
Assessment of Design Patterns during Software Reengineering:
Lessons Learned from a Large Commercial Project

Peter Wendorff
ASSET GmbH, 46147 Oberhausen, Germany

ASSET_GmbH@t-online.de

Abstract

Design patterns have been eagerly adopted by software
developers in recent years. There is ample evidence that
patterns can have a beneficial impact on software
quality, but in some cases patterns have been inappro-
priately applied due to a lack of experience.

This paper reports on a large commercial project
where the uncontrolled use of patterns has contributed to
severe maintenance problems. As a result a substantial
reengineering effort was undertaken, that led to the
identification of a number of inappropriately applied
patterns. At first glance the elimination of these patterns
appears to be desirable, but often they are tightly
coupled to other software artefacts, so that their removal
is economically not viable.

1. Introduction

Since their inception in the early 90s design patterns
(henceforth simply called "patterns") have been adopted
enthusiastically by the software community, both scien-
tists and practitioners. Their acceptance by practitioners
has clearly been helped by the intuitively appealing ideas
behind patterns. There is a multitude of success reports
from commercial organisations, a typical example of this
is given in [1].

As patterns have become popular many software
developers have applied patterns in an exploratory way.
Much of that code has entered the maintenance phase
recently. The issue of reengineering code containing
questionable patterns will therefore gain importance in
the near future. This observation has motivated this
paper.

We draw on our practical experience gained during a
large commercial project that has taken place at one of
Europe’s largest service companies between 1994 and
2000. During this period several operational versions of

the software were produced and rolled out, due to
functional enhancements and changes in technology. The
software is completed now and has been promoted to the
maintenance phase recently. The project in question
caused an effort of several hundred man-years, with more
than 50 programmers involved at peak times. The code
size is 1000 KLOC (800 KLOC C++ and 200 KLOC
PL/SQL (with 1 KLOC = 1000 lines of code)). This
paper is written by a software engineer with about 8 years
of professional experience who was assigned to the
project for 8 months during a major reengineering effort
as an external consultant.

Because the project was of high strategic importance
a number of external experts from leading software
consultancies were hired throughout the project. Much
attention was paid to technological issues, in particular
aspects relating to software architecture. This contributed
to an atmosphere where the use of patterns was
encouraged.

In this paper we adopt a reengineering point of view.
Therefore we concentrate on patterns actually found in
production code. We do not discuss how to improve the
use of patterns in future, we rather focus on remedies for
past inappropriate use of patterns.

At present the subject of patterns is only scarcely
covered in publications from a reengineering perspective.
The article [4] is a report about the reengineering of
object-oriented software in the telecom industry, and the
author notes that the inappropriate application of object-
oriented techniques in the past has created a new class of
legacy systems. The author gives some room to "pattern
restructuring" as a possible reengineering approach, but
the article does not pay particular attention to patterns.
The book [6] is an excellent work on reengineering of
code, but it does barely cover the inappropriate use of
patterns, let alone remedies for that problem. The paper
[5] is a very interesting and ironic account of
inappropriate use of patterns by software engineers, but
the paper does not provide practical advice on how to

address the problem. In [11] the authors report the results
of a controlled experiment. Their valuable empirical
research investigates the effects of design patterns on
software maintenance effort, but they do not discuss
procedures to deal with inappropriate patterns.

In section 2 we discuss some theoretical issues related
to patterns. In section 3 we present typical problems that
can be introduced into source code by the unreflective use
of patterns. In section 4 we will present a sequence of
simple steps for the assessment of patterns from a
reengineering perspective.

2. Aspects of Patterns

In this section we will discuss some aspects of patterns
that are relevant in the context of this paper, but
naturally we cannot provide a comprehensive treatment
of the subject.

2.1. Basic Elements

In [7] the following definition is given: "The design
patterns in this book are descriptions of communicating
objects and classes that are customized to solve a general
design problem in a particular context". The essential
elements of a pattern are [7]:
- the "pattern name" as denotation of the concept
- the "problem" as description of the class of situations

when the concept is applicable
- the "solution" which gives an abstract description of a

generic system of elements and their relationships that
solves the problem

- the "consequences" that result from the application of
the solution, for example trade-offs, costs, and benefits

2.2. Critical Success Factors

There exist a lot of critical success factors (CSFs) for the
application of a pattern, and empirical research shows
that these factors are barely understood at the present
state of the art [11]. Some CSFs are discussed in books
like [3] or [7] in an informal way, leaving much space for
personal opinion. Therefore the decision to apply a
pattern in a particular situation is to a large degree a
matter of subjective judgement. Popular collections of
patterns like [9], which are frequently consulted by pro-
grammers, do barely discuss critical success factors at all.

2.3. Design Options

A pattern is not necessarily a best practice, it is rather a
proven practitioner’s approach. Therefore a pattern is

merely one design option among others during software
development. The decision to favour one of these options
over the others should normally be based on the detailed
and specific quality goals of the software project.
Therefore the choice in favour or against the use of a
pattern must be based on the quality goals of the project.

2.4. Flexibility

One key concern of patterns is flexibility. In [7] Gamma
et al. note: "A design that doesn’t take change into
account risks major redesign in the future. Those changes
might involve class redefinition and reimplementation,
client modification, and retesting. Redesign affects many
parts of the software system, and unanticipated changes
are invariably expensive. Design patterns help you avoid
this by ensuring that a system can change in specific
ways". The crucial point to notice here is that a pattern
will usually add to a particular aspect of flexibility, but it
cannot provide universal flexibility. If a pattern is applied
to enhance flexibility of a software design, careful judge-
ment is required to ensure that the pattern promotes the
desired aspect of flexibility.

2.5. Cost

Gamma et al. note that the flexibility introduced by
patterns comes at a price when they discuss the
mechanism of delegation that is used by many patterns:
"Delegation has a disadvantage it shares with other
techniques that make software more flexible through
object composition: Dynamic, highly parameterized
software is harder to understand than more static
software. There are also run-time inefficiencies, but the
human inefficiencies are more important in the long
run".

Patterns usually lead to an increased number of
software artefacts (e.g. classes, files, associations, etc.),
which normally increase the static complexity of a
software system considerably. Furthermore, when the
additional associations are instantiated at run-time, they
result in additional and often volatile links between
objects, and this usually increases the dynamic
complexity of a software system significantly.

2.6. Cost of Change

Recently "Extreme Programming (XP)" has been
proposed as a new "lightweight" software engineering
methodology [2], and it is immensely popular among
practitioners. XP is based on four values, one of which is
"simplicity". This idea is explained in [2]: "XP is making

a bet. It is betting that it is better to do a simple thing
today and pay a little more tomorrow to change it if it
needs it, than to do a more complicated thing today that
may never be used anyway".

We will not give our position on XP here, we rather
note that XP is a methodology that has emerged in
practice and represents lessons learned by large numbers
of experienced software engineers. Clearly there is a case
for simplicity from an ecomomic point of view. As the
application of patterns frequently leads to more complex
software, there may be reasons to caution their use.

2.7. Software Quality

The term "software quality" already denotes an elusive
and multidimensional concept [8]. None of the leading
textbooks [3], [7], or [9] on patterns refers to any explicit
model of software quality, but their authors frequently
mention software quality attributes like "flexibility",
"comprehensibility", "maintainability", etc. without
giving clear operational definitions for these concepts.

It is a typical situation that different software quality
attributes are in a conflicting relationship to another [8].
For example it is possible that the application of a pattern
results in code that is more flexible, but that is more
complex as well. Whether the overall economic effect of
a pattern is positive or negative in such a case is therefore
dependent on future needs that are not fully anticipated at
the time of design and coding. It would be a break-
through in software engineering, if we could predict
software quality attributes in a comprehensive and objec-
tive way. Sadly we are far from that situation [10].

Therefore the decision in favour or against the use of
a pattern is to some degree a matter of subjective
judgement for at least two reasons. First, our ability to
measure the effects that patterns have on software quality
are very limited [10]. Second, there is no firm and formal
theory that links patterns to software quality concepts,
and therefore we do not have an explicit model of how
patterns work, what their critical success factors are, how
these factors interact, etc. [11].

2.8. Software Lifecycle

Any planning situation that has to deal with a dynamic
environment must care about uncertainty. A constructive
way to deal with this uncertainty is to build flexibility
into a product, so that it can be modified easily. Patterns
provide a way to build flexibility into a software product.

In the course of a software development project the
degree of uncertainty often decreases considerably. For
example as experience in the application domain
increases, the number of relevant environmental factors

can often be narrowed down. If uncertainty decreases,
then the need for flexibility may decrease accordingly.
Therefore it is conceivable that a pattern that is intro-
duced into a design at an early stage of the software
development process may become obsolete at a later
stage.

2.9. Removal

In the case of the removal of a pattern from code we have
to balance three conflicting issues (cf. [12]): First the
possible benefit of the pattern. Second the possible extra
cost of the pattern. Third the cost of its removal.

2.10. Empirical Research

The patterns movement was not theory-driven at its
inception, and it still is not at the time of writing, it is
rather an eclectic practitioner’s approach. This is
reflected by the lack of empirical research into patterns.
The severe lack of theoretical groundwork makes it
difficult to assess the cost/benefit ratio of patterns
objectively. In [11] the authors elaborate the blurred
operational definitions of software quality concepts
claimed in favour of patterns. Their work shows that
contrary to common belief the beneficial effects of
patterns are not universally obvious. Therefore it must be
concluded that at the present state of affairs there is a
serious lack of hard scientific evidence for the usefulness
of patterns in many situations.

3. Inadequate Application of Patterns

In this section we will give some examples from our
reengineering work where the application of patterns has
been questionable. This is not intended to criticise these
widely accepted patterns. Instead we want to illustrate
how and why patterns were in some cases improperly
applied by software engineers.

3.1. The Proxy Pattern

The "proxy" pattern as described in [3], [7], and [9] is a
simple one with an easy to grasp rationale behind it. Its
simplicity makes it a typical "beginner’s pattern", and
according to our experience, beginners tend to use it
freely.

The basic idea behind the proxy pattern is to use a
placeholder (called the "proxy") for another object (called
the "real subject") in order to control access to the real
subject [7]. The proxy constitutes an additional layer of
indirection and manages the requests made by clients to

the real subject. The proxy and its real subject exhibit the
same interface, and therefore the proxy can be substituted
wherever its corresponding real subject is expected by
clients. A typical application of the proxy pattern are
expensive operations, where the proxy decides when and
how to forward the requests to the real subject, in order to
ensure efficient processing.

During our reengineering analysis the value of many
proxies found in the code seemed to be doubtful. We
noticed the following problems:
- In many cases developers justified the application of

the proxy pattern with expected future needs for
flexibility, access control, and performance. In fact in
most cases these future needs never materialised. In
these cases the proxy pattern often remained in the
code, the rationale behind its use disappeared.

- The Proxy pattern naturally leads to a substantial
increase in the number of classes (and usually files).
For example the simple variant of the proxy patterns
described in [7] necessitates one interface class and two
concrete classes, compared to a single class for a
simple solution. This means that the size and com-
plexity of the software increases considerably.

- In [3] it is proposed to include some kind of pre-
processing and post-processing for a request to a class
in the proxy class of that class. Surely this division of
responsibilities between classes makes sense in some
special cases, but it can make the interaction between
objects pretty complicated. We found a case where
considerable and complicated functionality was scat-
tered over a hierarchy of proxy classes without a
documented or conceivable rationale.

- The proxy pattern introduces an additional level of
indirection which impedes comprehension of the
dynamic flow of control at run-time because it bloats
the call stack. This can make debugging much harder.

During our reengineering analysis we put every proxy
pattern used in the code to the test and removed a large
number of proxies completely.

In many cases the proxy objects did simply forward
requests to their real subjects directly without adding any
processing. As is correctly noted in [9] these proxies in
their "pure form" are not useful. Fortunately their remo-
val is straightforward, because one can simply substitute
the real subject for the proxy. This still is cumbersome
and monotone work, but the economies of classes and
files are usually substantial. Furthermore this work can
be done in a mechanical fashion and does not involve the
risk of introducing errors into the code.

The removal of a proxy pattern from the code was
straightforward in cases where there was a clear sepa-
ration of responsibilities between the proxy class and the
other classes involved in the pattern.

The removal of a proxy pattern in presence of com-
plex pre-processing or post-processing, proved to be very
difficult and needed careful attention to side effects.

In one subsystem with about 3000 lines of code we
removed 3 out of 7 proxy patterns altogether, leading to a
reduction of 200 lines of code.

3.2. The Observer Pattern

The observer pattern as described in [3], [7], and [9] is a
well-known pattern with a long history. Originally it
emerged as part of the Smalltalk environment where it
had been developed to facilitate GUI design, and where it
is known as model-view-controller (MVC) pattern. Since
those early days the concept has been refined and genera-
lised, and it has been applied to other domains as well.

The original MVC approach divides an interactive
graphical application into two fundamental parts: an
abstract application (the "model") and a user interface
(the "views" and the "controllers") that handle all I/O
functions. The MVC defines a generic protocol for the
communication of these three kinds of parts. There are
two important aspects of the MVC approach. First, it is
particularly suited in the case of a one-to-many depen-
dency between a model and several views [7]. Second it
facilitates reuse of software through the generic protocol
and the clear division of labour between the participating
objects.

In our project a framework for GUI implementation
(an industry standard) was used that provides a
comprehensive and reasonable support infrastructure for
modal dialogues. To our utter surprise one programmer
had not used this proven and free architecture but rather
implemented a complex MVC model on his own. From
an economic point of view this was clearly an extremely
bad solution for three reasons. First, by its very nature a
modal dialogue does not have multiple views. Second, in
our project it was never considered to reuse the dialogues
in any way. Third, the modal dialogues in question were
rather primitive and did simply not necessitate the sepa-
ration of concerns promoted by the MVC model.

 A post mortem analysis of the decision process that
led to the uneconomical decision in favour of the MVC
approach revealed that the programmer in question
- wanted to gain experience with the MVC approach
- justified his design decision in terms of "flexibility"

and "reusability"
- found it simple to convince the young and inexpe-

rienced project leader by referring to the purported
superiority of patterns over all other solutions

An important aspect in this case is the use of the
buzzwords "flexibility" and "reusability". These two
buzzwords are ascribed to certain patterns in most of the

literature on patterns (cf. [3], [7], and [9]). Clearly these
two quality attributes generally do not harm, but in this
case they were not required and they were achieved at an
irresponsible cost.

From an economic point of view it would have been
desirable to remove the MVC approach from the code. If
the aforementioned industry standard had been used, that
would have resulted in a fraction of the code size that
was effected by the MVC approach.

Unfortunately the removal of the MVC architecture
would have amounted to a completely new design and
implementation of the graphical user interface and was
therefore out of the question.

3.3. The Bridge Pattern

The bridge pattern [7], [9] provides a way to decouple an
abstraction and its implementation. There is a number of
potential situations when full independence between
abstractions and their implementations makes sense, but
these situations are rather special in nature.

Generally abstraction is not a value in itself, instead it
is a means to support human understanding and commu-
nication. Therefore a software design should exhibit a
useful degree of abstraction, ideally that one with the best
cost/benefit ratio in a given situation.

Many programming languages provide language
features that allow a certain degree of independence
between an abstraction and its implementation. For
example in our project C++ has been used, and this
language makes a distinction between a class declaration
and its corresponding implementation, and the two are
usually placed in separate files. We think that one should
first carefully evaluate the abstraction mechanisms
directly supported by the implementation language. Only
if there is evidence that these abstraction mechanisms are
not sufficient in the given context, then more compli-
cated and indirect abstraction mechanisms should be
considered.

The case where there is only one implementation for
an abstract concept is mentioned as "a degenerate case of
the Bridge pattern" in [7], and the authors note that this
pattern has very limited applicability. We found degen-
erate bridge patterns several times during our reengin-
eering work. Seemingly some of the programmers in the
project were beset by the idea of separating an abstraction
and its single corresponding implementation.

The post mortem examination of the design decisions
in favour of the bridge pattern revealed a recurring
course of events: During the early design stages the
designers frequently overestimated the need for later
extensions of the software. Faced with uncertain future
requirements they usually opted for the more flexible

solution. In many cases the bridge pattern was chosen in
a rather mechanical fashion.

Later many of the premeditated change requests did
not materialise, and in these cases the bridge pattern
usually stayed in place even though the rationale behind
its use had disappeared completely.

It is noteworthy that in several cases the original
rationale behind the choice of the bridge pattern could
not be established at all, due to a lack of appropriate
documentation. This does compromise the idea of flexi-
bility supported by patterns. It is usually helpful to know
the kind of flexibility that is provided by a pattern in a
particular context, in order to exploit this inherent flexi-
bility efficiently. If the corresponding documentation is
not present, then relevant options provided by the pattern
may go unnoticed.

During our reengineering work we only addressed the
degenerate form of the bridge pattern. Removing such a
bridge pattern from code is usually a straightforward
merger of two classes into one class. In one subsystem we
removed 2 out of 3 bridge patterns with an economy of
190 out of 1400 lines of code.

3.4. The Command Pattern

The command pattern [7], [9] (cf. the more elaborate
pattern "command processor" in [3]) is based on the
representation of commands by objects. Thereby complex
command structures can be represented by a flexible
object model. This approach can be used to design
applications that are easily extensible.

In our project the requirement was that about 100
elementary operations had to be performed in a number
of well-defined sequences on a set of data. The original
requirement was that the sequences should be read from
a database. Therefore the designers decided to use the
command pattern, which was a reasonable choice at that
time.

Our post mortem examination of the ensuing design
process told an interesting story. After the decision in
favour of the command pattern the designers got inspired
by the additional options associated with that pattern. A
number of additional functions were added to the design
that had never been mentioned in the requirements of the
project. As a matter of fact these functions were added
because they were noted in the popular text [7] as
possible options, although they were not part of the
requirements specification.

Then the requirements changed. The idea to read the
sequences of operations from a database was dropped. At
that stage the command pattern achitecture had deve-
loped into a very complex software artefact with loads of
unnecessary and complicated features that was intricately

intertwined with other parts of the software achitecture.
Even the original designers themselves freely admitted
that their solution was completely over the top.

In this situation a full reengineering of the failed
command pattern architecture would have been desirable,
but because of its complexity that was no longer a viable
option.

Clearly it would be unfair to blame patterns for the
ill-judgement of individual software engineers. Never-
theless our investigations indicated that the cookbook
style of much of the patterns literature might have
stimulated the playfulness of some software engineers in
the case of our project.

4. Removal of Patterns

During our work we have developed a simple procedure
to guide the removal of inappropriate patterns from code.
This is clearly an eclectic practitioner’s approach that has
evolved and succeeded during our project, but it is no
comprehensive and systematic solution to the problem.
We found the following steps helpful (cf. [12]):

Step 1: Identify the relevant quality attributes for the
software under consideration.
Step 2: Identify patterns used in the code.
Step 3: Try to reconstruct the original rationale behind
the use of patterns.
Step 4: Assess the concrete benefit of a pattern.
Step 5: Assess the concrete extra cost of a pattern.
Step 6: Assess the total effort needed to remove the
pattern.
Step 7: Make a balanced decision based on Steps 4, 5,
and 6 whether to remove the pattern.

To Step 1: Usually the detailed information system
strategy of the company or project should provide some
hints on the quality strategy. In our project the official
plans for the system do not envisage substantial
functional enhancements for the future. Therefore issues
like extensibility and flexibility are minor issues. On the
other hand the product must be maintained by a small
team of maintenance engineers that were not involved in
the development phase, and therefore low complexity of
the code is a major concern to ensure maintainability.

To Step 2: Identifying patterns in the code turned out
to be cumbersome at times. Often combinations of
patterns had been used, which often led to a blurred
separation of concepts. The same applies to variants of
patterns, that were often difficult to tell. On top of that
come simple errors in the application of patterns that
impede their identification: For example we found

patterns documented as "proxy" patterns, which accor-
ding to [7] are "adaptor" patterns.

To Step 3: Reconstructing the original motivation
behind the application of a pattern is an interesting, yet
difficult activity. In our project much of the design
documents originated in the mid 90s and were badly
maintained or even outdated. At one stage one of the
major software designers, who had left the project in the
meantime, was hired for one day to discuss these issues.
On the backcloth of the project’s history this designer
confirmed a number of our conjectures concerning
inappropriately applied patterns.

During our post mortem analysis into the inappro-
priate use of patterns two general categories became
apparent. In the first category are patterns that were
simply misused and where the developers who used them
had clearly not understood the rationale behind the
pattern. In the second category are patterns that do not
fall into the first category, but which did not match the
project’s set of quality criteria at the time of reviewing.

To Step 4: It is important to carry out this assessment
in the light of the quality criteria (Step 1). For example,
enhanced flexibility of a design due to the use of a
pattern is only beneficial if flexibility is a relevant quality
criterion. Moreover one should clarify the underlying
idea of flexibility: Is the particular form of flexibility
offered by the pattern really the desired one? Another
important aspect of flexibility is that it is a potential
benefit, i.e. it becomes beneficial only if it is actually
used. Therefore the likelihood that a flexibility potential
is really used one day should be included in the
assessment. If this likelihood is close to zero, then the
benefit of the pattern is negligible as well.

To Step 5: Again it is important to carry out this
assessment in the light of the quality criteria (Step 1). We
used a very simple approach based on two ratings. The
first rating was the subjective degree of additional
complexity introduced by a pattern, which was rated on
an ordinal scale (low, medium, high). The second rating
assessed the relevance for software developers to
understand the bit of code containing the pattern, again
rated on an ordinal scale (low, medium, high). The
resulting assessment matrix gives a clear overview of the
patterns with reference to possible removal. The idea
behind the assessment matrix is that patterns with a high
degree of additional complexity that affect code that must
be understood by many software developers are clear
candidates for removal.

To Step 6: A major determinant of the effort needed
to remove a pattern from code is the degree of coupling it
exhibits to other parts of the system. We only regarded
one simple aspect of coupling, namely the number of files
affected by the removal of a pattern, i.e. the number of

files of which a new version would be checked into the
configuration management system as a result of the
pattern’s removal. Admittedly this simplistic measure for
the software quality attribute coupling is very coarse, and
it was primarily chosen for pragmatic reasons, because it
can be calculated using the dependency checking
mechanism of an ordinary compiler. Unfortunately we
did not have more sophisticated tools at our disposal.

To Step 7: The decision to include a pattern in
program code is to some extend a subjective one, and
naturally the same applies to the removal of a pattern.
Nevertheless we have found one rule of thumb very
helpful: Don’t give a pattern the benefit of the doubt.

5. Conclusions

The intention of this paper is not to criticise the idea of
patterns, instead it is motivated by the observation that
the inappropriate application of patterns can possibly
backfire. We have presented several examples where
proven and popular patterns have been applied by
professional designers and programmers, probably with
the best of intentions. These examples show that this has
led to negative results in some cases. Therefore we
believe that inappropriately applied patterns will be a
relevant aspect of software reengineering and main-
tenance in the future.

The benefits of patterns are eagerly acknowledged in
the literature, but the associated costs feature less
prominently. Naturally patterns affect different software
quality attributes, and the application of a pattern may for
example result in a desirable increase of flexibility at the
cost of an undesirable increase of complexity. Therefore
the use of patterns is not a "free lunch". Accordingly it
can make economic sense to remove an inappropriate
pattern from code.

We have found two categories of inappropriately
applied patterns in our project. In the first category are
patterns that were simply misused by software developers
who had not understood the rationale behind the patterns.
In the second category are patterns that do not fall into
the first category, but which do not match the project’s
requirements.

Our analysis of patterns in the second category has
identified a number of situations that gave rise to inap-
propriate patterns. First, many software developers rou-
tinely overestimated the future volatility of requirements,
and often opted for patterns to build flexibility into the
software. Second, requirements changed over the lifetime
of the project, and thereby patterns that had been reason-
able at first became obsolete later. Third, in some cases
patterns were applied without any regard to the quality
goals of the project, for example because software deve-

lopers wanted to gain experience with patterns. Fourth,
the cookbook style of much of the patterns literature
tempted to embellish a pattern with additional features.
Therefore it happend that features were added because
they were mentioned in books, not because they were
actually needed.

One major impediment to our work was the lack of
appropriate documentation of early design decisions in
favour of patterns. We believe that software developers
who fail to record these crucial decisions have simply not
understood the informing ideas behind patterns.

We have presented a simple procedure consisting of
seven steps that we have used during the identification,
assessment, and removal of obsolete patterns. This proce-
dure has led to more objective, well-documented, and
economically sound decisions during our reengineering
activies. Nevertheless the decision to remove a pattern
inevitably remains subjective to some degree.

In the course of our work we identified several cases
of inappropriate patterns where their removal would not
have been viable. Often these patterns are strongly
coupled to other software artefacts, giving rise to com-
plex dependencies and possible side effects.

This paper is drawn on the experience gained in a
single project, albeit a very large one. We believe that the
situation described in this paper may apply to a consi-
derable proportion of the software developed during the
90s, the heydays of patterns. If that is true, then we have
to be prepared to deal with inappropriately applied
patterns in the future. This leads the way for future
research into the subject from a reengineering pers-
pective. First, we need a more objective assessment of the
cost/benefit ratio of patterns. Second, we need more
guidance in the decision when to remove a pattern from
code. Third, we should develop systematic procedures
and tool support for the removal of inappropriate patterns
from code.

6. References

[1] Beck, K. et al., "Industrial Experience with Design
Patterns", Proceedings of the 18th International Conference on
Software Engineering, IEEE Computer Society Press, 1996, pp.
103-114.

[2] Beck, K., Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.

[3] Buschmann, F. et al., Pattern-Oriented Software Archi-
tecture: A System of Patterns, John Wiley & Sons, 1996.

[4] Casais, E., "Re-Engineering Object-Oriented Legacy
Systems", The Journal of Object-Oriented Programming, Vol.
10, No. 8, 1998, pp. 45-52.

[5] Dodani, M., "Rules Are for Fools, Patterns Are for Cool
Fools", The Journal of Object-Oriented Programming, Vol. 12,
No. 6, 1999, pp. 21-23, p. 70.

[6] Fowler, M. et al., Refactoring: Improving the Design of
Existing Code, Addison-Wesley Longman, 1999.

[7] Gamma, E. et al., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Publishing
Company, 1995.

[8] Gillies, A., Software Quality: Theory and Management,
International Thomson Computer Press, 1997.

[9] Grand, M., Patterns in Java (Vol. 1), Wiley & Sons, 1998.

[10] Pfleeger, S. L. et al., "Status Report on Software
Measurement", IEEE Software, March/April 1997, pp. 33-43.

[11] Prechelt, L. et al., "A Controlled Experiment in
Maintenance Comparing Design Patterns to Simpler Solutions",
To appear in IEEE Transactions on Software Engineering,
http://wwwipd.ira.uka.de/~prechelt/Biblio/.

[12] Pressman, R. S., Software Engineering - A Practitioner’s
Approach, McGraw-Hill Companies, 1997.

