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A Coupled Nonlinear Spacecraft Attitude Controller/Observer With an Unknown

Constant Gyro Bias

J. Deutschmann and R.M. Sanner

Abstract-A nonlinear control scheme for attitude control of a spacecraft is combined

with a nonlinear gyro bias observer for the case of constant gyro bias. The closed loop

system is proven to be globally stable, with zero tracking error, thus proving a separation

principle for the given system. The nonlinear observer incorporates persistency of

excitation, resulting in exponential convergence of the gyro bias error.

I. Introduction

Combined observer-controller designs for nonlinear systems are a subject of active

research [1,2,3]. Successful design of such architectures is complicated by the fact that

there is, in general, no separation principle for nonlinear systems. In contrast to linear

systems, "certainty equivalence" substitution of the states from even an exponentially

converging observer into a nominally stabilizing state feedback control law does not

necessarily guarantee stable closed-loop operation for the coupled systems [2,4,5].

In this paper we consider a restricted version of this problem, in particular the task of

forcing the attitude of a rigid vehicle to asymptotically track a (time-varying) reference

attitude using feedback from sensors with persistent nonzero bias errors. Specifically,

we propose utilizing an angular velocity observer from [2,3] in a certainty equivalence

fashion with the nonlinear control law proposed in [6], and demonstrate in this case that

the resulting system results in stable closed-loop operation, with asymptotically perfect

tracking.

The proof proceeds in two steps. First, we extend the analysis of the observer in [2,3] to

the case of constant gyro bias, and use a persistency of excitation argument to

demonstrate that the bias estimates provided by this observer are in fact exponentially

convergent to the true bias values. The proof in [2] uses a Lyapunov argument to obtain

a similar result, but under the assumption that the biases themselves are exponentially

decaying; this restriction is removed here. Second, we consider the certainty equivalence

use of these observer estimates in the nonlinear feedback control algorithm proposed in

[6] and show that the perturbation introduced by this strategy into the closed-loop

dynamics can be represented as a bounded function of the vehicle states multiplying the

observer transients. Quantifying the impact these perturbations have on the Lyapunov
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analysis given in [6], we demonstrate that the stability and convergence properties of the

controller are, in fact, maintained in the face of the perturbations, completing our analysis

o f the proposed methodology.

The paper is organized as follows. Section [I contains definitions of the terms used in the

controller and observer. In Section lII the nonlinear observer for the constant gyro bias is

developed and the exponential convergence is proven. Section IV presents the nonlinear

controller design and the proof of stability of the closed loop system and the

convergence of the tracking errors. Section V presents simulation results, followed by
conclusions in Section VI,

II. Definitions

The attitude of a spacecraft can be represented by a four component quatemion,

consisting of a rotation angle and unit rotation vector, known as the Euler axis

q = COS_ =

where dp is the rotation angle, e is the Euler axis, e and r1 are the vector and scalar

portions of the quaternion, respectively. Note that ][q[= 1 by definition. The quatemion

represents the rotation from an inertial coordinate system to the spacecraft body

coordinate system. A rotation matrix can be computed from the quatemion as [6]

R(q) = (q" - ere)I + 2e e r _ 2qS(e)

where S(e) is a cross product matrix formed from the vector _.

0 - 13z E:y l
- gy _ 0

T ETA desired target attitude is represented by the quaternion, q_ = [ .,,qd]. The attitude

error used in the controller is defined as a rotation from the desired body frame to the

actual body frame and is computed according to [7]

_= _= =q®qa'= _ ta T n. JLnJ

Similarly, in the observer, the attitude error is defined as the rotation from the estimated

body frame to the actual body frame as



E] [7o ,i-' fiz-s( )
q°= qo =q® -- _:_ fl rl

where _! represents the attitude state of the observer. Note that _'¢ = 0, _¢ = +Z indicates

that the spacecraft is aligned with the desired attitude and similarly, _'o--0, qo--+I

indicates that the attitude estimate is aligned with the actual attitude.

The kinematics equation for the quaternion is given as

= = ,o='Q,,,

where co is the spacecraft angular velocity. The angular velocity is typically measured by

a gyro, which can be corrupted with both systematic and random errors. In this work we

consider only the case of systematic errors. In the case of a gyro bias, the angular

velocity can be written as

co = c% +b

where cog is the angular velocity from the gyro and b is the gyro bias. An estimate of the

angular velocity is given as _ = cog + I). The bias error is defined as the difference

between the true and estimated bias

G=b-E, (2)

Finally, a measure of the discrepancy between the actual and desired angular velocity in

the controller is computed as [8]

_¢ = co - R(_¢)e) d (3)

which is defined such that qc = ½Q(q_)o_.

III. Nonlinear Observer for Constant Gyro Bias

Following the development of [2] a state observer for the bias can be defined as

= I(_RT(_o)(O.),+ 6 + k_'osgn(_o)) (4)

=17 :osgn( o) (5)



1,

The gain, k, is chosen as a positive constant. The rR (qo)resolves the angular velocity

terms in the observer frame.

Computing the derivatives of _o in (1) and b in (2) results in the following differential

error equations

qo = _o "='7 _v
I k_ OL -

b = -7'-eo s_(_o)

The equilibrium states are (0,0,0, + 1,0,0,0). Again, following the development of [2], a

Lyapunov function is chosen as

Vo=1-r- , (qo-1)'+eo eo q_>O
L _T_7b b+ 7 (_o+l)2+eo co qo<O

Taking the derivative of Vo, and noting that "go_o + qo_o = O, yields

= >_o
l_o _o<0

Substituting _o and b from above results in

90 =- _--'_f_o _<o

This establishes that b, go, and qo are globally uniformly bounded; a further application

of Barbalat's lemma [4] shows that, in fact, 'go --+ 0.

Since all the signals in the observer have been demonstrated to be bounded, _o and

can be analyzed as

x(t) = A(t)x(t)

and the derivative of the Lyapunov function written as

'V'o "=-xrCrCx _<0

where



x(t) = - .,-}k, sgn('_o(t))(_o(t)I + S('go(t)));A(t) = }sgn(_o(t))I (_o(t)I +S(Eo(t)))].0

By a standardargument(e.g. Theorem4.5 of [4]), the equilibrium point x = 0 of this
systemis exponentially stableif the pair (A(t),C) is uniformly completely observable
(UCO). Sinceobservabilitypropertiesareunchangedunderoutput feedback,this will be
true if andonly if thepair (A(t) - K(t)C,C) is uniformly observable,with K(t) piecewise
continuousandbounded. With K(t) chosenas

Thematrix (A(t) - K(t)C) becomes

A(t)-K(t)C=[ O0 ½(q°I+S('g°))10 (6)

Thestatetransitionmatrix for (6) is

with ,t-X('Lt)= ' ' t_ 7J', Q,(qo (c))dc_ = T. I', (qo (_)I + S('go(cr)))dc; "

for the pair (A(t) - K(t)C, C) is given by

W(t + T) = f2"r q)r (z, t)CrCq)('c, t)d_ = j_.r } YT('L t)

The observability Gramian

(7)

and the system is UCO if there exists a T>0 and positive constants k_>0, k2>0 such that,

for all t > t o

k_I > W(t +T) >_k,I

Using Lemma 13.4 of [5], this property is assured tbr (7) if Ql(t) and Q_(t)are bounded,

and there are positive constants Tz, ctL and or: such that, for all t >_t,_



cL,[ > f,.r:_,, Q,(.c)Qzr(_:)dz>_c_x,[

The upper bound is satisfied since Ql(t) is bounded.

satisfied, rewrite the matrix Q, (t)Q_r(t)as

Since .go

(s)

To determine if the lower bound is

Q,(t)Q_r(t) = (_o(t)I + S('go(t))(_o(t)I- S('go(t)) = I- Co(t)_:o(t) r (9)

--+ 0 asymptotically, for any 8>0, there exists a Tl(8)>0 such that ]'go < 8 for all

t > t o + T_. Taking any 8<1 and T2>TI, (9) implies that

zr [f$:ra Q, (T)Q r (z)dz]z = (1 - 8)(T= - T,)II-II =

for any z in R 6 and thus (8) is satisfied. This demonstrates the required UCO property for

the observer, and hence establishes that "go and b approach zero exponentially fast.

IV. Nonlinear Controller Design

The complete attitude dynamics for a rigid spacecraft are given as

Ho - S(Hco)o = u

= _-Q(q)o

where H is a constant, symmetric inertia matrix and u is the applied external torque, for

example, from attached rocket thrusters. The goal of the controller is for the actual

attitude q(t) to asymptotically track a (generally) time-varying desired attitude qd(t) and

angular velocity wd(t), related for consistency by dla = _Q(q_)cod. It is assumed that

wd(t) is bounded and differentiable with dh (t) also bounded.

The passivity based controller of [6] utilizes the composite error metric

S = _c -b _.ge ----- O'1 -- (l')r

Where from (3), co = R(_)co,, -kgc.

H results in

Hg = Hd_ - Hor

where

(10)

Taking the derivative of (10) and multiplying by

= u + S(Hco)co - Hat (11)

a_ = o, = R(_,)o a -S(_)R(_,)coa - ;,.QI(_)G_



and Q, (_) = _I + S(_) as defined above. With these definitions, the control law

u = -KDs + H% - S(Hc0)o_ (12)

for any symmetric, positive definite matrix KD as shown in [6] produces the desired

stability and asymptotic tracking properties.

In the current application, the control law (12) cannot be implemented because exact

measurements of the angular velocity co are not available. Instead a certainty equivalence

approach is employed using the estimates _ from above, resulting in

where _ = 6- O_r, _c

u = -KD] + Hfi r - S(H_)t%

= _- R(qc)¢Od, and

a, = R(_o)_ + S(R(_0),-%),_c- zq,@)(oc.

along with (10), and

and _c - _oc = co - ¢.b =

(13)

stl:- -
- 2k o

Substituting (13) into (11), noting that "g=s-g=b,

g, = [S(R(_c)o_ a) -ZQ_(_¢)]b, produces the closed-loop

dynamics

Hs - S(Hco)s + KDs = [-S(m,)H - HS(R(_¢)¢.Od) + XHQ_ (_) + KD ]b (14)

The terms on the right hand side of (14) can be rewritten as A(_¢,eoa)b. Since 11  il= 1

by definition and I1'%11<_ by assumption

v- supsupIIA(  , (t)H < oc

Using the Lyapunov function V_ ={srHs, the derivative of" Vc along closed-loop

trajectories o f (14) satisfies the inequality

=-s'eDs + s'_ _<-ko]]_[]:+,,llsIlll_ll

where kD is the smallest eigenvalue of Ko. Using Young's inequality [5] on the last term

above, 9"c is rewritten as



Thus, recalling from the observer analysis that lib[ is bounded, s is also seen to be

uniformly bounded. Similarly s is uniformly bounded, since all the terms in (14) have

been demonstrated to be bounded. Moreover, s _ L 2 since for any t _> t o

5 2
S_011S("c) 2dT <-_-2 [Vc(t)-vc(to)]+ S:oll (,ll   

- KD
(15)

The inte_al on the right hand side of (15)is finite for any t > to since 11_11is converging

exponentially to zero. Thus s _ L:_ _ L2, s _ L_, hence by Barbalat's lemma [5]

lim s(t) = 0.
t---_oo

This establishes convergence of the composite metric s to zero; now the convergence of

= _-"the actual attitude error ?'c is examined. From (10), Is: I:+ + I1 o11:.
since ll lcis boundedby definition, s_ L_ implies that _c _ L_. This in tum

demonstrates that _c _ Loo since _c = ½Q(qc)_c and both terms on the right are

bounded. Finally, e'c is also in L2 since for any t > t o

(16)

noting that _cTgc =2_c, the terms on the right of (16)

s L:_ _ L 2, gc s L:c and Barbalat again implies that lira gc

analogous argument establishes that lim_ = 0.)

are finite. Thus,

=0. (Note that an

V. Simulation Results

The spacecraft attitude controller/observer design is tested with a Matlab simulation.

The inertia matrix is a diagonal matrix with principal moments of inertia of[90, 100, 70] r

kg-m". The desired angular velocity is coJ= [0, 0.11, 0] racL!sec and qdr---[0, 0, 0, 1]T.

Table I lists the initial conditions for the observer and controller, as well as the true g_o

bias and true initial angular velocity. The gains are chosen as k=l, KD=kDI with kD=6.

Table I. Simulation Initial values

Variable Initial Value

4 [o, 1,o,o1T
q [0, 0, l, O]T

- true [-. 1,.2,-.4] r radlsec

b - true [.05, -0.05, 0.033] r radsec



6 [0, O, O]r rad/sec

Figures I and 2 show that _'o and b, respectively, converge to zero.

show that _c and 5, respectively, also converge to zero.

Figures 3 and 4
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VI. Conclusions

A nonlinear controller/observer is presented for spacecraft attitude applications, given a

constant gyro bias. The nonlinear observer is globally convergent, with identification of

the gyro bias proven through a persistency of excitation argument. The nonlinear

controller is a passivity based controller. The control input requires the use of the gyro

bias estimate from the nonlinear observer. The closed loop stability properties of this

nonlinear controller coupled with the nonlinear observer are analyzed and the system is

found to be globally stable, leading to a separation principle for the nonlinear system.

Given a desired target attitude and target angular velocity, this system guarantees zero

tracking error.
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