A Necessary and Sufficient Condition for High-Frequency Robustness of Non-Strictly-Proper Feedback Systems*

Daniel Cobb
Department of Electrical Engineering
University of Wisconsin
Madison, WI 53706-1691
cobb@engr.wisc.edu

Abstract

We consider stability and robustness of feedback systems, where plant and compensator need not be strictly proper. In an earlier paper [1] we described a functional R_{∞} which, when negative, guarantees closed-loop instability as a result of parasitic interactions in the feedback loop. In our main result, Theorem 5, we prove that, when $R_{\infty}>0$, there exist perturbations of plant and compensator from a narrow class which result in closed-loop stability and convergence. Hence, we may view $R_{\infty}>0$ as a necessary and sufficient condition for closed-loop robustness in non-strictly-proper feedback loops.

1 Introduction

Consider the multivariable feedback system in Figure 1, where P(s) and C(s) are matrices of rational functions

Figure 1: Feedback System

with real coefficients. In [1] we discuss stability and robustness of such systems when ${\bf P}$ and ${\bf C}$ are not assumed to be strictly proper. Our analysis hinges on the return difference

$$R = \det\left(I + \mathbf{CP}\right)$$

and its high-frequency limit

$$R_{\infty} = \lim_{\sigma \to \infty} R(\sigma) \in [-\infty, \infty].$$

The closed-loop system in Figure 1 is governed by the transfer function matrix

$$\mathbf{H} = \begin{bmatrix} \mathbf{P} (I + \mathbf{CP})^{-1} & -\mathbf{P} (I + \mathbf{CP})^{-1} \mathbf{C} \\ (I + \mathbf{CP})^{-1} \mathbf{CP} & (I + \mathbf{CP})^{-1} \mathbf{C} \end{bmatrix}.$$

Henceforth, we adopt the assumption that \mathbf{H} is BIBO stable. In particular, this implies that H is proper, so

$$(I + \mathbf{CP})^{-1} = I - \mathbf{C} \left(\mathbf{P} \left(I + \mathbf{CP} \right)^{-1} \right)$$

is proper, R is not strictly proper, and $R_{\infty} \neq 0$.

A natural approach to studying stability and robustness of Figure 1 is to examine strictly proper perturbations of P and C. Then conventional feedback theory can be utilized. For technical reasons, we need additional assumptions. We say that $P_k \to P$ weakly, if there exists $\sigma < \infty$ such that

W1) P_k has no pole in $[\sigma, \infty)$ for large k,

W2) $\mathbf{P}_k \to \mathbf{P}$ pointwise on $[\sigma, \infty)$.

Suppose we construct weakly convergent sequences $\mathbf{P}_k \to \mathbf{P}$ and $\mathbf{C}_k \to \mathbf{C}$. Letting $R_k = \det(I + \mathbf{C}_k \mathbf{P}_k)$, it is obvious from the definition of weak convergence that $R_k \to R$ weakly. The zeros of R are poles of \mathbf{H} , and the zeros of R_k are poles of the perturbed closed-loop system \mathbf{H}_k . In [1] we prove the following result.

Theorem 1 If \mathbf{P}_k and \mathbf{C}_k are strictly proper, $\mathbf{P}_k \to \mathbf{P}$ and $\mathbf{C}_k \to \mathbf{C}$ weakly, and $R_{\infty} < 0$, then there exist $\sigma_k \in \mathbb{R}$ such that $\sigma_k \uparrow \infty$ and $R_k (\sigma_k) = 0$ for every k.

Theorem 1 says that, under very mild assumptions, $R_{\infty} < 0$ guarantees that \mathbf{H}_k has a high-frequency pole σ_k on the positive real axis, guaranteeing extreme instability of the closed-loop system. Our objective in this paper is to show that, when $R_{\infty} > 0$, we have the opposite situation – viz. that the closed-loop system is robust to certain reasonable perturbations of \mathbf{P} and \mathbf{C} .

^{*}This work was supported by NSF grant ECS-9616567.

2 Preliminaries

We begin by recalling some basic facts about rational matrices and their state-space realizations. The characteristic polynomial Δ_p of a rational matrix \mathbf{P} is the least common denominator of all minors of \mathbf{P} . If \mathbf{P} is strictly proper, its McMillan degree is $\nu\left(\mathbf{P}\right) = \deg \Delta_p$. Δ_p is also the characteristic polynomial of any state-space realization of minimal dimension (i.e. any controllable and observable realization). Appropriate extensions of realization theory to the case of non-strictly-proper \mathbf{P} are developed in [3] and summarized in [4], Theorem 1.2. If \mathbf{P} is non-strictly-proper, we may perform entrywise polynomial division to obtain $\mathbf{P} = \mathbf{P}_s + \mathbf{P}_f$, where \mathbf{P}_s is strictly proper and \mathbf{P}_f is polynomial. Let \mathcal{R} be the operator on the space of rational matrices defined by

$$\mathcal{R}\left(\mathbf{P}\right)\left(s\right) = -\frac{1}{s}\mathbf{P}\left(\frac{1}{s}\right).$$

Then $\mathcal{R}(\mathbf{P}_f)$ is strictly proper and we may define the degree of P according to

$$\mu(\mathbf{P}) = \nu(\mathbf{P}_s) + \nu(\mathcal{R}(\mathbf{P}_f)).$$

Our analysis hinges on state-space realizations of **P** and **C**. Suppose **P** has realization

$$E\dot{x} = Ax + Bu_1 \tag{1}$$

$$v_1 = Cx$$

with minimal dimension. (See [8] for basic information on singular systems.) Then $\mathbf{P}(s) = C(sE - A)^{-1}B$ and, from [3], (E, A, B, C) is a controllable and observable 4-tuple with $\mu(\mathbf{P})$ states. The characteristic polynomial of (1) is

$$\Delta_{p}(s) = \det(sE - A).$$

It can be shown that

$$\deg \Delta_n < \operatorname{rank} E \tag{2}$$

with equality iff **P** is proper. Applying the Weierstrass decomposition to (1) (see [5], Ch.12), we obtain

$$\begin{split} M_p E N_p &= \begin{bmatrix} I_{n_{ps}} & 0 \\ 0 & A_f \end{bmatrix}, \ M_p A N_p = \begin{bmatrix} A_s & 0 \\ 0 & I_{n_{pf}} \end{bmatrix}, \\ M_p B &= \begin{bmatrix} B_s \\ B_f \end{bmatrix}, \ C N_p = \begin{bmatrix} C_s & C_f \end{bmatrix}, \end{split}$$

where M_p and N_p are nonsingular and A_f is nilpotent. Letting

$$\left[\begin{array}{c} x_s \\ x_f \end{array}\right] = N_p^{-1} x$$

leads to the decoupled state-space system

$$\begin{bmatrix} I_{n_{ps}} & 0 \\ 0 & A_f \end{bmatrix} \begin{bmatrix} \dot{x}_s \\ \dot{x}_f \end{bmatrix} = \begin{bmatrix} A_s & 0 \\ 0 & I_{n_{pf}} \end{bmatrix} \begin{bmatrix} x_s \\ x_f \end{bmatrix} + \begin{bmatrix} B_s \\ B_f \end{bmatrix} u_1$$

$$y_1 = \left[\begin{array}{cc} C_s & C_f \end{array} \right] \left[\begin{array}{c} x_s \\ x_f \end{array} \right].$$

Then (1) has transfer function matrix

$$P(s) = C_s (sI - A_s)^{-1} B_s + C_f (sA_f - I)^{-1} B_f,$$

and characteristic polynomial

$$\Delta_n(s) = \alpha \det(sI - A_s) \det(sA_f - I) \tag{3}$$

for some constant $\alpha \neq 0$. Note that **P** is proper iff $A_f = 0$. Similar statements can be made about **C**, yielding a realization

$$J\dot{z} = Fz + Gu_2 \qquad (4)$$

$$y_2 = Hz,$$

a Weierstrass decomposition

$$M_c J N_c = \begin{bmatrix} I_{n_{cs}} & 0 \\ 0 & F_f \end{bmatrix}, M_c F N_c = \begin{bmatrix} F_s & 0 \\ 0 & I_{n_{cf}} \end{bmatrix} (5)$$

$$M_c G = \begin{bmatrix} G_s \\ G_f \end{bmatrix}, H N_c = [H_s H_f],$$

and characteristic polynomial

$$\Delta_{c}(s) = \beta \det(sI - F_{s}) \det(sF_{f} - I). \tag{6}$$

Then H has minimal realization

$$\begin{bmatrix} E & 0 \\ 0 & J \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} A & -BH \\ GC & F \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} + \begin{bmatrix} B & 0 \\ 0 & G \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$$
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & H \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix},$$

which can be written

$$\begin{bmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & A_f & 0 \\ 0 & 0 & 0 & F_f \end{bmatrix} \begin{bmatrix} \dot{x}_s \\ \dot{x}_s \\ \dot{x}_f \\ \dot{x}_f \end{bmatrix}$$

$$= \begin{bmatrix} A_s & -B_s H_s & 0 & -B_s H_f \\ G_s C_s & F_s & G_s C_f & 0 \\ 0 & -B_f H_s & I & -B_f H_f \\ G_f C_s & 0 & G_f C_f & I \end{bmatrix} \begin{bmatrix} x_s \\ z_s \\ x_f \\ z_f \end{bmatrix}$$

$$+ \begin{bmatrix} B_s & 0 \\ 0 & G_s \\ B_f & 0 \\ 0 & G_f \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} C_s & 0 & C_f & 0 \\ 0 & H_s & 0 & H_f \end{bmatrix} \begin{bmatrix} x_s \\ z_s \\ x_f \end{bmatrix},$$

The closed-loop characteristic polynomial i

The closed-loop characteristic polynomial is

$$\Delta_{cl}(s) = \det \begin{bmatrix} sI - A_s & B_sH_s & 0 & B_sH_f \\ -G_sC_s & sI - F_s & -G_sC_f & 0 \\ 0 & B_fH_s & sA_f - I & B_fH_f \\ -G_fC_s & 0 & -G_fC_f & sF_f - I \end{bmatrix}$$
converges parametrically. We say $\mathbf{P}_k \to \mathbf{P}$ strongly, if
$$S1) \ \mathbf{P}_k \to \mathbf{P} \text{ parametrically},$$

$$S2) \ \mu(\mathbf{P}_k) = \mu(\mathbf{P}) \text{ for large } k,$$

$$S3) \text{ there exists } \varepsilon > 0 \text{ and } K < \infty \text{ such that, when } k > K, \text{ no finite pole } \lambda_{ik} \text{ of } \mathbf{P}_k \text{ satisfies both } |\lambda_{ik}| > \frac{1}{\varepsilon}$$

$$A \to K, \text{ no finite pole } \lambda_{ik} \text{ of } \mathbf{P}_k \text{ satisfies both } |\lambda_{ik}| > \frac{1}{\varepsilon}$$
and $|\arg \lambda_{ik}| < \frac{\pi}{2} + \varepsilon$.

BIBO stability of **H** implies properness of **H**; so, as in (2), $\deg \Delta_{cl} = n_{ps} + n_{cs} + \rho$, where

$$\rho = \operatorname{rank} A_f + \operatorname{rank} F_f.$$

From [6], p.159, we know that

$$R = \frac{\Delta_{cl}}{\Delta_p \Delta_c}.$$
 (8)

Let

$$\gamma_{\rho} s^{\rho} + \dots + \gamma_0 = \det \left[\begin{array}{cc} I - s A_f & -B_f H_f \\ G_f C_f & I - s F_f \end{array} \right]. \quad (9)$$

Recalling

$$\det(sA_f - I) = (-1)^{n_{pf}}, \ \det(sF_f - I) = (-1)^{n_{cf}},$$

we obtain

$$R_{\infty} = \left\{ \begin{array}{c} \gamma_{\rho}, \ \mathbf{P} \ \mathrm{and} \ \mathbf{C} \ \mathrm{proper}, \\ \gamma_{\rho} \cdot \infty, \ \mathbf{P} \ \mathrm{or} \ \mathbf{C} \ \mathrm{improper}. \end{array} \right.$$

Note that P and C proper implies

$$R_{\infty} = \det \begin{bmatrix} I & -B_f H_f \\ G_f C_f & I \end{bmatrix} = \det (I + B_f H_f G_f C_f).$$
(10)

Sufficiency of $R_{\infty} > 0$ 3

Merely showing that $R_{\infty} > 0$ guarantees closed-loop robustness to certain weak perturbations would not be an acceptable result, since the class of weak perturbations is so large. To obtain a better result, we limit our analysis to the narrowest perturbation class normally encountered in singular perturbation problems. As an initial step, we consider rational functions

$$f_k(s) = \frac{b_{qk}s^q + \dots + b_{0k}}{a_{rk}s^r + \dots + a_{0k}}$$

$$f(s) = \frac{b_m s^m + \dots + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_0}$$

and say that $f_k \to f$ parametrically if

$$egin{array}{lll} q & \geq & m, & r \geq n \\ a_{ik} &
ightarrow & a_i; & i = 0, ..., n-1 \\ a_{nk} &
ightarrow & 1 \\ a_{ik} &
ightarrow & 0; & i = n+1, ..., r \\ b_{ik} &
ightarrow & b_i; & i = 0, ..., m \\ b_{ik} &
ightarrow & 0; & i = m+1, ..., q. \end{array}$$

For matrices, we say $P_k \to P$ parametrically if each entry

and $|\arg \lambda_{ik}| < \frac{\pi}{2} + \varepsilon$.

Condition S3) is equivalent to saying that the divergent poles of P_k lie in a fixed left half-plane sector. S1) and S3) together imply weak convergence. Furthermore, it is shown in [4] that S1) guarantees that P_k and C_k have realizations of the form (1) with convergent matrices. Let \mathcal{L}^{-1} denote the inverse Laplace transform operator. Then, from S3) and [7], Theorem 1, $\mathcal{L}^{-1}\{\mathbf{P}_k\} \to \mathcal{L}^{-1}\{\mathbf{P}\}$ and $\mathcal{L}^{-1}\{\mathbf{C}_k\} \to \mathcal{L}^{-1}\{\mathbf{C}\}$ as distributions. (See [2] for a discussion of distributional convergence.) In addition, we can show that the inverse transforms converge uniformly on compact subintervals of $(0, \infty)$. Hence, strong convergence embodies all the properties that are normally encountered in classical singular perturbation problems. We will eventually prove that, for $R_{\infty} > 0$, the closedloop system is robust to certain strong, strictly proper plant and compensator perturbations.

Next we study a class of perturbations of P and C obtained by choosing $A_{fk} \to A_f$ and $F_{fk} \to F_f$ and substituting A_{fk} and F_{fk} into (??) and (5) in place of A_f and F_f . Recall that the *index* ind A of a square matrix A is the smallest integer $p \ge 1$ such that rank $A^p = \operatorname{rank} A^{p+1}$. It is easy to show that ind A = 1 is equivalent to having rank A nonzero eigenvalues in A, counting multiplicities.

Lemma 2 Let $A_{fk} \rightarrow A_f$ and $F_{fk} \rightarrow F_f$, where rank $A_{fk} = \operatorname{rank} A_f$, rank $F_{fk} = \operatorname{rank} F_f$, ind $A_{fk} = \operatorname{rank} F_f$ $\operatorname{ind} F_{fk} = 1$, and every nonzero eigenvalue λ_{ik} of A_{fk} and F_{fk} satisfies $\operatorname{Re} \lambda_{ik} < 0$ for large k. Then \mathbf{P}_k , \mathbf{C}_k , and \mathbf{H}_k are proper and $R_{k\infty} \to R_{\infty}$.

Proof. If P and C are proper, then $A_f = A_{fk} = 0$ and $F_f = F_{fk} = 0$, so $\mathbf{P}_k = \mathbf{P}$, $\mathbf{C}_k = \mathbf{C}$, $\mathbf{H}_k = \mathbf{H}$, and $R_{k\infty}=R_{\infty}.$ Suppose **P** and **C** are not both proper. Since A_{fk} and F_{fk} have unit index, the corresponding \mathbf{P}_k and C_k are proper. Despite the fact that A_{fk} and F_{fk} may not be nilpotent, we may substitute them for A_f and F_f in (3), (6), and (7), yielding Δ_{pk} , Δ_{ck} , and Δ_{clk} . Applying (2) to (7), we obtain properness of \mathbf{H}_k . Applying (8) to the perturbed system, we obtain

$$R_{k\infty}=\lim_{\sigma\to\infty}\Gamma_{k}\left(\sigma\right),$$

where

$$\Gamma_{k}\left(s\right) = \frac{\det\begin{bmatrix} sA_{fk} - I & B_{f}H_{f} \\ -G_{f}C_{f} & sF_{fk} - I \end{bmatrix}}{\det\left(sA_{fk} - I\right)\det\left(sF_{fk} - I\right)} = \frac{\gamma_{\rho k}s^{\rho} + \dots + \gamma_{0k}}{\prod\limits_{i=1}^{\rho}\left(1 - \lambda_{ik}s\right)}$$
(11)

with $\gamma_{ik} \rightarrow \gamma_i$. Thus

$$R_{k\infty} = \frac{\gamma_{\rho k}}{\prod\limits_{i=1}^{\rho} (-\lambda_{ik})}.$$
 (12)

Since the denominator of (12) is positive, real, and converging to $0, R_{k\infty} \to \gamma_{\rho} \cdot \infty = R_{\infty}$.

Strongly convergent sequences P_k and C_k satisfying the conditions of Lemma 2 are easily constructed. For example, let P have minimal realization (??), and suppose A_f has Jordan form

$$T^{-1}A_{f}T = \begin{bmatrix} J_{1} & & & \\ & \ddots & & \\ & & J_{l} \end{bmatrix}, J_{i} = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}.$$
(13)

Let

$$A_{fk} = T \begin{bmatrix} J_{1k} & & & \\ & \ddots & & \\ & & J_{lk} \end{bmatrix} T^{-1}, \qquad (14)$$

$$J_{ik} = \begin{bmatrix} -\frac{1}{k} & 1 & & \\ & \ddots & \ddots & \\ & & -\frac{1}{k} & 1 \\ & & & 0 \end{bmatrix}.$$

Lemma 3 Suppose A_{fk} and F_{fk} are constructed as in (13) and (14). Then \mathbf{P}_k , \mathbf{C}_k , and \mathbf{H}_k are proper, $\mathbf{P}_k \to \mathbf{P}$, $\mathbf{C}_k \to \mathbf{C}$, and $\mathbf{H}_k \to \mathbf{H}$ strongly, and $R_{k\infty} \to R_{\infty}$.

Proof. The conditions of Lemma 2 obviously hold, guaranteeing properness of \mathbf{P}_k , \mathbf{C}_k , and \mathbf{H}_k and convergence of $R_{k\infty}$. Also, S1) and S2) are obvious for \mathbf{P}_k , \mathbf{C}_k , and \mathbf{H}_k . The divergent poles of \mathbf{P}_k and \mathbf{C}_k are just $\lambda_{ik} = -k$, so S3) holds. From (2) and (7),

$$n_{ps} + n_{cs} \ge \deg \Delta_{clk} \ge \deg \Delta_{cl} = n_{ps} + n_{cs}$$

so $\deg \Delta_{clk}$ is constant. Hence \mathbf{H}_k has no divergent poles and S3) holds vacuously. \blacksquare

Before we state our main theorem, we need one more preliminary result.

Lemma 4 A square matrix M is the product of two stable matrices iff det M > 0 and $M \neq -\alpha I$ for any $\alpha > 0$.

Proof. (Necessary) Let $M = \Sigma \Pi$, where Σ and Π are stable with eigenvalues $\{\sigma_i\}$ and $\{\pi_i\}$, respectively. Then

$$\det M = \left(\prod \sigma_i\right) \left(\prod \pi_i\right) > 0.$$

If $M = -\alpha I$ with $\alpha > 0$, then $\Sigma^{-1} = -\frac{1}{\alpha}\Pi$ is unstable. Stability of Σ yields a contradiction.

(Sufficient) A proof of the converse is too long to present here in detail. The general idea is to first construct a nonsingular matrix T such that every leading principal minor of $T^{-1}MT$ is positive. Second, find a lower triangular triangular $\tilde{\Sigma}$ and an upper triangular $\tilde{\Pi}$ such that $T^{-1}MT = \tilde{\Sigma}\tilde{\Pi}$. These constructions can be performed using standard matrix manipulations and an inductive argument.

Theorem 5 If $R_{\infty} > 0$, then there exist strictly proper sequences \mathbf{P}_k and \mathbf{C}_k such that $\mathbf{P}_k \to \mathbf{P}$, $\mathbf{C}_k \to \mathbf{C}$, and $\mathbf{H}_k \to \mathbf{H}$ strongly and \mathbf{H}_k is proper for large k.

Proof. Our construction proceeds in four stages. First, we assume **P** is strictly proper and **C** is proper. This means $n_{pf} = 0$ and $F_f = 0$. Let $\mathbf{P}_k = \mathbf{P}$ and \mathbf{C}_k be determined by setting $F_{fk} = \frac{1}{k}\Sigma_1$, where Σ_1 is any stable matrix. Then \mathbf{C}_k and \mathbf{H}_k are obviously strictly proper and satisfy S1) and S2). Since the divergent poles of \mathbf{C}_k are just the eigenvalues of $k\Sigma_1^{-1}$, S3) follows for \mathbf{C}_k . From [9], Corollary, 2.1, \mathbf{H}_k satisfies S3).

Now assume that \mathbf{P} and \mathbf{C} are proper and that $I+B_fH_fG_fC_f\neq -\alpha I$ for any $\alpha>0$. Then, by Lemma 4 and (10), there exist stable matrices Σ_2 and Π such that $I+B_fH_fG_fC_f=\Sigma_2\Pi$, so $\Sigma_2^{-1}(I+B_fH_fG_fC_f)$ is stable. Let $A_{fk}=\frac{1}{k}\Sigma_2$ and fix $F_f=0$. Then \mathbf{P}_k is strictly proper and $\mathbf{P}_k\to\mathbf{P}$ strongly. Letting $\mathbf{C}_k=\mathbf{C}$, [9], Corollary 2.1, again implies $\mathbf{H}_k\to\mathbf{H}$ strongly with \mathbf{H}_k proper. Based on the construction in the preceding paragraph, for each k we can find a sequences \mathbf{P}_{kj} (= \mathbf{P}_k) and \mathbf{C}_{kj} such that \mathbf{C}_{kj} is strictly proper and $\mathbf{C}_{kj}\to\mathbf{C}_k$ and $\mathbf{H}_{kj}\to\mathbf{H}_k$ strongly as $j\to\infty$ for every k. Hence, there exists a sequence of integers $j_k\uparrow\infty$ such that \mathbf{P}_{kj_k} , \mathbf{C}_{kj_k} , and \mathbf{H}_{kj_k} are strongly convergent.

Next, assume \mathbf{P} and \mathbf{C} are proper, but $I+B_fH_fG_fC_f=-\alpha I$ for some $\alpha>0$. Then there exists a sequence $B_{fk}\to B_f$ such that $I+B_{fk}H_fG_fC_f\neq -\beta_k I$ for any $\beta_k>0$. Fix $A_f=0$ and $F_f=0$, but use B_{fk} in place of B_f in (??). Then \mathbf{P}_k is proper, $\mathbf{C}_k=\mathbf{C}$, and $\mathbf{P}_k\to\mathbf{P}$ strongly, since its poles are constant. As in the proof of Lemma 3, $\deg\Delta_{clk}$ is constant; hence, $\mathbf{H}_k\to\mathbf{H}$ strongly with \mathbf{H}_k proper. As in the preceding paragraph, we may construct \mathbf{P}_{kj} , \mathbf{C}_{kj} , and \mathbf{j}_k such that \mathbf{P}_{kj_k} , \mathbf{C}_{j_k} , and \mathbf{H}_{kj_k} are strongly convergent.

Finally, suppose \mathbf{P} and \mathbf{C} are not both proper. Then, from Lemma 3, the construction (13) and (14) yields strongly convergent proper sequences \mathbf{P}_k , \mathbf{C}_k , and \mathbf{H}_k with $R_{k\infty} \to R_{\infty}$. From the preceding paragraph, we may construct \mathbf{P}_{kj} , \mathbf{C}_{kj} , and j_k such that \mathbf{P}_{kj_k} , \mathbf{C}_{j_k} , and \mathbf{H}_{kj_k} are strongly convergent. \blacksquare

We note that condition S3) along with properness of \mathbf{H}_k imply BIBO stability of \mathbf{H}_k for large k. Hence, the construction in the proof of Theorem 5 yields strong perturbations of \mathbf{P} and \mathbf{C} under which the closed-loop system is robustly stable. This establishes sufficiency of $R_{\infty} > 0$.

References

- [1] D. Cobb, "Feedback Analysis for Non-Strictly-Proper Systems", *Proceedings of the 2001 American Control* Conference, TP3-02, Arlington, Va., June 2001.
- [2] I. M. Gelfand, G. E. Shilov, Generalized Functions, Volume 1, Academic Press, 1964.
- [3] G. Verghese, Infinite Frequency Behavior in Generalized Dynamic Systems, Ph.D. Thesis, Department of Electrical Engineering, Stanford University, December 1978.
- [4] M. Tan, D. Cobb, "A Realization Theory for Perturbed Linear Systems", Journal of Mathematical Analysis and Applications, Vol. 187, No. 1, pp. 169-195, October 1994.
- [5] F. R. Gantmacher, The Theory of Matrices, Vol. 2, Chelsea Publishing Company, 1959.
- [6] F. M. Callier, C. A. Desoer, Multivariable Feedback Systems, Springer-Verlag, 1982.
- [7] B. A. Francis, "Convergence in the Boundary Layer for Singularly Perturbed Equations", Automatica, Vol. 18, No. 1, pp.57-62, January 1982.
- [8] S. L. Campbell, Singular Systems of Differential Equations, Pitman, 1980.
- [9] P. V. Kokotovic, "Applications of Singular Perturbation Techniques to Control Problems", SIAM Review, 26, 501-550, October 1984.