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Ahstract

In this paper a technique is presented for simulating a set
of hybrid systems (agents) whose continuous dynamics are
decoupled; however coupling is introduced in the form of
constraints (inequalities whose violation signifies the occur-
rence of a discrete event). We introduce a step size selection
algorithm, motivated by the control theoretic concept of In-
put/Output linearization, which allows two or more agents
to be integrated asynchronously using different step sizes
when the state is away from the constraint. When the state
approaches a constraint, the algorithm is able to bring the
two local time clocks into synchronization and localize the
time of constraint violation. The algorithm is guaranteed
to never miss or overshoot the constraints, eliminating the
need for simulation roll-back.

1 Introduction

Hybrid systems are systems of continuous ordinary differen-
tial equations(ODEs) whose right-hand sides switch based
on the occurrence of discrete events. The trajectory of the
hybrid system can be viewed as a concatenation of continu-
ous flows and discrete jumps. A meudti-agent hybrid system
is a collection of interacting hybrid systems (individually
referred to as agents). Simulation is an important tool for
designing such systems; in addition, numerical approxima-
tion techniques are increasingly being used in approximate
reachability computations, verification and other forms of
automated analysis [1], {2], [3].

One particular class of multi-agent hybrid systems for
which we would like to develop improved simulation tech-
nigues consists of groups of agents whose ODE’s are de-
coupled while the guard depends on the state of both agents.
Generically if #¢ is the state of Agenti, wherei =1,..., N
@ = i) g e) <0 ey
where i # jand 2 € R™ (resp. z7), f' : R® — R™
(resp. /), and g : R™ x R™ — R. Once ¢ (z!,27) > 0,
fi and f; would change. Examples of such systems abound.
Automated highway systems, free-flight air traffic control,
cooperative mobile robotic systems, and multi-body sys-
tems simulated for graphics applications all can be modeled
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this way — the dynamics of each vehicle, plane, or robot are
decoupled; however, certain critical events which are rele-
vant to the simulation {e.g. collisions) depend on the states
of pairs of agents.

It is well known that, when simulating hybrid systems, a
failure to detect an event can have disastrous results on the
global solution due to the discontinuous nature of the prob-
lem. Documents detailing requirements for hybrid simula-
tors list accurate event detection as a primary concern [4].
Event detection in hybrid systems is, in itself, a very diffi-
cult problem [5]. The proper way of simulating such a sys-
tem is to terminate the numerical integration procedure as
close as possible to the time of constraint violation; activate
the appropriate mode switches and resets; and then restart
the simulation with the new differential equations, using the
event time as the new initial condition and the value of the
state at the event as the new initial state. Therefore accu-
rately detecting and locating the time at which the event oc-
curred is critical to generating valid simulation results. To
ensure proper event handling all existing hybrid system sim-
ulators must simulate each ODE in eq.(1} in a synchronized
fashion, despite the fact that their dynamics are decoupled.
This approach can lead to gross inefficiencies, especially
when the number of agents is large, because it forces all of
the ODEs to be simulated with the smallest acceptable step
size. Indeed this has been mentioned as one of the reasons
the SHIFT [6] simulator uses a fixed step size integration
algorithm, despite the obvious disadvantages. Our ultimate
goal is to develop a step size selection technique which is
capable of simulating each agent asynchronously when the
system is “far away” from the constraint surface, allowing
each agent to be integrated with its own largest acceptable
step size, increasing the overall efficiency of the simulation.
As the system approaches the constraint, the relevant local
time clocks automatically synchronize in order to properly
detect and localize the occurrence of the surface crossing
(i.e. the discrete event).

A variety of literature in fields closely refated to this topic
exists although it seems there has been little work specif-
ically on this problem. For the “single-agent” case, early
works [7], [8] recognized the need for special algorithms
to locate discrete events. In [5] a technique for finding
zero crossings of a polynomial constraint function is pre-
sented. A rigorous technique for event detection which uses



interval arithmetic to develop an efficient “exclusion” test (a
test which eliminates most intervals not containing an event
from further consideration) is reported in [9]. Finally in [10]
we present a control theoretic method which is guaranteed
to correctly detect an event for certain classes of constraints,
while guaranteeing that the ODE is never evaluated on the
opposite side of the switching surface (g(x) = 0). This
technique forms the basis for our current work and is re-
viewed in detail later.

2 Background

In this section we present some results leading up to the
main contribution of this paper, given in Section 3. First,
in Section 2.1, we review the details of Linear Multistep
Methods— our prefered numerical integration technique. We
then summarize our previous work [10] on event detection
for hybrid system simulation for the single agent case in
Section 2.2, since it provides the foundation for the multi-
agent approach.

2.1 Linear multistep methods

Given the system £ = f(z) and zq z(0), it is cus-
tomary to denote the simulation data at the discrete time
tr as & = z(t)), and the value of the time derivative as
fi = f(=zi). Itis also convention to define the time step as
hg1 = tg+1 — tx. Linear muftistep methods (LMSM) are
a popular set of numerical integration techniques, the most
popular of which are the Adams methods. In such a method,
the simulation is advanced by solving for x4 in terms of
a weighted combination of past values of the state x and its
derivative f(z):

m
Tpy1 = Tk + e Z,ijk—j-Ha (2

=1

where the weights, 3. are selected such that the difference
equaticn would exactly reproduce the analytical solution
z(t) if it were a polynomial of order m or lower. In gen-
eral the accuracy of the method is proportional to (g1 )™.
See any numerical analysis text for further details [11].

Often in text books, values of 3 are supplied as constants;
however this is only the case when the step size is constant.
In general, 3 is a rational polynomial function of the previ-
ous m step sizes. For our purposes it is important to note
that, since the past step sizes are known, 3, is essentially an
m** order rational polynomial function of hy,;. We em-
phasize this by writing 3;(hr,1). Multistep methods are
a natural choice for simulating hybrid systems because the
polynomial expressions for 3; can be used as interpolants
1o approximate the solution at off-mesh peints, which are
exploited in event detection.

We also mention that most modern numerical integration
software packages compute an ideal step size, e, to keep
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the estimated local truncation error near some desired value.
In addition an absolute minimum and maximum step size,
huin and Amax are typically specified. An automatic step
size selection scheme takes all these factor into account. In
the next section we discuss an algorithm for computing an
ideal step size based on event considerations.

2.2 Control theoretic view of event detection

It is well known that systems of differential equations with
nonlinear algebraic constraints can be transformed to a
equivalent systems with linear constraints by appending a
new state variable z = g(xz),

£ = f(@) 2. fia)

g(z) <0

=

t = f(z), 2

z2<0. 3)
Thus we only consider the case of linear constraints here;
other cases, such as polynomial and more general nonlinear
constraints, are handled directly in [10].

We treat the problem of selecting the step size to properly
approach the event surface as a control system design prob-
lem in discrete time. For a linear multistep method the “sys-
tem dynamics” are given by eq.(2) which implies the con-
straint dynamics are

o(Tke1) = gesr = 9( T + hrgr 3 Bifrcjir ). (@)

=1

In our control system analogy, we consider the constraint as
an “output function”. If the event function is linear, eq.(4)
becomes

By —
Qe+1 = gk + hk+1§ j;ﬁjfk—jﬂ (3)

which can be thought of as a Taylor series expansion in
hit1 about z;. We treat by, in eq.(2) as an input. The
problem is then to select a “feedback function” (a rule for
selecting hy41) to force the constraint dynamics, eq.(5).
to converge exponentially to the surface g(z) = 0 with-
out overshooting it. Note that gﬁ iy Bife—jt1 is sim-
ply the Lie derivative (Lygg)x. Using the technique of In-
put/Output linearization (see [12]), select

(v — g
%,% 2o Bilhis1 ) fr—gh

yielding the difference equation gy .1 = 7ygx, which has the
solution g, = goy* and converges exponentially to g = 0 as
desired, provided 0 < v < 1. Note that if the denominator
is zero the system is moving tangentially to the constraint
surface and no event detection is needed.

(6)

hiy1

As mentioned earlier, the 3's for the Adams Method are
only constant in the spectal case of constant step size. Since
we are proposing to adjust the step size dynamically, the 5°s



in the above discussion are not constant, but rather are ratio-
nal polynomial functions of hyyy. Computing the correct
step size with eq.(6), for example, then entails finding the
roots of a polynomial in hy,. The algorithm is as follows:

h = step_select! fi,-- s fo—miPmax, Amin;
hETT!FY’g ) {
zZ = RootS{thp(h,g {v—Dglzs)} :
R = {r]|re ,Im(r)—(]r)O}
if R =0
hgr1 = oo ;
else
heyp = minge g( 7))
end
h = max[hmimmin(hmammin[hk-f-]ah'err])];‘
terminate? }

For example in the case of two step Adams method
&= (Qhk)/hk+1 and §; =1 - (2hk)/hk+1. Substituting
the expressions for 3 into eq.(6) and rearranging gives

Z = Rootslah} | + bhgy1 + ] )
where a = 1/2 - hi[8g/0x - (fi + fi—1)]. b= Og/Oz - fr
and ¢ = — (v — 1)g{zx). Eq.(7) must be solved for h,; at
every time step.

This algorithm has several advantages over other existing
algorithms. First, it is guaranteed to properly detect and
locate the first event which occurs in an integration inter-
val [10]. Secondly, since the gain is selected in such a way
as 1o prevent overshoot, the simulation never proceeds past
the switching surface g(z) = 0; hence it is never necessary
to roll back the simulation. Often the motivation for mod-
eling a system as a hybrid system is that a single model
is not valid everywhere in the state space; due to model
singularities, the simulation must switch between different
ODEs. Not overshooting the constraint prevents acciden-
tal attempts to evaluate the right-hand side of the ODE at
a model singularity. Finally, our step size selection scheme
preserves the undertying accuracy and stability of the nu-
merical integration method.

3 Multi-agent event detection

Extending the results of the previous section to the multi-
agent case which was discussed in Section 1 15 more com-
plicated due to the fact that we want to allow the simula-
tion for Agent | and Agent 2 to proceed at different rates.

Therefore we consider the simplest example of a multi-
agent hybrid system:

= fY(z")

g(z',z%) < 0

? = fz?) (8)

9

We must define local times and time steps, t*, k!, and 2,
h® for each agent. The dynamics of the two systemns and the
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Figure 1: Two automated vehicles driving in spiral trajectories.

constraint are

Ty, = + hy k41 Zﬁg(h +1)fk—3+1 (10)
i = T+ B HZﬂj(h wfie an
Get1 = @ xi+hi+1iﬂj(h}:+l)ﬁé—j+ln
=
i + hip Em: Bihg 1 Mi—jm (12)

=1

If we again assume the constraint function has been con-
verted to a linear form, eq.{12) becomes

kvl = Gk + hk+13 1 Zﬁg(th Ficjm +

?c-i—la 2 zﬁ.?(h +1)M i (13)

Returning to our control system analogy, eq.(13) is a single
output for a system with two inputs, & and k2, implying
there is some freedom in the selection of the step sizes. It is
important to point out that g(z!(¢!), z?(¢*)) = 0 does not
necessarily correspond to a physical event unless t! = 2. If
t! #£ 2 this implies that the two agents have passed though
the same point in on the constraint surface but at different lo-
cal times. Thus we introduce a second, fictitious, constraint
which we term the synchronization constraint. Assuming
for now that t* > 2, define

-t <o
T + A2 — KL,

Tt tz)

Th41

(14
(15)

Since 7 = 0 implies the two simulations are synchronized,
it is a necessary condition for an event to have physical sig-
nificance.

We simply treat eq.(14) as an additional constraint and use
our Input/Output linearization technique, presented in the
previous section to select a candidate step size for k% which
would drive t — 0

hiyr = (v — Dme + hiyy, (16)
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Figure 2: The trajectory of the two cars in the plane (lgf?). D is small enough that they collide. The value of the constraint as a function of
step number (right). The constraint converges to zero exponentially.

° T T T —t T r—— 001

007!
toa

e 120 1230 140 150 e e AL 1 200
Step Number

Figure 3: Step sizes for used in the first example (leff). h! and h? are selected independently away from the constraint but are brought into
synchronization when an event is impending. The value of T (righr), which is a measure of how out of synchronization the two
local time clocks are.

this causes ¢2 to synchronize with ¢1. Using this constraint One thing te note about the algorithm is that at each step we
to eliminate A2 in eq.(13), we have choose to advance the agent which {ags the most. Since
nearly all integration algorithms impose an upper bound
on the allowable step size iy this method of advancing
the slowest agent has the effect of ensuring that 7 is also

g «
Gk+1 = gk + h11c+1 Bl S -Bj(hllc+l)flg:.—j+] +
j=1 . .
! bounded. Since our step size selection scheme 1s based on

1y P9 - Sl 1y £2 solving for the roots of an extrapolation polynomial, bound-
(=D + hpp) fz? FZI Billy =D+ A ) fijn- O7) ing the extrapolation interval increases the accuracy of the
results.
The algorithm is as foliows; assuming # > 2
(otherwise  exchange  the  superscripts  below):
h = step_select2( fi,..o, fi_m fir s fim 4 Examples
hmax: hmizna hé,{,ﬂ hgrr: Y, g)
g‘ -:Rotot:_st i f eq.17 when = In this section the effectiveness of the algorithm presented in
Dox: ot &q- Jhi1 ¥ ;t}; ptl;evionfls stel::tion is xlluiv»trateﬁ throug(l; a s;t of exlam];lesr;
! e basis for these example is illustrated in Figure 1, whic
1_2 = {r|re Z Imrn=0r 2 0} depicts two automated vehicles driving in the plane. The
iftr = ’? 2 dynamics for agenti = 1,2 are
Regr = 005 By, = 005
else _ & = v cos @), ¥ = v'sin(6?), § = ' (18)
hi o= min{ r };
hepr = (Y=Dme+ b,y ) ) . )
end The v* and w* are functions of z*, ¥* and #* and are selected
R' = max[hmin, min{Amax, minfh}, k2] ) in such a way as to steer the vehicles in spiral trajectories.
h? = max[hmin, min{hma, minfh2 L B2 ) |; However Car | travels much faster than Car 2. The con-
terminate? } straint function is chosen to detect a collision between the
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Figure 4: The trajectory of the two cars in the plane from the second exampie (left). D is selected such that the two cars come very close
without colliding. The value of the constraint as a function of the step number (righ?). The constraint comes close to zero as the

cars barely miss each other.
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Figure 5: Step sizes for used in the second example(lefr). k' and h? are selected to slow the simulation down when it seems an event may
occur. Once it is apparent that this is not the case the simulation quickly speeds up. The value of = (righ), also decreases during

this period but soon increases again.

two vehicles

g=~/(& —Z P+ (y P +R<O  (19)

where R is the sum of the two vehicle’s radii. This exam-
ple was simulated using the algorithm presented earlier for
a variety of scenarios each with a different value for the sep-
aration distance (marked D in Figure 1).

In the first example, Fig. 2-3, the value of the separation dis-
tance D is small enough that the vehicles eventually collide.
The path of the vehicies in the plane is shown in Fig. 2(/).
Fig. 2(r) is a plot of the value of the constraint as a function
of the iteration. The constraint peaks first around step 70,
when car 1 completes a half of rotation; finally at step num-
ber 107 the event detection criterion becomes active and the
step sizes are selected in such a way that § — 0 expo-
nentiaily. Further insight is gained by examining Fig. 3{/)
which shows the step sizes used for each agent as a func-
tion of time. Note how 2! and h? vary independently until
t = 9.8 when the event detection mode is active; whereafier
they both begin adjusting 10 slow down the simulation and
synchronize the two local clocks. This is further illustrated
in Fig. 3(r) which plots the history of the synchronization
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function 7. lts value rapidly approaches zero to bring the
two agent into synchronization.

In the second case, Fig. 4-5, the value of the separation dis-
tance D) is increased enough that the vehicles do not col-
lide, but they do come very close to one another. The tra-
jectories of the two cars are shown in Fig. 4(I). There is a
near miss halfway through car 1's second rotation. The his-
tory of the constraint in Fig. 4(r) shows the value of g(zx)
comes very close 1o zero. During this period, the value of
7, Fig. 5(I), decreases in preparation for a possible event.
Fig. 5(r) shows how the step sizes were decreased to slow
down the simulation. However once the two cars pass each
other and it becomes apparent that no collision will occur,
the step sizes quickly increases and the two local clocks are
allowed to fall out of synchronization again.

S Extension to N agents

Extending the simulation methodology to a system of N
agents with pairwise inequality constraints is, from a theo-



retical point of view, straight forward, although there is sig-
nificant book keeping involved. Given IV sets of ODEs and
pairwise constraints of the form of eq.{1), for: = 1,..., N
and j > . Without loss of generality assume ti > #],
Vj > i then define 7’ = ¢ — ¢i. In a similar fashion
to two agent algorithm eq.(16) and eq.(17) must be solved
simultaneously (with ¢ replacing the superscript 1, 7 replac-
ing 2 and g% instead of g). This will yield solutions for
h};_'_l (i,7), which is the suggested size of the k + 1** step
for agent 7 based on constraint i7, along with h{:+1 (i, 3).
Considering the N — 1 constraints which depend on z* will
then result in N — 1 suggested step sizes the smaliest of
which is appropriate

By = min{hl,;(1,9),.. ., kL (i —1,4),
iy (4,i4+1),. .k (6, N))

More detailed analysis of the V-agent case is the topic of
future work.

(20)

6 Conclusion

In this paper a technique is presented for simulating multi-
agent hybrid systems whose continuous dynamics are de-
coupled; however coupling is introduced in the form of
constraints (an inequality whose violation signifies the oc-
currence of a discrete event) which depend on the states of
both agents. We introduce a step size selection algorithm,
motivated by the control theoretic concept of Input/Qutput
linearization, which allows the two agents to be integrated
asynchronously using different step sizes when the state
is away from the constraint. As the state approaches the
constraint the algorithm is able to bring the two local time
clocks into synchronization and slow down the simulation
in such a way that the algorithm terminates exactly on the
surface of the constraint. The algorithm is puaranteed never
to miss or overshoot the constraint, eliminating the need for
simulation roli-back. The important question of how the
performance of this simulation algorithm compares to that
of more traditional simulation methods will be quantified in
future work. Further work will also examine how the com-
putational benefits of the algorithm scale as the number of
agents gets large.
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