ has 95% significance, while the other two distributions have no significance. In 

a normal distribution, α= 0.134 and γ=-0.025. When −1>0, the conditional variance 1tu 

will be impacted by 0.109 times of information shock. When −1<0, the conditional 1tu 

variance will be impacted by 0.159 times of information shock. Referring to the theory 

of negative leverage effect, the negative impact will have a stronger impact on the next 

cycle than the positive impact of the same strength.

Figure 5. Asymmetric information shock curve

As can be seen from Figure 5, the information shock value shows a negative shock. 

When −1<0, the impact curve is steeper. When −1＞0, it is in the frontal 1tu  1tu 

impact, and the curve is slower. The emergence of bad information will lead to stronger 

market volatility, and a negative impact has a greater impact on volatility.

T-ARCH (1.1) model can be used to verify the asymmetry of price fluctuation. 

The asymmetric term is negative in student’s t distribution. There was no significant 
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difference among the three distributions. Therefore, the model has no asymmetric effect 

in this yield series. Table 8 is T-ARCH (1,1) estimation under three distributions

Table 8. T-ARCH (1,1) estimation under three distributions

2 2 2 2
1 1 1 1 1t t t t td           

Distribution type    

Normal 
distribution

2.93×10−6

(0.00**)
0.055

(0.00**)
0.006

(0.611)
0.9501

(0.00**)

Student’s t
1.62×10−6

(0.2155)
0.079

(0.00**)
-0.0012
(0.954)

0.936
(0.00**)

GED
2.43×10−6

(0.00**)
0.068

(0.003*)
0.002

(0.926)
0.9325

(0.00**)
Note: * means significant at 95% confidence level
** means significant at 99% confidence level

This paper proposes AIC can get the best fitting GARCH model while analyzing the 

equation parameters of the GARCH model. The basic theoretical concept is entropy, 

which can effectively evaluate the volatility of the GARCH model fitting time series 

and judge its excellent degree.

2 2Akaike information criterion(AIC)= ln( ) K
T

  （6）

In which T is the sample size,  is the likelihood function, and K is the total 2ln( )

number of parameters to be estimated. The smaller the AIC value, the better the fitting 

degree of the model.

Table 9. AIC of GARCH model

Model
Normal 

distribution
Student’s t GED

GARCH(1,1) -5.113 -5.187 -5.174

GARCH(1,1)-M -5.129 -5.202 -5.188

EGARCH(1,1) -5.128 -5.203 -5.180

TARCH(1,1) -5.112 -5.187 -5.172

Table 9 is the AIC of the GARCH model. The model of student’s t and GED 

performs better than a normal distribution. The AIC value of the GARCH (1,1) - M 
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model in student’s t distribution type is the smallest. The parameter ω is not significant, 

and the difference between the estimated values of parameters of all models in several 

distribution types is less than 0.09. It is necessary to combine the modeling complexity 

and modeling efficiency to select the best model for research.

4.4 Calculation and test of VaR

The calculation principle of VaR value is based on GARCH (1,1) model, which 

introduces the variance  that can be iteratively calculated on day t into the VaR 2
t

formula. Therefore, the VaR value on t-th day can be obtained according to the 

calculation on t-1-th day.  represents the minimum rate of return, and α represents *R

the significance level.

*
1 tR Z t     (7)

1 1t tVaR W Z t   (8)

The conditional variance in the GARCH model is normalized to get the conditional 

standard deviation, which is expressed by . represents the mean value,  t  1Z 

represents the quantile value, and ∆t represents the unit within one day. The VaR value 

of each closing day can be obtained. At the same time, this paper calculates the VaR 

value under the condition of 90%, 95%, and 99% significance. Table 10 is descriptive 

statistics of VaR.

Table 10. Descriptive statistics of VaR

90% 95% 99%

Mean value 0.488378 0.580342 0.764272

Median 0.093122 0.111717 0.146177

Maximum 4.524878 5.375321 7.076900

Minimum value 0.005344 0.006352 0.008366

Standard deviation 0.841726 1.000000 1.316216

JB statistic 2260.880 2260.880 2260.880

ProbabilityP 0.000000 0.000000 0.000000

Gross value 547.2374 650.0538 855.6861
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Sum squares of total 

deviations
785.5042 1226.000 1944.225

According to the data in the Table, the order of VaR values under different 

confidence conditions is 99% > 95% > 90%. VaR (90%) is 0.488378, VAR (95%) is 

0.580342, and VaR (99%) is 0.764272. The confidence level is positively correlated 

with the corresponding value at risk statistics. When the confidence level is 99%, VaR 

has the largest difference. 

Figure 6. comparison of value at risk and actual loss

Figure 6 shows that when the sample is in the range of 300-550, VaR fluctuates 

greatly. It indicates that the volatility of the big data financial market index has 

increased significantly from 2014 to 2016, and the maximum risk appears when the 

sample value is 400. Especially in 2015, VAR increased rapidly in the first half of the 

year and reached the peak in the second half of the year. Now it is known that the stock 

market was turbulent at the beginning of 2015, and the sharp drop of stock price 

obviously affected the fluctuation of the big data financial market to a great extent.

In order to measure the accuracy of the result of VaR, the paper tests the value of 

VaR under various confidence levels and the actual loss and judge by the number of 

days of operation failure and the failure rate. It can be seen from the figure that the 

estimated result of VaR includes the actual loss and its degree.
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Given confidence level α, the estimated failure frequency P* is 1 – α. The actual 

failure probability is calculated by P. T is the total number of days of sample selection, 

W is the number of days of failure from real measurement. 

Table 11. Failure days and failure probability under different confidence levels

VaR confidence 

level
99% 95% 90%

Failure days 62 72 87

Failure probability 5.2% 6.2% 7.8%

Table 11 is Under the confidence levels of 90%, 99%, and 95%, the failure day is 

87, 62, and 72, respectively, and the failure probability is 7.8%, 5.2%, and 6.2%, 

respectively. Therefore, it can be judged that the calculation results of models with a 99% 

confidence level or less generally include the actual loss. Overall, the difference of 

failure probability among the three VaR confidence levels is not obvious. It can be seen 

from the failure days is significantly highlighted in 2014, indicating that the information 

transmission lags at the beginning of the development of the big data financial market. 

With the passage of time, the volatility of yield tends to be stable, and the number of 

failure days also decreases. VaR can better predict the loss. In addition, as far as the 

confidence level is concerned, the VaR of 99% confidence level is better. It means that 

under the 99% confidence level, regulators or investors can bear the larger loss 

preparation.

5. Conclusion

5.1 Implications to theory and practice

This paper takes the big data financial market as the research object and selects the 

daily closing price of the big data financial index as the sample data. Then the 

correlation test, stationarity test, and ARCH effect test are carried out to construct the 

best fit GARCH model and get the corresponding VaR value. First, the index return 

series shows the leptokurtic and fat tail phenomenon because of the conditional 

heteroscedasticity. Second, according to the AIC criterion, the fitting degree of the 
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GARCH model is measured. The AIC value difference of the models under the three 

distributions is not obvious, and the differences between them can be ignored. Third, 

the value at risk and the actual loss changed significantly from 2014 to 2016, with the 

peak value in the second half of 2015. This shows that the big data financial index 

entered a stage of rapid change in the first half of 2015, and its change trend is very 

large, so it has potential risks.

With the rapid development of financial science and technology, relying on science 

and technology to promote regulatory innovation and enhance Internet financial risk 

prevention, avoidance, and control is the key task and entry point for regulators to 

balance financial innovation and financial supervision. With the help of technology-

driven thinking to guide supervision and management, the GARCH-VaR risk 

measurement model is incorporated into the big data risk monitoring system to help 

financial regulatory authorities carry out risk identification, identification, early 

warning, investigation, and other work. In addition, risk warning services can be 

provided to the public.

5.2 Key lessons learned

At present, the financial supervision system must keep up with the development of the 

times so that the financial risk and supporting the innovation and development of the 

real economy are in a state of balance (Wu et al., 2020; Xu et al., 2020; Xue et al., 

2020a; Xue et al., 2020b; Zhang et al., 2021). Therefore, regulators must implement 

long-term and targeted policies to avoid sudden strong intervention and stabilize market 

and policy expectations. In addition, to promote the continuous development of 

supervision and management technology, the exhibition is also the core content of 

macro-prudential management. To improve the professionalism, real-time, and 

penetration of supervision and management technology, we should build a supervision 

and management technology system relying on AI, digital technology, etc. For example, 

implementing a regulatory sandbox mechanism enables digital finance to have a 

corresponding safe range in developing the real economy and implementing incentive-

compatible supervision and management policies. At the same time, we must also pay 

attention to the supervision of the whole process, strengthen the transmission efficiency 
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of regulatory information and data, and take the initiative to make digital finance form 

a strong new driving force for innovation and development. For example, the big data 

financial index can only estimate its market risk but cannot play a significant role in the 

process of risk estimation of Internet financial diversification and transitivity. Therefore, 

we must combine all kinds of measurement methods and supervision and management 

methods with playing a role.

5.3 Future research recommendations

In the aspect of big data financial risk supervision, this paper puts forward the following 

prospects: first, in the aspect of the financial technology business, we should rely on 

various capital and liquidity supervision indicators of financial institutions to improve 

the coverage of supervision and management in the field of the financial technology 

business, as well as cross-sectoral coordination work. At the same time, we should 

strengthen the risk management mechanism of individual institutions and introduce it 

into the unified macro framework to minimize the possibility of negative impact. 

Second, we should improve the information disclosure mechanism and cash custody 

mechanism of the financial technology business, enhance the openness of business 

practice, enhance investors’ belief, and avoid the general panic in the industry caused 

by the pressure stage. Third, we must pay attention to the synchronization of strategy, 

the resonance effect caused by the algorithm, and implement the periodic counter 

adjustment. In addition, the regulatory authorities must also take the initiative to carry 

out supervision through regulatory technology and deeply combine the new technology 

and regulatory system to improve financial supervision efficiency. Fourth, in the aspect 

of digital currency, we must attach great importance to decentralization to avoid illegal 

financing and market manipulation; And for the design of legal digital currency, we 

must adhere to the principle of centralization and make efficient use of macro-control 

related functions.
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