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Abstract

We consider stability and robustness of feedback sys-
tems, where plant and compensator need not be strictly
proper. In an earlier paper (1] we described a functional
R which, when negative, guarantees closed-loop insta-
bility as a result of parasitic interactions in the feedback
loop. In our main result, Theorein 5, we prove that, when
R > 0, there exist perturbations of plant and compen-
sator from a narrow class which result in closed-loop sta-
bility and convergence. Hence, we may view B, > 0asa
necessary and sufficient condition for closed-loop robust-
ness in non-strictly-proper feedback loops.

1 Introduction

Consider the multivariable feedback system in Figure 1,
where P (s} and C(s) are matrices of rational functions

Pis)

C(s)

Figure 1: Feedback System

with real coefficients. In [1] we discuss stability and ro-
bustness of such systems when P and C are not assumed
to be strictly proper. QOur analysis hinges on the return
difference

R = det (I + CP)
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and its high-frequency limit
R, = aler;oR(a) € [—o0,00].

The closed-loop system in Figure 1 is governed by the
transfer function matrix

H:[ PI+CPy!

(I+cpy"'cp
Henceforth, we aclbpt the assumption that H is BIBO
stable. In particular, this implies that H is proper, so

-P(I+CP)'C ]
gJ+cp)y'c

(I+CP) =71 -C (P I+ CP)-l)

is proper, R is not strictly proper, and R, # 0.

A natural approach to studying stability and robust-
ness of Figure 1 is to examine strictly proper perturba-
tions of P and C. Then conventional feedback theory can
be utilized. For technical reasons, we need additional as-
sumptions. We say that P, — P weakly, if there exists
¢ < oo such that

W1) P has no pole in |7, 00) for large k,

W2) Py — P pointwise on [o, o).

Suppose we construct weakly convergent sequences P —
P and C;, — C. Letting Ry, = det({+CxPy), it is obvious
from the definition of weak convergence that By — R
weakly. The zeros of R are poles of H, and the zeros of
R;, are poles of the perturbed closed-loop system Hy. In
[1] we prove the following result.

Theorem 1 If Py, and Cy, are strictly proper, P, — P
and C — C weakly, and R, < 0, then there existor € R
such that o T oo and Ry (oi) = 0 for every k.

Theorem 1 says that, under very mild assumptions, R, <
0 guarantees that H; has a high-frequency pole 73, on the
posttive real axis, guaranteeing extreme instability of the
closed-loop system. Qur objective in this paper is to show
that, when Ry, > 0, we have the opposite situation - viz.
that the closed-loop system is robust to certain reasonable
perturbations of P and C.
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2 Preliminaries

We begin by recalling some basic facts about rational ma-
trices and their state-space realizations. The charucter-
istic polynomial A, of a rational matrix P is the least
common denominator of all minors of P. If P is strictly
proper, its McMillan degree is v (P) = deg A,. A, is also
the characteristic polynomial of any state-space realiza-
tion of minimal dimension (i.e. any controllable and ob-
servable realization). Appropriate extensions of realiza-
tion theory to the case of non-strictly-proper P are de-
veloped in [3] and summarized in (4], Theorem 1.2. If P
is non-strictly-proper, we may perform entrywise polyno-
mial division to obtain P = P, + Py, where P; is strictly
proper and Py is polynomial. Let R be the operator on
the space of rational matrices defined by

R(P)(s) = —%P G)

Then R (Py) is strictly proper and we may define the
degree of P according to

p(P)=v(Ps)+v(R(Pr)).

Our analysis hinges on state-space realizations of P and
C. Suppose P has realization

Eir = Ax+ Buy
n = Czr

(1)

with minimal dimension. (See [8] for basic information
on singular systems.) Then P(s} = C(sE — A)~'B and,
from [3], (E, A, B,C) is a controllable and observable 4-
tuple with u (P) states. The characteristic polynomial of

(1) is
Ay (s) = det (sE — A).
It can be shown that

deg A, <rank E (2)

with equality iff P is proper. Applying the Weierstrass
decomposition to (1) {see [3], Ch.12), we obtain

L. 0 A4 0
M,EN, = [ o AJ_],MPAN;,=[ b ;]’
ny,
Mlb = [g;]’CNPZ[Cs Cr ],

where M, and N, are nonsingular and Ay is nilpotent.
Letting
Ts
L

leads to the decoupled state-space system

KRR

a1
]—Np T

0 Ay

Ts
et a[3]
Then (1) has transfer function matrix
P(s) = Cs (sl — A,) ' B, +Cy (sA; — 7" By,
and characteristic polynomial

Ay (s) = adet(s] — A;)det (sAy - I) (3)

for some constant « # 0. Note that P is proper iff Ay = 0.
Similar statements can be made about C, yielding a
realization

Jz = Fz+4Gus (4)
2 = Hz,

a Weierstrass decomposition

— Iﬂc.- 0 _ Fs 0
M.JN, = [ v F, ] , M_FN, = [ o I, ](5)
MG = G HN, = [ H, H ]
e Gf y c 8 f 1
and characteristic polynomial
A (s) = Bdet (sI — Fy)det (sFy — I). (6)

Then H has minimal realization

][ﬂz[GAc ﬁH]
HE

which can be written

E 0
0o J

I 0 0 0 Ta
01 0 0 24
0 0 A O j;f
0 0 0 Fy :Zj
A, —B,H, 0 —B.Hy Ty
. Gscs Fa Gsc_f 0 2’5
- 0 -BrH, I —B¢Hy Ty
chg 0 chf I sz
B, 0 ]
0 Ga 1
| B 0 [1‘2]
0 Gy
T
n|_[CG 0 Cf 0 Ze
Y2 0 Hs 0 Hf Ty !
zf
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The closed-loop characteristic polynomial is

sI— Aa BsHs 0 BSHf
_ ~G,Cy sI—F, -G,C; 0
i () = det 0 ByH, sA;—1 BjHy
”chs ] —Gfo SFf-f

(7)
BIBO stability of H implies properness of H; s0, as in
(2)7 deg Ag = Rps + Nes + P, where

p =rank Ay + rank Fy.
From [6], p.159, we know that
Acl

R= m (8)
Let
I—s4; —B:H
p = f FH1f
Vp$ +...+'rofdet[ G, I—-sF | (9)
Recalling

det (sd; — I} = (=1)""', det(sF; — I) = (-1)™,
we obtain

R, = Yy P and C proper,
V- 00, P or C improper.
Note that P and C proper implies

—BpHy

I
Roondet{GJ_Cf ! ]:det(I+BfoGfo),

(10)

3 Saufliciency of R, > 0

Merely showing that R, > 0 guarantees closed-loop ro-
bustness to certain weak perturbations would not be an
acceptable result, since the class of weak perturbations is
so large. To obtain a better result, we limit our analysis
to the narrowest perturbation class normally encountered
in singular perturbation problems. As an initial step, we
consider rational functions

94 ...+ b
M) = St tie
&rp ST+ ..+ Qo
b Sm+...+bo
fls) = s
s"+an_15"" 4+ ...+ an

and say that fi — f parametrically if

g 2 m, rzn
ap — @ t=0,..,n-1
yy, — 1
ar — 0 i=n+1,.,r
b — by i=0,...,m
by — 0 i=m+1,..,q.

For matrices, we say P — P perametrically if each entry
converges parametricaily. We say P — P strongly, if

S1) Pr — P parametricaltly,

52) u(Py) = u (P) for large k,

S3) there exists ¢ > 0 and K < co such that, when

k > K, no finite pole Ajx of Py satisfies both |Ag| > 1
and farg Ay < 5 + €.
Condition 83) is equivalent to saying that the divergent
poles of Py lie in a fixed left half-plane sector. S1) and
S3) together imply weak convergence. Furthermore, it is
shown in [4] that 51) guarantees that Py and Ci have
realizations of the form (1) with convergent matrices.
Let £-? denote the inverse Laplace transform operator.
Then, from $3) and (7], Theorem 1, £~ {Px} — L~ {P}
and £~ {Cy} — L£71{C} as distributions. (See [2] for
a discussion of distributional convergence.} In addition,
we can show that the inverse transforms converge uni-
formly on compact subintervals of (0, 00) . Hence, strong
convergence embodies all the properties that are normaily
encountered in classical singular perturbation problems.
We will eventually prove that, for B, > 0, the closed-
loop system is robust to certain strong, strictly proper
plant and compensator perturbations.

Next we study a class of perturbations of P and C
obtained by choosing Asrx — Ay and Fyr — Fy and sub-
stituting A g and Fyy into (??) and (3) in place of Ay and
Ff. Recall that the inder ind A of a square matrix A is
the smallest integer p > 1 such that rank AP = rank AP+1
It is easy to show that ind A = 1 is equivalent to having
rank A nonzero eigenvalues in A, counting multiplicities.

Lemuna 2 Let Ape — Ay and Fy — Fp, where
rank Ay, = rank Af, rank Fp, = rank Fy, ind Ag, =
indFp, = 1, and every nonzero eigenvalue A of Ajsy
and Fyy satisfies Re Ay < 0 for large k. Then Py, Cg,
and Hy, are proper and Rioo — Roo.

Proof. If P and C are proper, then Ay = Ay, = 0
and Fy = Frp = 0,50 P, =P, Gy, =C, H; = H, and
Rioo = Roo. Suppose P and C are not both proper. Since
Aygp and Fyp have unit index, the corresponding Py and
C. are proper. Despite the fact that Af; and Fyi may not
be nilpotent, we may substitute them for Ay and Fy in
(3), (6), and (7), yielding Apy, Ak, and Ack. Applying
(2) to (7), we obtain properness of Hy. Applying (8) to
the perturbed system, we obtain

Rioo = alim Iy (o),

where

sAsq, —I  ByH
det{ _ékfcf SFffk —ff } You* + -+ Yor
Ty (s) =

=det('sAfk—I)det(stk—I) L4
1—;\,' 8
il;[l( k5)

(11)
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with ;. — ;. Thus
Yok

Rpoo = 5—-
11 (=)

(12)

Since the denominator of (12} is positive, real, and con-
verging t0 0, Riroo — 7,00 = Roo. ¥

Strongly convergent sequences P and Cy satisfying
the conditions of Lemma 2 are easily constructed. For
example, let P have minimal realization (?7), and sup-
pose Ay has Jordan form

0 1
Ji
T_lAfT= :Ji_
J 1
0
(13)
Let
Jik
Afk = T T_l, (14)
Jik
__lk? 1
Jig =
_% 1
0

Lemma 3 Suppose Aj. and Fyy are constructed as in
(18) and (14). Then Py, Ci, and H;, are proper, P —
P, Cr — C, and Hy, — H strongly, end Rreo — Roo-

Proof. The conditions of Lemma 2 obviously hold,
guaranteeing properness of Py, Cg, and Hy and con-
vergence of Ryeo. Also, S1) and S2) are obvious for Py,
Ci, and H. The divergent poles of P, and Cy, are just
Xix = —k, s0 33) holds. From (2) and (7),

Nps + Nics = deg Ak > deg Ag = Tips + Tlea

so deg Ay is constant. Hence Hj, has no divergent poles
and S3) holds vacuously. ®

Before we state our main theorem, we need one more
preliminary result.

Lemma 4 A square matriz M is the product of two sta-
ble matrices iff det M > 0 and M # —al for any o > 0.

Proof. (Necessary) Let M = XTI, where X and II are
stable with eigenvalues {o;} and {m;} , respectively. Then

det M = (Hm) (Hm) > 0.

If M = —af with o > 0, then 7! = —LIT is unstable.
Stability of ¥ vields a contradiction.

(Sufficient) A proof of the converse is too long to
present here in detail. The general idea is to first con-
struct a nonsingular matrix T such that every leading
principal minor of T‘IMT~is positive. Second, find a
lower triangular triangular £ and an upper triangular I
such that T-'MT = ZII. These constructions can be
performed using standard matrix manipulations and an
inductive argument. =

Theorem 5 If R > 0, then there erist strictly proper
sequences Py and Cy such that P — P, Cp — C, end
H; — H strongly and Hy, is proper for large k.

Proof. Our construction proceeds in four stages. First,
we assume P is strictly proper and C is proper. This
means ny,y = 0 and Fy = 0. Let Py = P and Gy be
determined by setting Fiyp = %El, where 3J; is any stable
matrix. Then Cy and H,, are obviously strictly proper
and satisfy S$1) and S2). Since the divergent poles of Cx
are just the eigenvalues of kE7!, 83) follows for Cy. From
[9], Corollary, 2.1, Hj, satisfies S3}.

Now assume that P and C are proper and that [ +
ByH;GyCy; # —ol for any a > 0. Then, by Lemma
4 and (10), there exist stable matrices g and II such
that I + BfoGfo = 3.1, so Er;l (I—l—BfoGfo)
is stable. Let Ay = %22 and fix Fy = 0. Then Py is
strictly proper and Py — P strongly. Letting C, = C,
[9], Corollary 2.1, again implies H; — H strongly with
H, proper. Based on the construction in the preceding
paragraph, for each k we can find a sequences Py; (= Py)
and Cy; such that Cy; is strictly proper and Cy; — Cy
and Hy; — Hj strongly as j — oo for every &. Hence,
there exists a sequence of integers 7; 1 oo such that Py;, ,
Cy;., and Hy;, are strongly convergent.

Next, assume P and C are proper, but I +
ByH;GyCs = —al for some o > 0. Then there exists a
sequence By, — By such that [ + By H;GyCy # — 0,1
for any 3, > 0. Fix Ay = 0 and Fy = 0, but use By, in
place of By in (??7). Then Py is proper, Cp = C, and
P, — P strongly, since its poles are constant. As in the
proof of Lemma 3, deg Agy is constant; hence, Hy — H
strongly with Hj, proper. As in the preceding paragraph,
we may construct Py, Cy;, and ji such that Py;,, C;,,
and Hyg;, are strongly convergent.

Finally, suppose P and C are not both proper. Then,
from Lemma 3, the construction (13) and (14) yields
strongly convergent proper sequences Pp, Cg, and Hy
with Rroo — Foo. From the preceding paragraph, we may
construct Py, Ci;, and j; such that Py, , C;, , and Hyj,
are strongly convergent. ®

We note that condition $3) along with properness of
H, imply BIBO stability of H,, for large k. Hence, the
construction in the proof of Theorem 5 yields strong per-
turbations of P and C under which the closed-loop system
is robustly stable. This establishes sufficiency of R, > 0.
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